
A Priori Reasoning for Component-based Software
Development?

Kung-Kiu Lau

Department of Computer Science, University of Manchester
Manchester M13 9PL, United Kingdom

kung-kiu@cs.man.ac.uk

Abstract. We believe that the paradigm shift to component-based software de-
velopment should be accompanied by a corresponding paradigm shift in the un-
derlying approach to specification and reasoning. In this position paper, we pro-
pose a priori reasoning as a suitable candidate, and outline our approach to spec-
ifying and reasoning about components, based on a priori reasoning.

1 Introduction

This paper is about what we call a priori reasoning. More than that, it is also about why
and how a priori reasoning can help Component-based Software Development (CBD)
achieve its ultimate objective of third-party assembly. We will discuss how to specify
components, in order that we can reason about them in an a priori manner. In particular,
we will present a notion of a priori correctness, which underpins our approach.

2 Component Specification

Ideally components should be black boxes, in order that users can (re)use them without
knowing the details of their innards. In other words, the interface of a component should
provide all the information that users need. Moreover, this information should be the
only information that they need. Consequently, the interface of a component should be
the only point of access to the component. It should therefore contain all the information
that users need to know about the component’s operations, i.e. what its code does, and
its context dependencies, i.e. how and where the component can be deployed. The code,
on the other hand, should be completely inaccessible (and invisible), if a component is
to be used as a black box.

The specification of a component is therefore the specification of its interface, which
must consist of a precise definition of the component’s operations and context depen-
dencies, and nothing else.
? This paper is a variation of the paper K.-K. Lau and M. Ornaghi, A Formal Approach to

Software Component Specification, in D. Giannakopoulou, G.T. Leavens and M. Sitaraman,
editors, Proceedings of Specification and Verification of Component-based Systems Workshop
at OOPSLA2001, pages 88–96, Tampa, USA, October 2001. It was also presented at the Third
International Workshop on (Constraint) Logic Programming and Software Engineering, 28
July 2002, Copenhagen, Denmark.

5



6 Kung-Kiu Lau

3 A Posteriori Reasoning

Before introducing a priori reasoning, it is illuminating to first consider its opposite
number, a posteriori reasoning. This is well illustrated by many verification-based
methods for program construction, which take the ‘posit-and-see’ approach:

Given the specification for a program, first posit a program, then see if the
program can be verified to be correct (with respect to the given specification).

This is what we call a posteriori reasoning: reasoning about correctness (or other prop-
erties) takes place after the program or component has been constructed. It does not
offer any help with the construction a priori. In particular, if the construction is a com-
position or an assembly of components, a posteriori reasoning does not offer any as-
sembly guide, i.e. how to choose the right components (so that their composition will
meet the requisite specification of the composite).

4 A Priori Reasoning

By contrast, a priori reasoning takes places before the construction takes place, and
should therefore provide an assembly guide for component composition.

For CBD, a priori reasoning would work as follows:

– it requires that it is possible to show a priori that the individual components in
question are correct (with respect to their own specifications);
(This enables us to do component certification, see below.)

– it then offers help with reasoning about the composition of these components:
• to guide their composition in order to meet the specification of a larger system;
• to predict the precise nature of any composite, so that the composite can in turn

be used as a unit for further composition.
(This enables us to do system prediction, see below.)

5 Predictable Component Assembly

We believe that a priori reasoning addresses an open problem, viz. predictable compo-
nent assembly. It does so because it enables component certification and system predic-
tion.

Consider Figure 1. Two components A and B each have their own interface and
code. If the composition of A and B is C, can we determine or deduce the interface and

Interface Interface ?
A B C

Code Code ?+
Component A Component B Component C

Fig. 1. Predicting component assembly.

code of C from those of A and B? The answer lies in component certification.



A Priori Reasoning for Component-based Software Development 7

Component Certification Certification should say what a component does (in terms
of its context dependencies) and should guarantee that it will do precisely this (for all
contexts where its dependencies are satisfied). A certified component, i.e. its interface,
should therefore be specified properly, and its code should be verified against its specifi-
cation. Therefore, when using a certified component, we need only follow its interface.
In contrast, we cannot trust the interface of an uncertified component, since it may not
be specified properly and in any case we should not place any confidence in its code.

In the context of a priori reasoning, a certified component A is a priori correct. This
means that:

– A is guaranteed to be correct, i.e. to meet its own specification;
– A will always remain correct even if and when it becomes part of a composite.

