
Toward a Framework Constraint Language

Shui Ming Ho

Department of Computer Science
University of Manchester

Manchester M13 9PL, U.K.
sho@cs.man.ac.uk

Abstract. In this paper we are concerned with expressing precise se-
mantics for one particular kind of component: the object-oriented design
framework as described in the component-based development method-
ology Catalysis. Currently, the Unified Modelling Language is used to
model such frameworks and their semantics are expressed precisely in
the Object Constraint Language. Although both languages are used,
they fail to fully address the nature of Catalysis frameworks. The Ob-
ject Constraint Language, in particular, is unable to express some of the
behavioural aspects of these frameworks. This paper describes a frame-
work modelling language that addresses the inadequacies of these two
languages.

1 Introduction

Frameworks are increasingly recognised as better units of reuse and design than
single objects, helping to shift the the base of object-oriented technology from
objects to components larger than single objects. In this paper we are concerned
with expressing semantics for such components: frameworks as defined in the
component-based development methodology Catalysis [4]. Traditional object-
oriented frameworks describe the relationships between (abstract) classes of ob-
jects, their interactions and division of responsibility. These classes and their
relationships may be modelled using class diagrams and interaction diagrams of
the Unified Modelling Language (UML) [11]. Precision may be added to these
diagrams by constraining the way in which objects behave, expressing invari-
ants on an object’s state and preconditions and postconditions on their methods
using the Object Constraint Language (OCL) [13].

Generic designs, however, are obtained by focusing on the roles objects play
in different frameworks rather than assigning objects to specific classes. Role
modelling techniques (e.g., [8]) partition different views of objects across several
models. Similarly, in Catalysis, it is assumed that no one framework describes
an object in its entirety. Frameworks describe partial objects: complete objects
emerge when frameworks are composed with one another. At the heart of Catal-
ysis frameworks is the assumption that the state of an object may be altered
as a consequence of its participation in other frameworks. Although the exact
nature of these external actions may not be known beforehand, a framework
may impose constraints on these actions.

81

82 Shui Ming Ho

As an example of a Catalysis framework, Fig. 1 shows the structural and
behavioural relationships between objects within a trade-and-supply framework.
The TradeSupply framework in Fig. 1 is a template with placeholders Retailer,
Distributor, Order, and Product, representing the roles objects may play in the
framework. The framework also contains the fixed class Date. Just as objects
may have methods, frameworks may have joint actions describing collaborative
behaviour between objects, e.g., makeOrder in Fig. 1. Such actions are indicated
using an extended UML notation.

Distributor

Date ProductOrder

TradeSupply<Retailer, Distributor, Order, Product>

depletion(Product)

lowLimit(Product): Integer

stock(Product): Integer

Retailer

makeOrder(Product, Integer)

from

delivered

to

orders

for

outstanding

Fig. 1. The TradeSupply framework.

Not shown in Fig. 1 are the constraints of the framework: specifications
for makeOrder and constraints on the external action depletion. The goal of
TradeSupply is to ensure that a retailer’s stock of products is not exhausted.
This may be accomplished by constraining the effects of depletion (currently us-
ing OCL) such that any action that corresponds to depletion invokes makeOrder

if the stock is below some given limit. OCL, however, is limited in the types of
constraint it can express and where they may be applied. In Catalysis, informal
extensions to OCL are used to express the semantics of joint and external ac-
tions. Much work exists on extending OCL, e.g., to express temporal properties
of systems and the flow of messages between objects. In [6, 7], for example, OCL
is extended with an action clause and [10] extends OCL with temporal operators.
These extensions require that their semantics are consistent with UML: OCL is
not a stand-alone language and must always accompany a UML diagram [12].
Both UML and OCL, however, have informally defined semantics. The problem
of giving formal semantics for OCL has been addressed in [3], [5], and [9], and
work on semantics for UML includes [1]. Expressing Catalysis frameworks and
their composition, however, requires extensions to both UML and OCL. The
work presented in this paper is based on an alternative approach to tackling the

Toward a Framework Constraint Language 83

problem of framework modelling and expressing their precise semantics: defining
a small modelling language that is able to capture the core structural and be-
havioural aspects of frameworks while also being able to deal with the framework
composition mechanisms of Catalysis not present in UML.

