
The Amos Project: an Approach

to Reusing Open Source Code

Manuel Carro?

mcarro@fi.upm.es

Computer Science School
Technical University of Madrid

Boadilla del Monte, 28660 Madrid, Spain

Abstract. Building reliable software products based on components
whose properties are well established and understood is one of the key
goals of component-based software development. There are some cases
in which this approach has to face practical problems: for example, when
development is based on code not formally developed, and development
in the presence of thousands of components. We describe the basis and
current work in Amos, an IST-funded project that aims at facilitating
the search and selection process of source code assets in order to ease its
reuse. We show how, although the description of source code packages is
generated using a non-formal method, the search and assembly process is
done at a formal level, assuming the package characterization is a faith-
ful description. We argue that lessons learned from this approach will
be of use to learn about the characterization of software code not for-
mally developed, and about the search for the right component amongst
thousands of other components.

1 Introduction and Motivation

Motivations for this paper:

– not components, in a strict sense
– however, something in common:
• once packages are characterized, then the reasoning is formal

• (it is their characterization which is not formal)
– Reasons to do this: difficult to:
• characterize formally thousands of already existing packages

• characterize formally some components (i.e., editor)
– What Amos tackles can also be seen as “how would you work if you had

15.000 components?”. Searching becomes an issue — not yet solved in the
components world.

– Once the package is described, it can be taken as a component

? The author has been partially supported by the EU Project IST 2001-34717 Amos.
The author wishes to thank also the project participants, whom many of the ideas
herein are due to.

Software development is currently one of the most important and strategic
activities for any country; the creation of new software is now at the heart of
many technological advances. This is not only an issue for businesses, but also for
the users who request new functionalities and services, and for the governments
themselves.

Many opinions have been put forward lately about the rôle that proprietary
code is to play in this scenario, some of which bring about doubts as to whether
proprietary software:

– can evolve fast enough as to keep pace with rapid changes in user require-
ments, and

– is appropriate to be used in tasks in which the security of sensible data
cannot be compromised (recall that most proprietary software code usually
remains largely unscrutable for the bulk of the C.S. and I.T. professionals).

Open Source Code (OSC) [Ini97], in many variants, offers an alternative
to more traditional development schemes. In short (and not exhaustively), and
among other characteristics, OSC development:

– is usually decentralized, in the sense than umbrella organizations do not
always play a fundamental rôle;

– gives access to the source of the final products, which allows other developers
to audit and reuse that code;1

– is often distributed at no charge for the final user (although a fee for main-
tenance, manuals, packaging, etc. is accepted within the community).

The rise of OSC is now materialized in several thousands of software pro-
ducts, ranging from smart shell scripts to whole database systems, digital image
processing packages and programs, and operating systems. The quality [Whe02]
and availability of many of these products has made several companies and
software vendors to gear towards using and producing environments based on
OSC.

One of the characteristics of OSC-based development is that the source code
of all products is available, and in many cases can be studied and adapted.
Therefore, it is not strictly necessary to look for, e.g., libraries which provide
exactly the required capabilities: an approximate behavior is often enough, since
programmers can change it. Even more, programs which are known to perform
similar tasks can be inspected to locate reusable parts. Studies [WES87] show
that programmers are resonably good (and consistently optimistic) at the task
of deciding whether to adapt existing code or start writing from scratch.

In some (very informal) sense, source code which performs a well defined task
can be termed as component, despite its behavior not being wholly specified
with the accuracy level CBD needs. In order to mark this lack of formalism, we

1 It is not always the case that OSC is free, and in this case it is usually termed Free
or Gratis. We will not deal with this matter here, but we will assume that there the
source code is available and reusable, without caring about its origin.

will use the name of package for OSCs piece, with the proviso that we are not
necessarily referring to the so-called packages in many distributions of popular
operating systems.

The Amos project proposes a method and a tool to characterize and sys-
tematically select among a database of package descriptions, those packages to
be assembled in order to realize a software project (or a part thereof). We will
describe the ideas behind the project and sketch its relationship with CBD and
LP.

2 Background

Finding appropriate components is a prerequisite in order to reach the point of
assembling them. Presently, the only reliable way to do this is by extensive search
through software libraries. Current research on software matching is focused on
two aspects:

– The use of formal languages to describe packages and to match them at the
interface or functional level. This approach requires software development
with a formal treatment and accurate descriptions of the software through
all the process, This generates very precise matches, but it is difficult to
extend to higher-level, informal descriptions, usually found when software
has not been formally developed.

