
Improving Compilation of Prolog to C Using

Program Information?

J. Morales and M. Carro

Computer Science School
Technical University of Madrid

Boadilla del Monte, E-28660, Spain
jfran@clip.dia.fi.upm.es mcarro@fi.upm.es

Abstract. We describe the current status and preliminary results of a
compiler of Prolog to C. This compiler can use high-level information
on the initial Prolog program in order to optimize the resulting C code,
which is then fed into a off-the-shelf C compiler. The basic translation
process basically mimics the unfolding of a C-coded bytecode emulator
with respect to the bytecode corresponding to the Prolog program. This
allows reusing a sizeable amount of the associated machinery: ancillary
pieces of C code, data definitions, memory management routines and
areas, etc. We evaluate the performance of programs compiled both with
and without compile-time information.

1 Introduction

Several techniques for implementing Prolog have been devised since the inter-
preter originally developed by Colmerauer and Roussel [Col93], many of them
aiming at achieving more speed. A good survey of part of this work can be
found in [Van94]. A rough classification of implementation techniques for Prolog
(extensible to other languages) is the following:

– Interpreters (such as C-Prolog [Per87] and others), where a slight prepro-
cessing or translation might be done before program execution, but the bulk
of the work is done at runtime by the interpreter.

– Compilers to bytecode and their interpreters (often called emulators). The
compiler produces a relatively low level code in a special purpose language,
an interpreter of such code is still needed. Most emulators are based on
the Warren Abstract Machine (WAM) [War83,AK91], but other proposals
exist [Tay91,KB95]. Highly optimized emulators [CDRA00] offer very good
performance.

– Compilers to a lower-level language, which generate an output requiring little
or no additional support to be executed. Ideally, the compiler should generate
directly machine code. Examples of this are the Aquarius system [VD92],
the SICStus Prolog [Swe99] compiler (for some architectures), the latest

? The authors have been partially supported by the Spanish CICYT Project XXXXX
EDIPIA and the EU ESPRITProject 2001-34717 Amos

BimProlog compilers [VDW87,Mar93], the Gnu Prolog compiler [DC01], and
the Mercury [SHC96] compiler1.

Each solution has its advantages and disadvantages. Generation of low level
code promises faster programs at the expense of using more resources during the
compilation phase. Interpreters have smaller load/compilation time and are a
good solution for their simplicity when speed is not a priority; executing the same
Prolog code in differente architectures boils down (in principle) to recompiling
the interpreter. Compilers are more complex than interpreters, and the difference
is much more acute if some form of code analysis is performed as part of the
compilation, which impacts development time. Emulators place themselves in
some intermediate point, retaining the portability of interpreters, since only the
emulator has to be recompiled for every target architecture (bytecode is usually
architecture-independent).

In this paper we will summarily describe work on progress on a compiler of
Prolog to C, together with a scheme to optimize the resulting code using higher-
level information on the source program. These optimizations can be used to
tackle lower-level issues, and therefore exceed what can be expressed solely by
means of Prolog-to-Prolog transformations. Note that the selection of C as tar-
get (low-level) language does not, in practice, prevent portability, as C compilers
exist for most architectures. Besides, C is low-level enough as to apply optimiza-
tions to its generation which will eventually make into the final executable code
in a form known beforehand, therefore offering a good compromise between speed
and portability.

In the rest of the paper write here the plan of the rest of the paper,
if we have space.

2 Issues on Compiling Prolog to Lower Level Languages

Making as much work as possible at compile time in order to avoid run-time
overhead is expected to bring more speed to a system: native code has all the
odds to be faster than C, C has the same relationship with a bytecode emulator,
and a bytecode emulator with an interpreter. Additionaly, code optimization
can be put to work made at all levels — e.g., Prolog itself [Win89,PGH97],
WAM code [FD99], lower-level code, and native code. However, optimizations
performed at a higher language level are implicitly carried onto lower levels,
while new optimizations can be introduced as we approach native code level.

