
Workshop on
Declarative Aspects of Multicore Programming

DAMP 2008

Sponsored by ACM SIGPLAN and Intel Corporation

January 9, 2008
San Francisco, CA, USA

(co-located with POPL 2008)

Foreword

Parallelism is going mainstream. Many chip manufactures are turning to multi-
core processor designs rather than scalar-oriented frequency increases as a way
to get performance in their desktop, enterprise, and mobile processors. This
endeavor is not likely to succeed long term if mainstream applications cannot
be parallelized to take advantage of tens and eventually hundreds of hardware
threads. Multicore architectures will differ in significant ways from their mul-
tisocket predecessors. For example, the communication to compute bandwidth
ratio is likely to be higher, which will positively impact performance. More gen-
erally, multicore architectures introduce several new dimensions of variability in
both performance guarantees and architectural contracts, such as the memory
model, that may not stabilize for several generations of product.

Programs written in functional or (constraint-)logic programming languages,
or even in other languages with a controlled use of side effects, can greatly sim-
plify parallel programming. Such declarative programming allows for a deter-
ministic semantics even when the underlying implementation might be highly
non-deterministic. In addition to simplifying programming this can simplify de-
bugging and analyzing correctness.

These are the informal proceedings of DAMP 2008, an Intel-sponsored, one-
day workshop, co-located with POPL 2008, and held on January 9, 2008, in San
Francisco, CA. DAMP seeks to explore ideas in programming language design
that will greatly simplify programming for multicore architectures, and more
generally for tightly coupled parallel architectures. The emphasis is on functional
and (constraint-)logic programming, but any programming language ideas that
aim to raise the level of abstraction are welcome. DAMP seeks to gather together
researchers in declarative approaches to parallel programming and to foster cross
fertilization across different approaches. Previous DAMPs were held, also co-
located with POPL, in Nice, France, in 2007 and in Charleston, SC, USA, in
2006.

Manuel Hermenegildo
DAMP’08 Program Chair

Leaf Petersen and Neal Glew
Intel Corporation, Santa Clara, CA, USA

DAMP’08 General Chairs

ii

Program Committee:

Koen De Bosschere (U. of Gent, Belgium)
Manuel Carro (Tech. U. of Madrid, Spain)
Manuel Chakravarty (U. of N.S. Wales, Australia)
Clemens Grelck (U. of Luebeck, Germany)
Dan Grossman (U. of Washington, USA)
Suresh Jagannathan (Purdue U., USA)
Pedro Lopez-Garcia (Tech. U. of Madrid, Spain)
Lee Naish (Melbourne University, Australia)
Leaf Petersen (Intel Corporation, USA)
Enrico Pontelli (New Mexico State U., USA)
John Reppy (U. of Chicago, USA)
Vitor Santos-Costa (U. of Porto, Portugal).

Program Chair:

Manuel Hermenegildo
Tech. U. Madrid / IMDEA-Software
University of New Mexico.

General Chairs:

Leaf Petersen and Neal Glew
Intel Corporation, Santa Clara, CA, USA.

URL:

http://www.cliplab.org/Conferences/DAMP08

Past DAMPs:

http://glew.org/damp2006
http://www.cs.cmu.edu/ damp

iii

Table of Contents and Program

8:30 - 9:00 Breakfast

9:00 - 10:00 Invited Talk

– Intel 64 Architecture Memory Ordering .1
Bratin Saha (Intel Corporation)

10:00 - 10:30 Coffee

10:30 - 12:00 Session I

– Partial Vectorisation of Haskell Programs .2
Manuel Chakravarty, Roman Leshchinskiy (University of New South Wales), Si-

mon Peyton Jones (Microsoft Research), Gabriele Keller (University of New South

Wales)

– Efficient Heap Management for Declarative Data Parallel Pro-
gramming on Multicores . 17
Clemens Grelck (University of Hertfordshire and University of Lübeck), Sven-Bodo

Scholz (University of Hertfordshire)

– Implementing Joins using Extensible Pattern Matching 32
Philipp Haller (EPFL, Lausanne), Tom Van Cutsem (Vrije Universiteit Brussel)

12:00 - 1:30 Lunch

1:30 - 3:30 Session II

– Executing Action Languages for Planning Problems on Multi-core
Platforms: Some Preliminary Results .47
Tran Cao Son, Son To, Tu Phan, Enrico Pontelli (New Mexico State University)

– Memoizing Multi-Threaded Transactions . 62
Lukasz Ziarek, Suresh Jagannathan (Purdue University)

– On Supporting Parallelism in a Logic Programming System 77
Vitor Santos Costa (Universidade do Porto)

– Toward a parallel implementation of Concurrent ML 92
John Reppy, Yinqi Xiao (University of Chicago)

3:30 - 4:00 Coffee

4:00 - 5:00 TBA

iv

v

Intel 64 Architecture Memory Ordering

Bratin Saha

Programming Systems Laboratory
Intel Corporation

Abstract. The advent of multi-core processors has brought parallel pro-
gramming to the mainstream. Memory ordering plays a fundamental role
in writing efficient and correct parallel programs. This talk will discuss
the recently released Intel 64 architecture memory ordering. We will dis-
cuss the motivation, and the guarantees provided by this ordering. We
will also discuss how it relates to language level memory models.

1

Partial Vectorisation of Haskell Programs

Manuel M. T. Chakravarty1, Roman Leshchinskiy1, Simon Peyton Jones2, and
Gabriele Keller1

1 Programming Languages and Systems, School of Computer Science and
Engineering, University of New South Wales, {chak,rl,keller}@cse.unsw.edu.au

2 Microsoft Research Ltd, Cambridge, England, simonpj@microsoft.com

Abstract. Vectorisation for functional programs, also called the flat-
tening transformation, relies on drastically reordering computations and
restructuring the representation of data types. As a result, it only applies
to the purely functional core of a fully-fledged functional language, such
as Haskell or ML. A concrete implementation needs to apply vectorisa-
tion selectively and integrate vectorised with unvectorised code. This is
challenging, as vectorisation alters the data representation, which must
be suitably converted between vectorised and unvectorised code. In this
paper, we present an approach to partial vectorisation that selectively
vectorises sub-expressions and data types, and also, enables linking vec-
torised with unvectorised modules.

Keywords: Vectorisation; flattening; program transformation; Haskell

1 Introduction

The idea of implementing nested data parallelism [1] in functional programs by a
vectorising program transformation is at least as old as Blelloch & Sabot’s sem-
inal work [2, 3] on the flattening transformation. We have since generalised the
basic idea to cover the central features of modern functional languages, such as
algebraic data types, parametric polymorphism, and higher-order functions [4–
6]. However, apart from a prototype that compiled a subset of Paralation Lisp,
the only complete implementation of vectorisation by flattening was, to the best
of our knowledge, the experimental NESL system [7]. Due to its experimental
nature, NESL was a rather limited functional language; for example, it did not
admit user-defined algebraic data types and higher-order functions, had only
rudimentary I/O, and did not have a module system or support separate com-
pilation. In fact, NESL was implemented as a whole program compiler that
vectorised the entire program.

In our implementation of vectorisation in the Glasgow Haskell Compiler
(GHC) as part of the Data Parallel Haskell project [8], we cannot follow NESL’s
approach. We expect that a real application will consist of a computationally-
intensive core that must be vectorised, embedded in a larger program that parses
its command line, reads configuration files, drives a GUI, outputs Postscript, and
so on. None of this surrounding code can or should be vectorised.

2

Consequently, we need a form of selective vectorisation that vectorises as
much as possible, but leaves sub-expressions that depend on impure features, or
unvectorised external code as is. Moreover, we must integrate vectorised with
unvectorised code, which is challenging because vectorisation alters the represen-
tation of data structures and functional values; hence, values need to be suitably
converted when passed between vectorised and unvectorised code.

This paper makes the following technical contributions:

– We give the first presentation of a selective vectorisation transformation that
only vectorises sub-expressions that do not rely on impure or otherwise non-
vectorisable features and in particular on external, unvectorised data struc-
tures and code (Section 3).

– We describe the integration of vectorised and unvectorised modules and the
additional information that vectorisation requires to be maintained across
separately compiled modules (Section 4).

Before we dive into these technical details, Section 2 summarises the main ideas
of vectorisation and introduces our approach by example. We cover related work
in Section 5.

2 Vectorisation in a nutshell

The various aspects of vectorising purely functional programs including algebraic
data types, parametric polymorphism, and higher-order functions were described
in detail in previous work [4–6, 8]. In the following, we summarise the core ideas
with a concrete example. Afterwards, we motivate and informally illustrate the
main ideas of the present paper by extending our example to include I/O.

2.1 Data Parallel Haskell

Data Parallel Haskell (DPH) introduces a type of parallel arrays, denoted [:e:]
for arrays of type e, together with a large number of parallel collective operations.
As far as possible, these operations have the same names as Haskell’s standard
list functions, but with a P suffix added—i.e., mapP, filterP, unzipP, and so
forth. The language also includes parallel array comprehensions which are similar
to list comprehensions but operate on parallel arrays. Details of the language
extension and examples are in [9].

The crucial difference between Haskell lists and parallel arrays is that the
latter have a parallel evaluation semantics. More precisely, demand for any ele-
ment of a parallel array results in the evaluation of all elements—in particular,
on a parallel machine, we expect the evaluation of these elements to happen in
parallel. Figure 1 gives an excerpt from a two-dimensional Barnes-Hut n-body
simulator, an example that we chose because it is both computationally intensive
and very hard to express using flat data parallelism. The parallelism happens
inside oneStep, where all particles are processed in a single parallel step and
where the main workhorses buildTree and accelerate (which, in turn, contain

3

type Vector = (Float, Float)

type Area = (Vector, Vector)

data MassPnt = MassPnt { mass :: Float, location :: Vector }
data Particle = Particle { center :: MassPnt, velocity :: Vector }

data Tree = Node MassPnt [:Tree:] — Rose tree for spatial decomposition

— Perform spatial decomposition and build the quadtree
buildTree :: [:MassPnt:] -> Tree

— Change velocity of each particle in ps according to force affected by masses in tree
accelerate :: Tree -> [:Particle:] -> [:Particle:]

— Move a mass center according to the given velocity
movePnt :: MassPnt -> Vector -> MassPnt

— Move a particle according to its velocity
moveParticle :: Particle -> Particle

moveParticle p = let v = velocity p

in Particle (movePnt (center p) v) v

— Compute one step of the n-body simulation
oneStep :: Float -> [:Particle:] -> [:Particle:]

oneStep ps

= [: moveParticle p | p <- accelerate tree ps :]

where

mps = [:mp | Particle mp v <- ps:]

tree = buildTree mps

Fig. 1. Excerpt of 2-D Barnes-Hut n-body code

parallel computations) are invoked. The function buildTree constructs a quad-
tree and accelerate uses it to compute the acceleration of a set of particles in
O(n log n) work complexity. All this needs to be vectorised for parallel execution.
More precisely, we need to ensure that we call the fully vectorised variants of the
functions buildTreeV, accelerateV, and moveParticleV, to achieve O(log2 n)
parallel step complexity; details are in [10, 4, 9].

2.2 Full vectorisation and why it may fail

Consider a top-level function definition f ::t = e, where t is the (monomorphic)
type of f . The full vectorisation transformation generates a new variant of f ,
thus:

f V :: T JtK = VJeK — If e is vectorisable

4

oneStepIO :: [:Particle:] -> IO [:Particle:]

oneStepIO ps

= do { print qs; return qs } — Side effecting I/O computation
where

mps = [:mp | Particle mp v <- ps:] — purely functional code. . .
tree = buildTree mps — . . . that must be. . .
qs = [: moveParticle p — . . . vectorised and. . .

| p <- accelerate tree ps:] — . . . run in parallel

Fig. 2. Parallel code mixed with I/O

Here, f V is the fully vectorised variant of f , whose right-hand side is generated
by the full vectorisation transform VJ·K. Full vectorisation returns an expression
of a different type to the input, so the type of f V is obtained by vectorising the
type t , thus T JtK. In general, if e::t then VJeK::T JtK.

Full vectorisation is the flattening transformation of Blelloch and Sabot, sub-
sequently elaborated by ourselves to handle polymorphism, user-defined alge-
braic data types, and higher-order functions [4–6]. It is, however, not the subject
of this paper, so we will keep details of full vectorisation to a minimum.

In real programs, however, full vectorisation of the entire program may be
neither possible, nor even desirable. Haskell1 supports a significant number of im-
pure features, including monadic I/O and mutable variables, exceptions, thread-
based concurrency, and calls to external C code. Code using these impure features
resists vectorisation due to such code’s dependence on a particular evaluation
order.

As an example, consider the code in Figure 2 which extends the original
oneStep with a call to the I/O function

print :: Show a => a -> IO ()

which prints values to the standard output. Its purpose here is to output the
state of simulated particles after each time step, for example, to drive an ani-
mation. We cannot vectorise the entire body of oneStepIO because we do not
have a vectorised version of print. In all likelihood, the module System.IO,
which exports print, will not have been compiled with vectorisation in the first
place, since vectorising it would be pointless. But even if we tried to vectorise
System.IO, we would still not get printV because of this function’s dependence
on sequential C procedures. In short, the full vectorisation transform VJeK may
fail. It may fail because it encounters some impure feature in e that prevents
vectorisation; or because e mentions some imported function f that was com-
piled without vectorisation, or for which vectorisation failed. In the latter case,
no binding for f V would have been created.

1 Here we mean the extension of Haskell 98 implemented by GHC, which has many
additional features that will be in the next standard. Nevertheless, already Haskell
98 supports a range of I/O operations.

5

2.3 Selective vectorisation

We cannot vectorise the whole of oneStep, but we still want to selectively vec-
torise as much of it as possible, so that the code computing the new particles is
evaluated in parallel (the where clause in Figure 2). In general, for each top-level
binding f ::t = e we apply the selective vectorisation transform SJ·K to e, thus:

f :: t = SJeK

In contrast to full vectorisation, selective vectorisation keeps the result type the
same—if necessary by introducing suitable conversions. This is exactly what
happens with oneStepIO, for example.

In fact, even if we are able to fully vectorise f , we must still retain a binding
of name and type f ::t . After all, f might be exported and used by a module
not compiled with vectorisation or used in a context that we cannot vectorise.
To keep matters simple and predictable, we therefore generate the binding f ::t
= SJeK regardless of whether or not full vectorisation succeeds.

Conversions. The selective vectorisation transform should vectorise the pure,
performance-critical part of oneStepIO and get qsV :: T J[:Particle:]K. This
means that although we cannot vectorise print qs, we still want to use qsV

as the argument to print. But the types do not match! So we must convert
from T J[:Particle:]K to [:Particle:] using the (overloaded) function fromV.
Thus, selective vectorisation of oneStepIO should turn print qs into print
(fromV qsV).

The functions fromV and toV marshal arguments and results “across the
border” between un-vectorised and vectorised code. The selective vectorisation
transform generates suitable fromV and toV functions, based on the types to
be marshaled. However, this is neither possible nor desirable for all types—
for complicated types it is simply too expensive. Hence, selective vectorisation
decides which sub-expressions to vectorise, using both

– the presence or absence of vectorised versions fV of the free variables f of
the expression, and

– the presence or absence of conversion functions fromV and toV at the required
types (i.e., the types of the free variables and result).

We formalise this idea in Section 3.2.

Optimality. In general, there is more than one way to selectively vectorise a
given expression. This raise the question of which of multiple translations to
choose, and especially, whether one translation is “better” than the others. Un-
fortunately, these questions are not easy to answer as we have two potentially
opposing requirements. On one hand, we want to vectorise as much code as
possible—after all, only vectorised code will make good use of parallelism. On
the other hand, the use of the conversion functions fromV and toV can be expen-
sive if large data structures are converted, especially if that happens repeatedly

6

Binding 3 bnd → x :: t = e
Type 3 t → T | t1 t2
Expr 3 e → v

| \v -> e
| e1 e2

| let bnd in e
...

f, x, v → 〈variable〉
T → (->) | [::] — built in

| 〈type constructor〉 — defined

Fig. 3. Fragment of GHC’s Core intermediate language

in a recursive function. We leave a detailed analysis of this trade off and the
development of a cost model or a heuristic approach to decide on which sub-
expression to vectorise for future work. The transformation formalised in the
next section simply attempts to vectorise as many sub-expression as possible.
However, some guidance by the programmer is possible as the transformation
does not assume that conversions are available for all types; i.e., by not having
conversions for types inhabited by values that may be costly to convert (e.g.,
complex tree structures), programmers can indirectly guide selective vectorisa-
tion.

3 Selective vectorisation precisely

Our description of selective vectorisation has been entirely informal thus far. In
the rest of the paper we give a more precise description. The presentation is
based on our earlier work [11, 6], where we introduced vectorisation as a total
transformation on a source language that included only vectorisable constructs,
types, and primitive functions. In what follows we show how to extend this work
to a source language that does not have this convenient property. We do this by
specifying a partial transformation that may fail for some expressions, and by
precisely characterising which parts of an expression are vectorised, and which
are not. Our implementation uses a particular source language — namely, GHC’s
Core language [12] – but our method will work for any language.

In the following, we use double square brackets J·K not only to denote source
code fragments that are transformed by one of our transformation functions (i.e.,
to denote source code “arguments”), but also for the source code “results” of
these transformation functions. In other words, we use J·K much like quasi-quotes
in meta-programming systems, such as Template Haskell.

We will consider only monomorphic programs. Our system is quite capable
of handling polymorphism (and must do so for Haskell), but polymorphism adds
complications that distract from the main point of this paper, which is partial
vectorisation.

Figure 3 displays the fragment of Core that is relevant for the present paper.
The left-hand side column gives the names for the syntactic categories that we
use in the following to give type signatures to translation schemes.

7

3.1 Vectorising types

In general, if e::t then VJeK::T JtK. In such situations it is usually illuminating
to look at the type transform first. There is one case for each form of type in
Figure 32:

T J·K :: Type -> Type
T J(->)K = (:->)
T J[::]K = PA
T JTK | 〈TV exists〉 = TV

T Jt tK = T JtK T JtK

The type transform simply replaces functions (->) with vectorised functions
(:->), and arrays ([::]) with vectorised arrays (PA), and other data types T
with a vectorised version of that type, TV.

In general, like the term transform, the type transform is partial : given a type
constructor T, T JTK fails if TV does not exist. There are two cases to consider:
either T is a primitve type, or it is an algebraic data type, which we consider next
in turn.

Primitive types. For some primitive types, such as Int, the vectorised version is
the same as the ordinary version; that is, IntV = Int. But for other primitive
types, there might be no vectorised version; for example T JIOK fails, because
there is no vectorised version IOV of Haskell’s IO monad.

User-defined algebraic data types. Suppose T is a user-defined algebraic data
type T. In order to vectorise code involving T we need its vectorised version TV.
We can generate TV from T by by vectorising its component types in the obvious
way. Thus, for example,

data T = C t1 t2 | D

generates the new data type declaration:

data TV = CV T Jt1K T Jt2K | DV

If any of the argument types cannot be vectorised, then neither can T. In the
special (but very common) case where T Jt1K = t1 and T Jt2K = t2, we can
avoid creating a fresh data type, instead simply setting TV = T, just as we do for
Int. So, returning to Figure 1, we have MassPntV = MassPnt and ParticleV

= Particle. In contrast, for Tree we get

data TreeV = NodeV MassPnt (PA TreeV)

2 We use Haskell’s guard notation here. The guard “| 〈TV exists〉” means “this equa-
tion applies only if TV exists”.

8

Functions. The vectorised version of function arrow (->) is the type of vectorised
functions (:->), but how is (:->) defined? Consider the following (contrived)
example:

app :: (Int -> Int) -> (Int, [:Int:])
app f = (f 1, [:f x | x <- [:1, 2, 3:]:])

Here we apply f outside and inside an array comprehension; in the former case
we must run f sequentially, but in the latter it should be evaluated in parallel. To
support parallel application of f, vectorisation generates a data-parallel, or lifted
version of f, denoted by f↑, such that if f :: t -> u, then f↑ :: PA T JtK ->
PA T JuK (for full details of lifting, see [11]). In the fully-vectorised version of
app, we therefore need f’s regular as well as its lifted variant, so we must pass
both versions of f to appV. To a first approximation, therefore, the type (:->)
is defined thus:

data a :-> b = MkFun (a -> b) (PA a -> PA b)

That is, vectorisation replaces a function of type t -> u by a pair of functions, of
type (T JtK -> T JuK, PA T JtK -> PA T JuK). This definition is not quite right,
because of nested functions and partial applications [6], but the details are not
important for this paper. All that we need is the existence of the vectorised
function constructor (:->), and its apply operator

($:) :: (a :-> b) -> a -> b

Vectorised arrays. Under selective vectorisation, the non-vectorised (and hence
sequential) part of the program may still manipulate “parallel” arrays. For ex-
ample, we might read a file to create a parallel array of type [:Int:], that is
then passed to a vectorised computation. Conversely, in the function oneStepIO
in Figure 2, we consume a parallel array produced by a vectorised computation
in sequential I/O code.

While the type of parallel arrays [:a:] in the source language is parametric,
the representation of arrays and array operations after vectorisation depends
on the element type. For example, an array of pairs is represented as a pair of
arrays. The reasons for this requirement, and a sketch of how we realise this in
our implementation using type families, are provided in previous work [4, 8].

Concretely, PA is a type-indexed data type family representing vectorised
arrays. In GHC’s type-family notation [13] we write

data family PA (a::*)

Then we give a data instance declaration for each type that we want to store
in a vectorised array. For example:

data instance PA (a,b) = PAPair (PA a) (PA b)

Hence, for each user-defined algebraic data type, we must generate a data
instance declaration that describes how a vectorised array of such values is
represented. For example, the Tree type in Figure 1 generates the following
declaration:

9

data instance PA Tree = NodePA (PA MassPnt) (Segd, PA Tree)

Segd is a segment descriptor encoding the structure of nested arrays; c.f., for
example [8] for more details of our use of type-indexed data types.

3.2 Vectorising expressions

Now we are ready to consider the selective vectorisation of expressions. Our
approach relies on three mutually recursive transformation schemes defined in
Figure 4:

VJ·K :: Expr t -> Env -> Maybe (Expr T JtK)
SJ·K :: Expr t -> Env -> Expr t
SVJ·K :: Expr t -> Env -> (Maybe (Expr T JtK), Expr t)

Full vectorisation VJ·K, and selective vectorisation SJ·K, have already been intro-
duced, although here we give them types that (a) express partiality by returning
a Maybe, and (b) express the type transformation by parameterising Expr.

The definitions of VJ·K and SJ·K do not directly depend on each other. In-
stead, the recursive knot is tied by SVJ·K which uses both transformations to
transform sub-expressions. SVJ·K acts as a mediator between selective and par-
tial vectorisation. Its main task is to intertwine vectorised and unvectorised code
by introducing appropriate conversions.

The transformations are parametrised with an environment which maps vari-
ables to their vectorised versions if available. This information is required by
partial vectorisation to transform variables, as apparent in the corresponding
rule taken from Figure 4:

VJxK env
| (x 7→ xV) ∈ env = Just JxVK
| otherwise = Nothing

In the following, we look at the transformations in more detail and explain what
happens at the interfaces between vectorised and unvectorised code.

3.3 Embedding unvectorised sub-expressions

To see how the transformations defined in Figure 4 allow for mixing vectorised
and unvectorised code, let us consider an example that demonstrates how vec-
torised code may depend on unvectorised code. Assume a variable M.constTable
:: [:Int:] defined in a module M that was not compiled with vectorisation; i.e.,
M.constTableV does not exist. In a naive implementation, we might abandon
the vectorisation of an expression such as sumP M.constTable altogether and
evaluate it sequentially. However, this is clearly suboptimal; instead, we would
like to convert M.constTable to a vectorised representation (this is easily pos-
sible for arrays of primitive types) and pass it to the vectorised, i.e., parallel
implementation of sumP. Ultimately, we would like to have

10

SJ·K :: Expr t -> Env -> Expr t
SJxK env = JxK
SJe eK env = JeS eSK

where

(, eS) = SVJeK env

(, eS) = SVJeK env

...〈similar for other cases of SJ·K〉...

SJlet x :: t = e in eK env

= Jlet bs in eSK
where

(bs, env’) = SVBJx :: t = eK env

eS = SJeK env’

VJ·K :: Expr t -> Env -> Maybe (Expr T JtK)
VJxK env

| (x 7→ xV) ∈ env = Just JxVK
| otherwise = Nothing

VJe eK env

| (Just eV,) <- SVJeK env

, (Just eV,) <- SVJeK env = Just JeV $: eVK
| otherwise = Nothing

VJlet x :: t = e in eK env

| (Just eV,) <- SVJeK env’ = Just Jlet bs in eK
| otherwise = Nothing

where

(bs, env’) = SVBJx :: t = eK env

...〈similar for other cases of VJ·K〉...

SVJ·K :: Expr t -> Env -> (Maybe (Expr T JtK), Expr t)
SVJeK env = case VJeK env of

Just eV

| 〈fromV eV exists〉 -> (Just eV, JfromV eVK)
| otherwise -> (Just eV, eS)

Nothing

| 〈toV eS exists〉 -> (Just JtoV eSK, eS)

| otherwise -> (Nothing, eS)

where

eS = SJeK env

SVBJ·K :: Binding -> Env -> ([Binding], Env)

SVBJx :: t = eK env

| 〈t is vectorisable〉
, (Just eV, eS) <- SVJeK env’ = ([x::t = eS, xV::tV = eV], env’)

| otherwise = ([x::t = SJeK env], env)

where

env’ = env ∪ {x 7→ xV}

Fig. 4. Selective vectorisation

11

VJsumP M.constTableK env = Just JsumPV $: (toV M.constTable)K

In other words, we would like vectorisation to succeed for the entire expression
even though it fails for one of the sub-expressions. That is why VJ·K uses SVJ·K
to vectorise sub-expressions as it is the latter that can introduce the necessary
conversions. For example, the rule for vectorising application given in Figure 4
passes the two sub-expressions on to SVJ·K which tries to transform them such
that they can be used in a vectorised context. In our example, vectorisation
immediately succeeds for sumP which has a vectorised version:

SVJsumPK env = (Just JsumPVK, JsumPSK)

but fails for M.constTable which has no vectorised variant. Fortunately, SVJ·K
is able to rectify this by introducing a conversion:

SVJM.constTableK env
= (Just JtoV M.constTableSK), JM.constTableSK)

This enables the application rule of VJ·K to succeed, producing the desired re-
sult. Note that the definition of VJ·K does not contain any interfacing logic—
interfacing is delegated entirely to SVJ·K. This is also the reason why we only
included three example rules in the definition of VJ·K—the complete definition
can be obtained by using SVJ·K in place of direct recursion in the definition of
vectorisation given in [11] and by accounting for partiality in the exact same
manner as we demonstrated for application.

3.4 Vectorising as much as possible

Using unvectorised in vectorised code is only half of the story, however. Arguably
much more important is the ability to pass results of parallel computations to
inherently unvectorisable tasks such as I/O. In fact, we have already seen an
example where this is absolutely essential: the statement print qs in Figure 2
outputs the result of a computation which we expect to be executed in paral-
lel and which, therefore, must be vectorised. Again, it is the task of SVJ·K to
introduce the necessary conversion before passing the computed value to the
unvectorisable print.

The mechanism employed here is quite similar to the one discussed in the
previous section. Since we cannot vectorise print, we have:

SVJprintK env = (Nothing, JprintSK)

The situation is quite different for qs, however. Not only can it be fully vec-
torised to qsV, the latter can also be converted to an unvectorised representa-
tion. In such a case, SVJ·K will throw away the result of selectively vectorising
the sub-expression and simply suitably convert the fully vectorised version. In
our example, this amounts to:

SVJqsK env = (Just JqsVK, JfromV qsVK)

12

For the overall expression, the transformation rule for selectively vectorising
applications then generates

SJprint qsK env = JprintS (fromV qsV)K

This is optimal in the sense that we evaluate as much as possible in parallel
(namely all of qs) before passing the result to the inherently sequential code. The
definitions of SJ·K and SVJ·K ensure that the transformation always prefers fully
vectorised expression to using selectively vectorised ones, thereby preserving the
maximum degree of parallelism while still allowing for partiality of vectorisation.

3.5 Vectorising let

During selective vectorisation, let bindings are handled in just the same way
as that described in Sections 2.2 and 2.3. Given a single3 binding x::t = e, we
always produce the selectively vectorised binding x::t = SJeK. Additionally, if
e can be fully vectorised, we generate the fully vectorised binding xV::T JtK
= VJeK. In this case, we also extend the environment to account for the newly
introduced vectorised version of x such that it is visible during the vectorisa-
tion of the body. This is described by the let cases of VJ·K and SJ·K, which
invoke the transformation scheme SVBJ·K to deal with the binding. The same
transformation is used to handle top-level bindings.

As an example, the body of moveParticle from Figure 1 is vectorised as
follows:

VJlet v = velocity p in Particle (movePnt (center p) v) vK env
= Just Jlet vV = velocityV $: pV

v = fromV (velocityV $: pV)
in ParticleV $:

(movePntV $: (centerV $: pV) $: vV) $: vVK

Obviously, there is ample room for optimisation here. For example, when SVBJ·K
generates two bindings in a local let, only one of them may be used in the let
body, but simple dead-code elimination will excise the unused binding.