– The use of natural language processing to search for a specific package inside
of a large repository. This is more closely related to the work proposed in
this project (see for example the ROSA [dRG95,GI95] software reuse en-
vironment). It is however more focused on finding components matching a
specific pattern expressed in English (e.g. “tool that searches text in files”).
It is also usually based on simple single-line sentences to describe the pack-
ages, and cannot request a series of capabilities. Therefore, it is not suited
to large scale components, and cannot perform a “minimum cost matching”
(in terms of the extra effort needed to couple the retrieved packages).

In [MMM95], recent research work on the software matching field is analyzed
and classified. Following that paper, our approach can be termed as an extended
lexical-descriptor frame-based approach, where the strict tabular-based approach
of adding semantics to dictionary words is extended with a more flexible ontology
that is in general tree-based. Also, in the same review it is shown that a benefit
of lexical based approaches is that they are capable of high recall and precision,
and are not constrained by limitations of current theorem provers or formal
specification methods. On the other hand, composition of packages selected using
non-formal descriptions may not be immediately possible, but we are assuming
the availability of code, and therefore programmers can bridge the gap between
what is available and what is needed.

3 Building Software Based on Open Source Code: the

Amos Approach

The core of the project is the development of an ontology for Open Source code,
able to describe code assets, and the implementation of an indexical search based
on the descriptions of each of the instantiations of this ontology.

The ontology provides an underlying tree structure which adds semantics
(and more information) to the database contents, and instantiations of the on-
tology provide descriptions of packages. The dictionary is an unordered set of
terms which are used to describe the items in the database of package descrip-
tions. The dictionary is updated by adding the terms necessary to describe new
items in the database, until a sufficiently rich set of terms appear in the database.
Synonyms (different wordings that represent the same concept) and generaliza-
tions can be associated to any element in the dictionary. Synonyms are useful for
users in whose field of knowledge a particular term is applied to some concept;
generalizations are used to broaden a search when the more specific term yielded
no matching description.

The search engine is in charge of answering the user request (a series of terms
from the dictionary meaning desired capabilities), with a set of packages whose
descriptions give the requested capabilities. The set of returned packages should
cover as much as possible the user’s request. In the search process, the needs
of some packages (i.e., packages which in turn need other packages) are taken
into account to return a set of components as self-contained as possible. It is
possible, however, that some query term, either initially entered by the user or
generated while performing the search, remain unmatched. Different measures
of optimality can be used to choose among different search possibilities.

←→
AMOS
engine

←→
GhostScript

ImageMagick

Fig. 1. A high-level view of the architecture

3.1 The Ontology and the Dictionary

The ontology is a set of structured, tree-like commented “slots” that are used
to store facts about source code packages in general. This is unlike other com-
mon uses of ontologies in that we will use it not only to structure information,
but also to perform reasoning (in the form of search) on them, by means of

a matching engine. Most ontology definitions are done nowadays using XML-
based languages and representations like DAML+OIL [FvHH+01,HPS01]. We
have chosen a different approach, because we did not foresee a lengthy work
on the ontology itself and we preferred to have an easy-to-understand, easy-to-
parse, human-readable description of the project. In addition to that, the rea-
soning part will be performed by a matching engine programmed with the Ciao
Prolog [HBC+99] programming environment, with which parsing the ontology
files generated withing the project would be easy.

For this reason, and to facilitate the initial work, we have adapted a very
simple ontology description language that is simply an enumeration of classes.
Attributes are stated in lines:

<x>.<y>: <z> (type):a:b

which means that in class <x> the modifier <y> has value <z> and type (type),
and has minimum and maximum cardinalities a and b, respectively. If either a or
b are not present, then absence of constraints is assumed. There is no assump-
tion of any ordering among the ontology fields. This simplified representation
allows using common Unix text tools to process it, and it is relatively easy to
read and transform into other representations. Common types, such as string,
date, and others, are part of already existing RFD standards (see, for example,
http://www.w3.org/TR/xmlschema-2/, for a definition of standard datatypes).

Two fields have special importance to perform searches: the one which ex-
presses the requirements of a package, and the one which expresses what capabil-
ities are provided by a package. Both are simply expressed as lists of dictionary
items. Initial user requirements are satisfied by selecting packages whose offered
capabilities match those expressed by the user; in turn, requirements by these
selected packages are treated similarly.

We have striven to be compliant with existing standards (still scarce at the
moment). The most developed is the IEEE 1420.1 BIDM standard [RLIG93,RLIG95],
and we tried to follow it with some extensions from the NHSE working group on
Software Repositories. In particular, the fields for the certification property have
been added to our package descriptions. These may be useful and applicable in
specific fields like aerospace or health care.