A practical matter is that compilers to native code need architecture-dependent
back-ends. This may make porting and maintaining them a non-trivial task.
Systems as Gnu Prolog try to avoid the mousetrap by using an intermediate
“mini-assembler” code, easy to translate into machine code for different archi-
tectures. But it requires, anyhow, different back-ends for different architectures.

1 Although Mercury is not a Prolog compiler, the source language is close enough as
to be mentioned here.

Besides, recent performance evaluations [DC01] show that well-tuned emulator-
based Prolog systems can beat, at least in some cases, Prolog compilers which
generate machine code directly.

A practical reason to compile to C is the availability of good C compilers
for most architectures, which eventually tackle the task of generating executable
code. Besides, the possibility of reusing components of an already emulator-based
existing system (Ciao Prolog [HBC+99], a SICStus Prolog 0.5 derivative which
we are using as development platform) is a practical advantage: by adopting
the same scheme for memory areas, data tagging, etc., existing fragments of C
code (builtins, low-level file and stream management, memory management and
garbage collection routines, etc.) can be used by the new compiler, which only
has to replace the WAM emulator.

The difference with other, similar systems which compile to C or native code
comes from using compile-time information regarding determinacy, types, in-
stantiation modes, etc. This information is expressed by means of a well-defined
assertion language [PBH00], and provided either by the user or by automatic
global analysis tools [HBPLG99]. For example, wamcc (a Gnu Prolog forerun-
ners), which generated C, did not use extensive analysis information (but it
included clever tricks which in practice tied it to a single C compiler, gcc);
Aquarius [VD92] used analysis information at several compilation stages, but
it generated directly machine code, and it was therefore difficult to port and
maintain. Notwithstanding, it proved the power of using global information in a
Prolog compiler.

A drawback of putting more burden on the compiler is that compile times
grow, and compiler complexity increases. While this can turn out to a problem
in extreme cases (specially if global analysis is made), incremental analysis and
the aid of a module system [CH00] can help to alleviate it in practice. Moreover,
global analysis is, in our proposal, not mandatory, and can be left to generate fi-
nal executables. We expect that, as the system matures, the Prolog-to-C compiler
itself (now in a prototype stage) will not be slower than a Prolog-to-bytecode
interpreter.

Another common issue in compiling to lower-level languages is the size of
the final object code files, usually bigger than their bytecode counterparts, since
single bytecode instructions correspond to several machine code instructions.
Global information can be used to reduce this size difference by specializing
C code, but additional means to reduce code size have to be adopted in the
generation of C code itself.

3 An Overview of the Compiler

The compilation process starts by a preprocessing phase which canonizes clauses
(removing aliasing and structure unification from the head), and expands dis-
junctions, negations and if-then-else constructs. It also replaces is/2 by calls to
arithmetic builtins and executes a simple, local analysis which gathers informa-
tion about the type (was ’mode’... what is ’mode’ in Prolog? I think

put variable(I,J) 〈uninit,I〉 = 〈uninit,J〉
put value(I,J) 〈init,I〉 = 〈uninit,J〉

get variable(I,J) 〈uninit,I〉 = 〈init,J〉
get value(I,J) 〈init,I〉 = 〈init,J〉

unify variable(I[, J]) 〈uninit,I〉 = 〈modedep,J〉
unify value(I[, J]) 〈init,I〉 = 〈modedep,J〉

Table 1. Representation of some WAM unification instructions with types

we only need to talk about types) and freeness of variables; having this
analysis in the compiler helps to improve the code even in the case that no ex-
ternal information is available. The next steps include the traslation of Prolog to
WAM-based instructions (also used by the Ciao Prolog emulator), splitting these
WAM instructions into an intermediate low level code, and the final traslation
to C.

3.1 Typing WAM Instructions

WAM instructions are internally handled with an enriched representation which
encodes clearly the possible instantiation state of the terms the instructions
refer to. This helps in using type information, and also in generating and propa-
gating low-level information regarding the abstract machine type and instantia-
tion/initialization state of the variables (which is not seen at a higher level). Each
unification instruction is represented as 〈TypeX,MemX〉 = 〈TypeY,MemY〉,
where TypeX and TypeY refer to the classification of WAM-level types (see
Figure 1), and MemX and MemY refer to the registers where these variables
live.