What about recursion?4 Whether the right-hand side of a recursive bind-
ing such as r :: t = f r can be vectorised depends, among other things, on
whether a fully vectorised version of r is available. Of course, we cannot know
if rV is available until we have tried to vectorise the right-hand side. Obviously,
this is a classical case of circular dependency which our transformation must
resolve.

Our solution to this problem is somewhat simple-minded, but effective. First,
we attempt to vectorise the right-hand side assuming that rV exists. If it can be
3 Both in the definition of the transformation and in the subsequent discussion, we

restrict ourselves to a single, possibly recursive binding of the form let x :: t =

e in e. Our method easily generalises to multiple mutually-recursive bindings.
4 NB: Haskell does not distinguish between value and function bindings. Any let

binding can be recusive.

13

fully vectorised, we generate two bindings as described above using the two ex-
pressions produced by SVJ·K. If partial vectorisation fails, however, we are faced
with an additional complication. We cannot use the selectively vectorised ex-
pression that was produced by SVJ·K under the assumption that xV exists; after
all, it may contain references to the latter. The following example demonstrates
this. Suppose we have the following functions:

f :: Int -> T
g :: T -> Int
gV :: TV :-> Int

Here, g has a vectorised version but f does not. Moreover, we assume that the
type T is vectorisable but does not support conversion to and from TV. Then,
for the binding x :: T = f (g x) partial vectorisation would fail but selective
vectorisation, if performed under the assumption that xV exists, would yield x
:: T = f (toV (gV $: xV)). This definition is unusable, however, as we have
no binding for xV after all. We have to selectively vectorise the binding once
more, this time omitting xV from the environment. In our example, this would
leave the original binding unchanged which is, indeed, the only possible solution.

4 Selective vectorisation of modules

Between all the modules forming a program, some modules will be compiled
with vectorisation and some will not. In the following, we discuss how these two
types of modules fit together and what extra information vectorisation requires
to be communicated between separately compiled modules.

4.1 Modules compiled without vectorisation

The scheme for vectorising expressions, and in particular bindings, presented
before is designed such that modules compiled without vectorisation

1. do not have to be aware of vectorisation at all and
2. are just a special case of those compiled with vectorisation.

Concerning Point (1), vectorised modules still contain all the original type defini-
tions of the source and, although bindings of the form v::t = e are transformed
into v::t = eS, their interface remains the same. Concerning Point (2), even if
a module is compiled with vectorisation, it is conceivable that none of its func-
tions or type declarations is actually vectorisable under partial vectorisation.
In this case, the interface of the module remains as if it hadn’t been compiled
with vectorisation at all. (Nevertheless, some expression bodies may have been
selectively vectorised.)

14

4.2 Interface files

GHC uses interface files to communicate exported type declarations and func-
tion signatures between separately compiled modules. Whenever a module A is
compiled, an interface file A.hi is generated from its type information. When-
ever a module B imports A, the compiler reads A.hi to obtain type information
for all imported entities.

If optimisation is enabled (and vectorisation is a form of optimisation), GHC
emits further information into interface files. This additional information in-
cludes information computed by code analysis (such as strictness information)
as well as the right-hand sides of function definitions that are considered for
cross-module inlining.

When a module is compiled with vectorisation, GHC includes the following
additional information in the interface file:

– For each value or function binding x, GHC indicates whether xV exists.
– For each type constructor T, GHC indicates whether TV exists, and if so,

whether T itself serves as TV. If TV exists, we may also have the type-specific
conversion functions toV and fromV.

– For each type constructor T, we have a type family instance defining the
representation of the non-parametric array representation described in Sec-
tion 3.1. This always exists as we use parametric, boxed arrays as a fallback
for types where we cannot derive an optimised representation.

5 Related work

There is a long list of work concerning vectorisation, some of which we have men-
tioned throughout this paper. We have discussed much of this previous work in [8]
and will refrain from repeating this discussion. To the best of our knowledge,
none of this previous work has mentioned partial vectorisation. In particular,
NESL [3, 7] was implemented as a whole program compiler performing whole-
sale vectorisation.

The Proteus system [14] promised a combination of data and control paral-
lelism, but Proteus had a particular focus on manual refinement of algorithms
and where data parallel components were automatically vectorised, this again
was a complete whole-program transformation. Moreover, the system was never
fully implemented.

Manticore [15] supports a range of forms of parallelism including nested data
parallelism. Manticore employs some of the same techniques as we do, but it does
not seem to use vectorisation in the same form. The Manticore implementation
is, at the time of writing, work in progress.

6 Conclusion

We argued that vectorisation for a fully fledged functional language needs to be
partial; i.e., only part of a program is vectorised. We presented and in part for-
malised a partial vectorisation transformation that vectorises sub-expressions

15

selectively and uses conversions where necessary to integrate vectorised and
unvectorised code. At the time of writing, we are working on completing a
first version of vectorisation for GHC, which includes our partial vectorisation
strategy. All code is publicly accessible from the GHC HEAD repository at
http://darcs.haskell.org/ghc/.

References

1. Blelloch, G.E.: Programming parallel algorithms. Communications of the ACM
39(3) (1996) 85–97

2. Blelloch, G.E., Sabot, G.W.: Compiling collection-oriented languages onto mas-
sively parallel computers. Journal of Parallel and Distributed Computing 8 (1990)
119–134

3. Blelloch, G.E.: Vector Models for Data-Parallel Computing. The MIT Press (1990)
4. Keller, G., Chakravarty, M.M.T.: Flattening trees. In Pritchard, D., Reeve, J.,

eds.: Euro-Par’98, Parallel Processing. Number 1470 in Lecture Notes in Computer
Science, Berlin, Springer-Verlag (1998) 709–719

5. Chakravarty, M.M.T., Keller, G.: More types for nested data parallel program-
ming. In Wadler, P., ed.: Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP’00), ACM Press (2000) 94–105

6. Leshchinskiy, R., Chakravarty, M.M.T., Keller, G.: Higher order flattening. In:
Third International Workshop on Practical Aspects of High-level Parallel Pro-
gramming (PAPP 2006). Number 3992 in LNCS, Springer-Verlag (2006)

7. Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Sipelstein, J., Zagha, M.: Imple-
mentation of a portable nested data-parallel language. Journal of Parallel and
Distributed Computing 21(1) (April 1994) 4–14

8. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:
Data Parallel Haskell: a status report. In: DAMP 2007: Workshop on Declarative
Aspects of Multicore Programming, ACM Press (2007)

9. Chakravarty, M.M.T., Keller, G., Lechtchinsky, R., Pfannenstiel, W.: Nepal—
nested data parallelism in Haskell. In Sakellariou, R., Keane, J., Gurd, J.R.,
Freeman, L., eds.: Euro-Par 2001: Parallel Processing, 7th International Euro-Par
Conference. Number 2150 in Lecture Notes in Computer Science, Berlin, Germany,
Springer-Verlag (2001) 524–534

10. Barnes, J., Hut, P.: A hierarchical O(n log n) force calculation algorithm. Nature
324 (December 1986)

11. Leshchinskiy, R.: Higher-Order Nested Data Parallelism: Semantics and Imple-
mentation. PhD thesis, Technische Universität Berlin (2005)

12. Peyton Jones, S., Santos, A.: A transformation-based optimiser for Haskell. Science
of Computer Programming 32(1–3) (1998) 3–47

13. GHC Team: Type families. http://haskell.org/haskellwiki/GHC/Type_

families (2007)
14. Mills, P., Nyland, L., Prins, J., Reif, J.: Software issues in high-performance com-

puting and a framework for the development of hpc applications. In: Computer
Science Agendas for High Perfromance Computing, ACM Press (1994)

15. Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Status report: The
manticore project. In: 2007 ACM SIGPLAN Workshop on ML, ACM Press (2007)

16

Efficient Heap Management for Declarative Data
Parallel Programming on Multicores

Clemens Grelck1,2 and Sven-Bodo Scholz1

1 University of Hertfordshire
Department of Computer Science

Hatfield, United Kingdom
c.grelck,sscholz@herts.ac.uk

2 University of Lübeck
Institute of Software Technology and Programming Languages

Lübeck, Germany
grelck@isp.uni-luebeck.de

Abstract. Declarative data parallel programming for shared memory
multiprocessor systems implies paradigm-specific demands on the organi-
sation of memory management. As a key feature of declarative program-
ming implicit memory management is indispensable. Yet, the memory
objects to be managed are very different from those that are predomi-
nant in general-purpose functional or object-oriented languages. Rather
than complex structures of relatively small items interconnected by ref-
erences, we are faced with large chunks of memory, usually arrays, which
often account for 100s of MB each. Such sizes make relocation of data or
failure to update arrays in-place prohibitively expensive.
To address these challenges of the data parallel setting, the functional
array language SaC employs continuous garbage collection via reference
counting combined with several aggressive optimisation techniques. How-
ever, we have observed that overall memory performance does not only
rely on efficient reference counting techniques, but to a similar extent on
the underlying memory allocation strategy. As in the general memory
management setting we can identify specific demands of the declarative
data parallel setting on heap organisation.
In this paper, we propose a heap manager design tailor-made to the needs
of concurrent executions of declarative data parallel programs whose
memory management is based on reference counting. We present run-
time measurements that quantify the impact of the proposed design and
relate it to the performance of several different general purpose heap
managers that are available in the public domain.

1 Introduction

The ubiquity of multicore processors has made parallel processing a mainstream
necessity rather than a niche business [1]. Declarative languages may benefit
from this paradigm shift as their problem-oriented nature and the absence of
side-effects facilitate (semi-)implicit parallelisation or at least help in explicit

17

parallelisation on a high level of abstraction. One approach is to exploit data par-
allelism on arrays as pursued by functional languages such as Sisal [2], Nesl [3]
or SaC [4, 5] and recently also adopted by Haskell [6].

Declarative processing of large arrays of data has a specific challenge known
as the aggregate update problem [7]. The (otherwise very desirable) absence
of side-effects prevents incremental in-place updates of array element values as
they are abundant in imperative array processing. A naive solution requires to
copy the entire array which quickly becomes prohibitive with increasing array
size. Efficient declarative array processing requires a mechanism that determines
when it is safe to update an array in place and when not. The decision to
reuse memory associated with an argument array to store a result array also
depends on the characteristics of the operation itself. With the prevailing tracing
garbage collectors [8] this is generally not feasible. The only way to achieve in-
place updates of arrays in main-stream functional languages seems to be making
arrays stateful, either by language semantics as in ML [9] or through a proper
functional integration of states via monads in Haskell [10] or uniqueness typing
in Clean [11]. However, these approaches also enforce a very non-declarative style
of programming as far as arrays are concerned [12].

To mitigate the aggregate update problem without compromising a declara-
tive style of programming, Sisal, Nesl and SaC use reference counting [8] as
a basis for memory management. At runtime each array is associated with a
reference counter that keeps track of the number of active references to an array.
Reference counting allows us to release unused memory as early as possible and
to update arrays destructively in suitable operations provided that the reference
counter indicates no further pending references. Strict evaluation generally tends
to reduce the number of pending references; it seems to be necessary to make
this memory management technique effective.

Reference counting does have its well known downsides, e.g. memory over-
head, de-allocation cascades or the difficulty to identify reference cycles. How-
ever, in the particular setting of array processing they are less severe: individual
chunks of memory are relatively large, data is not deeply structured, and cyclic
references typically precluded by language semantics. Static analysis can be used
effectively to reduce the overhead inflicted by reference counter updates, to iden-
tify opportunities for immediate memory and even data reuse and to make reuse
and de-allocation decisions already at compile time. Surveys of such techniques
can be found in [13, 14].

Unlike most forms of tracing garbage collection, reference counting is just
half the story. It leads to a sequence of allocation and de-allocation requests
that still need to be mapped to the linear address space of a process by some un-
derlying mechanism. This is often considered a non-issue because low-level mem-
ory allocators have been available for decades for explicit heap management in
machine-oriented languages (see [8] for a survey). Yet, many (SaC) applications
spend a considerable proportion of their execution time in the memory allocator.
As soon as runtime performance is a criterion for the suitability of a declarative
language for a certain application domain, every (milli-)second counts, and im-

18

provements in the interplay between the reference counting mechanism and the
underlying heap manager can have a significant impact on overall performance.

We propose a heap manager that is tailor-made for the needs of multithreaded
declarative array processing and reference counting. Our design aims at outper-
forming existing allocators by exploiting three distinct advantages: Firstly, we
adapt allocation/de-allocation strategies to the specific characteristics of array
processing and reference counting. For example, we expect a large variety in
the size of requested memory chunks from very small to very large, but only a
relatively small number of different chunk sizes. Furthermore, reference counting
(unlike manual memory management) guarantees that any allocated chunk of
memory is released eventually. Consequently, overhead may arbitrarily be split
between allocation and de-allocation operations.

Secondly, we use a rich (internal) interface between reference counting mech-
anism and allocator, that allows us to exchange extra information and let our
allocator benefit from static code analysis. In contrast, the standard interfaces
between applications and allocators are very lean (e.g. malloc and free in C or
new and delete in C++) and restrict the flow of information from the applica-
tion to the allocator.

Thirdly, we tightly integrate our allocator with the multithreaded runtime
system [15]. As soon as threads run truly simultaneously on a multiprocessor
system or multicore processor, access to heap-internal data structures requires
synchronisation, which adversely affects performance and may even serialise pro-
gram execution through the back door. While some general-purpose memory
allocators do take multithreading into account [16–18], they need to deal with a
wide range of multithreaded program organisations reasonably well. In contrast,
the multithreaded runtime organisation of compiler-parallelised code typically is
rather restricted. For example, the automatic parallelisation feature of the SaC
compiler [15] results in a runtime program organisation where the number of
threads is limited by the number of hardware execution units, certain threads
are a-priori known to execute exclusively and memory allocated by one thread
is known to be de-allocated by the same thread.

The contributions of this paper are

– to quantify the impact of heap management on compiler-parallelised declar-
ative array processing code,

– to identify specific aspects of heap management that allow a tailor-made heap
manager to exploit distinctive advantages over off-the-shelf implementations,

– to propose the design of a tailor-made heap manager in the context of SaC

– and to evaluate the benefit of using private heap management.

The remainder of the paper is organised as follows. In Section 2 we illustrate
the problem using a microbenchmark. In Section 3 we outline the design of
the SaC private heap manager and demonstrate its impact on overall runtime
performance in Section 4. Finally, Section 5 outlines some related work before
we draw conclusions in Section 6.

19

2 Problem illustration

We illustrate the impact of memory allocators on overall runtimes by means
of the small SaC example program shown in Fig. 1. The program emulates
a memory allocation and de-allocation pattern typical for many data parallel
applications: a data parallel operation is repetitively applied to a vector A of
length [10000000/X], as generated by the library function mkarray. The data
parallel operation within the for-loop is defined in terms of a with-construct,
a SaC array comprehension. For each element of A, it recomputes its value by
first allocating a vector of length X and subsequently summing these elements
up.3 This creates a very common memory demand pattern: within a data parallel
section each element computation requires the creation of a temporary array and,
hence, some memory allocation and de-allocation. Furthermore, all allocations
are of the same size which, again, is typical for many scientific applications such
as those investigated in [20, 21, 19].

int main()
{

A = mkarray([10000000/X], 0);
for (i=0; i<50; i+=1) {

A = with {
(. <= [idx] <= .) : A[idx] + sum(mkarray([X], idx));

}: modarray(A);
}
return(sum(A));

}

Fig. 1. Example SaC program

It should be noted here that we carefully restricted compiler optimisations
in order to ensure that for this simple example allocations and de-allocations
of intermediate vectors of length X effectively happen at runtime. Normally, the
SaC compiler would fold the reduction operation (sum) and the build operation
(mkarray) [22]. Even if that failed, memory management optimisations would
pre-allocate memory for the temporary vector outside of the with-construct [14].

In order to quantify the impact of the memory allocator, we measure the
runtimes of the program from Fig. 1 with varying values for X: 1000, 250, 100
and 25. The definition of the vector lengths of A and that of the intermediate
vectors guarantee that, irrespective of the value of X, we always perform 500
million additions. This allows us to observe the impact of the allocator as the
decrease of X corresponds to an increase in the number of memory allocations
(and de-allocations). We observe the effect of 500.000, 2 million, 5 million and
20 million memory allocations and de-allocations, respectively. Fig. 2 shows pro-
gram execution times of our example program on a 12-processor SUN Ultra
Enterprise 4000 multiprocessor using the standard Solaris memory allocator.

3 For any details about the with-construct as well as about the purely functional
semantics of this rather imperative looking code see [4, 5].

20

Additional experiments using the Gnu allocator coming with Linux essentially
led to the same observations.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0.5 2 5 20

R
un

tim
e

[s
ec

s]
.

Number of memory allocations [millions].

1 processor
2 processors
4 processors
6 processors
8 processors
10 processors

Fig. 2. Execution times of SaC program shown in Fig. 1

Focussing on single processor performance first, we can see that despite a
fixed amount of overall computations, runtimes grow linearly with the number
of memory allocations. Although this is not surprising in principle, the growth
rate in fact is. From the measurements we can deduce that the pure computing
time is roughly 30 seconds. Taking into account that even in the most alloca-
tion intensive case we have about 25 additions per allocation plus a certain loop
overhead, the measured memory management overhead (roughly 140 seconds!)
is extremely high. Obviously, the general-purpose allocators cannot benefit from
the simple case of alternating allocations and de-allocations of always the same
amount of memory. Our observations allow the conclusion that for these appli-
cation scenarios the memory allocator is the key to overall runtime performance,
whereas improvements in code generation and the compiler in general may easily
be ineffective.

Looking at multiprocessor performance we observe that increasing parallelism
yields substantial slowdowns, although our microbenchmark is almost embarrass-
ingly parallel and the total workload is substantial. The reason for this behaviour
lies in an inherently sequential design of the memory allocator, which seemingly
has been adapted for multithreaded execution more or less naively by locking
operations. This solution proves to be unsuitable for memory management in-
tensive data parallel applications like our microbenchmark.

The bottom line of these observations is twofold: Firstly, a genuinely multi-
threaded memory allocator design that reduces locking to a minimum is indis-
pensable. Secondly, data parallel applications may spend considerable propor-
tions of their overall runtime in memory management operations, making the
memory allocator a prime target for optimisation.

21

3 Design of a SAC-specific heap manager

The memory organisation used by the SaC private heap manager (or SacPhm
for short) is characterised by a hierarchy of multiple nested heaps, as illustrated
in Fig. 3. At the top of the hierarchy is a single global heap, which controls
the entire address space of the process. It may actually grow or shrink during
program execution, as additional memory is requested from the operating system
or unused memory is released to it.

local heap local heaplarge data chunk

small

data chunk

small

data chunk

local subheap local subheap

chunk

data

medium medium

chunk

data

local subheap

local heap

global heap

Fig. 3. Memory organisation using multiple nested heaps.

However, only very large chunks of memory are directly allocated from the
global heap. Memory requests below some threshold size are satisfied from one
of possibly several local heaps. A local heap is a contiguous piece of memory with
a fixed size, which in turn is allocated from the global heap. Grouping together
memory chunks of similar sizes tends to have a positive impact on memory
fragmentation. Once the capacity of a local heap is exhausted, an additional
local heap is allocated from the global heap.

In multithreaded execution each thread is associated with its individual local
heap(s). This organisation addresses both scalability and false sharing [23] issues:
Each thread may allocate and de-allocate arrays of up to a certain size without
interfering with other threads. Small amounts of memory are guaranteed to
be allocated from different parts of the address space if requested by different
threads. Furthermore, housekeeping data structures for maintaining local heaps
are kept separate by different threads. This allows us to keep them in processor-
specific cache memories without invalidation by a cache coherence mechanism.

Three properties of the SaC multithreaded runtime system [15] are essen-
tial to make this design feasible. Firstly, the number of threads is limited by

22

the number of parallel processing units available (i.e. rather small), and thread
creation/termination are limited to program startup/termination. Hence, it be-
comes feasible to a-priori associate each thread with some (non-negligible) local
heap memory. Secondly, the data parallel approach encourages (though does not
enforce) applications where the memory demands of the individual threads are
rather similar. As a consequence, we may pre-allocate some heap memory for
each thread at program startup when initialising the heap. Thirdly, the run-
time system guarantees that any memory allocated by one thread is eventually
released by the same thread. This restriction keeps thread-private local heaps
in a coherent state throughout program execution. A general-purpose memory
allocator cannot make such assumptions. Instead, it should work reasonably well
both for large numbers of threads and heterogeneous allocation behaviour, in-
cluding threads that mostly allocate memory while others mostly de-allocate
memory following a producer/consumer pattern.

In our allocator design only accesses to the global heap may require syn-
chronisation. The word may here is motivated by another restriction of the
multithreaded runtime system: Program execution is organised as a sequence
of alternating single-threaded and multithreaded supersteps [15]. Any memory
management request to the global heap issued in a single-threaded superstep
proceeds without synchronisation. Our experience is that very large arrays, al-
located from the global heap, are predominantly allocated (and de-allocated)
during single-threaded execution for subsequent multithreaded initialisation of
elements. In practice, locking is reduced to the very rare case when the initially
pre-allocated local heap of some thread is exhausted and needs to be extended
during program execution.

The hierarchical memory organisation is repeated once again on the level of
local heaps. Only medium-sized memory requests are directly satisfied by one
of the local heaps. Allocations of memory chunks below a certain size are again
grouped together in local subheaps, which in turn are allocated from local heaps.
The distinction between heaps and subheaps is mainly motivated by different
housekeeping mechanisms. In local heaps as well as in the global heap we allocate
differently sized chunks from a contiguous address space, whereas subheaps use
a fixed-size chunk allocation scheme. The latter allows us to quickly identify
a suitable available memory chunk. Likewise, marking chunks as available or
allocated inflicts very little time overhead. For larger chunks of memory, however,
the resulting internal fragmentation is not tolerable. Therefore, we use a more
expensive variable chunk size scheme above a certain threshold size. This scheme
keeps track of chunk sizes and, in particular, splits larger parts of contiguous
memory into pieces to accommodate allocation requests and coalesces adjacent
free chunks of memory to conversely form larger chunks.

Both fixed and variable chunk size heap organisation schemes are well stud-
ied [8]. Nonetheless, we can customise our concrete implementation to specific
aspects of data parallel array processing. In this context we often observe that ap-
plications only use a very restricted number of differently sized arrays (although
the range of different array sizes may be very large). Therefore, we assume lo-

23

cality of time in similar way as cache memories do: If we de-allocate a memory
chunk of some size, we consider it likely that we need to allocate a memory
chunk of the same size very soon thereafter. Consequently, we employ a deferred
coalescing scheme that only reconstructs larger chunks of memory if a concrete
allocation request cannot be satisfied from the immediately available resources.
Deferred coalescing moves overhead from de-allocations to allocations, which is
not so desirable for general-purpose allocators because the number of allocations
typically exceeds the number of de-allocations. However, with the allocator being
a backend for the reference counting mechanism it is guaranteed that any allo-
cated chunk of memory is released eventually. Hence, it doesn’t matter whether
we concentrate effort in allocation or in de-allocation operations.

g
lo

b
al

 h
ea

p
lo

ca
l

h
ea

p
lo

ca
l

su
b

h
ea

p

10
size range

size range

size range

size range

size range

size range

size range

size range

size range

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

arena

1

0

K

K + 1

K − 1

M − 1

0 / 0

1 / 0

0 / 1

1 / 1

0 / T−1

1 / T−1

K−1 / 0 K−1 / 1 K−1 / T−1

K / 0 K / 1 K / T−1

K+1 / 0 K+1 / 1 K+1 / T−1

M−1 / 0 M−1 / 1 M−1 / T−1

M

M + 1

N − 1

M / 0

M+1 / 0

N−1 / 0

thread thread thread
T − 1

Fig. 4. Matrix of allocation arenas

The hierarchy of nested heaps requires a coarse-grained classification of mem-
ory requests into small, medium and large chunks. In order to accelerate search-
ing for appropriate memory chunks, we effectively use a finer-grained classifica-
tion and introduce an entire matrix of allocation arenas, as illustrated in Fig. 4.
Allocation arenas represent the basic organisational entities for heap manage-

24

ment. Each request for allocation or de-allocation of memory first identifies the
appropriate allocation arena, which provides

– a list of available, appropriately sized chunks of memory,
– an allocation strategy,
– a de-allocation strategy and
– a backup strategy to obtain more memory.

Arena identification is a binary decision problem whose depth is logarithmic
in the number of allocation arenas. However, in practice the exact amount of
memory needed to represent some array is often known statically to the program
and, hence, also the appropriate allocation arena can be determined at compile
time. It is the restricted interface of (e.g. malloc and free) that prevents general-
purpose memory allocators from taking advantage of static chunk size knowledge.
In contrast, our integrated solution employs a much richer interface between
reference counting mechanism and backend heap manager that already selects
the allocation arena at compile time whenever possible.

Likewise, the tight integration of reference counting and heap management
permits specific optimisations. For example, at runtime any SaC array is rep-
resented by a (typically large) data vector and a (always small) descriptor that
accommodates the reference counter and dynamic shape information. This de-
sign enables the seemless flow of arrays between program parts written in SaC
and program parts written in other languages using the SaC foreign language
interface. The separation of SaC-specific structural and administrative infor-
mation from actual data, unfortunately, also requires two allocations and two
de-allocations per array. In most cases allocation and de-allocation of data vec-
tor and descriptor are made in conjunction, but this is not guaranteed and upon
de-allocation it is undecidable whether a data vector has been allocated within
the realm of SaC or outside. However, our private heap manager makes exactly
this decidable. This optimisation alone accounts for about 10% execution time
improvement through a range of applications.

4 Evaluation

We have repeated the initial experiment described in Section 2 with the SaC
private heap manager and three off-the-shelf multithreaded memory allocators:

– MTmalloc [16] is a replacement for the standard memory allocator, which
is provided by SUN itself starting with Solaris-7.

– PTmalloc [17] adapts the serial allocator DLmalloc [24] for use with mul-
tithreaded applications. It also employs multiple heaps to reduce contention,
but there is no static mapping of heaps to threads. Upon each memory re-
quest, threads search for an unlocked heap, lock the heap, and then apply
the serial allocation/de-allocation techniques adopted from DLmalloc.

– Hoard [18] seems to be the most recent development in multithreaded mem-
ory managers. It maps a possibly large number of threads to a generally much
smaller number of separate heaps by means of hashing techniques.

25

S
o

la
ri

s

H
o

ar
d

P
T

M

M
T

M

S
A

C

1.50

1.25

1.00

0.75

0.50

0.25

1.75
500K allocations

X=1000

3
2

.7
s

3
8

.9
s

3
4

.0
s

2
2

1
.7

s

4
1

.5
s

1.50

1.25

1.00

0.75

0.50

0.25

1.75

X=250

2M allocations

H
o

ar
d

P
T

M

M
T

M

S
A

C

S
o

la
ri

s

3
6

.2
s

5
9

.8
s

4
6

.2
s

5
7

.1
s

4
4

.6
s

1.50

1.25

1.00

0.75

0.50

0.25

1.75

X=100

5M allocations

H
o

ar
d

P
T

M

M
T

M

S
A

C

S
o

la
ri

s

3
6

.9
s

8
5

.6
s

6
2

.1
s

9
5

.9
s

6
5

.5
s

1.50

1.25

1.00

0.75

0.50

0.25

1.75

X=25

20M allocations

H
o

ar
d

P
T

M

M
T

M

S
A

C

S
o

la
ri

s

2
2

5
.4

s

1
6

2
.2

s

2
9

0
.1

s

1
7

6
.9

s

4
8

.0
s

Fig. 5. Single processor performance of multithreaded allocators in comparison with
the serial Solaris allocator as base line using the SaC microbenchmark of Fig. 1

Fig. 5 shows the single processor performance achieved by SacPhm and that
of the three other multithreaded memory allocators in comparison with the se-
rial Solaris allocator used in Section 2. Regardless of the concrete problem size,
MTmalloc incurs a runtime overhead of about 25% compared with the serial
allocator. For Hoard the respective overhead grows with increasing memory
management frequency from about 25% to more than 60%. Surprisingly, perfor-
mance is much worse for problem size X=1000, where single processor execution
time exceeds that of any other allocator by almost an order of magnitude. Hav-
ing a closer look at the implementation of Hoard reveals that memory requests
exceeding a certain threshold size are directly mapped to virtual memory by us-
ing the mmap and munmap system routines. Obviously, their frequent application
incurs prohibitive overhead.