3.2 The Search Engine

The search engine is in charge of generating assemblies of packages which fulfill
a set of user requirements. A package A may need several capabilities a, b, c, . . .,
and provide several other capabilities m, n, o, . . .; we will write this as Aa,b,c...

m,n,o....
A very schematic matching algorithm is shown in Figure 2. later! — where?

Requirements and capabilities can be associated to the preconditions and
postconditions in the realm of plan generation, or to premises and consequences
in the first order logic world. A noticeable difference is that in our case postcon-
ditions, or capabilities, are added to the state of the world, except for the case
of the special stream() tag referred to in Section 3.1.

Input: R, a set of requirements
Output: (P, R), sets of needed packages and unfulfilled requirements
F := ∅ -- What has been fulfilled so far

P := ∅ -- Packages used so far

do -- Invariant: R ∩ F = ∅
select A ∈ {Ap

q | q ∩ R 6= ∅}
F := F ∪ q

R := (R - q) ∪ (p - F)

P := P ∪ A

until <no Ap

q can change R>

return (P, R)

Fig. 2. Schematic Search Algorithm

The select keyword expresses a non-determinism in the selection of pack-
ages: several choices are possible at every iteration of the loop. The intuition
behind the algorithm is that as long as any element in the set of requirements R
is satisfiable by some package in the database, such a package is (nondetermin-
istically) selected, and the not yet satisfied requirements needed by this package
are to be taken into account. Capabilities provided by selected packages are
added to the set F of fulfilled capabilities, which performes memoization and
helps to cut down search. The process may end without having matched all the
requirements (either initially entered by the user, or generated by an intermedi-
ate package selection). Also, non-determinism in the select primitive may cause
several possible outcomes: several assemblies and several unmatched capabilities.

The search is expected to use heuristics aimed at approximating some idea of
optimality in the final results. For example, the user might want to minimize the
number of packages |P|, the number |R| of unmatched characteristics at the end
of the execution, etc. These (and other) optimality measures are often based
on global considerations which need a completely generated plan in order to
be applied. However, generating all plans and filtering them afterwards can be
computationally prohibitive if many (e.g., thousands) of packages exist in the
repository. Resorting to approximations which use local heuristics will improve
performance, at the expense of obtaining suboptimal solutions. For example, in
order to minimize the number of packages in the final result, it seems sensible
to choose at each step a package Ap

q which reduces R as much as possible. This
eager strategy may however yield suboptimal results, as it does not take into
account the number of new required capabilities p introduced in the system.

In order to diminish the negative impact of this suboptimality, users will be
presented with several assembly plans — those ranked higher. The user will then
be able to select the one(s) which (s)he deems more appropriate. Additionally,
the plans shown to the user will contain explanations about which package was
selected at each stage of the search and the reasons of that selection, so that the
user does not feel confronted to a black box whose internal underpinnings are
unknown.

The basically symbolic nature of all the operations in the above algorithm,
and the fact that there is an implicit non-determinism in the search, makes
logic languages clear candidates to implement the above algorithm (surely in a
more evolved form). The implicit non-determinism will also alleviate the work
of keeping track of the non-explored branches, and resuming them when needed.
We plan to implement the system using Ciao Prolog [HBC+99], which is a ro-
bust, mature, state-of-the-art, next-generation Prolog system, with a good pro-
gramming environment which features an automatic documentation generator,
a module system, and a rich set of libraries, including (remote) database access,
WWW access and page generation, etc. Ciao Prolog is currently freely available
for testing and use.

3.3 User Interface

The user interface will be based on WWW, since we want the tool to be remotely
accessible. Actually, two different interfaces will coexist: one addressed to users
who only want to consult the database, and another one for administrators who
have to add new package descriptions to the knowledge base. In both cases
the interface will be kept simple, paying special attention to its usefulness and
compliance with widely acknowledged WWW standards.

The General User Interface will allow posting queries by letting the user
constructing a conjunction of capabilities by selecting a set of terms from a list
containing those in the the dictionary. After the search terms have been selected,
(s)he has the possibility of giving hints to the search engine as to what type of
selection has to be done, as mentioned in Section 3.2.

Once the search has finished, the user is presented with a series of possible
package assemblies for the project to be built, including

– name of each package or asset (with links to its corresponding entry in the
ontology format), and

– links to an explanation about which capabilities were needed at each stage,
and which package was selected to reduce the set of capabilities.