Table 1 summarizes the aforemen-top

init uninit modedep

first local unsafe

bottom

Fig. 1. Lattice of WAM types

tioned representation (only for some
selected cases). The registers taken as
arguments are the temporary registers
(x(I)), the stack registers (y(I)) and
the register for structure arguments
(n(I)). The last one can be seen as
the second argument which is implicit
in all the unify * WAM instructions.
* constant, * nil, * list and * structure
WAM are represented similarly.

The advantage of this representation is that it is more uniform than WAM
instructions, and allows handling it more easily. In particular, as more informa-
tion is known about the variables, the associated types can be refined in order
to generate more specific code. Using a richer lattice and initial information
(Section 4), a more descriptive intermediate code is generated and used in the
back-end.

Data

load(X, Type) Load X with a term
trail if conditional(A) Trail if A is a conditional variable
bind(TypeX, X, TypeY, Y) Bind X and Y
read(Type, X) Begin read of the structure arguments of X
deref(X, Y) Dereference X into Y
move(X, Y) Copy X to Y
globalize if unsafe(X, Y) Copy X to Y ensuring safeness
globalize to arg(X, Y) Copy X to argument register Y ensuring safeness

function(N, Is, O, H, Live) Call a function
builtin(N, Is, Success) Call a builtin

Control

ijump(X) Jump to the address stored in X
jump(Label) Jump to Label
cjump(Cond, Label) Jump to Label if Cond is true
switch on type(X, Var, Str, List, Cons) Jump to the label that matchs the type of X
switch on functor(X, Table, Else)
switch on cons(X, Table, Else)

Conditions

not(Cond) Negate the Cond condition
test(Type, X) True if X matchs Type
equal(X, Y) True if X and Y are equal
erroneous(X) True if X has an erroneous value

Table 2. Control and data instructions

3.2 Intermediate Low Level Language

In order to be suitable for optimizations and simplify output carried to the C
back-end, the WAM instructions are split into simpler ones, with a deegre of
complexity similar to the proposed in the BAM [VR90]. Table 3 are directly
derived from the bytecode. The Table 2 shows the control and data instructions,
where the Type argument in bind is used to specify if the registers contains a
variable (and if is known, a heap, stack or constrained variable) or not, in load
indicates the term to be loaded and in test the term with which be compared.
For the compilation of structures, the use of write and read modes is avoided
using a two-stream scheme [REF]. Also, this scheme requires explicit control [REF] the wonder

years of sequential
prolog implementa-
tion + 8, 85,87,16,
93,147 in the Van
Roy article. Van Roy
says that almost 5
persons discovered it
independently...

instructions like jumps and conditional jumps. For efficient indexing, the WAM
instructions switch on term, switch on cons and switch on functor are also in-
cluded, although at the moment, the C back-end resorts to a linear search in
some cases. One difference with the WAM instruction is that, the only way to
fail is with a jump to the special label local(fail). For that reason, builtins store
a failure state in a given register.

Scheme of the Compilation to C The compilation scheme produces C code
which correspond to an unfolding of the emulator loop with respect to the byte-
code. In the points where the emulated program counter changed a continuation

no choice Mark that there is no alternative
first choice(Arity, Alt) Create a choice point
middle choice(Arity, Alt) Change the alternative
last choice(Arity) Remove the alternative
complete choice(Arity) Complete the choice point
cut choice(Chp) Make a cut with the given choice point
push frame Allocate a frame on top of the stack
complete frame(FrameSize) Complete the stack frame
modify frame(NewSize) Change the size of the frame
pop frame Deallocate the last frame
recover frame Recover after returning from a call
ensure heap(CS, Amount, Arity) Ensure that enough heap is allocated,

where CS indicates if the choice point
completion status

Table 3. Choice, stack and heap management instructions

while (code != NULL)

code = ((Continuation (*)(State *))code)(state);