In contrast, PTmalloc performs similar to the serial allocators, slightly out-
performing them with increased memory management frequency. For SacPhm

26

it can be observed that starting out with a performance loss of about 20% rel-
ative to standard allocators for problem size X=1000, this slowdown turns into
a significant speedup with increasing frequency of memory allocations and de-
allocations. With overall execution time being clearly dominated by dynamic
memory management overhead for X=25, the SaC-specific memory allocator
makes the overall program run 3.7 times faster than with the Solaris allocator.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=1000, 500K allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=250, 2M allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

 1

 3

 5

 7

 9

 11

 13

 15

 17

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=100, 5M allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

 1
 4
 7

 10
 13
 16
 19
 22
 25
 28
 31
 34

 1 2 4 6 8 10

Sp
ee

du
ps

 re
la

tiv
e

to
 S

ol
ar

is
 m

al
lo

c
si

ng
le

 p
ro

ce
ss

or
 p

er
fo

rm
an

ce

Number of processors

X=25, 20M allocations
SAC PHM
MTmalloc
PTmalloc
Hoard

Fig. 6. Multi processor performance of multithreaded allocators in comparison with
the serial Solaris allocator as base line using the SaC microbenchmark of Fig. 1

Fig. 6 shows the multiprocessor performance of the multithreaded allocators
relative to the base line set by the serial Solaris allocator. This “true” parallel
performance takes the different sequential performance levels into account, hence
the different starting points of the curves for a single processor. First of all, we
observe that MTmalloc scales rather poorly for all problem sizes investigated.
This observation is rather surprising for an allocator that is particularly designed
for exactly this scenario. However, it coincides with much more thorough inves-
tigations made by the developers of Hoard [18]. In contrast, PTmalloc scales

27

fairly well; it is not clear why hardly any speedup can be observed when switch-
ing from 6 to 8 processors for some problem sizes, but additional measurements
have confirmed these figures. High scalability can be observed for Hoard for
all problem sizes that are not mapped directly to the virtual memory manager
(i.e. X=1000). SacPhm turns out to scale as well as Hoard, but provides this
scalability on top of a substantially higher single processor performance.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8 10

Sp
ee

du
p

re
la

tiv
e

to
 s

eq
ue

nt
ia

l e
xe

cu
tio

n

Number of processors

NAS benchmark FT
SAC with PHM
SAC without PHM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8 10

Sp
ee

du
p

re
la

tiv
e

to
 s

eq
ue

nt
ia

l e
xe

cu
tio

n

Number of processors

NAS benchmark MG
SAC with PHM
SAC without PHM

Fig. 7. Performance impact of SacPhm on NAS benchmarks FT (left) and MG (right)

In addition to our microbenchmark we have also investigated the impact
of heap management on two non-trivial benchmarks from the NAS benchmark
suite [25]: SaC implementations of 3-dimensional multigrid relaxation (bench-
mark MG [20]) and 3-dimensional fast-Fourier transforms (benchmark FT [21]).
Fig. 7 quantifies the effect of SacPhm on runtime performance (size class A).

The two benchmarks show very different allocation/de-allocation patterns.
FT uses fairly large arrays of complex numbers (256x256x128) that are exclu-
sively allocated and de-allocated in single-threaded mode. We use the Danielson-
Lanczos algorithm for 1d-FFTs on vectors of length 128 and 256, respectively,
and explicitly create 2 (4) vectors of length 64, 4 (8) vectors of length 32, etc.
All these allocations and the corresponding de-allocations happen during multi-
threaded execution. Unsurprisingly, Fig. 7 shows SacPhm to be indispensable.
However, our declarative implementation of FT is so much dominated by memory
management overhead that the good single-processor performance of SacPhm
on small chunks of data that are repeatedly allocated and de-allocated turns out
to be crucial as well.

The benchmark MG implements a multigrid method that starts with arrays
of size 256x256x256 and performs alternating convolution and mapping steps.
In each mapping step the array size shrinks by a factor of two in each dimension
until the minimum size of 4x4x4 is reached; further mapping steps let the array
size grow again. Like in the FT benchmark, we are faced with a substantial
number of allocations (and de-allocations) over a wide range of chunk sizes.
However, in contrast to FT none of them occur during data-parallel operations.

28

As a consequence, the serial allocator performs reasonably well. Nevertheless, it
takes SacPhm to achieve good overall speedups through a reduction of absolute
overhead inflicted by dynamic memory management.

5 Related work

In the previous section have already acknowledged and evaluated several general-
purpose memory allocators that are specifically designed for multithreaded
program execution, namely SUN’s MTmalloc [16], PTmalloc [17] and
Hoard [18].

Only few declarative languages besides SaC explicitly focus on arrays. We
mention Sisal [2] and Nesl [3], which both use reference counting. While the
developers of Sisal spent considerable effort into efficient reference counting [13],
they left the underlying heap management issues to the C system library [26].

In Nesl the VCode interpreter takes responsibility for memory manage-
ment [27, 28]. Its design differs from our solution in various aspects. Firstly,
by making the reference counter a part of the heap administration data struc-
tures Nesl fully integrates reference counting with its own heap management.
In contrast, we explicitly allocate reference counters (as part of a more general
array descriptor) on the heap. This approach allows us to employ (third party)
heap managers that are fully unaware of our reference counting scheme for ex-
perimental comparisons like the one in Section 4 as well as for backup reasons.
Secondly, the Nesl solution organises the heap differently. While Nesl does use
multiple free lists for different chunk sizes for the same purposes as we do, it
nevertheless allocates all chunk sizes from the same contiguous address space.
In contrast, our allocation arenas (inspired from general-purpose multithreaded
allocator designs) actually keep differently sized chunks in different areas of the
address space. This design has a positive impact on fragmentation and solves
the false sharing problem. Thirdly, we haven’t found any information concern-
ing multithreaded heap management in the context of Nesl, and the solution
described in [27] does not support concurrently executing threads.

6 Conclusion

We have outlined an important aspect of the memory management subsystem of
the functional array language SaC: the integration between the reference count-
ing mechanism that decides when to allocate and de-allocate heap memory and
the underlying heap manager that maps concurrent allocation and de-allocation
requests of multiple threads to the linear address space of a process. Empirical
data shows the significance of an integrated approach to achieve good runtime
performance in declarative array processing on multiprocessor and multicore
systems.

As soon as runtime performance is an issue (and in parallel processing it usu-
ally is), declarative programming languages often find themselves in a defensive
position. In machine-oriented programming languages one typically blames the

29

application programmer (rather than the C compiler, for instance) for unsatisfac-
tory performance. Frequently, additional effort and expert knowledge manage to
improve performance, albeit often at the expense of readability and portability.
Declarative programming languages raise the level of abstraction in program-
ming from a machine-oriented to a problem-oriented view. Yet, they need to
meet the programmer’s performance expectations. The more performance mat-
ters, the more difficult this is to achieve.

Automatic memory management plays a crucial role here because it is a
key feature of declarative languages and it must directly compete with manual
dynamic memory management or even static memory layouts used by machine-
oriented approaches. From the user’s perspective it is indistinguishable whether
unsatisfactory performance is caused by inefficiencies in compilation/parallelisa-
tion schemes or by false assumptions of an off-the-shelf memory allocator. The
bottom line is that it takes a fully integrated approach to be successful: code
generation needs to be well integrated with reference counting to directly reuse
memory as often as possible, and reference counting needs to be well integrated
with an underlying heap manager to reduce the overhead inflicted by remaining
allocations and de-allocations. Furthermore, the heap manager needs to be in-
tegrated with the multithreaded runtime system to avoid costly synchronisation
when concurrent threads access the implicitly shared heap.

References

1. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30 (2005)

2. Cann, D.: Retire Fortran? A Debate Rekindled. CACM 35 (1992)
3. Blelloch, G.E.: Programming Parallel Algorithms. CACM 39 (1996)
4. Scholz, S.B.: Single Assignment C — Efficient Support for High-Level Array Op-

erations in a Functional Setting. J. Functional Programming 13 (2003) 1005–1059
5. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-

threaded execution. Intern. Journal of Parallel Programming 34 (2006) 383–427
6. Chakravarty, M.M.T., Leshchinskiy, R., Peyton Jones, S., Keller, G., Marlow, S.:

Data parallel haskell: a status report. In: Workshop on Declarative Aspects of
Multicore Programming (DAMP’07), Nice, France, ACM Press (2007)

7. Hudak, P., Bloss, A.: The Aggregate Update Problem in Functional Programming
Systems. In: 12th ACM Symposium on Principles of Programming Languages
(POPL’85), New Orleans, USA, ACM Press (1985) 300–313

8. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic Storage Allocation: A
Survey and Critical Review. In: International Workshop on Memory Management
(IWMM’95), Kinross, UK. LNCS 986, Springer-Verlag (1995) 1–116

9. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press,
Cambridge, USA (1990)

10. Peyton Jones, S., Launchbury, J.: State in Haskell. Lisp and Symbolic Computation
8 (1995) 293–341

11. Smetsers, S., Barendsen, E., van Eekelen, M., Plasmeijer, M.: Guaranteeing Safe
Destructive Updates through a Type System with Uniqueness Information for
Graphs. University of Nijmegen, The Netherlands (1993)

30

12. Serrarens, P.: Implementing the Conjugate Gradient Algorithm in a Functional
Language. In: 8th International Workshop on Implementation of Functional Lan-
guages (IFL’96), Bonn, Germany. LNCS 1268, Springer-Verlag, (1997) 125–140

13. Cann, D., Evripidou, P.: Advanced Array Optimizations for High Performance
Functional Languages. IEEE Trans. on Parallel and Distributed Systems 6 (1995)

14. Grelck, C., Trojahner, K.: Implicit Memory Management for SAC. In: 16th Inter-
national Workshop on Implementation and Application of Functional Languages
(IFL’04), Lübeck, Germany (2004) 335–348

15. Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. J. Functional Programming 15 (2005) 353–401

16. Sun Microsystems Inc.: A Comparison of Memory Allocators in Multiprocessors.
Solaris Developer Connection, Sun Microsystems Inc., Mountain View, USA (2000)

17. Gloger, W.: Dynamic Memory Allocator Implementations in Linux System Li-
braries. 4th International Linux Kongress (LK’97), Würzburg, Germany (1997)

18. Berger, E., McKinley, K., Blumofe, R., Wilson, P.: Hoard: A Scalable Memory Allo-
cator for Multithreaded Applications. In: 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-IX),
Cambridge, USA. ACM Press (2000) 117–128

19. Shafarenko, A., et.al.: Implementing a numerical solution of the KPI equation using
Single Assignment C: lessons and experiences. In: Implementation and Application
of Functional Languages, 17th International Workshop (IFL’05), Dublin, Ireland.
LNCS 4015, Springer-Verlag (2006)

20. Grelck, C.: Implementing the NAS Benchmark MG in SAC. In: 16th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’02), Fort Laud-
erdale, USA, IEEE Computer Society Press (2002)

21. Grelck, C., Scholz, S.B.: Towards an Efficient Functional Implementation of the
NAS Benchmark FT. In: 7th International Conference on Parallel Computing
Technologies (PaCT’03), Nizhni Novgorod, Russia. LNCS 2763, Springer-Verlag
(2003) 230–235

22. Scholz, S.B.: With-loop-folding in SAC — Condensing Consecutive Array Oper-
ations. In: Implementation of Functional Languages, 9th International Workshop
(IFL’97), St. Andrews, UK. LNCS 1467, Springer-Verlag (1998) 72–92

23. Torellas, J., Lam, M., Hennessy, J.: False Sharing and Spatial Locality in Multi-
processor Caches. IEEE Transactions on Computers 43 (1994) 651–663

24. Lea, D.: A Memory Allocator. Unix/Mail 6/96 (1996)
25. van der Wijngart, R.: NAS Parallel Benchmarks Version 2.4. Technical Report

NAS-02-007, NASA Ames Research Center, Moffet Field, USA (2002)
26. Cann, D.C.: Compilation Techniques for High Performance Applicative Computa-

tion. Technical Report CS-89-108, Lawrence Livermore National Lab, Livermore,
USA (1989)

27. Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., Zagha, M.: Implementation
of a Portable Nested Data-Parallel Language. Technical Report CMU-CS-93-112,
Carnegie Mellon University, Pittsburgh, USA (1993)

28. Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., Zagha, M.: Implementation
of a Portable Nested Data-Parallel Language. Journal of Parallel and Distributed
Computing 21 (1994) 4–14

31

Implementing Joins using Extensible Pattern Matching

Philipp Haller1, Tom Van Cutsem2?

1 EPFL, 1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

+41 21 693 6483, +41 21 693 6660
2 Programming Technology Lab, Vrije Universiteit Brussel, Belgium

Abstract. Join patterns are an attractive declarative way to synchronize both threads
and asynchronous distributed computations. We explore joins in the context of ex-
tensible pattern matching that recently appeared in languages such as F# and Scala.
Our implementation supports Ada-style rendezvous, and constraints. Furthermore,
we integrated joins into an existing actor-based concurrency framework. It enables
join patterns to be used in the context of more advanced synchronization modes,
such as future-type message sending and token-passing continuations.

Keywords: Concurrent Programming, Join Patterns, Chords, Actors

1 Introduction

Recently, the pattern matching facilities of languages such as Scala and F# have been gen-
eralized to allow representation independence for objects used in pattern matching [5,17].
Extensible patterns open up new possibilities for implementing abstractions in libraries
which were previously only accessible as language features. More specifically, we claim
that extensible pattern matching eases the construction of declarative approaches to syn-
chronization in libraries rather than languages. To support this claim, we show how a con-
crete declarative synchronization construct, join patterns, can be implemented in Scala, a
language with extensible pattern matching. Join patterns [8,9] offer a declarative way of
synchronizing both threads and asynchronous distributed computations that is simple and
powerful at the same time. They form part of functional languages such as JoCaml [7]
and Funnel [12]. Join patterns have also been implemented as extensions to existing lan-
guages [2,19].

Recently, Russo [15] and Singh [16] have shown that advanced programming lan-
guage features, such as generics or software transactional memory, make it feasible to
provide join patterns as libraries rather than language extensions. As we will argue in
section 2, an implementation using extensible pattern matching improves upon these pre-
vious approaches by providing a better integration between library and language. More
concretely, we make the following contributions:

– Our implementation technique overcomes several limitations of previous library-
based designs and language extensions. In all library-based implementations that

? supported by a Ph.D. fellowship of the Research Foundation Flanders (FWO).

32

we know of, pattern variables are represented implicitly as parameters of join con-
tinuations. Mixing up parameters of the same type inside the join body may lead to
obscure errors that are hard to detect. Our design avoids these errors by using the
underlying pattern matcher to bind variables that are explicit in join patterns. The
programmer may use a rich pattern syntax to express constraints using nested pat-
terns and guards. However, efficiently supporting general guards in join patterns is
currently an open problem, and we do not attempt to solve it.

– We present a complete implementation of our design as a Scala library3 that supports
Ada-style rendezvous and constraints. Moreover, we integrate our library into an
existing event-based concurrency framework. This enables expressive join patterns
to be used in the context of more advanced synchronization modes, such as future-
type message sending and token-passing continuations. Our integration is notable
in the sense that the new library provides a conservative syntax extension. That is,
existing programs continue to run without change when compiled or linked against
the extended framework.

The rest of this paper is structured as follows. In the following section we briefly
highlight join patterns as a declarative synchronization abstraction, how they have been
integrated in other languages before, and how combining them with pattern matching
can improve this integration. Section 3.1 shows how to synchronize threads using join
patterns written using our library. Section 3.2 shows how to use join patterns with actors.
In section 4 we discuss a concrete Scala Joins implementation for threads and actors.
Section 5 discusses related work, and section 6 concludes.

2 Motivation

Background: Join Patterns A join pattern consists of a body guarded by a linear set of
events. The body is executed only when all of the events in the set have been signaled
to an object. Threads may signal synchronous or asynchronous events to objects. By
signaling a synchronous event to an object, threads may implicitly suspend. The simplest
illustrative example of a join pattern is that of an unbounded FIFO buffer. In Cω, it is
expressed as follows [2]:

public class Buffer {
public async Put(int x);
public int Get() & Put(int x) { return x; }

}

A detailed explanation of join patterns is outside the scope of this paper. For the purposes
of this paper, it suffices to understand the operational effect of a join pattern. Threads
may put values into a buffer b by invoking b.Put(v). They may also read values from
the buffer by invoking b.Get(). The join pattern Get() & Put(int x) (called a chord in
Cω) specifies that a call to Get may only proceed if a Put event has previously been sig-
naled. Hence, if there are no pending Put events, a thread invoking Get is automatically
suspended until such an event is signaled.

3 Available at http://lamp.epfl.ch/˜phaller/joins/.

2

33

The advantage of join patterns is that they allow a declarative specification of the
synchronization between different threads. Often, the join patterns correspond closely to
a finite state machine that specifies the valid states of the object [2]. Section 3.1 provides
a more illustrative example of the declarativeness of join patterns.

Existing library-based designs In Cω, join patterns are supported as a language exten-
sion through a dedicated compiler. This ensures that join patterns are well integrated in
the language. With the introduction of generics in C#, Russo has made join patterns avail-
able as a regular library for C# 2.0 called Joins [15]. In that library, the Buffer example
can be expressed as follows:

public class Buffer {
// Declare (a)synchronous channels
public readonly Asynchronous.Channel<int> Put;
public readonly Synchronous<int>.Channel Get;
public Buffer() {
Join join = Join.Create();
join.Initialize(out Put); join.Initialize(out Get); // initialize channels
join.When(Get).And(Put).Do(delegate(int x) { return x; });

}
}

In C# Joins, join patterns consist of linear combinations of channels and a delegate (a
function object) which encapsulates the body. Join patterns are triggered by invoking
channels, which are special delegates.

Even though the synchronization between Get and Put is still readily apparent in the
above example, the Joins library design has some drawbacks. First and foremost, the
way in which arguments are passed between the channels and the body is very implicit:
the delegate is implicitly invoked with the value passed via the Put channel. Contrast
this with the Cω example in which the variable x is explicitly tied to the Put message.
Furthermore, because joins are defined by means of an ad hoc combination mechanism,
it is impossible to declaratively specify additional pattern matches or even guards. For
example, it is not possible to add a join pattern triggering only on calls to Put where x >
100. Instead, one would have to add a test to the body of the join which partially defeats
the declarative nature of the synchronization. In section 3, we show how these drawbacks
can be eliminated by integrating join patterns with a host language’s standard support for
pattern matching.

Joins for Actors While join patterns have been successfully used to synchronize threads,
to the best of our knowledge, they have not yet been applied in the context of an actor-
based concurrency model. In Scala, actor-based concurrency is supported by means of
a library [10]. Because we provide join patterns as a library extension as well, we have
created the opportunity to combine join patterns with the event-driven concurrency model
offered by actors. We give a detailed explanation of this combination in section 3.2.
However, in order to understand this integration, we first briefly highlight how to write
concurrent programs using Scala’s actor library.

3

34

Scala’s actor library is largely inspired by Erlang’s model of concurrent processes
communicating by message-passing [1]. New actors are defined as classes inheriting the
Actor class. The actor’s life cycle is described by its act method. The following code
shows how to implement the unbounded buffer as an actor:

class Buffer extends Actor {
def act() { loop(Nil) }
def loop(buf: List[Int]) {
receive {
case Put(x) => loop(buf ::: List(x)) // append x to buf
case Get() if !buf.isEmpty => reply(buf.head); loop(buf.tail) }

}
}

The receive method allows an actor to selectively wait for certain messages to arrive in
its mailbox. The actor processes at most one message at a time. Messages that are sent
concurrently to the actor are queued in its mailbox. Interacting with a buffer actor occurs
as follows:

val buffer = new Buffer; buffer.start()
buffer ! Put(42) // asynchronous send, returns nothing
println(buffer !? Get()) // synchronous send, waits for reply

Synchronous message sends make the sending process wait for the actor to reply to the
message (by means of reply(value)). Scala actors also offer more advanced synchro-
nization patterns such as futures [11,21]. actor !! msg denotes an asynchronous send
that immediately returns a future object. In Scala, a future is a nullary function that,
when applied, returns the future’s computed result value. If the future is applied before
the value is computed, the caller is blocked.

In the above example, the required synchronization between Put and Get is achieved
by means of a guard. The guard in the Get case disallows the processing of any Get
message while the buf queue is empty. In the implementation, all cases are sequentially
checked against the incoming message. If no case matches, or all of the guards for match-
ing cases evaluate to false, the actor keeps the message stored in its mailbox and awaits
other messages.

Even though the above example remains simple enough to implement, the synchro-
nization between Put and Get remains very implicit. The actual intention of the program-
mer, i.e. the fact that an item can only be produced when the actor received both a Get
and a Put message, remains implicit in the code. Hence, even actors can benefit from the
added declarative synchronization of join patterns, as we will illustrate in section 3.2.

3 A Scala Joins Library

We now discuss a Scala library (henceforth called Scala Joins) providing join patterns
implemented via extensible pattern matching. First, we explain how Scala Joins enables
the declarative synchronization of threads, postponing joins for actors until section 3.2.

4

35

3.1 Joining Threads

Scala Joins draws on Scala’s extensible pattern matching facility [5]. This has several ad-
vantages: first of all, the programmer may use Scala’s rich pattern syntax to express con-
straints using nested patterns and guards. Moreover, reusing the existing variable binding
mechanism avoids typical problems of other library-based approaches where the order in
which arguments are passed to the function implementing the join body is merely con-
ventional, as explained in section 2. Similar to C# Joins’s channels, joins in Scala Joins
are composed of synchronous and asynchronous events. Events are strongly typed and
can be invoked using standard method invocation syntax. The FIFO buffer example is
written in Scala Joins as follows:

class Buffer extends Joins {
val Put = new AsyncEvent[Int]
val Get = new SyncEvent[Int]
join { case Get() & Put(x) => Get reply x }

}

To enable join patterns, a class inherits from the Joins class. Events are declared as
regular fields. They are distinguished based on their (a)synchrony and the number of
arguments they take. For example, Put is an asynchronous event that takes a single ar-
gument of type Int. Since it is asynchronous, no return type is specified (it immediately
returns unit when invoked). In the case of a synchronous event such as Get, the first type
parameter specifies the return type. Therefore, Get is a synchronous event that takes no
arguments and returns values of type Int.

Joins are declared using the join { ... } construct. This construct enables pattern
matching via a list of case declarations that each consist of a left-hand side and a right-
hand side, separated by =>. The left-hand side defines a join pattern through the juxtapo-
sition of a linear combination of asynchronous and synchronous events. As is common
in the joins literature, we use & as the juxtaposition operator. Arguments of events are
usually specified as variable patterns. For example, the variable pattern x in the Put event
can bind to any value (of type Int). This means that on the right-hand side, x is bound to
the argument of the Put event when the join pattern matches. Standard pattern matching
can be used to constrain the match even further (an example of this is given below).

The right-hand side of a join pattern defines the join body (an ordinary block of code)
that is executed when the join pattern matches. Like JoCaml, but unlike Cω and C# Joins,
Scala Joins allows any number of synchronous events to appear in a join pattern. Because
of this, it is impossible to use the return value of the body to implicitly reply to the single
synchronous event in the join pattern. Instead, the body of a join pattern explicitly replies
to all of the synchronous events that are part of the join pattern on the left-hand side.
Synchronous events are replied to by invoking their reply method. This wakes up the
thread that originally signalled that event.

To demonstrate how join patterns can be combined with ordinary pattern matching,
consider the traditional problem of synchronizing multiple concurrent readers with one
or more writers who need exclusive access to a resource. A multiple reader/one writer
lock can be implemented in our library as follows:4

4 This implementation is based on that of Cω [2] and Russo’s Joins library for C# [15].

5

36

class ReaderWriterLock extends Joins {
private val Sharing = new AsyncEvent[Int]
val Exclusive, ReleaseExclusive = new NullarySyncEvent
val Shared, ReleaseShared = new NullarySyncEvent
join {
case Exclusive() & Sharing(0) => Exclusive reply
case ReleaseExclusive() => { Sharing(0); ReleaseExclusive reply }
case Shared() & Sharing(n) => { Sharing(n+1); Shared reply }
case ReleaseShared() & Sharing(1) => { Sharing(0); ReleaseShared reply }
case ReleaseShared() & Sharing(n) => { Sharing(n-1); ReleaseShared reply }

}
Sharing(0) }

In the above example, events are used to encode the state of the reader-writer lock. The
last statement ensures that the lock starts off in an idle state (no thread is sharing the
lock). A writer can signal a synchronous Exclusive event to acquire the lock. Concurrent
readers are represented by means of a Sharing(n) event which encodes the number of
currently active readers.

In the join pattern Exclusive() & Sharing(0), regular pattern matching is used to
constrain the pattern only to Sharing events whose argument equals 0, thus ensuring that
this pattern only triggers when no other thread is sharing the lock. Similarly, the join
pattern ReleaseShared() & Sharing(1) only triggers when the last reader releases the
lock. If join patterns would not be integrated with pattern matching, code like this would
require additional tests in the body of more general join patterns.

3.2 Joining Actors

We now describe an integration of our joins library with Scala’s actor library [10]. The
following example shows how to re-implement the unbounded buffer example using
Joins:

val Put = new Join1[Int]
val Get = new Join
class Buffer extends JoinActor {
def act() {
receive { case Get() & Put(x) => Get reply x }

} }

It differs from the thread-based bounded buffer using joins in the following ways:

– The Buffer class inherits the JoinActor class to declare itself to be an actor capable
of processing join patterns.

– Rather than defining Put and Get as synchronous or asynchronous events, they are
all defined as join messages which may support both kinds of synchrony (this is
explained in more detail below).

– The Buffer actor defines act and awaits incoming messages by means of receive.
Note that it is still possible for the actor to serve regular messages within the receive
block. Logically, regular messages can be regarded as unary join patterns. However,

6

37

they don’t have to be declared as joinable messages; in fact, our joins extension is
fully source and binary compatible with the existing actor library.

We illustrate below how the buffer actor can be used as a coordinator between a
consumer and a producer actor. The producer sends an asynchronous Put message while
the consumer awaits the reply to a Get message by invoking it synchronously (using !?).5

val buffer = new Buffer; buffer.start()
val prod = actor { buffer ! Put(42) }
val cons = actor { (buffer !? Get()) match { case x:Int => /* process x */ } }

By applying joins to actors, the synchronization dependencies between Get and Put can
be specified declaratively by the buffer actor. The actor will receive Get and Put messages
by queuing them in its mailbox. Only when all of the messages specified in the join
pattern have been received is the body executed by the actor. Before processing the body,
the actor atomically removes all of the participating messages from its mailbox. Replies
may be sent to any or all of the messages participating in the join pattern. This is similar
to the way replies are sent to events in the thread-based joins library described previously.

Contrary to the way events are defined in the thread-based joins library, an actor
does not explicitly define a join message to be synchronous or asynchronous. We say
that join messages are “synchronization-agnostic” because they can be used in different
synchronization modes between the sender and receiver actors. However, when they are
used in a particular join pattern, the sender and receiver actors have to agree upon a
valid synchronization mode. In the previous example, the Put join message was sent
asynchronously, while the Get join message was sent synchronously. In the body of a
join pattern, the receiver actor replied to Get, but not to Put.

The advantage of making join messages synchronization agnostic is that they can
be used in arbitrary synchronization modes, including more advanced synchronization
modes such as ABCL’s future-type message sending [21] or Salsa’s token-passing con-
tinuations [18]. Every join message instance has an associated reply destination, which
is an output channel on which processes may listen for possible replies to the message.
How the reply to a message is processed is determined by the way the message was sent.
For example, if the message was sent purely asynchronously, the reply is discarded; if it
was sent synchronously, the reply awakes the sender. If it was sent using a future-type
message send, the reply resolves the future.

4 Integrating Joins and Extensible Pattern Matching

Our implementation technique for joins is unique in the way events interact with an ex-
tensible pattern matching mechanism. We explain the technique using a concrete imple-
mentation in Scala. However, we expect that implementations based on, e.g., the active
patterns of F# [17] would not be much different. In the following we first talk about
pattern matching in Scala. After that we dive into the implementation of events which
crucially depends on properties of Scala’s extensible pattern matching. Finally, we high-
light how joins have been integrated into Scala’s actor framework.

5 Note that the Get message has return type Any. The type of the argument values is recovered by
pattern matching on the result, as shown in the example.

7

38

Partial Functions In the previous section we used the join { ... } construct to declare
a set of join patterns. It has the following form:

join {
case pat1 => body1

...
case patn => bodyn

}

The patterns pati consist of a linear combination of events evt1 & ... & evtm. Threads
synchronize over a join pattern by invoking one or several of the events listed in a pattern
pati. When all events occurring in pati have been invoked, the join pattern matches, and
its corresponding join bodyi is executed.

In Scala, the pattern matching expression inside braces is treated as a first-class value
that is passed as an argument to the join function. The argument’s type is an instance of
PartialFunction, which is a subclass of Function1, the class of unary functions. The
two classes are defined as follows.

abstract class Function1[A, B] {
def apply(x: A): B }

abstract class PartialFunction[A, B] extends Function1[A, B] {
def isDefinedAt(x: A): Boolean }

Functions are objects which have an apply method. Partial functions are objects which
have in addition a method isDefinedAt which tests whether a function is defined for a
given argument. Both classes are parameterized; the first type parameter A indicates the
function’s argument type and the second type parameter B indicates its result type.

A pattern matching expression { case p1 => e1; ...; case pn => en } is then a
partial function whose methods are defined as follows.

– The isDefinedAt method returns true if one of the patterns pi matches the argu-
ment, false otherwise.

– The apply method returns the value ei for the first pattern pi that matches its argu-
ment. If none of the patterns match, a MatchError exception is thrown.

Join patterns as partial functions. Whenever a thread invokes an event e, each join pat-
tern in which e occurs has to be checked for a potential match. Therefore, events have to
be associated with the set of join patterns in which they participate. As shown before, this
set of join patterns is represented as a partial function. Invoking join(pats) associates
each event occurring in the set of join patterns with pats.

