
Built-in Contract Testing in Component-

based Application Engineering

Hans-Gerhard Groß

Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6, 67661 Kaiserslautern, Germany

grossh@iese.fhg.de

Abstract. Assembling new software systems from prefabricated com-
ponents is an attractive alternative to traditional software engineering
practices and promises to increase reuse and reduce development costs.
However, these benefits will only occur if separately developed compo-
nents can be made to work effectively together with reasonable effort.
Lengthy and costly in-situ verification and acceptance testing directly
undermines the benefits of independent component fabrication and late
system integration. This paper describes an approach for reducing man-
ual system verification effort by equipping components with the ability
to check their execution environments at run-time. When deployed in
new systems, built-in testing components check the contract-compliance
of their server components, including the run-time system, and thus au-
tomatically verify their ability to fulfill their own obligations. Enhanc-
ing traditional component-based development methods with built-in con-
tract testing in this way reduces the costs associated with component as-
sembly, and thus makes the ”plug-and-play” vision of component-based
development closer to practical reality.

1 Introduction

The vision of component-based development is to allow software vendors to avoid
the overheads of traditional development methods by assembling new applica-
tions from high-quality, prefabricated, reusable parts. Since large parts of an
application may therefore be constructed from prefabricated components, it is
expected that the overall time and costs involved in application development
will be reduced, and the quality of the resulting applications will be improved.
This expectation is based on the implicit assumption that the effort involved
in integrating components during configuration and deployment is lower than
the effort involved in developing and validating applications through traditional
techniques. However, this does not take into account the fact that when an oth-
erwise fault-free component is integrated into a system of other components,
it may fail to function as expected. Current component technologies can help
to verify the syntactic compatibility of interconnected components, but they do
little to ensure the semantic compatibility of inter-connected components, so
that the individual parts are assembled into meaningful configurations. Software

87

88 Hans-Gerhard Groß

developers may therefore be forced to perform more integration and acceptance
testing in order to attain the same level of confidence in the system’s reliability.

The testing approach described in this paper is based on the notion of build-
ing contract tests into components so that they can validate that the servers
to which they are ”plugged” dynamically at deployment time will fulfil their
contract. Although built-in contract testing is primarily intended for validation
activities at deployment and configuration-time, the approach also has impor-
tant implications on the development phases of the overall software life-cycle.
Consideration of built-in test artifacts needs to begin early in the design phase
as soon as the overall architecture of a system is developed and/or the interfaces
of components are specified. Built-in contract testing therefore needs to be in-
tegrated with an overall software development methodology. This paper focuses
on explaining the basic principles behind built-in contract testing, and how they
affect the testing of component applications. Additionally, it demonstrates how
built-in contract testing can be integrated with, and made to complement, a
mainstream development method that is based on the creation of UML models.

2 Software Components and Component-based

Development

This work concentrates on component-based development, so it is important
to define the term component for the purpose under consideration: A software
component is a unit of composition with explicitly specified provided, required
and configuration interfaces, plus quality attributes. This definition is based on
the well known definition from ECOOP’96 [1], that defines a component as unit
of composition with contractually specified interfaces and context dependencies
only, that it can be deployed independently, and that it is subject to composition
by third parties. The definition for this work has intentionally a broader scope
that is avoiding the terminology independently deployable, since this work is not
specifically restricted to technologies such as CORBA, .NET or COM. In this
respect our definition is closer to Booch’s definition who sees a component as a
logically, cohesive, loosely coupled module that denotes a single abstraction [2].
From this it becomes apparent that components are basically built upon the same
fundamental principles as object technology. The principles of encapsulation,
modularity, and unique identities are all basic object-oriented principles that
are subsumed by the component paradigm [3]. A Java class may therefore be
considered as a component in this respect.

2.1 Development Method

The initial starting point for a software development project is undoubtedly a
system or application specification derived and decomposed from the system re-
quirements. Requirements are collected from the customer of the software. They
are decomposed in order to remove their genericity in the same way as system

Built-in Contract Testing in Component-based Application Engineering 89

designs are decomposed in order to obtain finer grained parts that are individu-
ally controllable. These parts are implemented and later composed into the final
product. The decomposition activity is aiming to obtain meaningful, individually
coherent parts of the system, the components. It is also referred to as component
engineering or component development. The composition activity tries to assem-
ble existing parts that may have been already used in other applications, into a
meaningful configuration that reflects the predetermined system requirements.
This activity is termed application engineering or application development.