Continuation foo(State *state) {

...

state->cont = &foo_cont;

return &foo2;

}

Continuation foo_cont(State *state) {

...

return state->cont;

}

Fig. 2. The C execution loop and blocks scheme

passing using pointers to functions was used. Each block of bytecode, which be-
gins in a label and ends in a instruction involving a possible jump, is translated
to a C function with the state of the abstract machine as input argument and
the next continuation as output argument. All the execution is driven by a con-
tinuation execution loop as one can see on figure 2 . An optimization used to
reduce this overhead is the use of C labels and gotos statements for those labels
which are not going to be saved in a register or a memory cell and which are
in adjacent blocks. This scheme does not require the use of machine dependant
options of the C compiler or extensions to the ANSI C language. Other systems
like [CDRA00] or [SHC96] can be tunned with the use of machine-dependant
and non-portable constructs obtaining a very good performance. However, the
main goal of our system was the optimization of a fixed compilation scheme with
program information. In addition, the translation to C is viewed as a back-end
and could be improved without a great impact over the compiler.

3.3 An Example: the fact/2 Predicate

We will illustrate summarily the compilation stages with the well-known fact/2

predicate. We have chosen it due to its simplicity (performance gain is not very

high). The initial code and the one after canonizing and rewritten to make
explicit calls to builtins are shown in Figures 3 and 4. The WAM code corre-
sponding to the recursive clause is in the leftmost column of Table 4, and the
internal representation of this code appears in the same table, in the middle col-
umn. Note how variables are annotated using information which can be deduced
from local inspection of the clause.

This WAM-like representation is translated to the low-level code shown in
Figure 5 (ignore, at the moment, the shadowed and framed regions; they will be
discussed on in Section 4). This code, which is quite low level now, is translated
to C. Blocks of contiguous instructions (i.e., those execution is sequential) are
translated into functions which are called by the driver loop of the emulator.

Executing fact(100, N) 20000 times took 3.32 seconds using the bytecode
emulator, and 2.84 seconds with the C-compiled code C without exernal type
information (a speedup of 1.16). We will see in the next section how this perfor-
mance can be improved with the use of type information.

fact(0, 1).

fact(X, Y) :-

X > 0,

X0 is X - 1,

fact(X0, Y0),

Y is X * Y0.

Fig. 3. Factorial, initial code

fact(A, B) :-

0 = A,

1 = B.

fact(A, B) :-

A > 0,

builtin__sub1_1(A, C),

fact(C, D),

builtin__times_2(A, D, B).

Fig. 4. Factorial, after canonization

4 Improving Code Generation

Generate WAM code with detailed type information is done by extending the
init element in the lattice described in Figure 1 with the type domain in Figure 6.
Then, the generation of low level code uses this information to reduce unnecesary
tests. Although the type information is added manually, could be obtained with
global analysis tools like CiaoPP.

4.1 Using Information inside the Compiler

During the compilation to low level code the information about the types of the
variables is used to avoid innecesary tests. A call to the general unify builtin
can be replaced by the more specialized bind instruction if one or the two argu-
ments are known to store variables. If both arguments are known to be constants
(atoms or integers), then a simple comparision instruction can be emitted in-
stead. The unification of a register with a structure or constant needs a first
test for determining which WAM unification mode, or unification stream when
compiling to the low level language, will be chosen based on the freshness of
the variable. Also, in read mode an additional test is required to compare the
register value with the constant or the structure functor.

global(fact/2):
first choice(2,V1)
ensure heap(incompleted choice,callpad,2)

deref(x(0),x(0))

cjump(not(test(var,x(0))),local(V3))
load(temp2,int(0))
bind(var,x(0),nonvar,temp2)

jump(local(V4))
local(V3):

cjump(not(test(int(0),x(0))),local(fail))

local(V4):

deref(x(1),x(1))

cjump(not(test(var,x(1))),local(V5))

load(temp2,int(1))

bind(var,x(1),nonvar,temp2)jump(local(V6))

local(V5):
cjump(not(test(int(1),x(1))),local(fail))