When a thread invokes an event, the isDefinedAt method of pats is used to check
whether any of the associated join patterns match. If yes, the corresponding join body
is executed by invoking the apply method of pats. A question remains: what argument
is passed to isDefinedAt and apply, respectively? To answer this question, consider the
simple buffer example from the previous section. It declares the following join pattern:

join { case Get() & Put(x) => Get reply x }

Assume that no events have been invoked before, and a thread t invokes the Get event
to remove an element from the buffer. Clearly, the join pattern does not match, which

8

39

causes t to block since Get is a synchronous event (more on synchronous events later).
Assume that after thread t has gone to sleep, another thread s adds an element to the
buffer by invoking the Put event. Now, we want the join pattern to match since both
events have been invoked. However, the result of the matching does not only depend on
the event that was last invoked but also on the fact that other events have been invoked
previously. Therefore, it is not sufficient to simply pass a Put message to the isDefinedAt
method of the partial function the represents the join patterns. Instead, when the Put
event is invoked, the Get event has to somehow “pretend” to also match, even though
it has nothing to do with the current event. While previous invocations can simply be
buffered inside the events, it is non-trivial to make the pattern matcher actually consult
this information during the matching, and “customize” the matching results based on this
information. To achieve this customization we use extensible pattern matching.

Extensible Pattern Matching Emir et al. [5] recently introduced extractors for Scala
that provide representation independence for objects used in patterns. Extractors play
a role similar to views in functional programming languages [20,13] in that they allow
conversions from one data type to another to be applied implicitly during pattern match-
ing. As a simple example, consider the following object that can be used to match even
numbers:

object Twice {
def apply(x: Int) = x*2
def unapply(z: Int) = if (z%2 == 0) Some(z/2) else None }

Objects with apply methods are uniformly treated as functions in Scala. When the func-
tion invocation syntax Twice(x) is used, Scala implicitly calls Twice.apply(x). The
unapply method in Twice reverses the construction in a pattern match. It tests its integer
argument z. If z is even, it returns Some(z/2). If it is odd, it returns None. The Twice
object can be used in a pattern match as follows:

val x = Twice(21)
x match {
case Twice(y) => println(x+" is two times "+y)
case _ => println("x is odd") }

To see where the unapply method comes into play, consider the match against Twice(y).
First, the value to be matched (x in the above example) is passed as argument to the
unapply method of Twice. This results in an optional value which is matched subse-
quently.6 The preceding example is expanded as follows:

val x = Twice.apply(21)
Twice.unapply(x) match {
case Some(y) => println(x+" is two times "+y)
case None => println("x is odd") }

6 The optional value is of parameterized type Option[T] that has the two subclasses
Some[T](x: T) and None.

9

40

Extractor patterns with more than one argument correspond to unapply methods return-
ing an optional tuple. Nullary extractor patterns correspond to unapply methods returning
a Boolean.

In the following we show how extractors can be used to implement the matching
semantics of join patterns. In essence, we define appropriate unapply methods for events
which get implicitly called during the matching.

Matching Join Patterns As shown previously, a set of join patterns is represented as a
partial function. Its isDefinedAt method is used to find out whether one of the join pat-
terns matches. In the following we are going to explain the code that the Scala compiler
produces for the body of this method. Let us revisit the join pattern that we have seen in
the previous section:

Get() & Put(x)

In our library, the & operator is an extractor (see previous section) that defines an unapply
method; therefore, the Scala compiler produces the following matching code:

&.unapply(m) match {
case Some((u, v)) =>
u match {
case Get() => v match {
case Put(x) => true
case _ => false }

case _ => false }
case None => false }

We defer a discussion of the argument m that is passed to the & operator. For now, it is
important to understand the general scheme of the matching process. Basically, calling
the unapply method of the & operator produces a pair of intermediate results wrapped in
Some. Standard pattern matching decomposes this pair into the variables u and v. These
variables, in turn, are matched against the events Get and Put. Only if both of them match,
the overall pattern matches.

Since the & operator is left-associative, matching more than two events proceeds by
first calling the unapply methods of all the & operators from right to left, and then match-
ing the intermediate results with the corresponding events from left to right.

Since events are objects that have an unapply method, we can expand the code fur-
ther:

&.unapply(m) match {
case Some((u, v)) =>
Get.unapply(u) match {
case true => Put.unapply(v) match {
case Some(x) => true
case None => false }

case false => false }
case None => false }

10

41

As we can see, the intermediate results produced by the unapply method of the & opera-
tor are passed as arguments to the unapply methods of the corresponding events. Since
the Get event is parameterless, its unapply method returns a Boolean, telling whether it
matches or not. The Put event, on the other hand, takes a parameter; when the pattern
matches, this parameter gets bound to a concrete value that is produced by the unapply
method.

The unapply method of a parameterless event such as Get essentially checks whether
it has been invoked previously. The unapply method of an event that takes parameters
such as Put returns the argument of a previous invocation (wrapped in Some), or signals
failure if there is no previous invocation. In both cases, previous invocations have to be
buffered inside the event.

Firing join patterns. As mentioned before, executing the right-hand side of a pattern that
is part of a partial function amounts to invoking the apply method of that partial func-
tion. Basically, this repeats the matching process, thereby binding any pattern variables
to concrete values in the pattern body. When firing a join pattern, the events’ unapply
methods have to dequeue the corresponding invocations from their buffers. In contrast,
invoking isDefinedAt does not have any effect on the state of the invocation buffers. To
signal to the events in which context their unapply methods are invoked, we therefore
need some way to propagate out-of-band information through the matching. For this,
we use the argument m that is passed to the isDefinedAt and apply methods of the
partial function. The & operator propagates this information verbatim to its two children
(its unapply method receives m as argument and produces a pair with two copies of m
wrapped in Some). Eventually, this information is passed to the events’ unapply methods.

4.1 Implementation Details

Events are represented as classes that contain queues to buffer invocations. The Event
class is the super class of all synchronous and asynchronous events:7

abstract class Event[R, Arg](owner: Joins) {
val tag = owner.freshTag
val argQ = new Queue[Arg]
def apply(arg: Arg): R = synchronized { argQ += arg; invoke() }
def invoke(): R
def unapply(isDryRun: Boolean): Option[Arg] =
if (isDryRun && !argQ.isEmpty)
Some(argQ.front)

else if (!isDryRun && owner.matches(tag))
Some(argQ.dequeue())

else None
}

7 In our actual implementation the fact whether an event is parameterless is factored out for effi-
ciency. Due to lack of space, we show a simplified class hierarchy.

11

42

The Event class takes two type arguments R and Arg that indicate the result type and
parameter type of event invocations, respectively. Events have a unique owner which
is an instance of the Joins class. This class provides the join method that we used in
the buffer example to declare a set of join patterns. An event can appear in several join
patterns declared by its owner. The tag field holds an identifier which is unique with
respect to a given owner instance. Whenever the event is invoked via its apply method,
we append the provided argument to the argQ. The abstract invoke method is used to
run synchronization-specific code; synchronous and asynchronous events differ mainly
in their implementation of the invoke method (we show a concrete implementation for
synchronous events below). In the unapply method we test whether matching occurs
during a dry run. If it does not, we ask the owner whether the event belongs to a matching
join pattern (owner.matches(tag)) in which case an event invocation is dequeued.

Synchronous events are implemented as follows:

abstract class SyncEvent[R, Arg] extends Event[R, Arg] {
val waitQ = new Queue[SyncVar[R]]
def invoke(): R = { val res = new SyncVar[R]
waitQ += res; owner.matchAndRun(); res.get }

def reply(res: R) = waitQ.dequeue().set(res)
}

Synchronous events contain a logical queue of waiting threads, waitQ, which is imple-
mented using the implicit wait set of synchronous variables.8 The invoke method is run
whenever the event is invoked. It creates a new SyncVar and appends it to the waitQ.
Then, the owner’s matchAndRun method is invoked to check whether the event invocation
triggers a complete join pattern. After that, the current thread waits for the SyncVar to
become initialized by accessing it. If the owner detects (during owner.matchAndRun())
that a join pattern triggers, it will apply the join, thereby re-executing the pattern match
(binding variables etc.) and running the join body. Inside the body, synchronous events
are replied to by invoking their reply method. Replying means dequeuing a SyncVar and
setting its value to the supplied argument. If none of the join patterns matches, the thread
that invoked the synchronous event is blocked (upon calling res.get) until another thread
triggers a join pattern that contains the same synchronous event.

Thread-safety. Our implementation avoids races when multiple threads try to match a
join pattern at the same time; checking whether a join pattern matches (and, if so, running
its body) is an atomic operation. Notably, the isDefinedAt/apply methods of the join set
are only called from within the synchronized matchAndRun method of the Joins class.
The unapply methods of events, in turn, are only called from within the matching code
inside the partial function, and are thus guarded by the same lock. The internal state of
individual events is updated consistently: the apply method is atomic, and the reply
method is called only from within join bodies which are guarded by the owner’s lock. We
don’t assume any concurrency properties of the argQ and waitQ queues.

8 A SyncVar is an atomically updatable reference cell; it blocks threads trying to access an unini-
tialized cell.

12

43

4.2 Implementation of Actor-based Joins

Actor-based joins integrate with Scala’s pattern matching in essentially the same way
as the thread-based joins, making both implementations very similar. We highlight how
joins are integrated into the actor library, and how reply destinations are supported.

In the Scala actors library, receive is a method that takes a PartialFunction as a
sole argument, similar to the join method defined previously. To make receive aware of
join patterns, the abstract JoinActor class overrides these methods by wrapping the par-
tial function into a specialized partial function that understands join messages. JoinActor
also overrides send to set the reply destination of a join message. Message sends such as
a!msg are interpreted as calls to a’s send method.

abstract class JoinActor extends Actor {
override def receive[R](f: PartialFunction[Any, R]): R =
super.receive(new JoinPatterns(f))

override def send(msg: Any, replyTo: OutputChannel[Any]) {
setReplyDest(msg, replyTo)
super.send(msg, replyTo) }

def setReplyDest(msg: Any, replyTo: OutputChannel[Any]) {...} }

JoinPatterns is a special partial function that detects whether its argument message
is a join message. If it is, then the argument message is transformed to include out-of-
band information that will be passed to the pattern matcher, as is the case for events
in the thread-based joins library. The boolean argument passed to the asJoinMessage
method indicates to the pattern matcher whether or not join message arguments should
be dequeued upon successful pattern matching. If the msg argument is not a join message,
asJoinMessage passes the original message to the pattern matcher unchanged, enabling
regular actor messages to be processed as normal.

class JoinPatterns[R](f: PartialFunction[Any, R])
extends PartialFunction[Any, R] {
def asJoinMessage(msg: Any, isDryRun: Boolean): Any =
...

override def isDefinedAt(msg: Any) =
f.isDefinedAt(asJoinMessage(msg, true))

override def apply(msg: Any) =
f(asJoinMessage(msg, false))

}

Recall from the implementation of synchronous events that thread-based joins used con-
structs such as SyncVars to synchronize the sender of an event with the receiver. Actor-
based joins do not use such constructs. In order to synchronize sender and receiver, every
join message has a reply destination (which is an OutputChannel, set when the message
is sent in the actor’s send method) on which a sender may listen for replies. The reply
method of a JoinMessage simply forwards its argument value to this encapsulated reply
destination. This wakes up an actor that performed a synchronous send (a!?msg) or that
was waiting on a future (a!!msg).

13

44

5 Discussion and Related Work

Benton et al. [2] note that supporting general guards in join patterns is difficult to im-
plement efficiently as it requires testing all possible combinations of queued messages
to find a match. Side effects pose another problem. Benton et al. suggest a restricted
language for guards to overcome these issues. However, to the best of our knowledge,
there is currently no joins framework that supports a sufficiently restrictive yet expres-
sive guard language to implement efficient guarded joins. Our current implementation
does not handle general guards, although they are permitted in Scala’s pattern syntax [6].
We find that guards often help at the interface to a component that uses private messages
to represent values satisfying a guard, as in the following example:

join { case Put(x) if (x > 0) => this.PositivePut(x)
case PositivePut(x) & Get() => Get reply x }

Cω [2] is a language extension of C# supporting chords, linear combinations of methods.
In contrast to Scala Joins, Cω allows at most one synchronous method in a chord. The
thread invoking this method is the thread that eventually executes the chord’s body. The
benefits of Cω as a language extension over Scala Joins are that chords can be enforced
to be well-formed and that their matching code can be optimized ahead of time. In Scala
Joins, the joins are only analyzed at pattern-matching time. The benefit of Scala Joins
as a library extension is that it provides more flexibility, such as multiple synchronous
events. Russo’s Joins library [15] exploits the expressiveness of C# 2.0’s generics to im-
plement Cω’s synchronization constructs. Piggy-backing on an existing variable binding
mechanism allows us to avoid problems with Joins’ delegates where the order in which
arguments are passed is merely conventional. Scala’s implicit arguments also help to al-
leviate some of the initialization boilerplate. CCR [3] is a C# library for asynchronous
concurrency that supports join patterns without synchronous components. Join bodies
are scheduled for execution in a thread pool. Our library integrates with JVM threads
using synchronous variables, and supports event-based programming through its integra-
tion with Scala Actors. Singh [16] shows how a small set of higher-order combinators
based on Haskell’s software transactional memory (STM) can encode expressive join
patterns. Salsa [18] is a language extension of Java supporting actors. In Salsa, actors
may synchronize upon the arrival of multiple messages by means of a join continuation.
However, join continuations only allow an actor to synchronize on gathering replies to
previously sent messages. Using joins, Scala actors may synchronize on any incoming
message. CML [14] allows threads to synchronize on first-class composable events; be-
cause all events have a single commit point, certain protocols may not be specified in a
modular way (for example when an event occurs in several join patterns). By combin-
ing CML’s events with all-or-nothing transactions, transactional events [4] overcome this
restriction but may have a higher overhead than join patterns.

6 Conclusion

We presented a novel implementation of join patterns based on extensible pattern match-
ing constructs of languages such as Scala and F#. The embedding into general pattern

14

45

matching provides expressive features such as nested patterns and guards for free. The
resulting programs are often as concise as if written in more specialized language ex-
tensions. We implemented our approach as a Scala library that supports Ada-style ren-
dezvous and constraints and furthermore integrated it with the Scala Actors event-based
concurrency framework without changing the syntax and semantics of existing programs.

References

1. Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Program-
ming in Erlang, Second Edition. Prentice-Hall, 1996.

2. Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.
ACM Trans. Program. Lang. Syst, 26(5):769–804, 2004.

3. Georgio Chrysanthakopoulos and Satnam Singh. An asynchronous messaging library for C#.
In Proc. SCOOL Workshop, OOPSLA, 2005.

4. Kevin Donnelly and Matthew Fluet. Transactional events. In Proc. ICFP, pages 124–135.
ACM, 2006.

5. Burak Emir, Martin Odersky, and John Williams. Matching objects with patterns. In Erik
Ernst, editor, Proc. ECOOP, volume 4609 of LNCS, pages 273–298. Springer, 2007.

6. Martin Odersky et al. An Overview of the Scala Programming Language. Technical Report
IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

7. Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. JoCaml: A language
for concurrent distributed and mobile programming. In Advanced Functional Programming,
volume 2638 of LNCS, pages 129–158. Springer, 2002.

8. Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Proc. POPL, pages 372–385. ACM, January 1996.

9. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
Calculus of Mobile Agents. In CONCUR, pages 406–421. Springer-Verlag, August 1996.

10. Philipp Haller and Martin Odersky. Actors that unify threads and events. In Proc. COORDI-
NATION, LNCS. Springer, June 2007.

11. Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985.

12. Martin Odersky. Functional Nets. In European Symposium on Programming 2000, Lecture
Notes in Computer Science. Springer Verlag, 2000.

13. C. Okasaki. Views for Standard ML, 1998.
14. J. H. Reppy. CML: A higher-order concurrent language. In Proc. PLDI, pages 294–305,

Toronto, Ontario, Canada, June 1991. ACM Press, New York.
15. Claudio V. Russo. The Joins concurrency library. In PADL, pages 260–274, 2007.
16. Satnam Singh. Higher-order combinators for join patterns using STM. In Proc. TRANSACT

Workshop, OOPSLA, 2006.
17. Don Syme, Gregory Neverov, and James Margetson. Extensible Pattern Matching via a

Lightweight Language Extension. In Proc. ICFP, 2007.
18. Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems with

SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.
19. G.S. von Itzstein and David Kearney. Join Java: An alternative concurrency semantic for Java.

Technical Report ACRC-01-001, University of South Australia, 2001.
20. Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In POPL,

pages 307–313, 1987.
21. Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented concurrent pro-

gramming in ABCL/1. In Proc. OOPSLA, pages 258–268, 1986.

15

46

Executing Action Languages for Planning Problems on
Multi-core Platforms: Some Preliminary Results

To Thanh Son, Phan Huy Tu, Enrico Pontelli, Tran Cao Son

New Mexico State University
Department of Computer Science

{sto,tphan,epontell,tson}@cs.nmsu.edu

Abstract. The goal of this paper is to demonstrate that parallel programming
techniques can boost AI planning systems in various aspects. It shows that an
appropriate parallelization of a sequential planning system often brings gain in
performance and/or scalability. We start by describing general schemes for par-
allelizing the construction of a plan. We then discuss the applications of these
techniques to two domain-independent heuristic search based planners—a com-
petitive conformant planner (CPA) and a state-of-the-art classical planner (FF).
We present experimental results which show that performance improvements and
scalability are obtained in both cases. Finally, we discuss the issues that should
be taken into consideration when designing a parallel planning system and relate
our work to the existing literature.

1 Introduction and Motivation

Planning is the problem of finding a sequence of actions that changes the state of the
world from an initial state to a state that satisfies a given set of requirements. Planning
is computationally hard. Even the problem of searching for a polynomially bounded
plan for propositional domains is NP-complete [3], and it becomes computationally
even harder (Σ2

P
-complete) when the initial state is incomplete [3]. These complexity

results suggest that domain-independent planners are likely to fail to build a plan within
acceptable time bounds for certain problem instances.

In spite of these limitations, over the years, we have witnessed a continuous interest
by researchers in building domain-independent planners. The challenge has led to the
development of more creative ways to attack this problem, such as the development of
new data structure (e.g., the planning graph [4]), the development of several domain-
independent heuristics (e.g., [5, 15]), and the development of new planning techniques
(e.g., SAT-based or model checking based planners [18, 9], Answer Set planning [20]).

Conformant planningis the problem of finding a sequence of actions that changes
the state of the world fromeverypossible initial state (or equivalently, a set of initial
states) to a state that satisfies a given set of requirements. Like classical planning—
which deals with planning problems in presence of acompleteinitial state—conformant
planning can be viewed as asearchproblem. Several approaches to conformant plan-
ning have been developed. Graphplan is extended in [23] to deal with incompleteness
of the initial state. Satisfiability and model-based planning have been applied to confor-
mant planning in [9, 8]. Conformant answer set planning is discussed in [13].

47

Planning asheuristic searchhas played an important role in planning research. In-
deed, heuristic search planners are among the best domain-independent planners1 for
classical domains(e.g., FF, HSP2, AltAlt, etc. [1]). For domains withincompletein-
formation, heuristic search planners orconformant plannersare also among the fastest
developed (e.g., [6, 7]). The main difference between classical planning and conformant
planning lies in the size of the search space. The former searches for solutions in the
state-space—which can be exponential in the number of propositions in the problem—
while the latter performs the search in thebelief-statespace—which is double exponen-
tial in the number of propositions.

It is apparent that one of the keys to the success of domain-independent search
based planners is the design of good heuristics and a better and compact representation
of the search space (e.g., [7]). It is known, however, that there is a trade-off between the
cost of computing a heuristic function and its performance. In this context, it is inter-
esting to observe that a domain-independent conformant planner, called CPA [24], can
be competitive with many state-of-the-art conformant planners, even though it uses a
rather simple heuristic to guide its search. Instead of employing a sophisticated heuris-
tic, CPA usesapproximation(more on CPA in the next section). The performance of
CPA demonstrates that, for various classes of planning problems, the performance of a
heuristic function can be compensated bychanges in the reasoning mechanisms.

In this paper, we continue along the same line of thought, proposing another mech-
anism, orthogonal to the development of new heuristics, to enhance performance of
heuristic search-based planners. More precisely, we investigate the use ofparallel ma-
chinesto extract concurrency from the reasoning process employed in planning. Our
approach is motivated by:(a) the demand for solving larger planning instances;(b)
the architectural trends of providing users with affordable multi-core platforms;(c) the
availability of affordable components to build Beowulf clusters; and(d) the observation
that, with few exceptions (e.g., [26]), existing planning systems are tailored tosequen-
tial computing platforms.

These issues lead to the following research questions:(1) Can the computing power
of parallel platforms be used to improve planning efficiency and to solve larger prob-
lems, which cannot be solved by current planners?and(2) Which parallel computing
techniques can be applied to planning?In this paper, we answer these questions.

Our study offers the following outcomes:(1) Parallel machines can be effectively
used in planning, to solve larger problems and speed up planning time;(2) Parallel
search techniques [14] cannot be applied blindly;(3) Parallel machines can effectively
compensate the informativeness of the heuristic function;(4) State-of-the-art planners
can be adapted to take full advantage of the added computational power provided by
multi-core and distributed platforms.

Let us underline that an extensive literature exists dealing with the development of
parallel solutions to search problems in various domains (e.g., constraint solving, logic
programming, SAT, combinatorial optimization [14, 22, 28, 19]). Although these works
provide a basic backbone to our effort, they also clearly highlight that a generic solution

1 SAT-based planners are becoming more competitive (zeus.ing.unibs.it/ipc-5), due
to efficient SAT-solvers, but we believe heuristic-based planners will remain important for
many years.

48

to parallel search does not exist, and solutions developed in other domains need to be
properly modified to be effective in the context of planning. Thus, it is important to
know what will be the pros and cons of parallelization of a planning system and what
are the issues that need to be investigated. We hope this paper will provide directions in
answering such questions.

2 Preliminaries

2.1 Action Representation and Planning as Search

We employ the action languageAL in [2] for action representation, and we represent a
planning problem instance asP = 〈D, I,G〉, whereD (theplanning domain) encodes
the actions with their effects and preconditions, andI andG describe theinitial state
and thegoal. I can be represented by a set of statesΣI , and it is said to becompleteif
|ΣI | = 1. An action expressed in thePlanning Domain Definition Language (PDDL)

(:action action_name
:parameters (list of ?xi - typei)
:precondition (condition)
:effect (and (when cond1 => eff1) ...))

can be viewed as a set of ground laws inAL as follows. For each valid vectorx of the
parameters ofaction name, we have the set consisting of an executability condition

executable action name(x) if condition

and a set of action effect rules
action name(x) causeseffi if condi

for i = 1, . . . , k. The main difference betweenAL and PDDL is thatAL allows for
the representation of arbitrary axioms. The usefulness of axioms in planning has been
discussed in [25].

The semantics of a planning domain can be defined by astate-transition system
(S,A, Φ), whereS is the set of states,A is the set of actions, andΦ is a mapping from
a pair of the form(action, state)to a set of states. For an actiona and a states, Φ(a, s)
denotes the set of possible states resulting from the execution of actiona in the states.
Whena is not executable ins (or its preconditions are not satisfied ins), Φ(a, s) = ∅.
An action isdeterministicif |Φ(a, s)| ≤ 1.

For a set of statesS, also called abelief state(or b-state for short), and an action
a, we say thata is executable inS if a is executable in everys ∈ S, and we write
Φ(a, S) =

⋃
s∈S

Φ(a, s); otherwise,Φ(a, S) = ∅ (a is not executable inS). Φ is also

extended toΦ̂, which maps action sequences and b-states to b-states.Φ̂(α, S) is de-
fined asΦ̂([], S) = S; andΦ̂([a0, . . . , an], S) = Φ̂([a1, . . . , an], Φ(a0, S)). An action
sequenceα is asolutionto P (a plan) if Φ̂(α, ΣI) 6= ∅ and for everys ∈ Φ̂(α, ΣI), s

satisfiesG.
Here, we experiment with planning problems where: (a) actions are deterministic;

(b) the domains might or might not contain axioms; and (c) the initial state might be
incomplete.

Figure 1 shows a generic algorithm for planning as search, whereΣI is the initial
belief state andG is the goal (we assume thatΣI does not satisfyG).

49

Algorithm 1 : FWDPLAN(D,I, G)
1. S = ΣI ; Queue = {(S, [])}; V isited = {S}
2. while Queue is not empty
3. select (S, p) with the best

heuristic value from Queue
4. for each action a executable in S
5. S′ = Φ(a, S)
6. if S′ satisfies G then return [p; a]
7. else if S′ 6∈ V isited
8. compute heuristic for S′

9. insert (S′, [p; a]) into Queue
10. insert S′ into V isited

Fig. 1. A heuristic forward search algorithm

2.2 Two Sequential Planning Systems

We use two sequential planning systems in our experiments. The two systems have been
chosen because of their efficiency, the fact that they are both search-based planners, and
the availability of their source code.

The first system,FF,2 is a planner for classical domains, where the initial state
is complete. FF is one of the state-of-the-art classical planers [16], and has received
several awards for its outstanding performance in international planning competitions.
The input of FF is PDDL. This version of FF does not consider axioms. In FF, the next
state is computed by the equationΦ(a, s) = s ∪ e+

a (s) \ e−a (s) wheree+
a (s) (resp.

e−a (s)) is the set of positive effects (resp. the set of negative effects) ofa in the state
s. For this reason, the computation ofΦ(a, s) is very fast as it can be done by two set
operations. FF also modifies the general algorithm of Fig. 1 by adding an initial phase
of local search (based on hill-climbing), and entering the best-first search only upon
failure of the local search phase. The outstanding performance of FFcan be attributed
to the accuracy of its heuristic.

The second system used in our study is a modification of the CPA system3 [24],
developed for conformant planning problems (i.e.,|ΣI | ≥ 1). CPA usesAL as its
input language and the number of fulfilled subgoals as heuristic measure (which is
known for being not very accurate). CPA cannot match the performance of FF in most
of the classical domains. Nevertheless, CPA is competitive with most of the state-of-
the-art conformant planners (at the time it was developed). The main difference between
CPA and other conformant planners is that it considers axioms directly, and it usesΦ∗,
a deterministic approximation ofΦ, to deal with non-determinism (caused by axioms)
and incompleteness. Informally, given an actiona and a set of literalsδ approximating
the state of the world, the next state of the worldΦ∗(a, δ) is approximated by a fixpoint
of the process that computes(i) the set of fluents that cannot possibly be changed or hold
δi; and(ii) the set of direct effects ofa in δi whereδ0 = δ. This process might require
n2 steps, wheren is the number of propositions in the domain. Detailed definitions of
Φ∗(a, δ) can be found in [24]. As we will see later, this will be an important source of
parallelism.

2 See members.deri.at/ ˜ joergh/ff.html .
3 Seewww.cs.nmsu.edu/ ˜ tphan/software.htm

50

3 The Parallel System — General Schemes

In the rest of the discussion we will use the generic termcomputing agents(or, simply,
agents) to indicate the concurrent planning engines, concretely implemented as threads
or processes. The generic structure of a forward search algorithm, as illustrated in Fig. 1,
suggests two natural approaches for the transparent exploitation of parallelism.

3.1 Vertical Parallelism

The algorithm in Fig. 1 explores a search space, described by the possible b-states and
the functionΦ (or Φ∗). Vertical Parallelismarises from the exploitation of parallelism
from the non-determinism of the search process—i.e., allowing the concurrent explo-
ration of different(S, p) extracted from the queue (Line 3). This is intuitively described
in Fig. 2 (left). Effectively, the different agents are exploring alternative ways to reach
a goal b-state, by concurrently building distinct plans. The advantage of this approach
is the possibility of pursuing alternative plans, which is particularly advantageous when
the heuristic function is ineffective in discriminating between b-states to explore. On
the other hand, if the different agents use a common representation of the search space
(e.g., a single queue), then we run the risk of(1) exploring speculative parts of the
search space (e.g., b-states with a low heuristic value), and(2) modifying the order of
exploration of the search space (which might negatively impact the heuristic search).

Selected Node

Selected Node

Agent 1
Line 3

Agent 2
Line 3

Selected Node

Agent 1 Agent 2

For-Loop
Line 4

Fig. 2. Vertical and Horizontal Parallelism

3.2 Horizontal Parallelism

Horizontal Parallelismarises from the use of different agents in constructingonepartic-
ular plan—thus, the agents are cooperating in the development of asingleplan. This is
effectively achieved by distributing the iterations of the for-loop ofLine 4 between the
agents, as intuitively illustrated in Fig. 2 (right). The advantage of this approach is the
fact that the structure of the search space is unchanged w.r.t. a sequential execution—
thus, parallelism does not interfere with the heuristics function. The drawbacks arise
from the potentially small granularity of the tasks (e.g., when the states inΦ(a, S) are
“easy” to compute) and the possible contention in the use of a common queue.

51

4 Systems Description

4.1 mCpA: a Parallel CPA

The parallel versions of CPA have been developed using a common parallel structure.
The model adopted relies on a multi-core platform, relying on shared memory for all
communication tasks. The agents in charge of performing the computation are rep-
resented by concurrent threads; all forms of communication between the computing
agents are realized through access and modifications of data structures allocated in the
shared memory. Synchronization is required to coordinate access to shared memory (via
mutex locks).