In order to improve search results (and to give more control to the user),
it will be possible to select one of the plans and restart the search from some
intermediate point, adding some requirements (e.g., forcing some package(s) to
be (not) included in the final assembly). This can cater, for example, for cases
where the user knows about the existence of a package whose capabilities are
handful for the task to be performed.

The Administrative Interface Package addition cannot be left to general
users, since it can cause unneeded growth of the dictionary, and also a drift in
the descriptions. Therefore, the WWW interface aimed at adding new assets to
the database should be available only to some selected individuals, approved by
the organization holding the database.

3.4 Issues in Building O.S. Code

– There is a great deal of O.S. code
– Reusing it is a possibility

(cite how reusing is done by programmers, how they decide)
– Issues:
• Constructing correct software based on pieces

(point here: not only using code/libraries as-is, but changing code)
• Characterization of code difficult:
∗ lots of code already written
∗ many packages difficult to formalize (e.g., editor widget?)

• Searching in lots of code

can go to sections of code!

3.5 Characterizing Open Source Code

programmer extracts and characterizes code: what it provides and what it gives
the better structured and described, the more useful
lots of work — but many repositories also require that!
uses dictionary terms (with dictionary-approved synonyms)
packages into ontology (not really relevant for this part)
dictionary grows — reaches steady state
package addition has to be approved

4 Logic Programming and Amos

pre/post multi-headed clauses
put more conditions on it: no variables, no negation, sort of tabling, conflu-

ence, no repetition of rule applications, labeled rules.
tha algorithm — write an example
selection / search rules can be used as in SLD — only they can have heuristics

(not unknown to LP: see the andorra principle)
lack of convergence?

5 Component-based Development and Amos

what to do with 10000 components
resolution with all the specification?
specification of a whole system (i.e.: a system to vote through SMS, saving

votes in a database and validating later the results through an answer)?
this almost amounts to theorem proving
a two-stage process can be used: higher-level characterizations (à la Amos)

to select packages, more directed proofs to make sure they fit together.
how to generate the high-level characterizations:

– As before
– Extract from specifications: it is a sort of abstract interpretation (in a feasible

domain) of the specification formulas.

therefore, Amos, apart from a project per se will:

– shed light on search techniques for a class of clauses, which happen to model
clearly certain pre/post conditions

– link this technique with what will probably be a need in component-based
software development

6 Conclusions and F.W.

References

[dRG95] Maria del Rosario Girardi. Classification and Retrieval of Software through
their Description in Natural Language. PhD thesis, Computer Science De-
partment, University of Geneva, 1995.

[FvHH+01] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-
Schneider. OIL: An ontology infrastructure for the semantic web. IEEE
Intelligent Systems, 16(2):38–45, 2001.

[GI95] M. R. Girardi and B. Ibrahim. Using English to Retrieve Software. The
Journal of Systems and Software, 30(3):249–270, September 1995.

[HBC+99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda,
P. López-Garćıa, and G. Puebla. The CIAO Multi-Dialect Compiler and
System: An Experimentation Workbench for Future (C)LP Systems. In
Parallelism and Implementation of Logic and Constraint Logic Program-
ming, pages 65–85. Nova Science, Commack, NY, USA, April 1999.

[HPS01] I. Horrocks and P. Patel-Schneider. The generation of DAML+OIL. In
Working Notes of the 2001 Int. Description Logics Workshop (DL-2001),
pages 30–35. CEUR (http://ceur-ws.org/), 2001.

[Ini97] The Open Source Initiative. The open source definition. Available
at http://www.opensource.org/docs/definition plain.php, June 1997.
Probably under update.

[MMM95] H. Mili, F. Mili, and A. Mili. Reusing Software: Issues and research direc-
tions. IEEE Transactions on Software Engineering, 1995.

[RLIG93] Reuse Library Interoperability Group. Model BIDM. Technical Report
RPS-0001, IEEE Computer Society, 1993.

[RLIG95] Reuse Library Interoperability Group. Data Model for Reuse Library Inter-
operability: Basic Interoperability Data Model (BIDM). Technical Report
IEEE Std 1420.1, IEEE Computer Society, 1995.

[WES87] Scott N. Woodfield, David W. Embley, and Del T. Scott. Can Programmers
Reuse Software? IEEE Software, pages 52–59, July 1987.

[Whe02] David A. Wheeler. Why Open Source Software / Free
Software (OSS/FS)? Look at the Numbers! Available at
http://www.dwheeler.com/oss fs why.html, August 2002. Under
constant update.