local(V6):

complete choice(2)

ijump(continuation)
global(V1):

last choice(2)

load(x(2),int(0))

builtin(numgt 2,[x(0),x(2)],ok)

cjump(not(ok),local(fail))
push frame
move(x(1),y(0))

move(x(0),y(2))
load(y(1),var(stack))

complete frame(3)

function(sub1 1,[x(0)],x(0),0,1)

cjump(erroneous(x(0)),local(fail))
move(y(1),x(1))

modify frame(3)
load(continuation,global(V0))

jump(global(fact/2))
global(V0):

recover frame

move(y(2),x(0))
move(y(1),x(1))

function(times 2,[x(0),x(1)],x(0),0,2)
cjump(erroneous(x(0)),local(fail))

deref(y(0),temp)
deref(x(0),x(0))

builtin(unify,[temp,x(0)],ok)

cjump(not(ok),local(fail))

pop frame

ijump(continuation)

Fig. 5. Low level code for the fact/2 example (see also Section 4)

WAM code Without Types With Types

put constant(0,2) 0 = 〈uninit,x(2)〉 0 = 〈uninit,x(2)〉
builtin 2(37,0,2) 〈init,x(0)〉 > 〈int(0),x(2)〉 〈int,x(0)〉 > 〈int(0),x(2)〉
allocate builtin push frame builtin push frame
get y variable(0,1) 〈uninit,y(0)〉 = 〈init,x(1)〉 〈uninit,y(0)〉 = 〈var,x(1)〉

get y variable(2,0) 〈uninit,y(2)〉 = 〈init,x(0)〉 〈uninit,y(2)〉 = 〈int,x(0)〉

init([1]) 〈uninit,y(1)〉 = 〈uninit,y(1)〉 〈uninit,y(1)〉 = 〈uninit,y(1)〉
true(3) builtin complete frame(3) builtin complete frame(3)
function 1(2,0,0) builtin sub1 1(builtin sub1 1(

〈init,x(0)〉, 〈uninit,x(0)〉) 〈int,x(0)〉, 〈uninit,x(0)〉)

put y value(1,1) 〈var,y(1)〉 = 〈uninit,x(1)〉 〈var,y(1)〉 = 〈uninit,x(1)〉
call(fac/2,3) builtin modify frame(3) builtin modify frame(3)

fact(〈init,x(0)〉, 〈init,x(1)〉) fact(〈init,x(0)〉, 〈var,x(1)〉)

put y value(2,0) 〈init,y(2)〉 = 〈uninit,x(0)〉 〈int,y(2)〉 = 〈uninit,x(0)〉
put y value(2,1) 〈init,y(1)〉 = 〈uninit,x(1)〉 〈number,y(1)〉 = 〈uninit,x(1)〉

function 2(9,0,0,1) builtin times 2(〈init,x(0)〉, builtin times 2(〈int,x(0)〉,
〈init,x(1)〉,〈uninit,x(0)〉) 〈number,x(1)〉, 〈uninit,x(0)〉)

get y value(0,0) 〈init,y(0)〉 = 〈init,x(0)〉 〈var,y(0)〉 = 〈init,x(0)〉

deallocate builtin pop frame builtin pop frame
execute(true/0) builtin proceed builtin proceed

Table 4. WAM code and internal representation without and with external types
information. Affected instructions are underlined.

init

var nonvar

list str

str(N/A)

atomic

number

int

int(X)

large

large(X)

atom

atom(X)

bottom

Fig. 6. Extended init subdomain

The conditions of all of these individual tests can be reduced to true or false
if enough information is known about the variable type. The condition A makes
true the test Type, can be reduced to true if the type of A is lower or equal in
the type lattice to Type, whereas can be reduced to false if it is lower or equal
to the negated of Type.

Other place where the type information is used for optimizing the program is
in the index tree generation. The index is calculated by extracting some literals
from the clause which are known that have not side effects. With the analysis
information the type of the indexed argument is extracted and called the clause
key. Once the key is know for each clause, a list of basic types of the union
of them creating a index tree in which leafs the clauses are distributed. Thus,
giving more information about the type of the indexed argument or improving
the analysis gives a more accurate index tree. For example, a predicate whose
first argument is known to be always a boolean value, does not need a complex
index table.