We explore alternative implementations, aimed at exploiting specific computational
features of the planning domains. VERT is a purely vertical implementation, aimed at
domains where the heuristics function is not satisfactory (e.g., many b-states are gen-
erated with the same best heuristic value). The horizontal models (HORZ1-HORZ4)
are aimed at domains where the computation of the successor states is expensive. In
particular, HORZ1 considers the case of large number of actions or actions having com-
parable “complexity”, while HORZ2 and HORZ3 address domains where the number
of actions might be large but the cost of applying the actions and determining successor
states might widely vary. The HORZ4 prototype considers domains where actions are
very simple (not expensive) and overheads should be avoided. The final two models
(HYBR1 and HYBR2) address domains where both vertical and horizontal conditions
are present (possibly only in moderate terms).

Vertical Parallelism In this implementation, called VERT, we maintain a unique cen-
tral queue, representing the frontier of the search space, with the b-states ranked ac-
cording to the heuristics function (as in Fig. 1). The central queue is a priority queue
and is allocated in shared memory. We also use a shared table to store visited b-states.
Modifications of the central queue and the visited b-states table are critical sections and
mutex locks are acquired by the agents for each update.

During the search, each agentP extracts a b-stateS with the highest heuristic value
from the central queue and determines actions that are executable inS. For each exe-
cutable action,P computes the successor b-stateS′ and its heuristic value. IfS′ satisfies
the goal then a solution is returned. Otherwise, ifS′ is not present in the visited b-states
table,P will add S′ to the queue and to the visited b-states table. When an agentP

satisfies the goal, it sets a flag to notify the others of termination. To detect the situation
in which there is no solution, each agentP is associated to a flag that indicates whether
P is idle—P is idle if it runs out of work and the central queue is empty. When all
agents are idle they stop and report that no solution has been found.

Horizontal Parallelism For horizontal parallelism, we have realized four different
implementations—exploring alternative strategies to interact with the central queue.4

The HORZ1 implementation relies on the use of a central queue to store open nodes,
and a set structure to store visited b-states, both located in shared memory. In HORZ1,

4 This type of variations have led to significant differences in other parallel systems [14].

52

we statically divide the set of all actions into equal size segments, and assign each
segment to a distinct computing agent. During the search, an arbitrary agent, sayP0,
extracts a b-stateS with the highest heuristic value from the queue, and all agents,
includingP0 itself, compute the successor b-states forS. Each agentP computes the
successor b-states ofS for each applicable action belonging to the segment of actions
assigned toP . These b-states are stored locally and only in the end transferred to the
central queue (with corresponding update of the visited b-states table)—this guarantees,
in most of the cases, that the b-states in the central queue are in the same order as in a
sequential execution of CPA.5

The HORZ2 implementation is similar to HORZ1, however, instead of assigning to
an agent a fixed number of actions to compute the successor b-states, wedynamicallyal-
locate actions to agents at run time. Givenn agents andm actions that need to be tested
in computing the successor b-states, if agentP is available, thenP will receive a seg-
ment containing m

4×n
unexplored actions6; at the same time, the valuem of unexplored

actions is updated tom− m

4×n
. This process is repeated until the successor b-states for

all actions have been computed. The net effect is to start by assigning coarse tasks to
the agents, and refining them to smaller tasks as the computation continues, ultimately
creating a better load balancing between the computing agents (since different actions
may require a different amount of time). All the computed successor b-states are stored
in a local queue, associated to each agent. As in HORZ1, when all the actions have been
applied, the content of the local queues is transferred to the central queue.

HORZ3 is similar to HORZ2, with the exception that each agent receives only one
action at the time—creating fine grained tasks and facilitating load balancing.

Finally, the HORZ4 is identical to HORZ3, except that the b-states computed by the
agents are immediately inserted in the central queue. The goal is to avoid the sequential
phase required to transfer b-states from the local queues to the central one. The new
b-states may appear in the central queue in an order different from the one of sequen-
tial execution (if multiple b-states with the same highest heuristics value are present).
Thus, the parallel planner is likely to explore the search space in a different order than
sequential execution.

Hybrid Parallelism HYBR1 is a combination of horizontal and vertical parallelism.
The agents are divided into groups of equal size (4in our experiments). An arbitrary
agentP of each group extracts the b-state from the top of the central queue, and shares
the work of computing successor b-states with all agents in the group, includingP itself,
as done in HORZ1. Checking visited b-states is done as in the previous implementations.
The central queue and the visited b-states table are allocated in shared memory.
In HYBR2, agents are divided into two groups—each with a private queue and visited
states table. Unlike HYBR1, where all groups play the same role, in HYBR2, the first
group uses the strategy of VERT: at any time during the search each agent in the group
extracts the b-state from the top of the group’s queue, computes the successor b-states
for executable actions and inserts them into the group’s queue. The second group works
in the same way as HORZ1, where actions are divided into segments of equal size and

5 There are rare exceptions to this, as discussed later.
6 This formula has been experimentally chosen.

53

each segment is associated with an agent in the group to computesuccessor b-states.
The intuition is to provide a balance between trusting and speeding up the original
heuristics (pursued by the second team), and allowing the fast exploration of alternative
branches.

4.2 mFF: a Parallel FF

The parallelization of FF follows the model of vertical parallelism. The choice of not
exploring horizontal parallelism is dictated by the high-efficiency of FF in computing
Φ, which would make horizontal parallelism too fine-grained. The implementation of
vertical parallelism has been adapted to FF with the following main modifications:
◦ One agent (master) maintains the central queue, and performs best-first search fol-

lowing the sequential FF scheme.
◦ The other agents (slaves) are allowed to extract b-states from the central queue and

perform search starting from the given b-state. Given a b-stateS, the slave agent
proceeds by first attempting a hill-climbing local search starting fromS, and entering
the best-first search only upon failure of hill-climbing (thus, effectively restarting the
FF computation fromS as initial state). The best-first search conducted by the slave
is limited by a maximum number of steps, and the frontier of the final search tree
developed by the slave agent replacesS in the central queue (if a solution is found, it
will be reported and the computation will terminate).

Asserting a limit on the best-first search conducted by each slave agent is useful to
guarantee that the slave agent does not enter a “low quality” part of the search tree,
without requiring excessive interaction with the other agents and the central queue. The
number of steps allowed is initially set to an experimentally determined constant (500
in the proposed experiments) and it is adaptive—it is incremented as the search goes
deeper into the global search tree.

5 Experimental Evaluation

5.1 Benchmarks

To evaluate the performance of our systems, we use two test suites. The first includes
classical planning domains, while the second includes conformant planning domains.
The benchmarks are briefly described in Table 1. In the discussion, we loosely use the
termspeedupto denote the ratio between the sequential and the parallel execution time,
a measure of how much parallel search contributes to improve the performance of a
given sequential system.7 Note that we do not present all the results (e.g., performance
of each form of parallelism for each benchmark) due to lack of space.

5.2 Classical Domains

We experimented with bothmCpAand mFFon classical planning domains. In both
cases, we selected domains and instances which have been proved challenging for the

7 This is different from the theoretical notion of speedup, that requires the absolute best sequen-
tial time usinganysequential system.

54

Benchmark Instances Source Brief Description

Classical Domains
Gripper n = 100 AIPS 1998 robot transportsn balls between 2 locations
Miconic p = 20, f = 20 AIPS 2000 lift transportsp passengers betweenf floors
Pathways p = 1, . . . , 30 IPC-5 find sequence of biochemical reactions

producingp substances
PipesWorld p = 10 IPC-5 Control flow of oil in ap-node network
Stacks p = 30 IPC-5 Problem in production scheduling
Storage p = 17 IPC-5 moving crates from containers top depots

Conformant Domains
Bomb b = 200, t = 20 [6] disarm bombs by dunking in the toilet
Cleaner n = 10, p = 50 [24] robot cleansp objects inn rooms
Ring n = 30 [9] robot locks windows inn rooms
Cube n = 9 [9] robot moves in an × n × n grid
Safe n = 50 [6] open a safe withn possible combinations)
Logistic l = 3, c = 3, p = 3 [6] transportp packages withinl locations

in c cities
Coin n = 10 IPC-5 robot collectsn coins scattered in a building
Comm s = 14/12, p = 11/9 IPC-5 certify or repair packets

Table 1.Benchmarks

sequential counterparts. Times are reported in seconds and the experiments rely on a 2-
hour time limit (TOdenotes time-out). Each problem was solved four times and average
execution times are reported.

mCpA: mCpAhas been implemented on a Sun multicore shared memory machine, with
8 cores, 4GB of memory, and running Solaris 9. Table 2 reports the experimental results
using different numbers of agents (from1 to 8). The leftmost column of the table shows
the problem and the version ofmCpAused. In each of the other cells, we report the
execution time for the corresponding parallel version, and the corresponding number of
agents, followed by the ratio of performance improvement w.r.t. sequential CPA.

VERT obtained good performance on the Miconic domain—a speedup of12.94
using8 agents inMic(20, 20). The reason for the super-linear speedup is due to the
fact that multiple agents are exploring different branches of the search tree, and VERT

determines a shorter plan than CPA. E.g., forMic(20, 20), the length of the plan that
VERT with 8 agents returned is86, comparing to166 of the sequential version. The
speedups of HORZ1 and HORZ3 on this problem are also fairly good—more than6
using8 agents. They are lower due to the relatively fast computation of successor b-
states. We observe drops in speedups in the other systems due to contention on locks
and lack of sufficient agents to follow the most promising plans.

In the Gripper domain, the length of the plan returned by VERT is not always shorter
than that found by CPA. E.g., with8 agents, the length of the plan returned by VERT is
377 while that of CPA is 319. That explains why the speedup of the vertical parallel im-
plementation VERT is not as good. In general, the speedups obtained by all the versions,
on this domain, are stable, gradually increasing as the number of agents increases. This
is because the length of the plan found by the sequential version is not far from that of

55

an optimal plan (i.e., the heuristics of CPA works well on this domain). Thus, in most
of the cases, the parallel solutions represent better approximations of the optimal plan.
Note that, in general, optimality is desired but not required.

The Pathway domain, with deterministic actions and a large number of actions and
fluents and without axioms, reminds us how important heuristic is in searching for a
plan. Here , horizontal parallelism does not pay off, while vertical parallelization pro-
vides good speedup.

Domain n=2 n=4 n=8

Mic(20,20) CPA: 1232
VERT 396 (3.12) 193 (6.39) 95 (12.94)
HORZ1 637 (1.94) 340 (3.63) 204 (6.04)
HORZ2 693 (1.78) 525 (2.35) 398 (3.10)
HORZ3 639 (1.93) 333 (3.70) 197 (6.25)
HORZ4 1094 (1.13) 291 (4.23) 154 (7.99)
HYBR1 617 (2.00) 400 (3.08) 182 (6.78)
HYBR2 1236 (1.00) 637 (1.94) 198 (6.21)

Gripper(100) CPA: 5255
VERT 3095 (1.70) 2109 (2.49) 1032 (5.09)
HORZ1 2711 (1.94) 1395 (3.77) 778 (6.75)
HORZ2 2821 (1.86) 1499 (3.51) 878 (5.99)
HORZ3 2687 (1.96) 1379 (3.81) 763 (6.89)
HORZ4 2638 (1.99) 1414 (3.72) 788 (6.67)
HYBR1 3899 (1.35) 3260 (1.61) 1591 (3.30)
HYBR2 5276 (1.00) 2722 (1.93) 1404 (3.74)

Pathways(4) CPA: 23.02
VERT 4.57 (5.04) 7.2 (3.20) 3.39 (6.79)
HORZ1 20.05 (1.15) 17.51 (1.31)
HORZ2 15.76 (1.46) 12.24 (1.88) 12.77 (1.80)
HORZ3 15.87 (1.45) 11.03 (2.09) 12.01 (1.92)
HORZ4 15.07 (1.53) 10.06 (2.29) 6.75 (3.41)
HYBR1 12.85 (1.79) 7.12 (3.23) 6.98 (3.30)
HYBR2 27.08 (0.85) 5.96 (3.86) 6.23 (3.70)

Table 2.Classical Benchmarks usingmCpA

mFF: mFFhas been developed on the same 8-core Sun server, running Solaris 9. The
experiments conducted deal with instances of problems (drawn from the IPC-5 compe-
tition) that are challenging for the sequential FF system. Table 3 shows the main results.
In parentheses we show the ratio between sequential time and parallel time. The impor-
tant result to underline here is the ability to solve various instances that are intractable
by sequential FF (actually, many of the time-outs reported are for instances that took
longer than 24 hours). In this context, the benefits are parallelism are two-fold:
◦ the ability to overlap differenttypesof search (standard best-first search and hill-

climbing local search)—this is the case of Storage(17), where hill-climbing is time
consuming while best-first quickly converges to a solution;

56

◦ the ability to concurrently explore branches that have equally high heuristic values
(this is the case of Pathways).

Observe that the current implementation is not particularly good in maintaining a low
level of communication—we can notice that using 8 agents the performance occasion-
ally degrades (e.g., PipesWorld(15)) due to excessive contentions on the locks of the
central queue.

Domain Instance Number of Agents
FF 2.3 2 4 8

Pathways 9 TO 4.47 () 2.71 () 3.06 ()
11 TO 6.57 () 6.55 () 3.16 ()
12 TO TO () TO () 264.79 ()
13 TO 4.64 () 3.51 () 4.03 ()
15 TO 48.39 () 4.59 () 4.61 ()
20 83.08 75.45 (1.10) 21.21 (3.92) 17.83 (4.66)
30 TO 121.18 () 7.09 () 7.08 ()

Stacks 30 202.82 203.16 (0.99) 190.6 (1.06) 185.01 (1.1)
PipesWorld 9 180.64 92.12 (1.96) 67.44 (2.68) 110.01 (1.64)

10 442.62 48.7 (9.01) 35.28 (12.55) 37.9 (11.68)
11 64.53 15.49 (4.17) 15.06 (4.28) 12.3 (5.25)
15 1289.01 1280.15 (1.0) 502.53 (2.57) 1197.8 (1.08)
20 TO TO 1393.87 () 1259.15 ()

Storage 17 732.36 8.95 (81.83) 4.93 (148.55) 0.91 (804.4)

Table 3.Results usingmFF

5.3 Conformant Domains

The experiments on conformant domains have been performed usingmCpA. For refer-
ence, we compared our systems with CFF [6] and KACMBP [9], which are two of the
fastest conformant planners. Unfortunately, we could not obtain the Solaris executables
for these planners, and we had to run them on a Linux machine and scale the timings
to our Sun multi-core.8 The comparison with the other systems is illustrated in Table 4.
Some experimental results are shown in Figure 3.

Domain CPA CFF KACMBP
Bomb(200,20) 248 23763 2411
Cleaner(10,50) 390 Maximum length exceeded TO
Ring(30) 423 TO < 1
Cube(9) 812 TO < 1
Safe(50) 1865 68 < 1
Log(3,3,3) 1025 < 1 745
Coin(10) 487 < 1 1502

Table 4.Conformant Benchmarks

8 For each problem, we compute a time conversion ratio by running CPA on both the Linux and
Solaris platforms.

57

0 2 4 6 8
No. of Agents

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Vert
Horz1
Horz2
Horz3
Horz4
Hybr1

Bomb(200,20)

A

A

A

A

0 2 4 6 8
0

1

2

3

4

5

6

7

Vert
Horz1
Horz2
Horz3
Horz4A A
Hybr1
Hybr2

Cleaner(10,50)

A

A

A

A

0 2 4 6 8
No. of Agents

0

2

4

6

8

S
pe

ed
up

Vert
Horz1
Horz2
Horz3
Horz4
Hybr1
Hybr2A A

Coin(10)

A

A A

A

0 2 4 6 8
No. of Agents

0

1

2

3

4

5

6

7

S
pe

ed
up

Vert
Horz1
Horz2
Horz3
Horz4A A
Hybr1
Hybr2

Cube(9)

A
A

A

A

0 2 4 6 8
No. of Agents

0

5

10

15

20

25

30

S
pe

ed
up

Vert
Horz1
Horz2A A
Horz3
Horz4
Hybr1
Hybr2

Log(3,3,3)

A

A

A
A

0 2 4 6 8
No. of Agents

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

VertA A
Horz1
Horz2
Horz3
Horz4
Hybr1
Hybr2

Ring(30)

A

A

A

A

0 2 4 6 8
No. of Agents

0

2

4

6

8

S
pe

ed
up

Vert
Horz1
Horz2
Horz3
Horz4
Hybr1A A
Hybr2

Safe(50)

Fig. 3. Speedups on Conformat Domains

58

In the Bomb and Cleaner domains, we do not see much speedup in VERT when
the number of agents increases. This is because the heuristic of CPA works well on
this domain. The best parallel implementation on this domain is HORZ4. The reason
why HORZ4 is better is because the newly computed successor b-states are immedi-
ately inserted in the queue (instead of waiting for all agents to complete). Horizontal
parallelism, however, performs very well on the Cleaner domain—since computing suc-
cessor b-states is expensive.

In the Ring domain, the horizontal parallelism implementations scale well up to
4 agents, and then they become stable. The reason is that the number of actions in
the domain is only4, leaving other agents idle. A similar behavior occurs in the Cube
domain, whose number of actions is6. The speedups of VERT on Cube(9) is good as
the system is capable of finding a shorter plan (43 steps, compared to63 of sequential
CPA). In the Safe domain, the speedups of both vertical and horizontal implementations
are very good.

The Logistic domain is truly problematic for the sequential version CPA because
the heuristic function performs poorly, especially on the Log(4,3,3) problem. Sequen-
tial CPA, KACMBP, and most of our parallel implementations, except HORZ2, could
not solve it within the time limit. Thanks to parallelism, we could solve this problem
(HORZ2) using8 agents. For the Log(3,3,3) problem, the speedups obtained by VERT

and HYBR2 are impressive (more than25 on 8 agents for the VERT implementation).
In the Coin domain, the speedups obtained by our parallel implementations range from
1.22 (HORZ3, 2 agents) to 8.28 (HORZ4, 4 agents).

The occasional super-linear speedups are due to changes in the search pattern caused
by parallelism; in the case of vertical parallelism, this is obvious (as multiple paths are
concurrently explored). In the case of horizontal parallelism, this may occur because
the order of the b-states in the central queue might differ from the sequential execution
(the heuristic is currently computed on the first state of a b-state, and this may change
during horizontal parallelism).

In summary, on the domains where the heuristic function does not perform well
(i.e., various elements receive the highest value, and the one on top of the queue might
not lead to the shortest plan), the vertical parallelism is very effective—sometimes we
obtain super-linear speedups. In contrast, in the domains where the heuristic function
performs well, the speedup obtained by the horizontal approach, although less than lin-
ear, is usually good. Furthermore, the more expensive the computation of a successor
b-state is, the higher the speedup obtained via horizontal parallelism. The hybrid ap-
proach balances these two extremes.

6 Related Work

The work proposed in this paper is in the same spirit as the work of [26], where a
parallelization scheme similar to our horizontal parallelism is applied to a STRIPS
planner—in their context this is useful to handle the cost of applying operators with
variables (while we use it to address the use of axioms), but it will be less effective for
domains that have a fast computation of the next state.

59

Parallel planning as considered in this paper is different from distributed planning
[21, 12] in that we focus on improving sequential planning systems by distributing the
workload of an agent to multiple agents while distributed planning often deals with the
problem of coordination between agents to create a plan for all agents. Distributed plan-
ning often requires the execution of plans by the agents and agents are often reactive.
Agents in our framework share the same goal and representation, stop when one find
a plan, and do not execute actions to change the world. Furthermore, efficiency is not
the first issue in distributed planning. Issues of parallelization have been explored in
this context, by either partitioning actions and goals between agents so that separate
plans can be computed and composed (e.g., interaction graphs [17]) or by adopting a
hierarchical approach, where distinct “regions” of the plan are given to distinct agents
(e.g., [10]). These approaches are “global” versions of horizontal parallelism. Vertical
parallelism has been explored in other search-based problems, e.g., [22, 14].

Our approach to planning in this paper is perhaps more closely related to the dis-
tributed problem planning in which the planning process is distributed but a centralized
plan needs to be found as discussed in [11]. Our proposed approach could be viewed
as a special case of system in view of [11] where one agent distributes the work and all
agents search for a plan until one is found.

The work presented in this paper is also similar to the path-finding problem in [27]
where different search algorithms for finding a path in distributed environment have
been proposed. These algorithms do not deal with incomplete information though. Fur-
thermore, we would like to point out that our goal is not to propose a generic algorithms
for parallel search.

7 Conclusions and Future Work

Over the years, two main reasons have led to performance improvements of automated
planners: new algorithms and faster computers. The latter has allowed to apply the
same planning algorithms to solve more complex problems without any changes. This
trend is expected to change, as computer manufacturers are moving away from focus-
ing on single-thread performance and focusing on multi-core platforms. In this paper we
presented an investigation of alternative methodologies for parallelization of heuristic
search-based planners on multi-core platforms. We identified two forms of parallelism
and investigated their implementations and interactions. The results are very encourag-
ing, in terms of improved execution time, speedups, and scalability. We are currently
exploring the porting of these ideas in a fully distributed platform as well as taking bet-
ter advantage of the growingly popular hybrid Beowulf clusters—i.e., clusters whose
nodes are multi-core platforms.

References

1. F. Bacchus. The AIPS’00 Planning Competition.AI Magazine, 22(3), 2001.
2. C. Baral and M. Gelfond. Reasoning agents in dynamic domains. pages 257–279. Kluwer

Academic Publishers, 2000.

60

3. C. Baral et al. Computational complexity of planning and approximate planning in the pres-
ence of incompleteness.AIJ, 2000.

4. A.L. Blum and M.L. Furst. Fast Planning through Planning Graph Analysis.AIJ, 90:281–
300, 1997.

5. B. Bonet and H. Geffner. Planning as Heuristic Search.AIJ, 129(1–2):5–33, 2001.
6. R. Brafman and J. Hoffmann. Conformant planning via heuristic forward search: A new

approach.ICAPS, 2004.
7. D. Bryce et al. Planning Graph Heuristics for Belief Space Search.JAIR, 26:35–99, 2006.
8. C. Castellini et al. SAT-based Planning in Complex Domains.Artificial Intelligence, 147:85–

117, July 2003.
9. A. Cimatti et al. Conformant Planning via Symbolic Model Checking and Heuristic Search.

AI Journal, 159:127–206, 2004.
10. M. desJardins, M. Wolverton. Coordinating Planning Activity and Information Flow in a

Distributed Planning System.AAAI Fall Symp.1998.
11. E. Durfee. Distributed Problem Solving and Planning.Multiagent Systems, MIT Press. 1999.
12. J. Urban and P. Dasgupta.The Encyclopedia of Distributed Computing. Kluwer Pubs., 2003.
13. T. Eiter et al. A Logic Programming Approach to Knowledge State Planning, II.Artificial

Intelligence, 144(1-2), 2003.
14. G. Gupta et al. Parallel Execution of Prolog Programs: a Survey.ACM TOPLAS, 23(4):472–

602, 2001.
15. P. Haslum et al. New admissible heuristics for domain-independent planning. InAAAI,

1163–1168, 2005.
16. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic

Search.JAIR, 14:253–302, 2001.
17. M. Iwen and A. Mali. Distributed graphplan.ICTAI, IEEE, 2002.
18. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic

search.AAAI, pp. 1194–1199, 1996.
19. H. Kitan and J.A. Hendler.Massive parallel artificial intelligence.MIT Press, 1994.
20. V. Lifschitz. Answer set programming and plan generation.AIJ, 138(1–2), 2002.
21. A.D. Mali and S. Kambhampati. Distributed Planning.Encyclopedia of Distributed Com-

puting, Kluwer, 2003.
22. L. Perron. Search Procedures and Parallelism in Constraint Programming.CP, Springer

Verlag, 346–360, 1999.
23. D. Smith and D. Weld. Conformant graphplan.AAAI, 1998.
24. T. C. Son et al. Conformant Planning for Domains with Constraints — A New Approach. In

AAAI, 1211–1216, 2005.
25. S. Thiebaux, J. Hoffmann, and B. Nebel. In Defense of PDDL Axioms. InIJCAI, 2003.
26. D. Vrakas, I. Refanidis, and I. P. Vlahavas. Parallel planning via the distribution of operators.

JETAI, 13(3):211–226, 2001.
27. M. Yokoo et al. Search Algorithms for Agents.Multiagent Systems, MIT Press. 1999.
28. H. Zhang et al. PSATO: a distributed propositional solver and its application.Journal of

Symbolic Computing, 21(4), 1996.

61

Memoizing Multi-Threaded Transactions

Lukasz Ziarek Suresh Jagannathan

Department of Computer Science Purdue University
[lziarek,suresh]@purdue.edu

Abstract. There has been much recent interest in using transactions to simplify
concurrent programming, improve scalability, and increase performance. When
a transaction must abort due to a serializability violation, deadlock, or resource
exhaustion, its effects are revoked, and the transaction re-executed. For long-lived
transactions, however, the cost of aborts and subsequent re-executions can be
prohibitive. To ensure performance, programmers are often forced to reason about
transaction lifetimes and interactions while structuring their code, defeating the
simplicity transactions purport to provide.

One way to reduce the overheads of re-executing a failed transaction is to
avoid re-executing those operations that were unaffected by the violation(s) that
induced the abort. Memoization is one way to capitalize on re-execution savings,
especially if violations are not pervasive. Abstractly, if a procedurep is applied
with argumentv within a transaction, and the transaction aborts,p need only be
re-evaluated when the transaction is retried if its argument is different fromv.

In this paper, we consider the memoization problem for transactions in the
context of Concurrent ML (CML) [20]. Our design supports multi-threaded trans-
actions which allow internal communication through synchronous channel-based
communication. The challenge to memoization in the context is ensuring that
communication actions performed by memoized procedures in the original (aborted)
execution can be satisfied when the transaction is retried.

We validate the effectiveness of our approach using STMBench7 [9], a cus-
tomizable transaction benchmark. Our results indicate that memoization for CML-
based transactions can lead to substantial reduction in re-execution costs (up to
45% on some configurations), with low memory overheads.

1 Introduction

Concurrency control mechanisms, such as transactions, rely on efficient control and
state restoration mechanisms for performance. When a transaction aborts, due to a se-
rializability violation [8], deadlock, transient fault [24], or resource exhaustion [11],
its effects are typically undone, and the transaction retried. A long-lived transaction
that aborts represents wasted work, both in terms of the operations it has performed
whose effects must now be erased, and in terms of overheads incurred to implement
the concurrency control protocol; these overheads include logging costs, read and write
barriers, contention management, etc. [12].

Transactional abstractions embedded in functional languages (e.g., AtomCaml [21],
proposals in Scheme48 [14], or STM Haskell [11]) benefit from having relatively few
stateful operations, but when a transaction is aborted, the cost of re-execution still re-
mains. One way to reduce this overhead is to avoid re-executing those operations that

62

would yield the same results produced in the original failed execution. Consider a trans-
action T that performs a set of operations, and subsequently aborts. WhenT is re-
executed, many of the operations it originally performed may yield the same result,
because they were unaffected by any intervening global state change between the origi-
nal (failed) and subsequent (retry) execution. Avoiding re-execution of these operations
reduces the overhead of failure, and thus allows the programmer more flexibility and
leeway to identify regions that would benefit from being executed transactionally.

Static techniques for eliminating redundant code, such as subexpression elimination
or partial redundancy elimination, are ineffective here because global runtime condi-
tions dictate whether or not an operation is redundant. Memoization [15, 18] is a well-
known dynamic technique used to eliminate calls to pure functions. If a functionf
supplied with argumentv yields resultv′, then a subsequent call tof with v can be
simply reduced tov′ without re-executingf ’s body,provided that f is effect-free.

In this paper, we consider the design and implementation of a memoization scheme
for an extension of Concurrent ML [20] (CML) that supports multi-threaded trans-
actions. CML is particularly well-suited for our study because it serves as a natural
substrate upon which to implement a variety of different transactional abstractions [7].
In our design, threads executing within a transaction communicate through CML syn-
chronous events. Isolation and atomicity among transactions are still preserved. Multi-
threaded transactions can, thus, be viewed as a computation which executes atomically
and in isolation instead of a simple code block. Our goal is to utilize memoization tech-
niques to avoid re-execution overheads of long-lived multi-threaded transactions that
may be aborted.

The paper is organized as follows. In the next section, we describe our programming
model, and introduce issues associated with memoization of synchronous communica-
tion actions. Section 3 provides additional motivation. We introducepartial memozia-
tion, a refinement that has substantial practical benefits in Section 4. Implementation
details are given in Section 5. We present a case study using STM-Bench [9], a highly-
concurrennt transactional benchmark, in Section 6. Related work and conclusions are
given in Section 7.

2 Programming Model

Our programming model supports multi-threaded closed nested transactions. An ex-
pression wrapped within anatomic expression is executed transactionally. If the value
yielded by a transaction isretry , the transaction is automatically re-executed. A trans-
action mayretry because a serializability violation was detected when it attempted
to commit, or because it attempts to acquire an unavailable resource [11]. An executing
transaction may create threads which in turn may communicate with other threads ex-
ecuting within the transaction using synchronous message passing expressed via CML
selective communication abstractions. To enforce isolation, communication between
threads executing within different transactions is not permitted. A transaction attempts
to commit only when all threads it has spawned complete. Updates to shared channels
performed by a transaction are not visible to other transactions until the entire transac-
tion completes successfully.