2 The FCL Modelling Language

Figure 2 shows make-up of frameworks and classes in FCL. A framework intro-
duces a number of class definitions, associations and operation symbols. These
three components of a framework are illustrated in Fig. 1. A class definition

Class definitions
Associations
Operation symbols

Framework<parameters>

Definitions

Axioms

Attributes

Operation symbols

Definitions

Axioms

Class<parameters>

Fig. 2. Frameworks and classes.

introduces a number of attributes and operations. In FCL both attributes and
associations are relations and operations do not have return types. The usual
object-based dot notation is used in FCL: for an object o with an attribute a

the expression o.a(x) is true if the pair (o, x) is in the extension of the predicate
a. In the case where a is intended to be a function the existential quantifier one

(∃!) may be used to constrain a, e.g.,

all o | (one x | o.a(x)) .

Operations and definitions. FCL allows the definitions of named formulae both
within classes and at the framework level. One of the ways they can be used is
to define separately the preconditions and postconditions of operations. In this
respect FCL differs from OCL but is similar to UML, The semantics of the joint
action makeOrder in Fig. 1, for example, may be described by the formula

all r : Retailer, d : Distributor, p : Product, n : Integer |

makeOrder(r, d, p, n) implies

(makeOrder-pre(r, d, p, n) implies makeOrder-post(r, d, p, n)).

84 Shui Ming Ho

External actions. In FCL trigger rules describing how a framework reacts to a
change of state from any source, whether it is internal to the framework or exter-
nal, may be documented. In the TradeSupply framework we wish to state that if
a retailer’s stock of some product is lowered then this state change corresponds
to the depletion operation. The formula

all r : Retailer, p : Product, x, y : Integer |

r.stock′(p, x) & r.stock(p, y) & x > y implies r.depletion(p)),

where ′ denotes an attribute/association in the next state, expresses this. The
above FCL formula represents the temporal formula below.

(∀r, p, x, y) (Retailer(x) ∧ Product(p) ∧ Integer(x) ∧ Integer(y)

⇒ (©stock(r, p, x) ∧ stock(r, p, y) ∧ x < y ⇒ depletion(r, p))).

Both Retailer and Product are class predicates. Analogous to the “isKindOf”
operator in OCL, the term “Retailer(x)” is true if x is an object of the class
Retailer.

The following formula expresses the condition that external actions corre-
sponding to depletion must observe.

all r : Retailer, p : Product, x, y : Integer |

r.depletion(p) & r.stock′(p, x) & r.lowLimit′(p, y) & x < y

implies (exists d : Distributor, n : Integer | makeOrder(r, d, p, n)).

3 Framework Composition

A VendorSupply framework may be derived by composing the earlier TradeSup-
ply framework and the PublicVending framework in Fig. 3. In Catalysis, frame-
works are template packages. They are “composed” by being imported into oth-
ers. Importing under Catalysis differs from UML: in Catalysis, elements from
imported packages may be renamed and merged together. The fragment of FCL
below specifies a renaming of the roles of Vendor and Retailer to Shop. The def-
initions of both these classes are merged together. Thus, Shop is characterised
by the attributes, operations, definitions, and axioms of Vendor and Retailer.

imports PublicVending 〈Vendor/Shop〉; TradeSupply 〈Retailer/Shop〉;

Renaming may also be applied to individual class attributes, operations, and
definitions to prevent names from coinciding.

4 Underlying Framework Specification

FCL provides an object-oriented notation for modelling frameworks. Underlying
every FCL specification, however, is a specification of the framework in temporal

Toward a Framework Constraint Language 85

Customer

PublicVending<Customer, Vendor, Product>

sell(Product)

stock(Product): Integer

Vendor

Fig. 3. The PublicVending framework.

logic. Whereas in FCL frameworks are organised around classes, this is not the
case at the temporal logic level. At this underlying level, a framework F(Π) =
〈Σ, X〉 consists of a signature Σ, parameters Π , and axioms X . The signature
consists of a single sort O, the constant symbols of which denote object identities.
In this section the mapping from FCL to first order signatures is considered.