Other minor optimization that is done in the low level code with type in-
formation is the replacement of globalizing instructions for unsafe variables by
explicit dereferences. When the type of a variables is nonvar, it is sure that the
globalizing instruction is equivalent to a dereference.

Within the optimize of unifications, the builtins can also be optimized. Their
code is external to the compiler, but can be optimized selecting a specialized
version using patterns of types on call and types on exit. In the current system
the unique builtins specialized are the arithmetic and assume that a function
with all arguments being small integers (which can be stored in one cell) returns
a small integer. That happens because in the pattern matching the types on exit
are not considered.

4.2 An Example: the fact/2 Predicate with program information

Suppose that the fact/2 predicate is always called with its first argument in-
stantiated as a small integer and its second argument free. This information can
be written in the CiaoPP notation as the assertion:

:- trust pred fact(X, Y): t_int * t_var => t_int * t_number.

Program Bytecode C Code Opt. C Bytecode/C Bytecode/Opt. C

queens(11) 780 550 260 1.41 3.00
crypt 1770 1260 920 1.40 1.92
tak 1120 1050 640 1.06 1.75
qsort 610 450 370 1.35 1.65
primes 1240 1110 820 1.11 1.51
knights 720 660 600 1.09 1.20
poly 510 520 440 0.98 1.15
exp 561 530 540 1.06 1.03
fib 350 420 380 0.83 0.92

Average 851 727 552 1.14 1.57
Table 5. Bytecode emulation vs. unoptimized and optimized compilation to C

The propagation of these types through the canonized predicate gives the
annotated program shown in Table 7.

fact(A, B) :-

trust(t_int(A)),

0 = A,

trust(t_var(B)),

1 = B.

fact(A, B) :-

trust(t_int(A)),

A > 0,

trust(t_int(A)), trust(t_var(C)),

builtin__sub1_1(A, C),

trust(t_any(C)), trust(t_var(D)),

fact(C, D),

trust(t_int(A)), trust(t_number(D)), trust(t_var(B)),

builtin__times_2(A, D, B).

Fig. 7. Annotated factorial (using type information)

The WAM code generated for this example is in Table 4. Notice how the un-
derlined instructions obtain more detailed type information. The shaded regions
in the low level code in Figure 5 represent the instructions that disappear in the
optimized example, whereas the builtins enclosed in rectangles are replaced by
specialized versions.

For optimized program it took 2.360, that is a 40% speedup versus Ciao and
a 20% over the compilation without any information. The code size was almost
the same than for the simpler compilation to C.

5 Performance Measurements

We have evaluated the performance behavior of our compiler with respect to the
emulated bytecode in a set of selected benchmarks. The benchmarks are not real-
life programs, and some of them have been executed up to 10.000 times in order
to obtain reasonable execution times. All the measurements have been made in
a Pentium 4 @ 1.7GHz with a 256KB cache and 256MB of RAM, running Linux
with a 2.4 kernel and using gcc 3.0.4 as C compiler.

The summary of the results is in Table 5; the second, third, and fourth
columns correspond, respectively, to the execution times of programs compiled
to bytecode, to C, and to C optimized using information on the program. The
next two columns show the speedup of programs compiled to C and to optimized
C with respect to the emulated bytecode version.

The performance gain in the näıve translation to C is not impressive (Explain
why!) , and there are some programs which even show some slowdown. We have
traced this to be due to several factors:

– The simple compilation scheme generates C code as clean and portable as
possible, avoiding tricks which would speed the programs up. The profile
execution is also very near to what the emulator would make.

– The C execution loop (Figure 2) is slightly more costly (for a few assembler
instructions) than the fetch/switch loop of the emulator. We have traced this
to be the cause of the slowdown of the fib benchmark. We want to improve
this point in a future.

– The increment in size of the program (Table 6) may also cause more cache
misses. We still have to investigate this point in more detail.