In its purest form, component-based development is only concerned with
the second item, representing a bottom-up approach to development. This re-
quires that every single part of the overall application is already available in
a component repository in a form that exactly maps to the requirements of
that application. Typically, this is not the case, and merely assembling readily
available parts into a configuration will quite likely lead to a system that is not
conforming to its original requirements. Component-based development is there-
fore usually a mixture of top-down decomposition and bottom-up composition.
In other words, the system is decomposed into finer grained parts, that is sub-
systems or components, and these are attempted to be mapped to individual
prefabricated components. The whole process is iterative and must be followed
until all requirements are mapped to corresponding components or until the sys-
tem is fully decomposed onto the lowest desirable level of abstraction. If suitable
third party components are found, they can be composed to make up the system
or subsystem under consideration. The outcome of such a development process
is usually a heterogeneous assembly made of prefabricated parts plus own imple-
mentations. The decomposition process is based on the derivation of component
specifications and realizations. The specification of a component comprises ev-
ery piece of information that is necessary to fully describe what a system part
does, and the realization of a component contains full information that is nec-
essary to implement this part. The description of the development artifacts in
this paper follows the KobrA development method [3]. This method uses the
UML as primary notation. That means most software documents that are cre-
ated over the course of a development project applying this method are UML
models. However, there are other artifacts but KobrA realizes the concepts of
the OMG’s Model Driven Architectures, so models are the primary development
documents.

2.2 Component Specification

A specification is a collection of descriptive documents that collectively define
what a component can do. Typically, each individual document represents a dis-
tinct view on the subject, and thus only concentrates on a particular aspect of
what it can do. A specification contains everything that is necessary in order to
fully use the component and understand its behavior. As such, the specification
can be seen as defining the provided interface of the component. Therefore, the
specification of a component comprises everything that is externally knowable

90 Hans-Gerhard Groß

of its structure (e.g. associated other components, in form of a structural spec-
ification, or UML structural diagrams), function (e.g. provided operations, in
form of a functional specification), and behavior (e.g. pre- and post-conditions,
in form of a behavioral specification, UML behavioral diagrams). These artifacts
represent a complete framework for a component specification.

2.3 Component Realization

A realization is a collection of descriptive documents that collectively define how
a component is realized. A realization should contain everything that is necessary
in order to implement the specification of a component. A higher-level compo-
nent is typically realized through a collection of lower-level components that are
contained within and act as servers to the higher-level component. Additionally,
the realization describes the items that are inherent to the implementation of the
higher-level component. This is the part of the functionality that will be local to
the subject component and not implemented through sub-components. In other
words, the realization defines the specification of the sub-components, this is the
expected or required interface of the component, plus its own implementation.

3 Built-in Contract Testing

Meyer [4] defines the relationship between a component and its clients as a for-
mal agreement or a contract, expressing each party’s rights and obligations in
the relationship. This means that individual components define their side of the
contract as either offering a service (this is the server in a client-server rela-
tionship) or requiring a service (this is the client in a client-server relationship).
When ”individually correct” components are assembled and deployed to form a
new system or to reconfigure an existing system there are only two things that
can go wrong:

1. Explicitly acquired servers or implicitly acquired servers within a compo-
nent’s deployment environment may behave differently to those in its original
development environment. Since such servers are either acquired explicitly
from external sources, or implicitly provided by the run-time system, they
may not abide by their contracts (semantically), even if they conform syn-
tactically to their expected interfaces.

2. Clients of the component may expect a semantically different service to that
provided, although they may be ”happy” with the syntactic form of the
client-ship.