63

We are interested in allowing multi-threaded transactions primarily for reasons of
composability and performance. A computation wrapped within an atomic section may
invoke other procedures that may spawn threads and have these threads communicate
with one another. This is especially possible when considering long-lived transactions
that encapsulate complex computations involving multiple layers of abstraction. Pro-
hibiting such activity within an atomic section would necessarily compromise compos-
ability. Moreover, allowing multi-threaded computation may improve overall transac-
tion performance; this is certainly the case in the benchmark study we present in Sec-
tion 6. Inter-thread communication within a transaction is handled through dynamically
created channels on which threads place and consume values. Since communication is
synchronous, a thread wishing to communicate on a channel that has no ready recipient
must block until one exists. Communication on channels is ordered.

2.1 Memoization T 1 T 2 T 3
r e t r y

T 1 T 2 T 3 T 4

(a) (b)

Fig. 1. Threads are represented as dotted lines while circles define communication points. The
shaded area depicts computation which can be memoized based on communications which are
satisfiable.

A transaction may spawn a collection of threads that communicate with one another
via message-passing (see Fig. 1(a)). When the transaction is retried (see Fig. 1(b)), some
of these communication events may be satisfiable when the procedures in which the
events occurred are invoked (e.g., the first communication event in the first two threads),
while others are not (e.g., the second communication action performed by thread T2 to
thread T3). The shaded region indicates the pure computation in T1 and T2 that may be
avoided when the transaction is re-executed. Note that T2 must resume execution from
the second communication action because the synchronization action with T3 from the
aborted execution is not satisfiable when the transaction is retried; since the send action
by T3 was received by T4, there is no other sender available to provide the same value
to T2.

In this context, deciding whether an application of proceduref can be avoided based
on previously recorded memo information depends upon the value of its arguments, the

64

communication actions performed byf , threadsf spawns, andf ’s return value. Thus,
the memoized return value of a call tof can be used if (a) the argument given matches
the argument previously supplied; (b) recipients for values sent byf on channels in an
earlier call are still available on those channels; (c) a value that was consumed byf
on some channel in an earlier call is again ready to be sent by another thread; and (d)
threads created byf can be spawned with the same arguments supplied in the memoized
version. Ordering constraints on all sends and receives performed by the procedure must
also be enforced.

To avoid performing the pure computation within a call, a send action performed
within the applied procedure, for example, will need to be paired with a receive oper-
ation executed by some other thread. Unfortunately, there may be no thread currently
scheduled that is waiting to receive on this channel. Consider an application that calls
a memoized proceduref which (a) creates a threadT that receives a value on chan-
nel c, and (b) sends a value onc computed through values received on other channels
that is then consumed byT . To safely use the memoized return value forf nonetheless
still requires thatT be instantiated, and that communication events executed in the first
call can still be satisfied (e.g., the valuesf previously read on other channels are still
available on those channels). Ensuring these actions can succeed involves a systematic
exploration of the execution state space to induce a schedule that allows us to consider
the call in the context of a global state in which these conditions are satisfied.

Because such an exploration may be infeasible in practice, our formulation con-
siders a weaker alternative calledpartial memoization. Rather than requiring global
execution to reach a state in whichall constraints in a memoized application are satis-
fied, partial memoization gives implementations the freedom to discharge some fraction
of these constraints, performing the rest of the application as normal.

3 Tracking Communication Actions

The key requirement for effective memoization of procedures executing within CML
transactions is the ability to track communication actions performed among proce-
dures. Provided that the global state would permit these same actions to succeed if a
procedure is re-executed with the same inputs, memoization can be employed to reduce
re-execution costs.

atomic(fn () =>
let val (c1, c2) = (mkCh(), mkCh())

fun f() = (...; send(c1, v1); ...)
fun g() = (recv(c1); send(c2,v2))

in spawn(f()); spawn(g()); recv(c2)
end)

Fig. 2. The call to f can always be memoized since there is only a single receiver on channel
c1 .

Consider the example code presented in Fig. 2 that spawns two threads to execute
proceduresf andg within an atomic section. Suppose that the section fails to commit,

65

and must be retried. To correctly utilizef ’s memoized version from the original failed
execution, we must be able to guarantee the value sent on channelc1 has a recipient.
At the time the memoization check is performed, the thread computingg may not even
have been scheduled. However, by delaying the memoization decision forf ’s call until
g is ready to receive a value onc1 , we guarantee that memoized information stored for
f can be successfully used to avoid performing the pure computation within its body.

atomic(fn () =>
let val (c1, c2, c3) =

(mkCh(), mkCh(), mkCh())
fun f() = (...; send(c1,v1); recv(c2))
fun g() = (recv(c1); recv(c2))
fun h() = (send(c2,v2);

send(c2,v3);
send(c3,()))

in (spawn(f()); spawn(g()); spawn(h());
recv(c3))

end)

Fig. 3. Because there may be multiple possible interleavings that pair synchronous communica-
tion actions among concurrently executing threads, memoization requires dynamically tracking
these events.

Unfortunately, reasoning about whether an application can leverage memoized in-
formation is usually more difficult. Consider a slightly modified version of the program
shown in Fig. 3, that introduces an auxiliary procedureh . Proceduref communicates
with g via channelc1 . It also either receives valuev2 or v3 from h depending upon
its interleaving withg . Suppose that when this section is first executed,g receives
valuesv2 from h and f receives valuev3 . If the section must be re-executed, the
call to f can be avoided only if the interleaving of actions betweeng and h allow f

to receivev3 . Thus, a decision about whether the call tof can be elided requires also
reasoning about the interactions betweenh and g , and may involve enforcing a spe-
cific schedule to ensure synchronous operations mirror their behavior under the aborted
execution.

Notice that if v2 and v3 are equal, the receive inf can be paired with either send
in h . Thus, memoization can be leveraged even under different schedules than a prior
execution. Unlike program replay mechanisms [23], no qualifications are made on the
state of the thread with which a memoization candidate communicates. Consequently,
an application can utilize a memoized version of a procedure under a completely differ-
ent interleaving of threads and need not communicate with the same threads or opera-
tions it did during its previous execution.

4 Approach

To support memoization, we must record, in addition to argument and return values,
synchronous communication actions, thread spawns, channel creation etc. as part of

66

the memoized state. These actions define a set of constraints that must be satisfied at
subsequent applications of a memoized procedure. To record constraints, we require
expressions to manipulate amemo store, a map that given a procedure identifier and
an argument value, returns the set of effects performed by the procedure when invoked
with that argument. If the set of constraints returned by the memo store is satisfied
in the current state, then the return value can be used, and the application elided. For
example, if there is a communication constraint that expects the procedure to receive
value v on channelc , and at the point of call, there exists a thread able to sendv on
c , evaluation can proceed to a state in which the sender’s action is discharged, and the
receive constraint is considered satisfied.

If the current constraint expects to send a valuev on channell , and there exists a
thread waiting onl , the constraint is also satisfied. A send operation can match with
any waiting receive action on that channel. The semantics of synchronous communi-
cation allows us the freedom to consider pairings of sends with receives other than the
one it communicated with in the original memoized execution. This is because a re-
ceive action places no restriction on either the value it reads, or the specific sender that
provides that the value. Similarly, if the current constraint records the fact that the pre-
vious application of the function spawned a new thread, or channel, then those actions
must be performed as well. Thus, if all recorded constraints, which represent effects
performed within a procedurep, can be satisfied in the order in which they occur, pure
computation within thep’s body can be elided at its calls.

4.1 Partial Memoization

Determining whether all memoization constraints can be satisfied may require perform-
ing a potentially unbounded number of evaluation steps to yield an appropriate global
state. However, even if it is not readily possible to determine if all constraints necessary
to elide the pure computation within an application can be satisfied, it may be possi-
ble to determine that some prefix of the constraint sequence can be discharged. Partial
memoization allows us to avoid re-executing any pure computation bracketed by the
first and last elements of this prefix.

Consider the example presented in Fig 4. Within the atomic section, we apply pro-
ceduresf, g, h andi. The calls tog, h, andi are evaluated within separate threads
of control, while the application off takes place in the original thread. These different
threads communicate with one other over shared channelsc1 andc2.

Suppose the atomic section aborts, and must be re-executed. We can now consider
whether the call tof can be elided when the section is re-executed. In the initial exe-
cution of the atomic section, spawn constraints would have been added for the threads
responsible for executingg, h, andi. Second, a send constraint followed by a receive
constraint, modeling the exchange of valuesv1 and eitherv2 or v3 on channelsc1
and c2 would have been included in the memo store forf . For the sake of the discus-
sion, assume that the send ofv2 by h was consumed byg and the send ofv3 was
paired with the receive inf .

The spawn constraints for the different threads are always satisfiable, and when
discharged, will result in the creation of new threads which will begin their execution
by trying to applyg, h andi, consulting their memoized versions to determine if all

67

atomic(fn () =>
let val (c1,c2) = (mkCh(),mkCh())

fun f () = (send(c1,v1); ... recv(c2))
fun g () = (recv(c1); ... recv(c2))
fun h () = (...

send(c2,v2);
send(c2,v3));

fun i () = recv(c2)
in spawn(g); spawn(h); spawn(i);

f(); send(c2, v3)
...
retry

end)
end

Fig. 4. Determining if an application can be memoized may require examining an arbitrary num-
ber of possible thread interleavings.

necessary constraints can be satisfied. The send constraint associated withf matches
the corresponding receive constraint associated found in the memo store forg . De-
termining whether the receive constraint associated withf can be matched requires
more work. To match constraints properly, we need to force a schedule that causesg

to receive the first send byh and f to receive the second, causingi to block until f
completes.

Fixing such a schedule is tantamount to examining an unbounded set of interleav-
ings. Instead, we couldpartially elide the execution off ’s call on re-execution by
satisfying the send constraint (that communicatesv1 on c1 to g), avoiding the pure
computation following (abstracted by ”. . . ”), allowing the application off to begin
execution at therecv on c2 . Resumption at this point may lead to the communication
of v2 from h rather thanv3 ; this is certainly a valid outcome, but different from the
original execution.

5 Implementation

Our implementation is incorporated within MLton [16], a whole-program optimizing
compiler for Standard ML. The main changes to the underlying compiler and library
infrastructure are the insertion of write barriers to track channel updates, barriers to
monitor procedure arguments and return values, hooks to the CML library to monitor
channel based communication, and changes to the Concurrent ML scheduler. The entire
implementation is roughly 5K lines of SML: 3K for the STM, and 300 lines of changes
to CML.

5.1 STM Implementation

Our STM implementation implements an eager versioning, lazy conflict detection pro-
tocol [4, 22]. References are implemented as ”servers” operating across a set of chan-
nels; each channel has one server receiving from it and any number of channels sending
to it. Our implementation uses both exclusive and shared locks to optimize read-only

68

transactions. If a transaction aborts or yields (retry), it first reverts any value it has
changed based on a per-transaction change log, and then releases all locks it currently
holds. The transaction’s log is not deleted as it contains information utilized for memo-
ization purposes.

Recall our design supports nested, multi-threaded transactions. A multi-threaded
transaction is defined as a transaction whose processing is split among a number of
threads. Transactions that perform a collection of operations on disjoint objects can
have these operations be performed in parallel. The threads which comprise a multi-
threaded transaction must synchronize at the transaction’s commit point. Namely, the
parent thread will wait at its transaction boundary until its children complete. We allow
spawned threads and the parent transaction to communicate through CML message
passing primitives. Synchronization invariants among concurrent computation within a
transaction must be explicitly maintained by the application. The transaction as a whole,
however, is guaranteed to execute atomically with the rest of the computation.

5.2 Memoization

A memo is first created by capturing the procedure’s argument at the call site. For each
communication within the annotated procedure, we generate a constraint. A constraint
is composed of a channel identifier and the value that was sent or received on the chan-
nel. In the case of a spawn, we generate a spawn constraint which simply contains the
procedure expression which was spawned. Constraints are ordered and augment the
parent transaction’s log. When a procedure completes, its return value is also added to
the log. To support partial memoization, continuations are captured with the generated
constraints.

Unlike traditional memoization techniques, it is not readily apparent if a memoized
version of a procedure can be utilized at a call site. Not only must the arguments match,
but the constraints which were captured must be satisfied in the order they were gener-
ated. Thus, we delay a procedure’s execution to see if its constraints will be matched.
Constraint matching is similar to channel communication in that the delayed procedure
will block on each constraint. Constraints can be satisfied either by matching with other
constraints or by exchanging and consuming values from channels. Constraints are sat-
isfied if the value passed on the channel matches the value embedded in the constraint.
Therefore, constraints ensure that a memoized procedure both receives and sends spe-
cific values and synchronizes in a specific order. Constraints make no qualifications
about the communicating threads. Thus, a procedure which received a specific value
from a given thread may be successfully memoized as long as its constraint can be
matched withsome thread.

If constraint matching fails, pure computation within the application cannot be fully
elided. Constraint matching can only fail on a receive constraint. A receive constraint
obligates a function to read a specific value from a channel. To match a constraint on a
channel with a regular communication event, we are not obligated to remove values on
the channel in a specific order. Since channel communication is blocking, a constraint
that is being matched can choose from all values whose senders are currently blocked
on the channel. This does not violate the semantics of CML since the values blocked
on a channel cannot be dependent on one another; in other words, a schedule must

69

exist where the matched communication occurs prior to the firstvalue blocked on the
channel.

Unlike a receive constraint, a send constraint can never fail. CML receives are am-
bivalent to the value they remove from a channel and thus any receive on a matching
channel will satisfy a send constraint. If no receives or sends are enqueued on a con-
straint’s target channel, a re-execution of the function will also block. Therefore, failure
to fully discharge constraints by stalling memoization on a presumed unsatisfiable con-
straint does not compromise global progress. This observation is critical to keeping
memoization overheads low.

In the case that a constraint is blocked on a channel that contains no other communi-
cations or constraints, memoization induces no overheads, since the thread would have
blocked regardless. However, if there exist communications or constraints that simply
do not match the value the constraints expects, we can fail, and allow the thread to
resume execution from the continuation stored within the constraint. To identify such
situations, we have implemented a simple yet effective heuristic. Our implementation
records the number of context switches to a thread blocked on a constraint. If this num-
ber exceeds a small constant (two in our current implementation), memoization stops,
and the thread continues execution within the procedure body at that communication
point.

Our memoization technique relies on efficient equality tests for performance and
expressivity. We extend MLton’s poly-equal function to support equality on reals and
closures. Although equality on values of type real is not algebraic, built-in compiler
equality functions were sufficient for our needs. To support efficient equality on pro-
cedures, we approximate function equality as closure equality. Unique identifiers are
associated with every closure and recorded within their environment; runtime equality
tests on these identifiers are performed during memoization.

5.3 CML hooks

The underlying CML library was also modified to make memoization efficient. The
bulk of the changes were hooks to monitor channel communication and spawns, and
to support constraint matching on synchronous operations. Successful communications
occurring within transactions were added to the log in the form of a constraints, as de-
scribed previously. Selective communication and complex composed events were also
logged upon completion. A complex composed event simply reduces to a sequence of
communications that are logged separately.

The constraint matching engine also required a modification to the channel struc-
ture. Each channel is augmented with two additional queues to hold send and receive
constraints. When a constraint is being tested for satisfiability, the opposite queue is
first checked (e.g. a send constraint would check the receive constraint queue). If no
match is found, the regular queues are checked for satisfiability. If the constraint cannot
be satisfied immediately it is added to the appropriate queue.

70

6 Case Study - STMBench7

As a realistic case study, we consider STMBench7 [9], a comprehensive, tunable multi-
threaded benchmark designed to compare different STM implementations and designs.
Based on the well-known 007 database benchmark [5], STMBench7 simulates data stor-
age and access patterns of CAD/CAM applications that operate over complex geometric
structures (see Fig. 5).

STMBench7 was originally written in Java. We have implemented a port to Standard
ML (roughly 1.5K lines of SML) using our channel based STM. In our implementation,
all nodes in the complex assembly structure and atomic parts graph are represented as
servers with one receiving channel and handles to all other adjacent nodes. Handles to
other nodes are simply the channels themselves. Each server thread waits for a message
to be received, performs the requested computation, and then asynchronously sends the
subsequent part of the traversal to the next node. A transaction can thus be implemented
as a series of channel based communications with various server nodes.

let fun findAtomicPart(object, pid) =
let val assembly =

travCAssembly(object, pid)
val bag = travAssembly(assembly, pid)
val component = travBag(bag, pid)
val part = traveComp(component, pid)

in part
end

fun sclHgt(object, pid, c) =
let val part = findAtomicPart(object, pid)

val newHeight = height(part)*recv(c)
val = changeHeight(part, newHeight)

in send(c,newHeight)
end

fun Traversal(object, pid1, pid2, height) =
atomic(fn () =>

let val c1 = channel()
val c2 = channel()
val = spawn(sclHgt(object,

pid1,
c1))

val = spawn(sclHgt(object,
pid2,
c2))

in send(c1, height);
send(c2, recv(c1));
recv(c2
... retry ...)

end)
in Traversal()
end

Fig. 5. The figure on the left shows the overall structure of structure of a CAD/CAM object. The
code on the right illustrates a multi-threaded atomic traversal of these objects.

71

At its core, STMBench7 builds a tree of assemblies whose leafs contain bags of
components; these components have a highly connected graph of atomic parts and de-
sign documents. Indices allow components, parts, and documents to be accessed via
their properties and IDs. Traversals of this graph can begin from the assembly root or
any index and sometimes manipulate multiple pieces of data.

The program on the right side of Fig. 5 shows a code snippet that is responsible
for modifying the height parameters of a building’s structural component. A change
made by the procedureTraversal affects two components of a design, but the specific
changes to each component are disjoint and amenable for concurrent execution. Thus,
the modification can easily be expressed as disjoint traversals, expressed by the pro-
cedurefindAtomicPart. ThesclHgt procedure shown in Fig. 5) changes the height
parameter of distinct structural parts. Observe that although the height parameter of
pid2 depends on the new height ofpid1, the traversal to find the part can be executed
in parallel. Oncepid1 is updated, the traversal forpid2 can complete.

Consider what would happen if the atomic section is unable to commit. Observe that
much of the computation performed within the transaction are graph traversals. Given
that most changes are likely to take place on atomic parts, and not on higher-level graph
components such as complex or base assemblies, the traversal performed by the re-
execution is likely to overlap substantially with the original traversal. Of course, when
the transaction executes, it may be that some portion of the graph has changed. Without
knowing exactly which part of the graph has been modified by other transactions, the
only obvious safe point for re-execution is the beginning of the traversal.

6.1 Results

To measure the effectiveness of our memoization technique, we executed two configu-
rations of the benchmark, and measured overheads and performance by averaging re-
sults over ten executions. Thetransactional configuration uses our STM implementa-
tion without any memoization. Thememoized transactional configuration implements
partial memoization of aborted transactions. The benchmarks were run on an Intel P4
2.4 GHz machine with one GByte of memory running Gentoo Linux, compiled and
executed using MLton release 20051202. Our experiments are not executed on a mul-
tiprocessor because the utility of memoization for this benchmark is determined by
performance improvement as a function of transaction aborts, and not on raw wallclock
speedups.

All tests were measured against a graph of over 1 million nodes. In this graph, there
were approximately 280k complex assemblies and 1400K assemblies whose bags ref-
erenced one of 100 components; by default, each component contained a parts graph of
100 nodes. Our tests varied two independent variables: the read-only/read-write trans-
action ratio (see Fig. 6) and part graph size (see Fig. 7). The former is significant be-
cause only transactions that modify values can cause aborts. Thus, an execution where
all transactions are read-only or which neverretry cannot be accelerated, but one
in which transactions can frequently abort orretry offers potential opportunities for
memoization. In our experiments, the atomic parts graph (the graph associated with
each component) is modified to vary the length of transactions. By varying the number

72

of atomic parts associated with each component, we significantly alter the number of
nodes that each transaction accesses, and thus lengthen or shorten transaction times.

For each test, we varied the maximum number of memos (labeled cache size in the
graphs) stored for each procedure. Tests with a small number experienced less memo
utilization than those with a large one. Naturally, the larger the size of the cache used to
hold memo information, the greater the overhead. In the case of read-only non-aborting
transactions (shown in Fig. 6), performance slowdown is correlated to the maximum
memo cache size.

(a) (b)

Fig. 6. (a) presents normalized runtime speedup with a varying read to write ratio. (b) shows the
average percent of transactions which are memoizable as read/write ratios change.

Our experiments consider four different performance facets: (a) runtime improve-
ments for transactions with different read-write ratios across different memo cache sizes
(Fig. 6(a)); (b) the amount of memoization exhibited by transactions, again across dif-
ferent memo cache sizes (Fig. 6(b)); (c) runtime improvements as a function of trans-
action length and memo cache size (Fig. 7(a)); and, (d) the degree of memoization
utilization as a function of transaction length and memo cache size (Fig. 7). Memory
overheads were measured by utilizing MLton’s profiler and GC statistics. Memory over-
heads were proportional to cache sizes and averaged roughly 15% for caches of size 16.
Runs with cache sizes of 32 had overheads of 18%.

Memoization leads to substantial performance improvements when aborts are likely
to be more frequent. For example, even when the percentage of read-only transac-
tions is 60%, we see a 20% improvement in runtime performance compared to a non-
memoizing implementation. The percentage of transactions that utilize memo infor-
mation is related to the size of the memo cache and the likelihood of the transaction
aborting. In cases where abort rates are low, for example when there is a sizable frac-
tion of read-only transactions, memo utilization decreases. This is because a procedure
is applied potentially many times, with the majority of applications not requiring mem-
oization because they were not in aborted transactions. Therefore, its memo utilization
will be much lower than a procedure in a transaction that aborted once and which was
able to leverage memo information when subsequently re-applied.

73

(a) (b)

Fig. 7. (a) shows normalized runtime speedup compared to varying transactional length. (b) shows
the percentage of aborted transactions which are memoizable as transaction duration changes.

To measure the impact of transaction size on performance and utilization, we varied
the length of the random traversals in the atomic parts graph. As Fig. 7(a) illustrates,
smaller transactions offer a smaller chance for memoization (they are more likely to
complete), and thus provide less opportunities for performance gains; larger transac-
tions have a greater chance of taking advantage of memo information. Indeed, we see
a roughly 30% performance improvement once the part size becomes greater than 80
when the memo cache size is 16 or 32. As transaction sizes increase, however, the
amount of the transaction that is memoizable decreases slightly (Fig. 7(b)). Larger trans-
actions have a higher probability that some part of their traversal has changed and are
thus not memoizable. After a certain size, an increase in the traversal length of the
atomic parts graph no longer impacts the percent of memos used. This is because the
majority of the transaction that is memoizable is found in the initial traversal through
the assembly structure, and not in the highly-contented parts components.

As expected, increasing the memoization cache size leads to an increase in both
run-time speed up as well as the percent of the transactions that we are able to memo-
ize. Unfortunately, as a result our memoization overheads are also increased both due
to the larger amount of memos taken during execution as well as increased time to
discover which memo can be utilized at a given call site. Memory overheads increase
proportionally to the size of the memo cache.

7 Related Work and Conclusions

Memoization, or function caching [15, 17, 13], is a well understood method to reduce
the overheads of function execution. Memoization of functions in a concurrent setting
is significantly more difficult and usually highly constrained [6]. We are unaware of
any existing techniques or implementations that apply memoization to the problem of
optimizing execution for languages that support first-class channels and dynamic thread
creation.

Self adjusting mechanisms [2, 3, 1] leverage memoization along with change propa-
gation to automatically alter a program’s execution to a change of inputs given an exist-
ing execution run. Selective memoization is used to identify parts of the program which

74

have not changed from the previous execution while change propagation is harnessed to
install changed values where memoization cannot be applied. The combination of these
techniques has provided an efficient execution model for programs which are executed
a number of times in succession with only small variations in their inputs. However,
such techniques require an initial and complete run of the program to gather needed
memoization and dependency information before they can adjust to input changes.

New proposals [10] have been presented for self adjusting techniques to be applied
in a multi-threaded context. However, these proposals impose significant constraints on
the programs considered. References and shared data can only be written to once, forc-
ing self adjusting concurrent programs to be meticulously hand crafted. Additionally
such techniques provide no support for synchronization between threads nor do they
provide the ability to restore to any control point other than the start of the program.

Reppy and Xiao [19] present a program analysis for CML that analyzes communica-
tion patterns to optimize message-passing operations. A type-sensitive interprocedural
control-flow analysis is used to specialize communication actions to improve perfor-
mance. While we also use CML as the underlying subject of interest, our memoization
formulation is orthogonal to their techniques.

Our memoization technique shares some similarity with transactional events [7].
Transactional events require arbitrary look-ahead in evaluation to determine if a com-
plex composed event can commit. We utilize a similar approach to formalize memo
evaluation. Unlike transactional events, which are atomic and must either complete en-
tirely or abort, we are not obligated to discover if an application is completely mem-
oizable. If a memoization constraint cannot be discharged, we can continue normal
execution of the function body from the failure point.

References

1. Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan. An Experimental
Analysis of Self-Adjusting Computation. InPLDI, pages 96–107, 2006.

2. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. In
POPL, pages 247–259, 2002.

3. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective Memoization. InPOPL, pages
14–25, 2003.

4. Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and
Tatiana Shpeisman. Compiler and Runtime Support for Efficient Software Transactional
Memory. InPLDI, pages 26–37, 2006.

5. Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 007 benchmark.SIGMOD
Record, 22(2):12–21, 1993.

6. Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A Concurrent Logical
Framework II: Examples and Applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002.

7. Kevin Donnelly and Matthew Fluet. Transactional Events. InProceedings of the ACM
SIGPLAN International Conference on Functional Programming, pages 124–135, 2006.

8. Jim Gray and Andreas Reuter.Transaction Processing. Morgan-Kaufmann, 1993.
9. Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a Benchmark For Software

Transactional Memory. InEurosys, 2007.

75

10. Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and AnwarGhuloum. A Proposal
for Parallel Self-Adjusting Computation. InDAMP, 2007.

11. Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable Mem-
ory Transactions. InPPoPP, pages 48–60, 2005.

12. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software
Transactional Memory for Dynamic-Sized Data Structures. InACM Conference on Prin-
ciples of Distributed Computing, pages 92–101, 2003.

13. Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Using Precise Dependen-
cies. InPLDI, pages 311–320, 2000.

14. Richard Kelsey, Jonathan Rees, and Michael Sperber. The Incomplete Scheme 48 Reference
Manual for Release 1.1, July 2004.

15. Yanhong A. Liu and Tim Teitelbaum. Caching Intermediate Results for Program Improve-
ment. InPEPM, pages 190–201, 1995.

16. MLton. http://www.mlton.org.
17. William Pugh. An Improved Replacement Strategy for Function Caching. InLFP, pages

269–276, 1988.
18. William Pugh and Tim Teitelbaum. Incremental Computation via Function Caching. In

POPL, pages 315–328, 1989.
19. John Reppy and Yingqi Xiao. Specialization of CML Message-Passing Primitives. InACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 315–326,
2007.

20. John H. Reppy.Concurrent Programming in ML. Cambridge University Press, 1999.
21. Michael F. Ringenburg and Dan Grossman. AtomCaml: First-Class Atomicity via Rollback.

In Proceedings of the ACM SIGPLAN International Conference on Functional Program-
ming, pages 92–104, 2005.

22. Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin
Hertzberg. McRT-STM: a High-Performance Software Transactional Memory system for a
Multi-Core Runtime. InPPoPP, pages 187–197, 2006.

23. Andrew P. Tolmach and Andrew W. Appel. Debuggable Concurrency Extensions for Stan-
dard ML. In PADD ’91: Proceedings of the 1991 ACM/ONR workshop on Parallel and
distributed debugging, pages 120–131, 1991.

24. Lukasz Ziarek, Philip Schatz, and Suresh Jagannathan. Stabilizers: a modular checkpoint-
ing abstraction for concurrent functional programs. InProceedings of the ACM SIGPLAN
International Conference on Functional Programming, pages 136–147, 2006.

76

On Supporting Parallelism in a Logic

Programming System

Vı́tor Santos Costa1

1CRACS and DCC-FCUP
Universidade do Porto

Portugal
vsc@dcc.fc.up.pt

Abstract. Logic Programming is a declarative approach to program-
ming where one can specify a problem in a high-level fashion. Several
major approaches to implicit and explicit parallelism have been pro-
posed for logic programming in Prolog. But, arguably, the last few years
have seen most interest in the explicit parallelization of Prolog.
With the advent of multi-core processors, parallelism is just available.
One boring, but useful approach, is bag-of-tasks parallelism. We believe
that the challenge facing parallel logic programming is to make all forms
of parallelism as boring as possible. To do so, we propose some principles
from our experience with previous work in Parallel Logic Programming,
discuss how much a Prolog system needs to be adapted to support these
principles, and present an application.

1 Introduction

Logic Programming is a declarative approach to programming where one can
specify a problem in a high-level fashion. Arguably, Prolog is the most popular
logic programming language. Early progress on Prolog compilation, leading to
the WAM abstract machine [44], showed Prolog to be useful in a wide variety
of practical applications. Prolog and Logic Programming have been widely used
ever since, in a surprising large number of diverse applications.

The high-level nature of Logic Programming has made Prolog a natural tar-
get for parallelization. Several major approaches have been proposed. In explicit

parallelism the programmer extends the language with a number of primitives
that enable the creation and management of separate tasks. In implicit paral-

lelism the Prolog system is largely responsible to detect and exploit the available
parallelism [16].