As expected, the performance obtained by using compile-time information is
much better. Manually added assertions provided the information to the com-
piler; that information could eventually be automatically inferred by a global
analysis tool.

The best speedups are obtained in benchmarks using arithmetic builtins, in
which several groundness and type checks can be removed from the C code.
This is, for example, the case of queens, in which it is known that all the
numbers involved are small integers (i.e., no need for unbound length number
arithmetic is needed). Besides avoiding checks in, the functions which implement
the arithmetic operations for small integers are simple enough as to be inlined
by the C compiler. This is an example of an added benefit which comes for free
from compiling to an intermediate language (C, in this case) and using tools
designed for it.

Table 6 compares object size of the bytecode and of the schemes of com-
pilation to C. As mentioned in Section 2, due to the different granularity of
instructions, larger object files and executables are expected when compiling to
C. The ratio is, however, not excessive: the worst case yields a tenfold increase
with respect to the bytecode, the average case being below five times the byte-
code size; some cases do not reach a threefold increase. In general, the ratio
improves when optimizing information is used (rightmost column), since several
tests are removed from the program. In some cases the size of the C code grows,
however, when using more compile time information. The reason is that in the
optimized version the bind and arithmetic operations are inlined generating a
slight larger code.

Some of the optimizations used in the compilation to C do not give compara-
ble results when applied directly to a bytecode emulator. We made a version of
the bytecode emulator specialized to work only with small integers (which can

Program Bytecode C Code Opt. C C/Bytecode Opt. C/Bytecode

queens(11) 7157 22432 19776 3.13 2.76
crypt 10632 69860 71588 6.57 6.73
primes 6398 23368 18000 3.65 2.81
tak 5434 15732 16120 2.89 2.96
poly 13531 81444 69660 6.01 5.14
qsort 6972 71788 58824 10.2 8.43
exp 6453 20536 20808 3.18 3.22
fib 5323 11852 11868 2.22 2.22
knights 7801 28496 28388 3.65 3.63

Average 7744 38389 35003 4.61 4.21

Table 6. Compared size of object files (bytecode vs. C)

be boxed into a tagged word). For example, a speedup of the bytecode emulator
hand-coded to work only with small integers was much lower than the one ob-
tained doing the same with the compilation to C. Indeed, that means that when
the builtin call overhead is reduced, as is the case of the compilation to C, some
minor optimizations for emulated systems adquire greater importance.

6 Conclusions and Future Work

Conclusions:

- in emulated and native compilation systems, the optimizations techniques
have not the same performance impact. - unrolling a emulator replaces the em-
ulation overhead by the C scheme overhead for emulating the Prolog control.
- types can be integrated in a WAM-based compiler without great changes. -
the use of a low level intermediate code simplifies the traslation to C. - Using
program information for optimizing a bytecode emulator system is more difficult
that work with a native compilation scheme because the former needs to main-
tain a very large instruction set for all the specialized instructions or reduce the
bytecode granularity, augmenting the emulation overhead.

Future work:
- better program information: - automated connection with CiaoPP to obtain

the needed program information - improved domains for types - study low level
optimizations with more analysis (not only types) (using CiaoPP) - integration
with CiaoPP Prolog-to-Prolog optimizations

- low level code: - optimization of the control using program information
about determinism (for example, replace indirect jumps by jumps, replace jumps
to ’fail’ (failing) with a jump to the next clause when it is known)

- improved back-ends: - custom representation of terms and control structures
in the C back-end to reduce the overhead (may be not useful or reasonable for all
the variables and types and determinism) (require modifications in the low level
code and the compilation process) - improve the ANSI C back-end and WAM
definitions (tags, operations...). - explore non ANSI C optimizations: variables in

registers, goto to variables (like Mercury, Yap). - back-ends to other languages
higher level languages (Java, C-sharp) or lower level languages (GCC RTL, x86,
CIL, Java bytecode) (and study the performance impact).

References

[AK91] Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.
MIT Press, 1991.