There are consequently two things, in terms of the generic deployment sce-
nario depicted in Fig. 1, that should ideally be tested to ensure that a component
will behave correctly within its deployed environment: The deployed component
(in the center of Fig. 1) must verify that it receives the required support from its
servers. This includes explicitly acquired servers and implicitly presumed servers

Built-in Contract Testing in Component-based Application Engineering 91

(i.e. the run-time system). Clients of the deployed component must verify that
the deployed component implements the services correctly that it is contracted
to provide. In order to check these properties dynamically when a system is con-
figured or deployed, test software can be built into the clients alongside their
normal functionality. The test software may be a collection of tests organized
in a component, and testing is equivalent with executing the built-in test soft-
ware. The two test requirements identified above indicate that there are basically
two places where the additional test software for a given component should be
located:

1. In the component itself, to verify that its environment (its servers) behaves
according to what the component has been developed to expect, and

2. In the clients of the component to verify that the component implements the
semantics of what its clients have been developed to expect.

These two scenarios are illustrated in Fig. 1. The acquires and presumes as-
sociations indicate the relations which must be tested to gain full confidence
that the integrated component will inter-operate correctly with its environment.
While most contemporary component technologies enforce the syntactic confor-
mance of a component to an interface, they do nothing to enforce the semantic
conformance. This means that a component claiming to be a stack, for example,
will be accepted as a stack so long as it exports methods with the required sig-
natures (e.g. push and pop). However, there is no guarantee that the methods
do what they claim to do. Built in tests offer a feasible and practical approach
for validating the semantics of component interactions.

Run-Time System

<<presumes>>
<<presumes>>

<<presumes>>

Deployed
Component

Explicit
Server

Client

Implicit
Server

Implicit
Server

Implicit
Server

<<acquires>> <<acquires>>

<<Component>>

<<Component>>

<<Component>> <<Component>>

<<Component>> <<Component>> <<Component>>

System

Fig. 1. Deployment of a component into a system illustrated through a KobrA con-
tainment tree.

92 Hans-Gerhard Groß

The objective of built-in contract testing is to check that the environment
of a component does not deviate from that which it was developed to expect.
The philosophy behind built-in contract testing is that an upfront investment in
verification infrastructure pays off during reuse. This adds considerable value to
the reuse paradigm of component-based software development because a compo-
nent can complain if it is mounted into an unsuitable environment. The benefit
of built-in verification follows the principles which are common for all reuse
methodologies: the additional effort of building the test software directly into
the component alongside the functional software results in an increased return
on investment depending on how often such a component is reused. This in turn
is determined by how easily the component may be reused. Built-in contract
checking greatly simplifies the effort involved in reusing a component.

3.1 Tester Components

Rather than associate a test with a single method, it is more in the spirit of
component technology to encapsulate it as a full tester component in its own
right. The tester component (the server tester component in the client in Fig. 2)
contains tests that check the semantic compliance of the server that the client ac-
quires. The tests inside the client’s tester component represent the behavior that
the client expects from its acquired server. We call a client that has test software
a built-in testing component since it is able to test its associated servers. Tester
components that are embedded in testing components provide the optimal level
of flexibility with respect to test weight (at both the run-time and development
time).

Functional Interface

<<Client>>
Testing Component

<<Server>>
Tested Component

Server
Tester

Component

Configuration Interface

<<acquires>>

Fig. 2. Testing Component with an associated server tester component.

In general, the testing component (client) will contain one or more built-in
contract testers for checking its servers. These testers are separate components
that include the test cases for implicitly or explicitly acquired components. Obvi-
ously, if the run-time system is invariant, a component will not include any server
testers for the underlying platform. A client that acquires a server will typically
exhibit a configuration interface through which a particular server component
may be set (as in Fig. 2). This can be a method such as setServer (Component
Server) that assigns a particular server to a component reference in the client.
The setServer method is typically invoked when the system is configured and

Built-in Contract Testing in Component-based Application Engineering 93

deployed. However, before the assignment is finally established, the client will
execute its built-in tester components to perform a full semantic check on this
new server. The component passes the reference to its tester, and this executes a
simulation on the services of the newly acquired component. It may raise an ex-
ception if the test fails, otherwise the client establishes the connection. The tests
may be derived through any arbitrary test case generation technique such as
requirements-based test generation, equivalence partitioning, or boundary value
analysis [5], [6]. According to the applied testing criteria, it may represent an ad-
equate test-suite for the individual unit. In this case, the executed built-in tests
represent the client’s usage profile that a supplier of the acquired server may
never anticipate. The supplier may only perform a traditional unit test accord-
ing to their own anticipated usage profiles. This is the fundamental difference
to more traditional testing that is not built-in. The size of the built-in tester is
also subject to efficiency considerations.