This is illustrated by Figure 2, where component A has been certified, so we know how

Interface/Spec Interface Interface?
A B C

Code Code
A

Component CComponent B
Code?+

Certified
component A

Fig. 2. Component certification.

it will behave in the composite C.
However, we do not know how B will behave in C, since it is not certified. Conse-

quently, we cannot expect to know C’s interface and code from those of A and B, i.e.
we cannot predict the result of the assembly of A and B.

System Prediction For system prediction, obviously we need all constituent compo-
nents to be certified (a priori correct). Moreover, for any pair of certified components
A and B whose composition yields C:

– before putting A and B together, we need to know what C will be;
– and furthermore, we need to be able to certify C.

This is illustrated by Figure 3. The specification of C must be predictable prior to com-

A B C
Interface/Spec Interface/Spec Interface/Spec

Code Code Code+
Certified Certified Certified

component A component B component C

Fig. 3. System prediction.

position. Moreover, we need to know how to certify C properly, and thus how to use
C in subsequent composition. A priori correctness is just what we need in order to do
system prediction.



8 Kung-Kiu Lau

6 A Priori Reasoning in Modular Specification and Verification

A degree of a priori reasoning is carried out in current approaches to modular (for-
mal) specification and verification, e.g. [9, 14], which use modular reasoning. This is
specification-based reasoning that tries to say before running the software whether it
will behave as specified or not (subject to relevant assumptions). This is illustrated in
Figure 4. Before a composite module C is deployed, we can predict whether it will

Code
Interface Interface

Code

Spec for C

C

Spec for B

B

Code
Interface

A

+=

= +
Verified module C Verified module A

Spec for A

Verified module B

Fig. 4. Module composition.

work according to its specification. For example, if component modules, say A and B,
are to be used in C, the correctness of C is established based on the specifications of
A and B (even before A and B have been implemented). The components A and B are
then verified independently. The contexts of A and B are taken in account when using
and verifying A and B.

Thus modular reasoning is a priori in nature. It predicts correctness, based on spec-
ification. This kind of prediction is we believe subtly different from the prediction that
we intend to convey in Figure 3, which predicts specification, based on (certified) cor-
rectness (we will discuss this in Section 12).

7 Specifying Components for A Priori Reasoning

In the rest of this paper, we outline how we specify components, so that we can carry
out a priori reasoning about their construction and composition. Diagrammatically, our
component looks like Figure 5, and in the subsequent sections, we will explain the key

INTERFACE

CODE

Name

Signature:
Axioms:
Constraints:

Code for op1, op2, . . .

Operations:

Dependencies:

. . .;

. . .;

. . .;

specifications;
op1(π1), op2(π2), . . .;
Π1, Π2, . . . , π1, π2, . . .;
constraints;

CONTEXT(Π1, Π2, . . .)

Fig. 5. Ingredients of a component.

ingredients, viz. the context and the interface, and their specifications.
We should point out that this is work in progress, so we do not yet have all the

answers, so to speak.



A Priori Reasoning for Component-based Software Development 9

8 Context

A component is defined in a problem domain, or a context. We will represent a context
as a full first-order logical theory with an intended (mathematical) model.

Signature and Axioms A context C = 〈Σ, X〉 is composed of a signature Σ (con-
taining sort symbols, function declarations and relation declarations) and a finite or
recursive set X of Σ-axioms. A context axiomatises a problem domain and thus en-
ables us to reason about it. More specifically, a context contains the abstract data types
(ADTs) and all the concepts that are needed to build a model of the application at hand.
A context is thus a (first-order) theory with an intended model.

We distinguish between closed and open (or parametric) contexts. A context C =
〈Σ, X〉 is closed if its signature Σ does not contain any parameters. In this case, C’s
axioms X have one fixed model. By contrast, a context C = 〈Σ, X〉 is open if its sig-
nature Σ contains parameters. In this case, C’s axioms X have many potential models,
depending on the parameters in the signature Σ.

Example 1. A simple example of a closed context is first-order arithmetic NAT =
〈ΣPA, PA〉. ΣPA contains the unary function s (successor) and the binary functions
+ (sum) and ∗ (product). PA contains the usual Peano’s axioms for s, +, ∗ (and all the
instances of the first-order induction schema).