[CDRA00] V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. The Yap Prolog
User’s Manual, 2000. Available from http://www.ncc.up.pt/~vsc/Yap.

[CH00] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In
International Conference on Computational Logic, CL2000, number 1861
in LNAI, pages 131–148. Springer-Verlag, July 2000.

[Col93] A. Colmerauer. The Birth of Prolog. In Second History of Programming
Languages Conference, ACM SIGPLAN Notices, pages 37–52, March 1993.

[DC01] D. Diaz and P. Codognet. Design and Implementation of the GNU Prolog
System. Journal of Functional and Logic Programming, 2001(6), October
2001.

[FD99] M. Ferreira and L. Damas. Multiple Specialization of WAM Code. In Prac-
tical Aspects of Declarative Languages, number 1551 in LNCS. Springer,
January 1999.

[HBC+99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,
P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and
System: An Experimentation Workbench for Future (C)LP Systems. In
Parallelism and Implementation of Logic and Constraint Logic Program-
ming, pages 65–85. Nova Science, Commack, NY, USA, April 1999.

[HBPLG99] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program
Analysis, Debugging and Optimization Using the Ciao System Preproces-
sor. In 1999 International Conference on Logic Programming, pages 52–66,
Cambridge, MA, November 1999. MIT Press.

[KB95] Andreas Krall and Thomas Berger. The VAMAI - an abstract machine
for incremental global dataflow analysis of Prolog. In Maria Garcia
de la Banda, Gerda Janssens, and Peter Stuckey, editors, ICLP’95 Post-
Conference Workshop on Abstract Interpretation of Logic Languages, pages
80–91, Tokyo, 1995. Science University of Tokyo.

[Mar93] André Mariën. Improving the Compilation of Prolog in the Framework of
the Warren Abstract Machine. PhD thesis, Katholieke Universiteit Leuven,
September 1993.

[PBH00] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language
for Constraint Logic Programs. In P. Deransart, M. Hermenegildo,
and J. Maluszynski, editors, Analysis and Visualization Tools for Con-
straint Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag,
September 2000.

[Per87] F. Pereira. C-Prolog User’s Manual, Version 1.5. University of Edinburgh,
1987.

[PGH97] G. Puebla, J. Gallagher, and M. Hermenegildo. Towards Integrating
Partial Evaluation in a Specialization Framework based on Generic Ab-
stract Interpretation. In M. Leuschel, editor, Proceedings of the ILPS’97
Workshop on Specialization of Declarative Programs, October 1997. Post
ILPS’97 Workshop.

[SHC96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of
Mercury: an efficient purely declarative logic programming language. JLP,
29(1–3), October 1996.

[Swe99] Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista,
Sweden. SICStus Prolog 3.8 User’s Manual, 3.8 edition, October 1999.
Available from http://www.sics.se/sicstus/.

[Tay91] A. Taylor. High-Performance Prolog Implementation. PhD thesis, Basser
Department of Computer Science, Unversity of Sidney, June 1991.

[Van94] P. Van Roy. 1983-1993: The Wonder Years of Sequential Prolog Imple-
mentation. Journal of Logic Programming, 19/20:385–441, 1994.

[VD92] P. Van Roy and A.M. Despain. High-Performace Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54–68,
January 1992.

[VDW87] P. Van Roy, B. Demoen, and Y. D. Willems. Improving the Execution
Speed of Compiled Prolog with Modes, Clause Selection, and Determin-
ism. In Proceedings of TAPSOFT ’87, Lecture Notes in Computer Science.
Springer-Verlag, March 1987.

[VR90] P.L. Van Roy. Can Logic Programming Execute as Fast as Imperative
Programming? PhD thesis, Univ. of California Berkeley, 1990. Report No.
UCB/CSD 90/600.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Report
309, Artificial Intelligence Center, SRI International, 333 Ravenswood Ave,
Menlo Park CA 94025, 1983.

[Win89] W. Winsborough. Path-dependent reachability analysis for multiple spe-
cialization. In 1989 North American Conference on Logic Programming.
MIT Press, October 1989.