3.2 Testable Components

Component-based development is founded on the abstract data type paradigm
with the combination and encapsulation of data and functionality. State transi-
tion testing is therefore an essential part of functional testing. This means that
in order to check whether an operation of a component is working correctly,
the component must be brought into an initial state before the test case is ex-
ecuted, and the final state of the component as well as the returned values of
the operation must be checked after the test case has been applied (pre- and
post-conditions). The basic principles of encapsulation and information hiding
dictate that external clients of a component should not see implementation and
state variables. The test software outside the encapsulation boundary cannot
therefore set or get internal state information. Only a distinct history of op-
eration invocations on the functional interface results in a distinct initial state
required for executing a test case. Since the tests are performed in order to verify
the correctness of the functional interface it is unwise to use this interface for
supporting the testing (i.e. setting and getting state information).

Testing Interface

Functional Interface

TESTABLE Component

Test Software

set & get internal
states

Fig. 3. Testable component with an additional contract testing interface.

94 Hans-Gerhard Groß

A testable component under the built-in contract testing paradigm is a com-
ponent that can be tested, which means it provides some in-built support for
the execution of a test by an external client. The required support is provided
in the form of a contract testing interface as displayed in Fig. 3. The basic idea
in built-in contract testing is to enhance the normal functional interface of a
component with a testing interface that exposes the logical (externally visible)
states of the component, and makes them available for setting and checking.
These states are part of the component’s specification (this is the KobrA spec-
ification behavioral model). For example a gear box exhibits externally visible
states, five forward settings one reverse and one neutral, that are essential for
operating the gear box. A testable component can also contain an introspection
interface that provides access to and information about the supported testing
interfaces. This may be implemented in form of a Java-like Interface that realizes
a testability contract. This is part of the overall methodology and detailed in
[7].

A testable component contains a built-in contract testing interface which ex-
tends the component’s normal functional interface with operations to support
contract testing. The most basic contract testing interface consists of state as-
sertions realized as operations that are invoked by a tester to see whether the
component is residing in a defined logical state. This is the most fundamental,
and well known state checking mechanism that is also outlined in [5], or [6]. This
technique is based on additional operations on abstract data types that imple-
ment the assertion checking code. For the gear box example, this would map to
additional Boolean operations that check whether the box is in one of its logical
states that represent the gears; for example isInGearX (), with X representing
each individual gear setting. Functional testing in this case would comprise a
test for each possible individual gear transition according to the KobrA spec-
ification behavioral model. This corresponds to state transition coverage and
consequently to coverage of the behavioral specification.

The disadvantage of having only a state checking mechanism is that for some
tests quite a long history of operation invocations may be necessary in order to
satisfy the preconditions. This can be circumvented through additional state set
up operations that can directly manipulate the state variables according to the
logical states, for example setToGearX (), with X representing each externally
defined gear setting. This may be simple and straightforward for many compo-
nents such as the gear box control system, but for some components substantial
re-implementation of the component’s functionality may be required. However,
specific libraries may alleviate this effort as demonstrated in [7].

For many components, particularly ones that built up complex internal data
structures, the effort of designing and implementing state setting operations will
be just as intense as for the initial operations whose behavior they will simu-
late. This is a complexity issue, and it clearly makes no sense to re-implement
exactly the same functionality and then use it for state setting purposes. The
decisions about the state setting interface must definitely be based upon tradeoff
considerations along the lines which strategy is easier to implement: implemen-

Built-in Contract Testing in Component-based Application Engineering 95

tation of the state setting operation plus less complex test case implementations,
or implementation of only state checking operations with the cost of having to
implement larger or more complex client tests. This clearly underpins the im-
portance of the state checking operations that should always be provided as a
minimal requirement by a component that implements built-in contract testing
technology. These decisions must be wearily measured, and they are subject of
further investigations. The Java standard library provides many good examples
of how much introspection individual classes may provide and how simply these
operations may be designed [9].