CONTEXT NAT ;

SIGNATURE:
Sorts: N ;

Functions: 0 : [ ]→ N ;
s : [N ]→ N ;

+, ∗ : [N, N ]→ N ;

AXIOMS: {s} : ∀x : N . ¬s(x) = 0;
∀x, y : N . s(x) = s(y)→ x = y;

{+} : ∀x : N . x + 0 = x;
∀x, y : N . x + s(y) = s(x + y);

{∗} : ∀x : N . x ∗ 0 = 0;
∀x, y : N . x ∗ s(y) = (x ∗ y) + x.

The standard structure of natural numbers is the intended model of NAT .

Example 2. A simple example of an open context is the following, which axiomatises
lists with generic elements X and a generic total ordering � on X .

CONTEXT LIST (X, � : [X, X]);

IMPORT: NAT ;

SIGNATURE:
Sorts : X, L;

Functions: nil : [ ]→ L;
| : [X, L]→ L;

nocc : [X, L]→ N ;

Relations: pos : [X, N, L];



10 Kung-Kiu Lau

AXIOMS:
{nil, |} : ∀x, y, z : X, ∀j, k, l : L .

(¬nil = x|j ∧ (y|k = z|l→ y = z ∧ k = l));
{nocc} : ∀x : X . nocc(x, nil) = 0;

∀x, y : X, ∀l : L .

x = y → nocc(x, y.l) = nocc(x, l) + 1;
∀x, y : X, ∀l : L .

¬x = y → nocc(x, y.l) = nocc(x, l);
{pos} : ∀x : X, ∀l : L .

(pos(x, 0, l)↔ ∃y : X, j : L . l = y|j ∧ x = y);
∀x : X, ∀l : L .

(pos(x, s(i), l)↔ ∃y : X, j : L .

l = y|j ∧ pos(x, i, j)).

The context (ADT) NAT is imported, together with its signature ΣPA and axioms
PA.

nil and | are the constructors for the sort L of lists of elements of sort X . (For an
element x and a list y, x|y stands for the list with head x and tail y.) Their axioms are
the list constructor axioms (plus structural induction).

pos(x, i, l) means that the element x occurs at position i in the list l, where positions
start from 0.

nocc(x, l) is the number of occurrences of the element x in the list l.

Constraints In an open context, some of the parameters in the signature may not be
instantiated just anyhow. In fact their instantiation must be subject to strictly defined
constraints.

Example 3. In the context LIST (X, � : [X, X ]), in order to ensure that � is a total
ordering, we have to add the following constraints:

CONTEXT LIST (X, � : [X, X]);

IMPORT: NAT ;

SIGNATURE:
Sorts : X, L;

Functions: . . .

Relations: . . .

AXIOMS: . . .

CONSTRAINTS: ∀x, y, z : X . (x � y ∧ y � x)↔ x = y;
∀x, y, z : X . (x � y ∧ y � z)→ x � z;
∀x, y, z : X . x � y ∨ y � x.

The purpose of constraints is to filter out illegal parameters of the context: only pa-
rameters that satisfy the constraints are allowed. For example, if in the context LIST (
X, � : [X, X ]), we want to substitute X by the sort N of natural numbers, and the
ordering � by ≤ on N , then we can express this as a closure (or instance):

CLOSURENATLIST OF LIST (X, � : [X, X]);

CLOSE: X BY N ;
� BY ∀x, y : N . (x � y↔ x ≤ y).



A Priori Reasoning for Component-based Software Development 11

This closure of the context LIST (X, � : [X, X ]) satisfy the constraints of the
context since ≤ is a total ordering on N .

In this example, we have closed X and � within LIST itself, for simplicity. In
general, of course, they could also be closed within another context C, after importing
LIST into C.

Obviously constraints define context dependencies.

9 Interface

The interface of a component is defined in the context of the component. The interface
is the only part of the component that is visible to the users, and it should provide all the
information that the users need in order to deploy the component. Since the interface
is defined within the context, the latter should be regarded as part of the former. As we
already made clear, the interface should contain specifications for the operations, and
the context dependencies, of the component.

Operations In the interface, operations are represented by their specifications. In a
context 〈Σ, X〉, a specification of a new (relation) symbol r is a set of axioms that
define r in terms of the symbols of the signature Σ. For example, suppose in LIST we
have operations for sorting, such as insertion sort and bubble sort. The specification for
these two operations are as follows:1

∀l : L . ord(l)↔
∀i : N, ∀x, y : X . ((pos(x, i, l) ∧ pos(y, s(i), l))→ x � y)

∀j, k : L . perm(j, k)↔ ∀x : X . nocc(x, j) = nocc(x, k)

∀j, k : L . sort(j, k)↔ perm(j, k) ∧ ord(k)

∀j, k, l : L . ord(j) ∧ ord(k)→
(merge(j, k, l)↔ ord(l) ∧ perm(j‖k, l)).