Classes. In FCL associated with each class C is a class predicate and a num-
ber of parameters, attributes, operations, and definitions. A class predicate C

is mapped to an equivalent unary predicate symbol, C, in Σ. Each attribute
α, operation symbol σ, and parameter π of class C is mapped onto unique
symbols, here denoted by αC , σC , and πC — classes have unique attributes,
operations, and definitions, the declarations of which implicitly introduce their
own axioms. For example, associated with a parameterised attribute a, declared
as a(S1, . . . , Sn) : S, is an axiom

(∀i, x1, . . . , xn, y : O)

(aC(i, x1, . . . , xn, y) ⇒ C(i) ∧ S1(x1) ∧ . . . ∧ Sn(xn) ∧ S(y)).

For parametric classes, their associated parameter symbols appear in Π . In the
case of classes which act as placeholders of the framework, their class predicate,
attribute, and operation symbols are all framework parameters.

Framework composition. The “imports” statement in FCL describes a mapping
function from the signature of the imported frameworks to that of the importing
framework, extended to map the axioms from one framework to another. The
signature of VendorSupply, for example, is derived from the signatures obtained
by applying morphisms to the signatures of TradeSupply and PublicVending,
mapping Retailer to Shop in the former, and Vendor to Shop in the latter.
Similarly, the set of axioms of VendorSupply is the union of the sets of axioms
obtained by extending the morphisms to terms.

5 Summary

In this paper an overview of FCL, a framework modelling language, was pre-
sented, the motivation of which is to address the shortcomings of UML and OCL

86 Shui Ming Ho

when applied to Catalysis frameworks. Specifically, this text has focused on the
use of FCL to describe the behavioural aspects of frameworks, such as external
actions, but also framework composition. The purpose of FCL, however, is to
provide an object-oriented notation for framework specification, concealing an
underlying non-object-based temporal logic specification of the framework.

References

1. T. Clarke, A. Evans, and S. Kent. The Metamodelling Language Calculus: Foun-
dation Semantics for UML. In Fourth International Conference on Fundamental
Approaches to Software Engineering, volume 2029, pages 13–21, Genova, Italy,
2001. Springer-Verlag.

2. S. Cook, A. Kleppe, R. Mitchell, J. Warmer, and A. Wills. Defining the Context
of OCL Expressions. In Second International Conference on the Unified Modelling
Language, Lecture Notes in Computer Science, volume 1723, Colorado, USA, 1999.
Springer-Verlag.

3. D. Distefano, J. P. Katoen, and A. Rensink. On a Temporal Logic for Object-based
Systems. In S. F. Smith and C. L. Talcott, editors, Formal Methods for Open
Object-based Distributed Systems IV, pages 305–326. Kluwer Academic Publishers,
September 2000.

4. D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML.
Addison-Wesley, 1998.

5. R. Hennicker, H. Hussmann, and M. Bidoit. On the Precise Meaning of OCL
Constraints. In Object Modeling with the OCL, Lecture Notes in Computer Science,
volume 2263, pages 69–84. Springer-Verlag, 2002.

6. A. Kleppe and J. Warmer. Extending OCL to Include Actions. In UML 2000,
Lecture Notes in Computer Science, volume 1939, pages 440–450. Springer-Verlag,
2000.

7. A. Kleppe and J. Warmer. The Semantics of the OCL Action Clause. In Object
Modeling with the OCL, Lecture Notes in Computer Science, volume 2263, pages
213–227. Springer-Verlag, 2002.

8. T. Reenskaug et al. Working with Objects. Manning/Prentice-Hall, 1995.
9. M. Richters and M. Gogolla. OCL: Syntax, Semantics, and Tools. In Object

Modeling with the OCL, Lecture Notes in Computer Science, volume 2263, pages
42–68. Springer-Verlag, 2002.

10. S. Sendall and A. Strohmeier. Specifying Concurrent System Behaviour and Tim-
ing Constraints Using OCL and UML. In UML 2001, Lecture Notes in Computer
Science, volume 2185, pages 391–405. Springer-Verlag, 2001.

11. UML Specification V1.4 draft (ad/01-02-14), February 2001.
12. M. Vaziri and D. Jackson. Some Shortcomings of OCL, the Object Constraint Con-

straint Language of UML. Technical report, Massachusetts Institute of Technology,
December 1999.

13. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1999.