3.3 Quality assurance of the additional built-in test artifacts

State checking and setting operations of the testing interface enable access to
the internal state variables of a component for contract testing by breaking
the encapsulation boundary in a well-defined manner, while leaving the actual
tests outside the encapsulation boundary. The clients of the component use the
contract testing interface in order to verify whether the component abides by its
contract. In this way, each individual client can apply its own test suite according
to the client’s intended use, or usage profile of its server. However, an important
issue especially when in-built testing is considered, is that the test software may
also be faulty.

Since the additional testing interface is an integral part of the component
and thus of the overall development effort, in fact it may be seen as implement-
ing normal functionality, the provider of that component should apply the same
thorough quality assurance criteria as used for the rest of the component. The
KobrA method recommends the creation of a Quality Assurance Plan that de-
fines the quality criteria for the entire project and also individual components [3].
KobrA’s primary quality assurance technique for individual units is inspections
of the underlying models and specification artifacts, since this type of defect
detection may be performed as early as possible in the development life cycle.
Additionally it promotes the application of unit tests that represent the vendor’s
view on the functionality of the component. This in fact is not testing the testing
environment, but rather it may be seen as checking the normal functionality of
a component.

The tester components that are built into clients are typically also subject to
a thorough inspection process that is based upon and guided through the clients’
individual specifications. That means each test must be checked for correct pre-
and post-conditions and input parameters according to the models and criteria
from which a test is derived. This is performed through perspective-based in-
spections of the requirements and specification documents as detailed in [8]. A
test of the tester component in the conventional way clearly makes no sense.

4 Modeling and Design of Testing Artifacts

The advantage of a model driven architecture is that a system or component may
be described in an abstract form without having to decide how the component

96 Hans-Gerhard Groß

will be implemented in a particular language. The models basically represent a
complete specification of what a component will be implementing (e.g. KobrA
Specification), and how (logically) it will be realized (e.g. KobrA Realization).
The models also determine the items which must be checked when the product is
finally realized. A test model can therefore be derived directly from the functional
model of the component’s architecture (model-based testing). A component and
the testing of that component can consequently be developed in parallel by using
exactly the same principles and processes.

4.1 Design and Development of a Testing Interface

The testing interface is responsible for setting preconditions and checking the
post conditions for a test. Pre- and post-conditions for an event are defined in the
functional model and in the behavioral model. Setting initial states and checking
final states can be performed through auxiliary operations in a component’s
testing interface, i.e.

void setToState (_BIT_State definedState);

bool isInState (_BIT_State definedState);

These two testing interface operations represent an alternative to the previ-
ously introduced state checking and setting operations. Their advantage is that
all contract testing interfaces will have the same signatures, only the logical states
and their realizations are variable [7]. The testing operations setToState() and
isInState() bring the component into a well defined state, and check whether the
component is residing in a well defined state according to the specification. The
testing interface is constant for any arbitrary component as part of a testability
contract whereas the state model and hence the states are different according to
the functionality of the component. Each state represents a number of invariants
that the component must abide to at a given point in time.

4.2 Design and Development of Tests and Tester Components

Since built in tests, by definition, are embedded within a component at run-
time, their size and speed is an important concern. If a test is too small it may
not provide the required degree of confidence in the correctness of the tested
server component. On the other hand, if a test is too large, it may unduly
increase the size or decrease the execution speed of the test at run-time. The
optimal test represents a balance between these two requirements, and it is highly
dependent on the context in which the test is applied. The magnitude of a test
is characterized by its weight. At one logical extreme, the heaviest form of test
is one that performs a complete functional test covering all possible I/O and
state options. At the other logical extreme, the lightest possible form of test is
a test that does nothing. In between these two extremes, a full spectrum of test
weights is conceivable.