Implicit and explicit parallelism have been well studied in logic programming,
but, arguably, the last few years have seen most interest in explicit paralleliza-
tion. The field of Inductive Logic Programming (ILP), within Machine Learning,
has been an example motivation for some of this work. Systems such as April [14]
and distributed versions of Aleph [22] were designed to run on clusters and apply
MPI [4, 5] in a rather direct fashion. Thread libraries were used to parallelize
Aleph in a conventional shared-memory machine. Machine Learning in general

77

tends to generate computationally demanding tasks, and ILP is particular is
highly computationally demanding. In order to support this need, Prolog sys-
tems, such as Ciao and YAP, have been adapted to support bag of tasks style
execution so that they can exploit massive parallelism in grid systems [6, 12].

top - 16:48:38 up 43 days, 1:41, 1 user, load average: 4.00, 4.00, 4.00

Tasks: 139 total, 6 running, 133 sleeping, 0 stopped, 0 zombie

Cpu(s): 50.0% us, 0.0% sy, 0.0% ni, 50.0% id, 0.0% wa, 0.0% hi, 0.0% si

Mem: 16409824k total, 10484280k used, 5925544k free, 174136k buffers

Swap: 2040244k total, 0k used, 2040244k free, 7525096k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

19577 vitor 25 0 682m 522m 1560 R 100 3.3 19365:53 yap

19581 vitor 25 0 682m 522m 1560 R 100 3.3 19368:01 yap

19580 vitor 25 0 682m 522m 1560 R 100 3.3 19368:44 yap

19582 vitor 25 0 682m 522m 1560 R 100 3.3 19368:24 yap

Fig. 1. A Multi-Core in Action

The last few years have seen a major change in this picture. With multi-
core processors, parallelism is just available. Fig. 1 shows an example of usage
of a dual processor machine, with each CPU being four-core, for a total of eight
available cores. The machine is also used as a workstation, so only four cores are
being used for background tasks 1.

Arguably, such bag-of-tasks parallelism is just boring: there is hardly much
challenge in launching four processes and waiting for their outcome. But, it is
very useful, as one is, at least in principle, four times faster (and still has a useful
desktop machine), with very little work.

We believe that the challenge facing declarative programming, and we will
discuss logic programming here, is to make other forms of parallelism as boring
as possible. But to do so, some issues have to be debated first:

– Although there are good reasons to want newer languages, work such as
XSB-Prolog and Ciao has shown that incremental progress in current logic
programming language design is possible. This makes it the onus of the new
language designer(s) to prove that new wine is there, or in other words, that
their new approach is widely applicable.

– The last few years have shown the contrast between implicit and explicit
parallelism to be largely artificial. Explicit parallelism can be a useful build-
ing tool in creating higher-level parallel systems [7]. And implicit parallelism
benefits from annotations and other forms of user aid. One can therefore feel
rather confident in arguing that there is a continuum of alternatives, and
that ideally it should be possible for the programmer to move smoothly in
choosing the combination that better suits her or his needs.

1 unfortunately, this is not the author’s machine!

78

– Work such as KLIC [9] &-Prolog [19], Aurora [25], Muse [1], JAM [11],
Andorra-I [41], Penny [26], ACE [29, 28] and the DASWAM [42] addressed
research issues and advanced technology, resulting in sophisticated and pow-
erful systems. Which, unfortunately, have proven to be rather hard to main-
tain. This argues for simpler systems built from reusable-blocks, as in recent
work for Ciao [20] and, in a different context, ASP-Prolog [13].

– Logic Programming systems run user tasks, and therefore must interact with
the user’s environment. This often includes Input/Output and data-base op-
erations, which therefore may be key to efficient execution. It is arguably
the case that side-effects have been seen as an obstacle in the race for par-
allelism and either ignored or set aside [18, 21, 27, 17]. But it does not need
to be thus. A good example is data-base support for tabling, which is usu-
ally implemented by storing tabled solutions in tries. In this case, a parallel
implementation can understand the goal of a data-base operation, and ex-
ploit parallelism, with excellent results [33]. We believe that it is critical to
progress in this direction.

– At the end of the day, it will be the ability to actually run real applications
that will decide whether the work will be worthwhile. It has been argued
that parallel logic programming had no real applications. This is unfair, as
a number of applications have been developed: knowledge-based systems [2],
natural language processing [30], multimedia [34], and model checking [32].
More to the point, one can argue that such applications did not include
some of the major applications of LP and that they had to compete for
scarce parallel resources. As the latter problem transforms from a problem
into a motivation, research on the former becomes all the more important.

In a nutshell, we believe that this discussion distills itself into three simple
commandments:

– Thou shall use Modular System Construction, so that thou shall be able to
maintain and reuse thou code!

– Thou shall Provide High-Level Data Structures, so that the user needs shall
be apparent to thou!

– Though shall study and understand Real Applications, so that they shall be
the salt of thou work!

Can we apply those commandments in a principled way? We would like to
discuss the application of the three commandments but we will focus on the first
commandment in this work. We discuss how a specific Prolog system, the YAP
Prolog system [37], has been adapted to support parallelism. In a similar fashion
to other Prolog systems such as SICStus Prolog [3] and Ciao [20], YAP included
some support for shared-memory implicit parallelism, in this case or-parallelism.
Building on this support, it was possible to implement a thread library that
supports explicit parallelism. On a different vein, the system has also been used
for distributed programming and for grid style computation. We compare the
costs of the three approaches, and study how our simple commandments can be
obeyed, if at all.

79

2 The YAP Prolog System

The YAP Prolog system was originally developed by Lúıs Damas and Vı́tor
Santos Costa towards being a high-performance Prolog system [37]. The system
includes a number of components, described in Fig. 2. We distinguish three
particularly complex components: the abstract emulator (marked as red), the
compiler (marked as blue), and the memory management routines, including
the garbage collector (marked as gray). Edges show how components depend on
each-other.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

Fig. 2. The Structure of the YAP System

The core component of the system is a WAM abstract machine emulator [36].
Currently, the emulator implements close to 400 different instructions. The em-
ulator interacts directly with three key components:

1. The C-Glue provides the interface between the abstract engine and most
libraries. It relies on a a set of abstract types, such as Constant, Compound
Term, Term, Atom, Functor and a set of constructors and destructors. These
primitives are used by all components of the system.

2. The Atom-Table is organized as a hash-table and maintains all constants in
the system. As in traditional LISP systems [15], it is used as a starting point
for all other property lookup.

3. The Data-Base supports compiled code, both dynamic and static, and a
term database, accessed through the record family of built-ins. There are
also smaller data-bases: an operator data-base, and a small constant data-
base.

These components require dynamically allocated memory:

1. The Garbage Collector [8] and the closely-associated Stack Shifter can inter-
rupt the engine to compress stacks, clean up dead code, and expand memory
regions.

80

2. The Memory Allocator provides memory allocation and deallocation services
for the system. YAP includes three different allocators: (i) the original allo-
cator asks the system for a large chunk of memory, allocates big chunks for
the stacks, and manages the rest of memory with a greedy algorithm; (ii) the
default one allocates a huge chunk of memory and expands it dynamically,
but uses the Doug Lea allocator to manage memory [23]; (iii) last, YAP can
just use the standard library routines for memory allocation.
We have found out that the greedy allocator will not work well on large
applications. The Doug Lea allocator has allocator better performance, and
is in fact traditionally used by several system libraries.

The full functionality of the system requires extra modules:

1. Input/Output operations are obviously required for the system to be useful.
2. Term operations such as term comparison, are important in actual applica-

tions.
3. The Operating System interface allows access to a number of important

features. Access to the Dynamic Linker allows run-time extensibility.

Finally, the YAP compiler supports clause-level compilation and dynamic com-
pilation of indices [40].

3 Supporting Parallelism in YAP

Our first commandment says that one should be able to extend the system mod-
ularly. In other words, ideally we should implement parallelism by extending the
system with a new module, and would not need to rewrite code on the remain-
ing of the system. Unfortunately, and as often is the case, such a commandment
may be hard to obey. YAP is an ideal platform to study the problem as it has
been used to implement a large number of different approaches. Next, we discuss
some of these approaches: we shall start from the methodologies associated with
coarser grain-size.

Grid-Support With Condor YAP can be run in grid systems using two ap-
proaches: in the common as is approach the system is just transfered with-
out changes; otherwise, the system can be adapted to support libraries such
as condor [43]. The condor library is particularly interesting because it allows
“transparent” check-pointing and migration of jobs, which may become useful
as idle cores in networks of workstations become more and more available [12].
Fig. 3 shows where changes were necessary: notice that these changes correspond
support the universe condor environment on a circa 2004 version of condor.

The changes are required to operate under the more limited functionality
available in the condor universe. They essentially drop some of the memory man-
ager functionality, as YAP now has to use the standard library; drop dynamic
linking as condor requires static linking; and change some time and file access
primitives, again due to limitations in the condor programming environment.

81

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

Fig. 3. The Structure of the YAP System with Condor support: square boxes corre-
spond to dropped functionality, round boxes correspond to changes

Arguably, such changes are mostly modular. On the other hand, they are
more about dropping modules than actually extending a system with new mod-
ules. In that sense, they can be seen as a minor, but necessary, sin.

Distributed Processing with MPI The YAP system includes support for two dif-
ferent MPI libraries: MPICH [4] and LAM [5]. The two interfaces were developed
independently but operate under similar principles. They provide a low-level
interface that allows one to use basic MPI functionality, while exporting and
importing Prolog terms as messages. The implementation is shown in Fig. 4.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

MPI

Fig. 4. The Structure of the YAP System with MPI support: the grey square box
corresponds to the new functionality

As the picture shows, both interfaces operate as a new module that links
to the system through the C-interface. The interfaces did not require changes

82

to Prolog, although they would benefit from functionality in the term libraries.
Arguably, such an implementation is not the most efficient, but it is the easier
to update and maintain, and follows perfectly our first commandment.

Threads The YAP system includes support for Posix p-threads in the style of
the SWI-Prolog thread library [45]. In this approach, threads run on separate
stacks but share access to the data-base. The implementation is presented in
Fig. 5.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC

THREADS

Fig. 5. The Structure of the YAP System with thread support: the grey square box
corresponds to the new functionality, the round corner boxes correspond to significant
changes in the pre-existing code

As the picture shows, supporting threads requires major changes throughout
the system. Most of these changes have to do with the need to synchronize access
to the data-base and the Input/Output. In some more detail:

1. One needs a new module for threading. Notice that this module is now
plugged in more closely to the system, as communication is expected to be
quite more intensive.

2. One needs major changes to the Data-Base, due to the need to synchronize
access to dynamic structures, such as the index trees [40] and dynamic pred-
icates. Such data-structures are quite important in large programs. These
changes then ripple down to the garbage collector and to the emulator.

3. The memory allocator needs to support concurrency and multiple stacks. In
fact, the easiest solution is to rely on the system library, as for condor.

4. The Atom-Table needs to support concurrent access.

Most of the complexity stems from the concurrent accesses to the data-base.
The changes are quite intrusive and hard to debug, as it is often the case with

83

concurrent systems. Memory management is a second problem: threads require
extra memory to support locks, that depending on the grain size, may be quite
frequent. Note that several approaches are possible, ranging from a big central
lock to fine–grained access with specialized data-structures, such as read-write
locks. Supporting threads is therefore not modular, but we have been able to
provide most of the functionality in the non-threaded system (except for the
atom garbage collector). As threads may be used to build other primitives, they
may arguably be a necessary sin.

Native Or-Parallelism YAP includes code for a native implementation of three
different models of or-parallelism: COWL, stack-copying, and the Sparse Binding
Arrays [39]. The implementation is further complicated by the need to support
tabling [32]. Although the implementation is not currently being actively devel-
oped, it is still in the code. The implementation is presented in Fig. 3.

EMULATOR

DATA-BASE C GLUEATOMS

OS & DynLinker
TERM OPS

I/OCOMPILER

MEM MGR

GC ORP

Fig. 6. The Structure of the YAP System with native or-parallelism: the grey square
box corresponds to the new functionality, the round corner boxes correspond to signif-
icant changes in the pre-existing code

It should be clear that there is extensive overlap between native or-parallelism
and threads: this is because both implementations can perform concurrent access
to the data-base and concurrent I/O, although concurrent access in or-parallel
systems may be unnecessary if one requires a sequential order [18, 17]. Or-parallel
requires major changes to:

1. The memory allocator needs several low-level optimizations to support or-
parallelism, namely for stack-copying.

2. The emulator needs several new instructions to run or-parallelism. Further-
more, some useful invariants in the sequential system will now be broken.
The trailing mechanism is particularly affected.

The actual impact of these changes depends on the particular model, with the
process-based model of the COWL being the least intrusive [35] and the shared-

84

memory approach of the SBA being the most intrusive [10], as it requires to
share the stacks and to create private images. All the models do require new
instructions and major changes to key data-structures, such as choice-points.

3.1 Evaluation

Table 1 shows how pervasive the changes are in YAP’s C-code. We use Nuno
Fonseca’s LAM interface in this study. The first column shows the number of
define directives needed, and the second column shows how many files were
affected (out of a total of 104). The third column shows how much new code
was needed for the new functionality. Up to a third of all system files (including
most header files) need to be changed in some way to support threads or implicit
parallelism. The changes to support condor are much less extensive, and they
mostly have to with the need to support a different memory allocator. As ex-
pected, although or-parallelism requires more changes than threads, the changes
are largely on the same files. In fact, around 141 defines are shared between
or-parallelism and threads.

#define Files New Lines
needed Affected

CONDOR 3 (47) 3 0
MPI 0 0 1652
! THREADS 231 (47) 33 1280
ORP 680 33 4222

Table 1. Number of define used to separate parallelism specific code, number of files
where such defines were used and extra code needed (including comments). Changes
required to use the system allocator are in brackets.

It is unsurprising that implementing parallelism requires more extra code. Of
this code, about 300 lines of code implement a locking library which is shared
with the thread implementation. So the actual cost of writing the thread library
is under a thousand lines of code, mostly on packing and unpacking arguments
when calling p-thread functions. This is smaller than the MPI interface, as the
latter has to copy and receive terms from messages.

Is there a runtime cost for this functionality? Previous reports indicate costs
on the order of 5% for applications with SWI-Prolog [45], and with or-parallelism
in YAP [32]. An interesting worst possible situation is the case where almost
every operation needs to be protected by a lock. In order to study this setting,
we compare YAP without and with thread support on small, data-base intensive
examples. Our comparison was run on a dual-CPU machine, where each CPU
is a 4 core Intel(R) Xeon(R) CPU E5345 running at 2.33GHz. The machine has
16GB memory, and runs RedHat Entreprise Linux release 4 with kernel 2.6.9. We
use Yap-5.1.2 compiled for the x86 64 architecture. The machine was connected

85

to the network, and the file-system was NFS; the experiments were performed
through ssh access, the machine was otherwise idle. The tests are as follows:
(i) t1 accesses a dynamic predicate with a single fact; this requires holding a
lock: (ii) t2 asserts and retracts a dynamic predicate with a single fact; (iii)
t3 asserts a fact of the form t3(RandomNumber); (iv) t4 retracts a fact of the
form t4(RandomNumber); (v) t5 asserts a fact where the argument is a list of
length up to 10 and branching factor up to 500; (vi) t6 asserts a fact where the
argument is a list of length up to 10 and branching factor up to 2 (hence there
will be more repeated facts).

Results are shown in Table 2. We compare two versions with threads: in the
first version, threads are implemented using C-code from the Linux kernel that
uses hardware instruction. In the second version, we call the P-Thread routines.
The results show that there is indeed an overhead, that the overhead can be very
large if the application just updates the data-base, but that it tends to reduce as
operation cost increases. The results are also somewhat disappointing in that we
would expect locking on the P-Thread library to have substantially improved in
newer thread libraries. This does not seem to be the case: locking performance
is still very much under par.

t1 t2 t3 t4 t5 t6

NO-THREADS 11 642 298 792 1354 1379
THREADS-USER LOCKING 11 1144 480 1558 1520 1527
THREADS-PTHREAD LOCKING 25 1717 767 1851 2116 2163

Table 2. Running time for 500000 iterations of simple data-base access predicates,
using a native implementation, user code for locking, and the p-thread library locking
routines.

The results also show that locking can indeed decrease system performance.
The data-base is controlled by reader-writer locks, which are called at 263 points
in the code. Standard locks are called at 113 points in the code. Locking is
required whenever accessing a dynamic predicate. YAP does not need to lock
the indexing code for static procedures because it is write once [40].

3.2 Parallel Execution

The usefulness of the techniques discussed here clearly depends on how much
the underlying computer architecture can support them. To validate whether it
is worthwhile to exploit these machines, we experimented a number of simple
benchmarks on the multi-core machine. The 3 experiments include just accessing
a static and a dynamic fact, building a long list, and randomly accessing a
very large compound term through arg/3. Experiments are run in by executing

the same code at N threads : the only communication is when accessing the
read-lock that protects the dynamic predicate in the second experiment. All

86

other experiments have no synchronization within YAP. The ideal result would
be constant-time, and except for the second benchmark, slowdowns should be
caused by limitations in the multi-core architecture.

Cores 1 2 3 4 5 6 7 8

a(1) 1771 1780 1795 1794 1772 1793 1798 1833
a(1) (dynamic) 1635 1623 1636 1629 1617 1625 1623 1684

mklist(10000,) 435 438 437 436 443 443 450 491
mklist(100000,) 4540 4628 4660 4438 4737 5071 5970 6658
mklist(1000000,) 473232 47605 47692 46674 50014 55351 62401 70228

arg(Rand,10000,) 693 1523 6914 12885 13480 14469 14297 15235
arg(Rand,100000,) 866 2765 7713 14108 15420 16646 16137 17245
arg(Rand,1000000,) 1075 3203 7869 14688 16302 16978 17275 18469

Table 3. Running time in msec for 20,000,000 iterations of a simple query, for 200
iterations of the mklist/2 predicate, and for 2,000,000 random accesses to a large term.
Every thread repeats the original task, hence ideal performance would be constant time.

The results show a complex story. First, they show almost perfect parallelism
for the simple query: in this case, the cores can happily process away in their
local caches, and performance is excellent even when all cores are in use. Second,
they show that a limited amount of synchronization has no impact on system
performance: the static and dynamic versions of the code execute in much the
same way.

The results for mklist show excellent performance for the two list smaller
lists, with 160KB and 1600KB. Performance drops somewhat for larger number
of cores when we construct the 16MB list. In this case, we have a slowdown of
60% when the 8 cores construct the 8MB lists in parallel.

The arg/3 results were the most surprising. The simple benchmark was cho-
sen as an example of stressing the cache system. It does its task well. With two
cores, it is just faster to run the benchmarks sequentially than to run them in
the separate cores. The picture grows worse for 3 cores and for 4 cores: in fact,
adding the 4th core consistently halves performance! It is also interesting that
after 4 cores performance degrades more gracefully (maybe because contention is
now bad enough). The size of the term is not particularly important: the effects
are very clear with a 800KB terms, and there is only a small price to access an
80MB term.

4 Future Work

We started this work assuming that multi-cores will make parallel programming
boring, and hoping that parallel logic programming would follow. We will have to
wait: multi-core architectures are complex, with memory performance far more

87

critical than for traditional shared memory machines. Programming these ma-
chines may require understanding memory access patterns, admittedly a harder
task in the context of declarative languages.

This leads us to commandment number two: providing high-level data struc-
tures that are well understood and that can be profiled and analised with con-
fidence may be what makes parallel logic programming successful. And this in
turn leads to commandment number three, and to the question we should have
started from: what do logic programmers need?

There is not a single answer to this question. Our experience shows that
often people just want to run similar tasks. In this case, the question is “how
does Prolog access memory?”, and this is an hard problem by itself [24]. But, one
can go one step further by looking at actual applications. In the author’s case,
at the time of writing this paper, he was interested in two main applications in
the area of Statistical Relational Learning.

The Problog language combines logic with probabilities by saying that a
clause may be true [31]. The probability of a goal is evaluated by combining the
probabilities of all paths that prove the goal. This is very close to traditional
or-parallelism, except that successful (and interrupted) proofs must be stored
away. Doing this sequentially would kill parallelism, But there is no real reason
to do so. Solving this problem is thus a question of designing a data-structure
that can store proofs and that allows concurrent updates, such as, say, a trie [33]!

The CLP(BN) language can be used to specify graphical models, such as
Hidden Markov Models [38]. One interesting query in these models is to find the
most likely explanation to a sequence of observations. The Viterbi algorithm is
the main tool for this task. The algorithm implements dynamic programming
and proceeds in two steps. Computation is dominated by the forward step where
it steps across all nodes in the graph following a dominance order. The first
CLP(BN) implementation used constraints to represent the node, topologically
sorted them, and then run the algorithm. This was elegant, but expensive. A
recent implementation does not generate the nodes. Instead, it generates a set
of instructions describing the graph and applies them to every element in the
sequence. Even so, the application can take seconds for larger networks. The
application is an example of data-flow parallelism, but we have observed that
for large networks chunks tend to be somewhat independent, so sub-computation
can proceed in parallel as long as we have shared access to the state. Can we
exploit independent and-parallelism in this context?

It would be a mistake to ignore the huge amount of work in parallel logic
programming: much progress was made, and many lessons were learned. We
understand the main issues in implicit parallelism, and we know where the main
pitfalls wait for us. We should thus start from the lessons we learned. And we
should build something new, and better.

Acknowledgments

The author gratefully acknowledges the support of the project STAMPA, FCT
Project PTDC/EIA/67738/2006. The work has been partially supported by

88

funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC. The work was mo-
tivated by discussions at the CICLOPS07 pannel: the author thanks B. Demoen,
D. S. Warren, E. Pontelli, F. Silva, G. Gupta, I. Dutra, M. Hermenegildo, R.
Rocha, and S. Abreu for sharing their ideas.

References

1. K. A. M. Ali and R. Karlsson. The Muse approach to OR-Parallel Prolog. In-
ternational Journal of Parallel Programming, 19(2):129–162 (or 129–160??), Apr.
1990.

2. K. A. M. Ali and R. Karlsson. OR-Parallel Speedups in a Knowledge Based System:
on Muse and Aurora. In Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 739–745, ICOT, Japan, 1992. Association
for Computing Machinery.

3. J. Andersson, S. Andersson, K. Boortz, M. Carlsson, H. Nilsson, T. Sjoland, and
J. Widén. SICStus Prolog User’s Manual. Technical report, Swedish Institute of
Computer Science, November 1997. SICS Technical Report T93-01.

4. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. Mpich-v:
toward a scalable fault tolerant mpi for volatile nodes. In Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–18,
Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

5. G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for MPI.
In Proceedings of Supercomputing Symposium, pages 379–386, 1994.

6. M. Carro and M. Hermenegildo. Concurrency in Prolog Using Threads and a
Shared Database. In 1999 International Conference on Logic Programming, pages
320–334. MIT Press, Cambridge, MA, USA, November 1999.

7. A. Casas, M. Carro, and M. Hermenegildo. Towards High-Level Execution Primi-
tives for And-parallelism: Preliminary Results. In CICLOPS 2007: 7th Colloquium
on Implementation of Constraint and LOgic Programming Systems, pages 102–116,
Porto, 2007.

8. L. F. Castro and V. Santos Costa. Understanding Memory Management in Pro-
log Systems. In Proceedings of Logic Programming, 17th International Conference,
ICLP 2001, volume 2237 of Lecture Notes in Computer Science, pages 11–26, Pa-
phos, Cyprus, November 2001.

9. T. Chikayama, T. Fujise, and H. Yashiro. A portable and reasonably efficient
implementation of KL1. In D. S. Warren, editor, Proceedings of the Tenth Inter-
national Conference on Logic Programming, page 833, Budapest, Hungary, 1993.
The MIT Press.

10. M. E. Correia, F. Silva, and V. Santos Costa. The SBA: Exploiting orthogonality
in OR-AND Parallel Systems. In Proceedings of the 1997 International Logic Pro-
gramming Symposium, pages 117–131. MIT Press, October 1997. Also published as
Technical Report DCC-97-3, DCC - FC & LIACC, Universidade do Porto, April,
1997.

11. J. A. Crammond. The abstract machine and implementation of parallel parlog.
New Generation Computing, 10(4):385–422, 1992.

12. I. C. Dutra, D. Page, V. Santos Costa, J. W. Shavlik, and M. Waddell. Towards
automatic management of embarassingly parallel applications. In Proceedings of

89

Europar 2003, volume 2790 of Lecture Notes in Computer Science, pages 509–516,
Klagenfurt, Austria, August 2003. Springer Verlag.

13. O. El-Khatib, E. Pontelli, and T. C. Son. Integrating an answer set solver into
prolog: Asp-prolog. In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Logic Programming and Nonmonotonic Reasoning, 8th International Conference,
LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings, volume 3662 of
Lecture Notes in Computer Science, pages 399–404. Springer, 2005.

14. N. A. Fonseca, F. Silva, and R. Camacho. April - An Inductive Logic Program-
ming System. In F. M, V. W, K. B, and L. A, editors, Proceedings of the 10th
European Conference on Logics in Artificial Intelligence (JELIA06), volume 4160
of Lecture Notes in Artificial Intelligence, pages 481–484, Liverpool, September
2006. Springer-Verlag.

15. R. P. Gabriel. Performance and evaluation of Lisp systems. MIT Press, 1985.

16. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: A Survey. ACM Transactions on Programming Languages
and Systems, 23(4):1–131, 2001.

17. G. Gupta and V. Santos Costa. Cuts and Side-Effects in And-Or Parallel Prolog.
Journal of Logic Programming, 27(1):45–71, April 1996.

18. B. Hausman, A. Ciepielewski, and A. Calderwood. Cut and Side-Effects in Or-
Parallel Prolog. In International Conference on Fifth Generation Computer Sys-
tems 1988, pages 831–840. ICOT, 1988.

19. M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting
Independent And-Parallelism. New Generation Computing, 9(3,4):233–257, 1991.

20. M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated pro-
gram debugging, verification, and optimization using abstract interpretation (and
the ciao system preprocessor). Sci. Comput. Program., 58(1-2):115–140, 2005.

21. L. V. Kalé, D. A. Padua, and D. C. Sehr. OR-Parallel execution of Prolog with
side effects. The Journal of Supercomputing, 1988.

22. S. T. Konstantopoulos. A data-parallel version of Aleph. In R. Camacho and
A. Srinivasan, editors, Proc. of the Workshop on Parallel and Distributed Comput-
ing for Machine Learning, ECML/PKDD 2003, 2003.

23. D. Lea. A Memory Allocator.

24. R. Lopes, L. F. Castro, and V. Santos Costa. From Simulation to Practice: Cache
Performance Study of a Prolog System. In ACM SIGPLAN Workshop on Memory
System Performance, Berlin, Germany, June 2002. SIGPLAN Notices vol 38(2),
February 2003, pages 56–64.

25. E. Lusk, R. Butler, T. Disz, R. Olson, R. A. Overbeek, R. Stevens, D. H. D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and
B. Hausman. The Aurora or-parallel Prolog system. New Generation Computing,
7(2,3):243–271, 1990.

26. J. Montelius and K. A. M. Ali. An And/Or-Parallel Implementation of AKL. New
Generation Computing, 14(1), 1996.

27. K. Muthukumar and M. V. Hermenegildo. Efficient Methods for Supporting Side
Effects in Independent And-parallelism and Their Backtracking Semantics. In
Proceedings of the Sixth International Conference on Logic Programming, pages
80–97. MIT Press, June 1989.

28. E. Pontelli and G. Gupta. Data and-parallel logic programming in &ace. In 7th
IEEE Symposium on Parallel and Distributed Processing. IEEE Computer Society,
1995.

90

29. E. Pontelli, G. Gupta, and M. V. Hermenegildo. &ACE: A High-Performance
Parallel Prolog System. In International Parallel Processing Symposium. IEEE
Computer Society Technical Committee on Parallel Processing, IEEE Computer
Society, April 1995.

30. E. Pontelli, G. Gupta, J. Wiebe, and D. Farwell. Natural language multiprocessing:
A case study. In AAAI/IAAI, pages 76–82, 1998.

31. L. D. Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In M. M. Veloso, editor, IJCAI 2007, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, January 6-12, 2007, pages 2462–2467, 2007.

32. R. Rocha, F. Silva, and V. S. Costa. On Applying Or-Parallelism and Tabling to
Logic Programs. Theory and Practice of Logic Programming Systems, 5(1-2):161–
205, 2005.

33. R. Rocha, F. Silva, and V. Santos Costa. Achieving Scalability in Parallel Tabled
Logic Programs. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium (IPPDPS02), Fort Lauderdale, Florida, USA, April 2002.

34. S. W. Ryan and A. K. Bansal. A scalable distributed multimedia knowledge re-
trieval system on a cluster of heterogeneous high performance architectures. In-
ternational Journal on Artificial Intelligence Tools, 9(3):343–367, 2000.

35. V. Santos Costa. Cowl: Copy-on-write for logic programs. In Proceedings of the
IPPS/SPDP99, pages 720–727. IEEE Computer Press, May 1999.

36. V. Santos Costa. Optimising bytecode emulation for prolog. In LNCS 1702, Pro-
ceedings of PPDP’99, pages 261–267. Springer-Verlag, September 1999.

37. V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP User’s Manual, 2002.
http://www.ncc.up.pt/˜vsc/Yap.

38. V. Santos Costa, C. D. Page, and J. Cussens. Probabilistic Inductive Logic Pro-
gramming, chapter CLP(BN): Constraint Logic Programming for Probabilisti c
Knowledge. Springer-Verlag, 2007. (to appear).