We represent operations as logic programs. For example, the operations insertion
sort and bubble sort are represented by the following logic programs:

Operation: insertionSort(merge)

sort([ ], [ ])←
sort(x.j, l)← sort(j, k),merge([x], k, l)

Operation: bubbleSort(�)

sort([ ], [ ])←
sort(x.j, y.l)← part(x.j, [y], k), sort(k, l)

part([ ], [ ], [ ])←
part([x], [x], [ ])←

part(x.j, [x], y.l)← x � y, part(j, [y], l)
part(x.j, [y], x.l)← y � x, part(j, [y], l)

The operation insertionSort computes the relation sort (as specified by the specifi-
cation given above) in terms of the relation merge (also as specified above). It therefore

1 For lists j and k, j‖k stands for their concatenation.



12 Kung-Kiu Lau

needs a program for merge in order to complete the sorting operation. As a result in-
sertionSort has merge as a parameter, hence we write insertionSort(merge). In any
context that is a closure (instance) of LIST , insertionSort will need a program for
merge.

Thus parameters to operations also define context dependencies.
By contrast, the operation bubbleSort has only the parameter �, which is the param-

eter of the context. So bubbleSort will work for any context in which � is instantiated
(closed) by any total ordering.

Context Dependencies These consist of the (global) parameters in the signature of the
component, the (local) parameters of the operations, together with the constraints in the
context.

So now we can define the context dependencies completely in a component.

10 Code

The code should be inaccessible (invisible) to the user. It is usually binary. However, if
we allow parameters in the operations, then the code has to be source code, which has
to be instantiated before execution.

If the source code is available, then the user or the developer can also verify its
correctness with respect to the specifications in the context.

11 A Priori Correctness

In our work the basis for a priori reasoning is a priori correctness. So having laid out
the specification of a component, we now turn to the definition of a priori correctness of
a component. Specifically, we consider a notion of a priori correctness of the operations
in a component, that we call steadfastness.

Steadfastness A steadfast operation (program) Op is one that is correct (with respect
to to its specification) in each intended model of the context C of the component. Since
the (reducts of the) intended models of its specialisations and instances are intended
models of C, a steadfast program Op is correct, and hence correctly reusable, in all
specialisations and instances of C.

A formalisation of steadfastness is given in [8], with both a model-theoretic, hence
declarative, characterisation and a proof-theoretic treatment of steadfastness. Here we
give a simple example (taken from [8]) to illustrate the intuition behind steadfastness.

Example 4. Consider the following component:
where the open context ITER(D, ◦, e) is defined as follows:



A Priori Reasoning for Component-based Software Development 13

INTERFACE

CODE

Operations:

Dependencies:

Siterate, Sunit, Sop;

D, ◦, e, unit, op;
iterate(unit, op);

Code for iterate

CONTEXT ITER(D, ◦, e)

Iterate

Fig. 6. The Iterate component.

CONTEXT ITER(D, ◦, e);

IMPORT: NAT ;

SIGNATURE:
Sorts: D;

Functions: e : [ ]→ D;
◦ : [D, D]→ D;
× : [D, N ]→ D;

AXIOMS: ∀x : D . × (x, 0) = e;
∀x : D, ∀n : N . × (x, s(n)) = ×(x, n) ◦ x.

where NAT is the closed context for first-order Peano arithmetic defined in Example 1.
In the open context ITER(D, ◦, e):

(i) D is a (generic) domain, with a binary operation ◦ and a distinguished element e;
(ii) the usual structure of natural numbers is imported;

(iii) the function symbol × represents the iteration operation ×(a, n) = e◦a ◦ · · · ◦
︸ ︷︷ ︸

(n times)

a.

We can use the Iterate component to iterate n times a binary operation ◦ on some
(generic) domain D.

