
A Language-centric Approach to Software Engineering:
Domain Specific Languages meet Software Components

Gopal Gupta

Department of Computer Science
University of Texas at Dallas

[gupta@cs.utdallas.edu]

Abstract. Domain Specific Languages (DSLs) are high level languages designed
for solving problems in a particular domain, and have been suggested as means
for developing reliable software systems. Component based software engineer-
ing has been proposed as a way of reducing the complexity of software devel-
opment by providing ready-made software components for parts of the system
being developed. We present an approach that amalgamates these two technolo-
gies. Our approach relies on a (constraint) logic programming-based framework
for specification, efficient implementation, and automatic verification of domain
specific languages (DSLs) around software components. Our framework allows
the implementation infrastructure for a DSL (interpreter, compiler, debugger, and
profiler) to be automatically obtained (in a provably correct manner) from the
semantic specification of the DSL. Additionally, the semantic specification can
be used for (semi-)automatically verifying programs written in the DSL as well
as for automatically checking that component contracts are consistent with the
manner in which they are used. This new framework is currently being applied
for developing several DSLs, designed around software components. The most
significant of these is a DSL, called ΦLog, being developed to enable biologists
to program phylogenetic problems in biology.

1 Introduction

Writing software that is robust and reliable is a major problem that software developers
and designers face today. Development of techniques for building reliable software has
been an area of study for quite some time. Recently, two distinct approaches have been
proposed:

– Approaches based on domain specific languages (DSL): In the DSL approach
[5, 25, 14, 20, 22, 13], a domain specific language is developed to allow users to
solve problems in a particular application area. A DSL allows users to develop
complete application programs in a particular domain. Domain specific languages
are very high level languages in which domain experts can write programs at a
level of abstraction at which they think and reason. DSLs are not “general pur-
pose” languages, rather they are supposed to be just expressive enough to “capture

71



72 Gopal Gupta

the semantics of an application domain” [20]. The fact that users are able to code
problems at the level of abstraction at which they think and the level at which they
understand the specific application domain results in programs that are more likely
to be correct, that are easier to write, understand and reason about, and easier to
maintain. As a net result, programmer productivity is considerably improved. The
DSL-based approach can be regarded as a top-down approach, in which a simple,
high-level language interface is presented to the programmer to ease the task of
programming.

– Approaches based on Component Based Software Engineering (CBSE) In this
approach [2–4, 29] a repository of ready-made software components is assumed.
Programmers write “glue code” to put together existing software components to
solve a particular problem. The “glue code” is written in a traditional program-
ming language and makes use of components that can be regarded as ready-made
library procedures. Use of components results in software-reuse: tasks that are sim-
ilar in nature need not be programmed again and again. The components based
approach also results in improved programmer productivity due to software reuse.
If the library of components is standardized, the components based approach can
also result in code that is easier to read and maintain (e.g., components can be re-
garded as plug-in modules whose implementation can change, and as long as the
interface of the component remains fixed, the software that uses components need
not be changed). The components-based approach can be thought of as a bottom-up
approach in which low level implementation details of those parts of the program—
for which components are available—can be hidden from the programmer.

Both DSL-based and CBSE-based approaches have their advantages as well disad-
vantages. The two technologies of DSL and components can be synergistically used to
create software faster and in a provably correct manner. We argue that combining the
two overcomes some of the disadvantages of both approaches. We achieve this com-
bination via a semantics-based approach that yields an efficient implementation infras-
tructure (interpreters, compilers, debuggers, and profilers) for DSLs. In this semantics-
based approach, a denotational semantics [27] of the DSL is written in terms of software
components available for that application domain (components are, in fact, treated as
part of the semantic algebras [27] of this semantics). This semantics is coded using
Horn Logic (or pure Prolog) and Constraints [28], and is executable [17]. The exe-
cutable semantics yields an interpreter that may make calls to the various components.
The executable semantics can be extended in a simple way to obtain debuggers and pro-
filers. Given a program Pwritten in the DSL, the semantic interpreter of the DSL can be
partially evaluated [21] w.r.t. P to obtain “compiled code” in terms of calls to software
components. Because the interpreter, compiler, debugger and profiler are all derived
from the semantic specification, they are provably correct and obtained automatically
from the semantic specification of the DSL. Also, the time taken for each iteration of
the DSL design is much less, as changing the DSL only requires making change to its
semantics, the modified implementation infrastructure (i.e., the interpreter, compiler,
debugger, profiler) can be automatically derived from this semantics. Defining the se-
mantics of DSL in terms of components, makes the task of specifying this semantics



A Language-centric Approach to Software. . . 73

easier. Finally, component contracts can be specified as constraints [15], their consis-
tency w.r.t. components’ use can be checked in the semantic interpreter.