Built-in Contract Testing in Component-based Application Engineering 97

The context sensitivity of the optimal weight of a test creates a dilemma
for the reusability of components with built in tests. To make BIT components
reusable, therefore, it is necessary to use some form of mechanism available for
handling variability. Most variation techniques are applied at development time
(e.g. inheritance, extension points, templates and generation). At run-time, se-
lection among the alternatives built into the executable component is achieved
by the provision of a configuration interface. Thus, reusable built-in test com-
ponents will incorporate one or more configuration methods to select the weight
of the built in tests at run-time. Such a configuration interface can be used to
attach and detach different contract tester components dynamically depending
on speed and size considerations of the deployed system (Fig. 4).

Functional Interface

Configuration Interface

Functional Interface

Testing Interface

<<acquires>>

Server Tester

Heavyweight

Server Tester

Midweight

Server Tester

Lightweight

<<acquires>>

<<acquires>>

Fig. 4. Configuration for adjusting the test weight in testing components.

5 Development of Testable and Testing Components

The basis of a functional contract test suite that will be used for deployment
testing is the state transition table derived from the KobrA specification state
model. This defines a minimal set of tests for functional testing. Each line in the
transition table represents a test for each state transition from the externally
visible state model. This test set represents full transition coverage of the model.
Table 1 shows the state transition table for the previously used gear box control
interface. The table contains every possible externally visible state transition of
the considered component. Its abstract state model is defined through the states
Neutral, Gear1 to Gear5 and Reverse representing each feasible gear box setting
respectively.

The state transition table contains sufficient information for deriving the
testing interface for a testable gear box control component. Fig. 5 displays a
UML-like representation (in form of a structural model [10]) of a testable gear
box realized in the two previously mentioned alternative ways. In this case, the

98 Hans-Gerhard Groß

Table 1. State transition table of a gear box control unit.

No Initial State Pre-Condition Event Final State

1 Neutral momentum < reverseMomentum toReverse () Reverse
2 Reverse toNeutral () Neutral
3 Neutral momentum < gear1Momentum toGear1 () Gear1
4 Gear1 toNeutral () Neutral
5 Neutral momentum < gear2Momentum toGear2 () Gear2
6 Gear2 toNeutral () Neutral
7 Neutral momentum < gear3Momentum toGear3 () Gear3
8 Gear3 toNeutral Neutral
9 Neutral momentum < gear4Momentum toGear4 () Gear4
10 Gear4 toNeural () Neutral
11 Neutral toGear5 () Gear5
12 Gear5 toNeutral () Neutral

<<states>>
sNeutral
sGear1
sGear2
sGear3
sGear4
sGear5
sReverse
<<state set & check>>
setToState (state)
isInState (state)

5-GearBoxControl2
Testable

<<Component>>

5-GearBoxControl1

<<state checking>>
isInNeutral ()
isInGear1 ()
isInGear2 ()
isInGear3 ()
isInGear4 ()
isInGear5 ()
isInReverse ()
<<state set up>>
setToNeutral ()
setToGear1 ()
setToGear2 ()
setToGear3 ()
setToGear4 ()
setToGear5 ()

<<Component>>
Testable

setToReverse ()

<<Component>>
GearBoxControl

Client

<<Variant Component>>

5-GearBoxControl
Tester

<<Component>>
5-GearBoxControl

toNeutral ()
toGear1 ()
toGear2 ()
toGear3 ()
toGear4 ()
toGear5 ()
toReverse ()

<<extends>><<acquires>>

<<extends>><<extends>>

<<acquires>>

<<acquires>>

<<xor>>

<<Variant Component>>

6-GearBoxControl
Tester

<<Variant Component>>

Tester
4-GearBoxControl

Fig. 5. Contract testing artifacts for a gear box control unit. TestableGearBoxCon-
trol1/2 represent alternative realizations of the contract testing state set up and check-
ing mechanisms.