Suppose we specify the iterate operation by the following relation:

Siterate : iterate(x, n, z) ↔ z = ×(a, n) (1)

Consider the operation iterate(unit, op) defined by the following logic program:

Operation: iterate(unit, op)

iterate(a, 0, v)← unit(v)
iterate(a, s(n), v)← iterate(a, n, w), op(w, a, v)

where s is the successor function for natural numbers, and the relations unit and op are
specified in ITER by the specifications:

Sunit : unit(u) ↔ u = e

Sop : op(x, y, z) ↔ z = x ◦ y
(2)

The operation iterate(unit, op) is defined in terms of the parameters unit and op. If
we can assume that operations for unit and op are a priori correct, i.e. they are correct
with respect to their specifications (2) in any interpretation of ITER, then we can prove



14 Kung-Kiu Lau

INTERFACE

CODE

Operations: Sunit, Sop;
unit, op;

Code for unit, op

CONTEXT NAT

Naturals

Fig. 7. The Naturals component.

that the operation iterate(unit, op) is steadfast, i.e. it is always correct with respect to
(1) (and (2)).

For example, suppose we have a component Naturals as shown in Figure 7, in
which the context is NAT , and the operations unit and op are specified as follows:

Sunit : unit(u) ↔ u = 0
Sop : op(x, y, z) ↔ z = x + y

(3)

and defined as follows:
Operation:- unit

unit(0).

Operation:- op
op(x, y, z)← z = x + y

Then in Naturals, unit and op are (trivially) a priori correct with respect to to their
specifications (3), and if we compose the components Iterate and Naturals, the opera-
tion iterate in the composite Iterate+Naturals will be fully instantiated (and therefore
executable), and more importantly it will be correct with respect to its specification (1)
(and (2)).

The composition here is of course just the simple closure operation on Iterate, but
it is sufficient to illustrate the idea of a priori reasoning. In this closure of Iterate, D

is the set of natural numbers, ◦ is +, e is 0, and ×(a, n) = 0 + a + · · · + a = na.
Consequently, the specification Siterate (1) specialises to iterate(x, n, z) ↔ z = na,
and similarly Sunit (in (2)) specialises to unit(u) ↔ u = 0 (in (3)), and Sop (in (2))
to op(x, y, z) ↔ z = x + y (in (3)). Since, the operations unit and op are correct with
respect to their (specialised) specifications (3), the operation (iterate(unit, op)∪ unit
∪ op) will compute na, and is correct with respect to its (specialised) specification in
Iterate+Naturals.

To illustrate the correct reusability of the iterate operation in Iterate, suppose now

INTERFACE

CODE

Operations: Sunit, Sop;
unit, op;

Code for unit, op

CONTEXT INT

Integers

Fig. 8. The Integers component.



A Priori Reasoning for Component-based Software Development 15

we have a component Integers as shown in Figure 8, where the operations unit and op
are specified by:

Sunit : unit(u) ↔ u = 0
Sop : op(x, y, z) ↔ z = x − y

(4)

and defined by:
Operation:- unit

unit(0).

Operation:- op
op(x, y, z)← z = x− y

Obviously the operations unit and op in Integers are a priori correct with respect to
their specifications (4). We can compose Iterate and Integers by a closure operation
on Iterate, and get a correct iterate operation in the composite Iterate+Integers.

In Iterate+Integers, D is the set of integers, ◦ is −, e is 0, ×(a, n) = 0 −
a − · · · − a = −na, and the specification Siterate ((1) in Iterate) specialises to
iterate(x, n, z) ↔ z = −na, Sunit (in (2)) specialises to unit(u) ↔ u = 0 (in
(4)), and Sop (in (2)) to op(x, y, z) ↔ z = x − y (in (4)). Since unit and op are correct
with respect to their specifications (4), the operation (iterate(unit, op)∪unit∪op) com-
putes −na for an integer a, and is correct with respect to its (specialised) specification
in Iterate+Integers.

The iterate operation is thus a priori correct in Iterate and we say it is steadfast.
It can be correctly reused in any composite with operations for unit and op as long as
these operations are in turn steadfast.

The component Iterate has no constraints in its context dependencies. To further illus-
trate the notion of steadfastness, we now consider a component whose context depen-
dencies include constraints.

Example 5. Consider the component Iterate* (Figure 9) obtained from Iterate (Figure

INTERFACE

CODE

Operations:

Dependencies:

Siterate, Sunit, Sop;

D, ◦, e, unit, op;
iterate*(unit, op);

Code for iterate*

CONTEXT ITER(D, ◦, e)

Iterate*

constraints;

Fig. 9. The Iterate component.