39. V. Santos Costa, R. Rocha, and F. Silva. Novel Models for Or-Parallel Logic
Programs: A Performance Analysis. In Proceedings of EuroPar2000, LNCS 1900,
pages 744–753, September 2000.

40. V. Santos Costa, K. Sagonas, and R. Lopes. Demand-driven indexing of prolog
clauses. In V. Dahl and I. Niemelä, editors, Proceedings of the 23rd International
Conference on Logic Programming, volume 4670 of Lecture Notes in Computer
Science, pages 305–409. Springer, 2007.

41. V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-Parallelism. In Third ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming PPOPP,
pages 83–93. ACM press, April 1991. SIGPLAN Notices vol 26(7), July 1991.

42. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming, 29(1–3), 1996.

43. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

44. D. H. D. Warren. Applied Logic—Its Use and Implementation as a Programming
Tool. PhD thesis, Edinburgh University, 1977. Available as Technical Note 290,
SRI International.

45. J. Wielemaker. Native preemptive threads in swi-prolog. In C. Palamidessi, edi-
tor, Logic Programming, 19th International Conference, ICLP 2003, Mumbai, In-
dia, December 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in Computer
Science, pages 331–345. Springer, 2003.

91

Toward a parallel implementation of Concurrent ML

John Reppy and Yingqi Xiao

University of Chicago

Abstract. Concurrent ML (CML) is a high-level message-passing language that
supports the construction of first-class synchronous abstractions called events.
This mechanism has proven quite effective over the years and has been incorpo-
rated in a number of other languages. While CML provides a concurrent pro-
gramming model, its implementation has always been limited to uniprocessors.
This limitation is exploited in the implementation of the synchronization pro-
tocol that underlies the event mechanism, but with the advent of cheap parallel
processing on the desktop (and laptop), it is time for Parallel CML.
We are pursuing such an implementation as part of the Manticore project. In
this paper, we describe a parallel implementation of Asymmetric CML (ACML),
which is a subset of CML that does not support output guards. We describe an
optimistic concurrency protocol for implementing CML synchronization. This
protocol has been implemented as part of the Manticore system.

1 Introduction

Concurrent ML (CML) [1, 2] is a statically-typed higher-order concurrent language
that is embedded in Standard ML [3]. CML extends SML with synchronous message
passing over typed channels and a powerful abstraction mechanism, called first-class
synchronous operations, for building synchronization and communication abstractions.
This mechanism allows programmers to encapsulate complicated communication and
synchronization protocols as first-class abstractions, which encourages a modular style
of programming where the actual underlying channels used to communicate with a
given thread are hidden behind data and type abstraction. CML has been used success-
fully in a number of systems, including a multithreaded GUI toolkit [4], a distributed
tuple-space implementation [2], and a system for implementing partitioned applications
in a distributed setting [5]. The design of CML has inspired many implementations
of CML-style concurrency primitives in other languages. These include other imple-
mentations of SML [6], other dialects of ML [7], other functional languages, such as
HASKELL [8], SCHEME [9], and our own MOBY language [10], and other high-level
languages, such as JAVA [11].

One major limitation of CML is that its implementation is single-threaded and can-
not take advantage of multicore or multiprocessor systems.1 We are incorporating the
CML concurrency primitives into the functional parallel-programming language Man-
ticore [12, 13], so this limitation must be addressed. In this paper, we take a major step
in that direction by describing a parallel implementation of a subset of CML, which

1 In fact, almost all of the existing implementations of events have this limitation.

92

type ’a event

val choose : (’a event * ’a event) -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val guard : (unit -> ’a event) -> ’a event
val withNack : (unit event -> ’a event) -> ’a event

val sync : ’a event -> ’a

val never : ’a event
val always : ’a -> ’a event

type ’a chan
val recvEvt : ’a chan -> ’a event
val sendEvt : (’a chan * ’a) -> unit event

Fig. 1. The core features of CML

we call Asymmetric Concurrent ML (ACML). This subset of CML includes the full
set of CML combinators, but does not support output guards (i.e., send operations in a
choice). We try to provide both an intuitive explanation of the synchronization protocol
that underlies ACML, as well as enough of the nitty-gritty details to help other imple-
mentors. Because of space constraints, much of the implementation is omitted, but an
extended version of this paper will be available as technical report [14].

2 A CML overview

Concurrent ML is a higher-order concurrent language that is embedded into Standard
ML [1, 2]. It supports a rich set of concurrency mechanisms, but for purposes of this
paper we focus on the core mechanisms of communication and events, which are shown
in Figure 1. Communication in CML is based on synchronous message passing on
typed channels. Because channels are synchronous, both the send and receive operations
are blocking.

To support more complicated interactions, CML provides event values, which are
first-class synchronous abstractions. Base events constructed by sendEvt and recvEvt
describe simple communications on channels. There are also two special base-events:
never, which is never enabled and always, which is always enabled for synchro-
nization. These events can be combined into more complicated event values using the
event combinators:

– Event wrappers (wrap) for post-synchronization actions.
– Event generators (guard and withNack) for pre-synchronization actions and

cancellation (withNack).
– Choice (choose) for managing multiple communications. In CML, this combi-

nator takes a list of events as its argument, but we restrict it to be a binary operator
here. Choice of a list of events can be constructed using choose as a “cons” oper-
ator and never as “nil.”

93

type ’a queue

val queue : unit -> ’a queue
val isEmptyQ : ’a queue -> bool
val enqueue : (’a queue * ’a) -> unit
val dequeue : ’a queue -> ’a option

Fig. 2. Specification of queue operations

To use an event value for synchronization, we apply the sync operator to it.
Event values are pure values similar to function values. When the sync operation

is applied to an event value, a dynamic instance of the event is created, which we call
a synchronization event. A single event value can be synchronized on many times, but
each time involves a unique synchronization event.

In this paper, we describe an implementation ACML, which differs from the in-
terface in Figure 1 in that it does not have the sendEvt event constructor. Instead,
sending a message is supported using the function

val send : (’a chan * ’a) -> unit

This function is still blocking, but does not support sending a message in a choice
context.

3 Preliminaries

We present our implementation using SML syntax with a few extensions. To streamline
the presentation, we elide several aspects of the actual implementation, such as thread
IDs and processor affinity.

3.1 Queues

Our implementation uses queues to track pending messages and waiting threads in chan-
nels. We omit the implementation details here, but give the interface to the queue oper-
ations that we use in Figure 2. These operations have the expected semantics.

3.2 Threads and thread scheduling

As in the uniprocessor implementation of CML, we use first-class continuations to im-
plement threads and thread-scheduling. The continuation operations have the following
specification:

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

We represent the state of a suspended thread as a unit continuation

94

type thread = unit cont

The interface to the scheduling system is represented by two atomic operations:

val enqueueRdy : thread -> unit
val dispatch : unit -> ’a

The first enqueues a ready thread in the scheduling queue and the second transfers
control to the next ready thread in the scheduler queue.

3.3 Compare and swap

Our implementation also relies on the atomic compare-and-swap instruction. We use
the following SML specification for this operation:

val cas : (’a ref * ’a * ’a) -> ’a

Note that cas does not follow the SML equality semantics in that it performs pointer
equality. With this operation, we build spinlocks:

val spinLock : bool ref -> unit
val spinUnlock : bool ref -> unit

For purposes of this paper, we assume that threads are not preempted, so spinlocks are
a reasonable locking mechanism.

4 A parallel implementation of PCML

Our parallel implementation is based on a core subset of the CML event operations,
called Primitive CML (PCML). This subset has an event type with a minimal set of
combinators, a condition-variable type used for signaling, and support for channels
with input events. The signature of PCML is given in Figure 3. Note that unlike full
CML (see Figure 1), there are no guard or withNack combinators. As we discuss
in Section 5, these can be implemented on top of PCML.

4.1 The synchronization protocol

The heart of the implementation is the protocol for synchronization on a choice of
events. This protocol is split between the sync operator and the base-event construc-
tors (e.g., waitEvt and recvEvt). Each base event is represented by a record of three
functions: pollFn, which tests to see if the base-event is enabled (e.g., there is a mes-
sage waiting); doFn, which is used to synchronize on an enabled event; and blockFn,
which is used to block the calling thread on the base event. In the single-threaded im-
plementation of CML [15, 2], we rely heavily on the fact that sync is executed as an
atomic operation. The single-threaded protocol is as follows:

1. Poll the base events in the choice to see if any of them are enabled. This phase is
called the polling phase.

95

signature PRIM_CML =
sig

(* events *)
type ’a evt
val never : ’a evt
val always : ’a -> ’a evt
val choose : (’a evt * ’a evt) -> ’a evt
val wrap : ’a evt * (’a -> ’b) -> ’b evt
val sync : ’a evt -> ’a

(* condition variables *)
type cvar
val new : unit -> cvar
val set : cvar -> unit
val waitEvt : cvar -> unit evt

(* channels *)
type ’a chan
val channel : unit -> ’a chan
val recvEvt : ’a chan -> ’a evt
val send : (’a chan * ’a) -> unit

end

Fig. 3. Primitive CML

2. If one or more base events are enabled, pick one and synchronize on it using its
doFn. This phase is called the commit phase.

3. If no base events are enabled we execute the blocking phase, which has the follow-
ing steps:
(a) Enqueue a continuation for the calling thread on each of the base events using

its blockFn.
(b) Switch to some other thread.
(c) Eventually, some other thread will complete the synchronization.

We use the term synchronization setup for steps 1, 2, and 3(a) of this protocol.
Because the implementation of sync is atomic, the single-threaded implementa-

tion does not have to worry about the state of a base event changing between when we
poll it and when we invoke the doFn or blockFn on it. In a parallel implementation,
however, the global lock would be a bottleneck, so we must design a more complicated
protocol. This design is further constrained by the fact that a given event may involve
multiple occurrences of the same event. For example, the following code nondetermin-
isticly tags the message received from ch with either 1 or 2:

sync (choose (
wrap (recvEvt ch, fn x => (1, x)),
wrap (recvEvt ch, fn y => (2, y))

))

96

We must also avoid deadlock when multiple threads are simultaneously attempting
communication on the same channel. For example, if thread P is executing

sync (choose (recvEvt ch1, recvEvt ch2))

at the same time that thread Q is executing

sync (choose (recvEvt ch2, recvEvt ch1))

we have a potential deadlock if the implementation of sync attempts to hold a lock on
both channels simultaneously (i.e., where P holds the lock on ch1 and attempts to lock
ch2, while Q holds the lock on ch2 and attempts to lock ch1).

Our approach to avoiding these pitfalls is to use an optimistic protocol that does not
hold a lock on more than one channel at a time and avoids locking whenever possible.
The basic protocol has a similar structure to the sequential one described above, but it
must deal with the fact that the state of a base event can change before the synchro-
nization setup is complete. This fact means that the commit phase may fail and that the
blocking phase may commit. The parallel synchronization protocol is as follows:

– The protocol starts with the polling phase, which is done in a lock-free way.
– The If one or more base events are enabled, pick one and attempt to synchronize on

it using its doFn. This attempt may fail because of changes in the base-event state
since the polling was done.

– If there are no enabled base events (or all attempts to synchronize failed), we en-
queue a continuation for the calling thread on each of the base events using its
blockFn. When blocking the thread on a particular base event, we may discover
that synchronization is now possible, in which case we can synchronize immedi-
ately.

This design is guided by the goal of minimizing synchronization overhead and maxi-
mizing concurrency.

4.2 The PCML event type

A primitive-event value is represented as a binary tree, where the internal nodes rep-
resent choice and the leaves represent single synchronous operations. This canonical
representation of events relies on the following equivalences:

wrap(wrap(ev, g), f) = wrap(ev, f ◦ g)
wrap(choose(ev1, ev2), f1) = choose(wrap(ev1, f),wrap(ev2, f))

We use this equivalence to maintain a canonical representation of events as trees in
which the leaves are wrapped base-event values and the interior nodes are choice opera-
tors. Figure 4 illustrates the mapping from a nesting of wrap and choose combinators
to its canonical representation.

Another issue that we must deal with is that another thread may attempt to complete
the synchronization before setup is finished. We solve this problem by piggybacking on
the mechanism used in the single-threaded implementation to do “garbage collection”
of completed events. For each synchronization event, we allocate an event-state refer-
ence to hold the state of the synchronization.

97

choose

choose

wrap

wrap wrap

wrap

recv recv

recv

choose

choose

wrap

wrap wrap

wrap

recv recv

recv
wrap

Fig. 4. The canonical-event transformation

datatype event_status = INIT | WAITING | SYNCHED
type event_state = event_status ref

The INIT state denotes that event setup is in progress, WAITING denotes that setup is
complete and the event is available for synchronization, and SYNCHED denotes that the
event has been synchronized on.

The canonical-event representation is implemented by the following datatype:

datatype ’a evt
= BEVT of {

pollFn : unit -> bool,
doFn : ’a cont -> unit,
blockFn : (event_state * ’a cont) -> unit

}
| CHOOSE of ’a evt * ’a evt

In this type, wrapped base events are represented by three functions: the pollFn is
used to poll an event to test for its availability, the doFn is used to synchronize on
an enabled event, and the blockFn is used to enqueue a suspended thread on the
event. Both doFn and blockFn take resumption continuations as arguments. These
continuations are used to return from the invoking sync operation. Note also that the
blockFn takes a state flag as an argument. This flag is enqueued along with the resume
continuation in the waiting queue maintained by the underlying communication object.

4.3 The PCML sync operation

The implementation of the sync operation is given in Figure 5. It is structured as
three functions that correspond to the items in the protocol description above. Each
of these functions does a walk over the tree representation of the event value to ap-
ply its operation to the base events at the leaves. The poll function polls each base
event and returns a list of doFn functions for the base events that were enabled. The
doEvt function, which is applied to this list, attempts to complete the synchronization

98

fun sync ev = callcc (fn resumeK => let
(* optimistically poll the base events *)

fun poll (BEVT{pollFn, doFn, blockFn}, enabled) =
if pollFn()

then doFn::enabled
else enabled

| poll (CHOOSE(ev1, ev2), enabled) =
poll(ev2, poll(ev1, enabled))

(* attempt to complete an enabled communication *)
fun doEvt [] = blockThd()

| doEvt (doFn::r) = (
doFn resumeK;

(* if we get here, that means that the

* attempt failed, so try the next one

*)
doEvt r)

(* record the calling thread’s continuation in the

* event waiting queues

*)
and blockThd () = let

val flg = ref INIT
fun block (BEVT{blockFn, ...}) =

blockFn(flg, resumeK)
| block (CHOOSE(ev1, ev2)) = (

block ev1; block ev2)
in

block ev;
(* if we get here, then setup is complete *)

flg := WAITING;
dispatch()

end
in

doEvt (poll (ev, []))
end)

Fig. 5. The primitive sync operation

on one of the base event’s using its doFn function. Since the state of the base event
might have changed since it was polled, it possible for the doFn to fail, in which case
it returns. Otherwise, it will transfer control to the resume continuation. If doEvt is
unable to complete the synchronization of any of the enabled events (or there were no
enabled events), then it calls blockThd. This function allocates the state flag and then
calls the blockFn of each of the base events to enqueue the resumption continuation.
If the state of the base event has changed since polling (i.e., it has become enabled),
then the blockFn will complete the synchronization, otherwise it returns. If all of the
blockFns return, then the event’s state is changed to WAITING and some other thread
is dispatched.

99

INIT

WAITING

SYNCHED

event owner finishes
setup

another thread
synchronizes on the event

owner synchronizes
during setup

Fig. 6. The state-transitions of a synchronization event.

Because sync does not hold locks on the underlying communication objects, it is
possible that some other thread may attempt to synchronize on one of the base events
before blockThd has completed its work. Our policy is to only allow the owner thread
of a synchronization event (i.e., the caller of the sync operation) to change its state
from INIT, as is shown in Figure 6. To implement this policy, non-owners use the
following utility function to change the state:

fun claimEvent flg = (case cas(flg, WAITING, SYNCHED)
of WAITING => true
| INIT => claimEvent flg
| SYNCHED => false

(* end case *))

This function forces its caller to wait until setup is complete before being allowed to
synchronize on the event. If the state is already SYNCHED, then it returns false.

An obvious simplification of this design would be to combine pollFn and doFn
into a single function. There is a disadvantage of merging these two functions, however,
which is that by polling all of the base events first, it is possible to impose an ordering
on enabled events, such as priorities or to support fairness [2].

4.4 The PCML event combinators

The implementation of the primitive-event combinators is largely straightfoward, with
the exception of wrap, which involves both the continuation hacking needed to hook in
the wrapper function and event canonicalization. The implementation of wrap is given
in Figure 7. When applied to a base-event value, we need to arrange for the wrapper
function (f) to be applied to the values thrown to the resumption continuation by doFn
and pollFn. When applied to a CHOOSE value, it pushes the wrapper down into both
branches as described by the equivalence in Section 4.2.

4.5 PCML channels

The other half of the synchronization protocol is implemented in the base-event values
for the communication objects. The representation of a channel consists of a spinlock, a

100

fun wrap (BEVT{pollFn, doFn, blockFn}, f) = BEVT{
pollFn = pollFn,
doFn = fn k => callcc (fn retK =>

throw k (f (callcc (fn k’ => (doFn k’;
throw retK ()))))),

blockFn = fn (flg, k) => callcc (fn retK =>
throw k (f (callcc (fn k’ => (blockFn(flg, k’);

throw retK ())))))
}

| wrap (CHOOSE(ev1, ev2), f) =
CHOOSE(wrap(ev1, f), wrap(ev2, f))

Fig. 7. The primitive wrap combinator

queue of blocked senders (with messages), and a queue of blocked receivers (with their
owner’s event state).

datatype ’a chan = Ch of {
lock : bool ref,
sendq : (’a * unit cont) queue,
recvq : (event_state * ’a cont) queue

}

The code for recvEvt is a non-trivial example of a base-event implementation
and is given in Figure 8. The pollFn checks to see if the channel’s sendq is empty.
Since this operation only involves reading the state of the queue, it can be done without
locking. Even if the results are erroneous because of conflicts with other threads, the
fallback code in the doFn and blockFn will ensure correct behavior. The doFn is
called when the sendq is expected to be nonempty. It locks the channel, removes an
item from the sendq and then releases the lock. If the queue was empty (i.e., NONEwas
returned), then the doFn returns. Otherwise, it enqueues the blocked sender and throws
the message to the resume continuation of the sync operation. The blockFn is called
when the sendq is expected to be empty. It also locks the channel and then checks
the sendq in case its state has changed since polling. If there is an item available,
then it is used to complete the synchronization. Otherwise, the resume continuation and
event-state flag are enqueued in the channel’s recvq.

The send operation on channels is given in Figure 9. The body of this function is
a loop that examines the recvq for waiting events. If it finds one, then it completes
the synchronization, otherwise it enqueues its resume continuation and message on the
sendq.

5 Implementing full CML

In this section, we sketch how to build an implementation of the full set of CML event
combinators from the PRIM_CML interface that we implemented in the previous sec-
tion. The basic idea, which was suggested by Matthew Fluet [16], is to move the book-
keeping used to track negative acknowledgments out of the implementation of sync and

101

fun recvEvt (Ch{lock, sendq, recvq}) = let
fun pollFn () = not(isEmptyQ(sendq))
fun doFn k = let

val _ = spinLock lock
val item = dequeue sendq
in

spinUnlock lock;
case item
of NONE => ()
| SOME(msg, sendK) => (

enqueueRdy sendK;
throw k msg)

(* end case *)
end

fun blockFn (flg : event_state, k) = (
spinLock lock;

(* if we are lucky, a sender may have arrived

* on the channel since we polled it.

*)
case dequeue sendq
of SOME(msg, sendK) => (

(* there is a matching send *)
spinUnlock lock;
flg := SYNCHED;
enqueueRdy sendK;
throw k msg)

| NONE => (
enqueue (recvq, (flg, k));
spinUnlock lock)

(* end case *))
in

BEVT{pollFn = pollFn, doFn = doFn, blockFn = blockFn}
end

Fig. 8. The recvEvt event constructor

into guards and wrappers. Space does not permit a complete description of this layer,
but we cover the highlights.

In this implementation, negative acknowledgments are signaled using the condition
variables (cvars) provided by PCML. Since we must create these variables at synchro-
nization time, we represent events as suspended computations (or thunks). The event
type has the following definition:

datatype ’a event
= E of (cvar list * (cvar list * ’a thunk) PCML.evt) thunk

where the thunk type is

type ’a thunk = unit -> ’a

102

fun send (Ch{lock, sendq, recvq}, msg) = callcc (fn sendK => let
val _ = spinLock lock
fun tryLp () = (case dequeue recvq

of SOME(flg, recvK) =>
(* there is a matching recv, but we must

* check to make sure that some other

* thread has not already claimed the event.

*)
if claimEvent flg
then ((* we got it *)

spinUnlock lock;
enqueueRdy sendK;
throw recvK msg)

else (* someone else got the event *)
tryLp ()

| NONE => (
enqueue (sendq, (msg, sendK));
spinUnlock lock;
dispatch ())

(* end case *))
in

tryLp ()
end)

Fig. 9. The send operation

The outermost thunk is a suspension used to delay the evaluation of guards until syn-
chronization time. When evaluated, it produces a list of cvars and a primitive event.
The cvars are used to signal the negative acknowledgments for the event. The primitive
event, when synchronized, will yield a list of those cvars that need to be signaled and a
thunk that is the suspended wrapper action for the event. With this representation, the
sync operation is straightforward.

fun sync (E thunk) = let
val (_, ev) = thunk()
val (cvs, act) = PCML.sync ev
in

List.app PCML.set cvs;
act()

end

We start by evaluating the top-level thunk to get the primitive event value, which we
then synchronize on. The result of synchronization will be a list of cvars that need to
be signaled and the wrapper thunk. We signal the nacks by setting the cvars and then
evaluate the wrapper thunk.

The two combinators that are at the heart of the bookkeeping for negative acknowl-
edgments are withNack and choose. The former creates a new cvar when its thunk
is evaluated. This cvar is passed as an argument to withNack’s argument and is added
to the list of cvars for its result.

103

fun withNack f = let
fun thunk () = let

val nack = PCML.new()
val E thunk’ = f (baseEvt (PCML.waitEvt nack))
val (cvs, ev) = thunk’ ()
in

(nack::cvs, ev)
end

in
E thunk

end

The purpose of negative acknowledgments is to signal that some other event in a choice
was chosen, which means that the choose combinator must associate the cvars of its
left side with the synchronization result of its right side (and vice versa).

fun choose (E thunk1, E thunk2) = let
fun thunk () = let

val (cvs1, ev1) = thunk1()
val (cvs2, ev2) = thunk2()
in (

cvs1 @ cvs2,
PCML.choose (

PCML.wrap(ev1, fn (cvs, th) => (cvs @ cvs2, th)),
PCML.wrap(ev2, fn (cvs, th) => (cvs @ cvs1, th)))

) end
in

E thunk
end

Space does not permit a description of the other mechanisms, but they can be found
in a forthcoming technical report [14].

6 Related work

Various authors have described implementations of choice protocols using message
passing as the underlying mechanism [17–20]. While these protocols could, in prin-
ciple, be mapped to a shared-memory implementation, we believe that our approach is
both simpler and more efficient.

Russell described a monadic implementation of CML-style events on top of Con-
current Haskell [8]. His implementation uses Concurrent Haskell’s M-vars for concur-
rency control and he uses an ordered two-phase locking scheme to commit to commu-
nications. A key difference in his implementation is that choice is biased to the left,
which means that he can commit immediately to an enabled event during the polling
phase. This feature greatly simplifies the implementation, since it does not have to han-
dle changes in event status between the polling phase and the commit phase. Russell’s
implementation did not support multiprocessors (because Concurrent Haskell did not
support them at the time), but presumably would work on a parallel implementation of

104

Concurrent Haskell. Donnelly and Fluet have implemented a version of events that sup-
port transactions on top of Haskell’s STM mechanism [16]. Their mechanism is quite
powerful and, thus, their implementation is quite complicated.

In earlier work, we reported on specialized implementations of CML’s channel op-
erations that can be used when program analysis determines that it is safe [21]. Those
specialized implementations fit into our framework and can be regarded as complemen-
tary.

7 Conclusion

We have described a new protocol for implementing Asymmetric CML on multiproces-
sors. This implementation consists of a primitive layer that provides basic synchronous
operations, non-deterministic choice, and post-synchronization wrappers. This layer is
implemented using a new optimistic-concurrency protocol. The full set of CML event
combinators is then constructed on top of this primitive layer. One advantage of this ar-
chitecture is that the more complicated upper layer does not directly use locks or thread
scheduling operations.

We have implemented the primitive layer in the Manticore system using the Manti-
core compiler’s BOM intermediate representation [13]. This implementation must also
deal with preemption, which we do by locally masking preemption. Unfortunately,
Manticore is not yet stable enough to be able to run meaningful performance tests,
although we have been able to test the correctness of the implementation on an 8-way
parallel system. We expect that the basic performance of the primitives will be good
when channels are used to implement point-to-point communications (as is common),
but the interesting question will be how they perform in a situation with many senders or
receivers sharing a single channel. We plan to provide preliminary performance results
in a forthcoming technical report [14].

In the longer term, we want to extend the PCML layer to support output guards (i.e.,
sendEvt). In our protocol, adding this event constructor complicates the implemen-
tation in a couple of significant ways. First, it becomes possible to write code that has
matching communications in a single choice, as in the following example:

sync (choose (
recvEvt ch,
wrap (sendEvt(ch, 1), fn () => 2)))

The implementation must detect such cases and avoid having a thread communicate
with itself. The second problem is that committing to a synchronization will require
atomically updating the states of two different synchronization events. Two-phase lock-
ing is one possible solution, but it requires introducing a linear order on synchronization
events to avoid deadlock. Instead, we are exploring the use of implementation tech-
niques from STM [22], but we have not worked out the details.

References

1. Reppy, J.H.: CML: A higher-order concurrent language. In: PLDI ’91, New York, NY, ACM
(June 1991) 293–305

105

2. Reppy, J.H.: Concurrent Programming in ML. Cambridge University Press, Cambridge,
England (1999)

3. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised).
The MIT Press, Cambridge, MA (1997)

4. Gansner, E.R., Reppy, J.H. In: A Multi-threaded Higher-order User Interface Toolkit. Vol-
ume 1 of Software Trends. John Wiley & Sons (1993) 61–80

5. Young, C., YN, L., Szymanski, T., Reppy, J., Pike, R., Narlikar, G., Mullender, S., Grosse,
E.: Protium, an infrastructure for partitioned applications. In: HotOS-X. (January 2001)
41–46

6. MLton: Concurrent ML Available at http://mlton.org/ConcurrentML.
7. Leroy, X.: The Objective Caml System (release 3.00). (April 2000) Available from

http://caml.inria.fr.
8. Russell, G.: Events in Haskell, and how to implement them. In: ICFP ’01. (September 2001)

157–168
9. Flatt, M., Findler, R.B.: Kill-safe synchronization abstractions. In: PLDI ’04. (June 2004)

47–58
10. Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: PLDI ’99. (May 1999)

37–49
11. Demaine, E.D.: Higher-order concurrency in Java. In: WoTUG20. (April 1997) 34–47

Available from http://theory.csail.mit.edu/ edemaine/papers/WoTUG20/.
12. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: A heterogeneous parallel

language. In: DAMP ’07, New York, NY, ACM (January 2007) 37–44
13. Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Status report: The Manticore

project. In: ML ’07, New York, NY, ACM (October 2007) 15–24
14. Reppy, J., Xiao, Y.: Toward parallel CML (extended version). Technical report, Department

of Computer Science, University of Chicago Forthcoming.
15. Reppy, J.H.: First-class synchronous operations in Standard ML. Technical Report TR 89-

1068, Dept. of CS, Cornell University (December 1989)
16. Donnelly, K., Fluet, M.: Transactional events. In: ICFP ’06, New York, NY, ACM (2006)

124–135
17. Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized input-

output construct of CSP. ACM TOPLAS 5(2) (April 1983) 223–235
18. Bornat, R.: A protocol for generalized occam. SP&E 16(9) (September 1986) 783–799
19. Knabe, F.: A distributed protocol for channel-based communication with choice. Technical

Report ECRC-92-16, European Computer-industry Research Center (October 1992)
20. Demaine, E.D.: Protocols for non-deterministic communication over synchronous channels.

In: Proceedings of the 12th International Parallel Processing Symposium and 9th Symposium
on Parallel and Distributed Processing (IPPS/SPDP’98). (March 1998) 24–30 Available from
http://theory.csail.mit.edu/ edemaine/papers/IPPS98/.

21. Reppy, J., Xiao, Y.: Specialization of CML message-passing primitives. In: POPL ’07, New
York, NY, ACM (January 2007) 315–326

22. Shavit, N., Touitou, D.: Software transactional memory. In: PODC ’95, New York, NY,
ACM (1995) 204–213

106

	Foreword	
	Conference Organization
	Table of Contents and Program
	Intel 64 Architecture Memory Ordering
	Partial Vectorisation of Haskell Programs
	Efficient Heap Management for Declarative Data Parallel Programming on Multicores
	Implementing Joins using Extensible Pattern Matching
	Executing Action Languages for Planning Problems on Multi-core Platforms: Some Preliminary Results
	Memoizing Multi-Threaded Transactions
	On Supporting Parallelism in a Logic Programming System
	Toward a parallel implementation of Concurrent ML