Built-in Contract Testing in Component-based Application Engineering 99

testing interface extends the normal functional component with state testing in-
frastructure. Each defined state (Gear1 to 5, Neutral, and Reverse) is mapped
to functionality that can bring the component into this state or answer whether
the component is residing in a particular state. A contract tester component
for specification-based testing (GearBoxControlTester) can be derived from the
state table by using the corresponding interface operations and the test cases
(Event in Table 1). The contract tester component can be seen as a particu-
lar test driver for a particular test criterion. In this case the test criterion is
transition coverage and consequently coverage of the behavioral specification.
This corresponds to the functional tests that a client of the gear box control
component may perform when an application is assembled and put together.
Another tester component may contain additional test cases for other testing
criteria (e.g. equivalence partitioning). This may be generated in the same way
as for the functional model.

Contract testing is particularly aimed at deployment time testing in applica-
tion engineering. If during reconfiguration of the application, a new implementa-
tion of the testableGearBoxControl unit replaces the current one, its client’s set-
Server operation invokes the built-in GearBoxControlTester automatically and
verifies the semantic compliance of the new server to the existing client-ship con-
tract. This mechanism realizes automatic integration testing. The fact that the
testers are organized in components facilitates their reuse for different client-ship
contracts. If a 6-gear system is required, the original tester can simply be ex-
tended or replaced to accommodate the additional tests. If only a 4-gear system
is developed, the number of tests in the original tester can simply be reduced
through the extension mechanisms displayed in Fig. 5).

6 Conclusions

This paper has described an approach for enriching components with the capa-
bility to verify their run-time integrity, in-situ, by means of built-in tests. The
idea of building test into components is not new. However, previous approaches
such as [11] have adopted a hardware analogy in which components have self
test functionality that can be invoked at run-time to ensure that they have not
degraded. Since software, by definition, cannot degrade, the portion of a self test
which rechecks already verified code is redundant, and simply consumes time and
space resources. The approach described in this paper augments the earlier work
by focusing built-in test software on the aspects of a component’s capabilities
which are sensitive to change at run-time, and this the environment that repre-
sents the services used by the component. This new emphasis is characterized
as built-in contract testing.

Built-in contract testing provides an architecture and a methodology that is
particularly well suited for highly dynamic and distributed systems, such as In-
ternet applications, and systems with dynamic reconfiguration. Since these are
the applications primarily targeted by modern component technologies, built-
in contract testing represents a natural extension to component-based software

100 Hans-Gerhard Groß

engineering practices. The work is currently oriented towards reconfigurable in-
formation systems for which the overhead of run-time tests does not particularly
affect efficiency considerations. Extending the technology to real-time and em-
bedded systems still presents some challenges for future research in terms of how
much in-built testing such systems may bear.

We believe this methodology represents a contribution towards the practical
applicability of component technology and component-based development prac-
tice. We have consequently integrated built-in contract testing with a general-
purpose model-driven approach to component-based development, known as the
KobrA method [3] that promotes the early design of tests along with functional
artifacts. By extending the component paradigm with effective in-situ verifi-
cation techniques and processes, built-in test technology brings the vision of
component-based development one step closer to realization.

References

1. Szyperski, C., ”Component Software: Beyond Object-Oriented Programming”.
Addison-Wesley, 1999.

2. Booch, G. ”Software Components with Ada. Structures, Tools and Subsystems”,
1987.

3. Atkinson, C., et al. ”Component-based Product Line Engineering with UML”,
Addison-Wesley, 2001.

4. Meyer, B., ”Object-oriented software construction”, Prentice Hall, 1997.
5. Pressman, S., ”Software Engineering: A practioner’s approach”, McGraw-Hill,

1997.
6. Somerville, I., ”Software Engineering”, Addison-Wesley, 1995.
7. Component+ Project Report D.3, http://www.component-plus.org, September

2001.
8. Laitenberger, O., ”Cost-effective Detection of Software Defects through

Perspective-based Inspections”, Fraunhofer IRB Verlag, 2000.
9. Java Standard Library API Specification at http://java.sun.com/apis.html.

10. OMG Unified Modeling Language Specification, Object Management Group, 2000.
11. Wang, Y., King, G., Fayad, M., Patel, D., Court, I., Staples, G., and Ross, M.,

”On Built-in Tests Reuse in Object-Oriented Framework Design”, ACM Journal
on Com-puting Surveys, Vol. 23, No. 1, March 2000.