6) by adding the following constraints to its context dependencies:

∀x : D . e ◦ x = x

∀x, y, z : D . x ◦ (y ◦ z) = (x ◦ y) ◦ z
(5)



16 Kung-Kiu Lau

and by replacing the iterate operation in Iterate by the following operation iterate*:

Operation: iterate*(unit, op)

iterate(a, 0, v)← unit(v)
iterate(a, n, v)← m + m = n, iterate(a, m,w),

op(w, w, v)
iterate(a, n, v)← m + s(m) = n, iterate(a, m, w),

op(w, w, z), op(z, a, v)

The operation iterate* has the same specification S iterate (1) as iterate in Iterate, but
it computes the relation iterate more efficiently than iterate: the number of recursive
calls is linear in iterate*, whereas it is logarithmic in iterate. However, iterate* would
not be steadfast in Iterate. For example, if we were to use iterate* in place of iterate in
Iterate, then iterate* would be correct with respect to (1) and (2) in Iterate+Naturals,
but it would not be correct with respect to (1) and (2) in Iterate+Integers, where, for
instance, for iterate(a, s(s (s(s(0)))), v), iterate* would compute 0 instead of the cor-
rect answer −4a. Thus despite the a priori correctness of unit and op in both Naturals
and Integers, iterate* would not be correct in both Iterate+Naturals and Iterate+Inte-
gers. Therefore iterate* would not be steadfast in Iterate.

The reason for this is that in Iterate*, the constraints (5) require that the parameters
e and ◦ of the context satisfy the unit and associativity axioms. These imply that

�
×(a, n) = ×(a, n ÷ 2) ◦ ×(a, n÷ 2) ◦ a if n is odd
×(a, n) = ×(a, n ÷ 2) ◦ ×(a, n÷ 2) if n is even

which means that whenever ◦ is associative, × can be computed in logarithmic time.
So, if we were to use iterate* in place of iterate in Iterate, then iterate* would be correct
in Iterate+Naturals because here (D is the set of natural numbers) e is 0, ◦ is +, and
so they actually satisfy the constraints (5) anyway, even though these constraints are not
present in Iterate. On the other hand, iterate* would not be correct in Iterate+Integers
because here (D is the set of integers) e is 0, ◦ is −, and since − is not associative, they
do not satisfy (5).

However, we can prove that iterate* is steadfast in Iterate*, again assuming a priori
correctness of operations for unit and op defined in some other component. It will be
correct in any composite Iterate*+C as long as C satisfies the constraints (5) in the con-
text dependencies of Iterate*. For example, as can be seen from the above discussion,
iterate* will be correct in Iterate*+Naturals since + is associative. For something dif-
ferent, suppose Matrices is a component with a context of m-dimensional square ma-
trices. Then in the composite Iterate*+Matrices, D is the set of m-dimensional square
matrices, e is the m-dimensional identity matrix, and since matrix multiplication × is
associative, iterate* will be correct, where op computes matrix products.

12 Discussion

Since a steadfast program is correct, and hence correctly reusable, in all specialisations
and instances of its context, a component with steadfast operations, which we will call
a steadfast component, when composed with another steadfast component will also be



A Priori Reasoning for Component-based Software Development 17

steadfast. In other words, steadfastness is not only compositional, but is also preserved
through inheritance hierarchies.

Consequently, in the context of system prediction (as shown in Figure 3) when
composing steadfast components, not only can we be sure that the composite will be
steadfast, but we can also predict the specification of the composite. This is illustrated

A B C
Interface/Spec Interface/Spec Interface/Spec

Code Code Code+

component A
Steadfast Steadfast

component B
Steadfast

component C

Fig. 10. Composing steadfast components.

in Figure 10.
In the context of modular specification and verification (as shown in Figure 4),

steadfast modules can be verified and the specification of the composite can be pre-
dicted, prior to composition. This is illustrated in Figure 11. We understand that current

Code
Interface Interface

Code

Spec for C

C

Spec for B

B

+Code
Interface

Spec for A

A

+

Steadfast module C Steadfast module A Steadfast module B

Fig. 11. Composing steadfast modules.

approaches to modular reasoning need to know the specification of the composite before
predicting if the composite will work according to its specification. If this is the case
(as shown in Figure 4), then steadfastness offers the advantage of being able to predict
the specification of the composite prior to composition. Thus, with steadfast modules,
we can do system prediction as shown in Figure 10.

13 Conclusion

For lack of space, we have presented the intuition behind steadfastness, to illustrate the
notion of a priori correctness, by means of simple examples. We hope this does not de-
tract from the presentation of our idea of a priori reasoning. A full account of steadfast-
ness can be found in [8]. Steadfastness is defined in terms of model-theoretic semantics.
It is thus declarative in nature. We believe that declarative semantics in general will be
important for lifting the level of abstraction, necessary for a shift in paradigm to a priori
reasoning.

Our approach to specifying components is very generic. The component may be
just a class or ADT. It may be a module, in particular what Meyer [10] calls an ab-
stracted module, which is the basic unit of reuse in the CBD methodology RESOLVE
[14]. It may be an object model [2] as in OMT [11] or UML [12]. It may yet be an



18 Kung-Kiu Lau

OOD framework, i.e. a group of interacting objects [6], such as frameworks in the CBD
methodology Catalysis [3, 5]. It could even be a design pattern or schema [4].

We believe that our approach to component specification can enable a priori rea-
soning, which we believe is important for CBD. In particular, as discussed in [7], we
believe that a priori reasoning can deliver the key pre-requisites for CBD to achieve its
ultimate goal of third-part assembly, these being:

– a standard semantics of components and component composition (and hence reuse);
– good (component) interface specifications;
– a good assembly guide for selecting the right components for building a specified

system.

In addition, as also pointed out in [7], a priori reasoning can provide a hybrid, spiral
approach to CBD that is both top-down and bottom-up for CBD, as illustrated in Fig-
ure 12. First a library of a priori correct components has to be built. The nature of a

yes
no

Top−down

Bottom−upLibrary of steadfast components

Library of steadfast components

Correct software

Correct software ?Spec

Requirements Spec Architectural Spec

analysis &
transformation

synthesis

synthesis

design

Fig. 12. A spiral model for CBD.

priori correctness, coupled with the use of a priori reasoning, then allows these compo-
nents to be composed into larger systems in either a top-down (following the traditional
waterfall model or the software architecture approach [13, 1]), or bottom-up manner, or
indeed a combination of both.

Bottom-up development in particular is more in keeping with the spirit of CBD.
Composition of a priori correct components can show the specification of the compos-
ite, and therefore the specification of any software constructed can be compared with
the initial specification for the whole system. Guidance as to which components to ‘pick
and mix’ can also be provided by component specifications.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1998.

2. R. Bourdeau and B. H. Cheng. A formal semantics for object model diagrams. IEEE Trans.
Soft. Eng., 21(10):799–821, 1995.

3. D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, 1999.



A Priori Reasoning for Component-based Software Development 19

4. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalisation of correct
schemas for program synthesis. Journal of Symbolic Computation, 30(1):93–127, July 2000.

5. J. Küster Filipe, K.-K. Lau, M. Ornaghi, K. Taguchi, A. Wills, and H. Yatsu. Formal speci-
fication of Catalysis frameworks. In J. Dong, J. He, and M. Purvis, editors, Proc. 7th Asia-
Pacific Software Engineering Conference, pages 180–187. IEEE Computer Society Press,
2000.

6. J. Küster Filipe, K.-K. Lau, M. Ornaghi, and H. Yatsu. On dynamic aspects of OOD frame-
works in component-based software development in computational logic. In A. Bossi, editor,
Proc. LOPSTR 99, Lecture Notes in Computer Science, volume 1817, pages 43–62. Springer-
Verlag, 2000.

7. K.-K. Lau. Component certification and system prediction: Is there a role for formality?
In I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau, editors, Proceedings of the Fourth
ICSE Workshop on Component-based Software Engineering, pages 80–83. IEEE Computer
Society Press, 2001.

8. K.-K. Lau, M. Ornaghi, and S.-Å. Tärnlund. Steadfast logic programs. J. Logic Program-
ming, 38(3):259–294, March 1999.

9. G. Leavens. Modular specification and verification of object-oriented programs. IEEE Soft-
ware, pages 72–80, July 1991.

10. B. Meyer. Object-oriented Software Construction. Prentice-Hall, second edition, 1997.
11. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Sorenson. Object-Oriented Model-

ing and Design. Prentice-Hall, 1991.
12. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Man-

ual. Addison-Wesley, 1999.
13. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.
14. M. Sitaraman and B. Weide, editors. Component-based software using RESOLVE. Special

feature, ACM Sigsoft Software Engineering Notes 19(4): 21-65, October 1994.