2 Domain Specific Languages (DSL)

The task of developing a program to solve a specific problem involves two steps. The
first step is to devise a solution procedure to solve the problem. This steps requires a
domain expert to use his/her domain knowledge, expertise, creativity and mental acu-
men, to devise a solution to the problem. The second step is to code the solution in some
executable notation (such as a computer programming language) to obtain a program
that can then be run on a computer to solve the problem. In the second step the user is
required to map the steps of the solution procedure to constructs of the programming
language being used for coding. Both steps are cognitively challenging and require con-
siderable amount of thinking and mental activity. The more we can reduce the amount
of mental activity involved in both steps (e.g., via automation), the more reliable the
process of program construction will be. Not much can be done about the first step as
far as reducing the amount of mental activity is involved, however, a lot can be done
for the second step. The amount of mental effort the programmer has to put in the sec-
ond step depends on the “semantic” gap between the level of abstraction at which the
solution procedure has been conceived and the various constructs of the programming
language being used. Domain experts usually think at a very high level of abstraction
while designing the solution procedure. As a result, the more low-level is the program-
ming language, the wider the semantic gap, and the harder the user’s task. In contrast,
if we had a language that was right at the level of abstraction at which the user thinks,
the task of constructing the program would be much easier. A domain specific language
indeed makes this possible.

However, a considerable amount of infrastructure is needed to support a DSL, a ma-
jor disadvantage of this approach. First of all, the DSL should be manually designed.
The design of the language will require the inputs of both computer scientists and do-
main experts. Once the DSL has been designed, we need a program development en-
vironment (an interpreter or a compiler, debuggers, editors, etc.) to facilitate the de-
velopment of programs written in this DSL. The implementation infrastructure of the
DSL (i.e., its compilers, debuggers, profilers, etc.) will constantly change as the lan-
guage evolves. Making changes to the implementation infrastructure is a daunting task,
and we believe is a major hurdle to the DSL-based approach being widely employed.
Leveson et al [22] have used the DSL based approach for designing software for air-
plane control. However, they observe that the design of the DSL can take as much as
3 years [22]. We believe that this is primarily because of the reason that a language is
fully understood only after its implementation infrastructure (interpreter, compiler, etc.)
has been developed and used for writing and executing a few programs by the domain
experts. Developing the implementation infrastructure, or modifying and changing it
takes a long time, resulting in each design iteration of the DSL taking a long time as
well.



74 Gopal Gupta

3 Software Components

A software component [29, 2–4] is a unit of independent deployment that has no persis-
tent state and that may have been developed by a third party. Software components can
be thought of as software modules that have been developed for commonly encountered
tasks and that can be employed in any software system when needed. Components have
contractually specified interfaces and explicit context dependencies only [29]. The ad-
vantage of software components is they can be bought from third party, and can be freely
reused. Repositories of software components have been developed for use in software
development projects to reduce the programming effort involved. The main advantage
of software components is they facilitate software reuse, and thus can considerably re-
duce programmers’ burden. In the software components based approach components
are composed together using “glue code” written in some traditional language.

The CBSE approach frees a programmer from reprogramming many tasks. How-
ever, many problems still arise or remain. CBSE does not completely free the program-
mer from low-level programming since the components still have to be glued together
in a low-level way. Essentially, all tasks in a software system for which components
cannot be found still have to be programmed in a low level way. Finding components
from a component repository that are suited to one’s software needs is also a difficult
task as component repositories can be quite large. Also, in the CBSE approach sys-
tem integration has to be brought to the forefront of the software development process
(typically it’s at the end of the software development phase) and continually managed.
The hardest problem in the CBSE approach, we believe, is knowing which components
to use in a system, since pre-existing set of components may have been written for a
pre-existing, possibly unknown, set of requirements (specified in component contracts
[29]). These requirements may be very general, in which case the requirements of the
system to be built will have to be made to conform to these general requirements, or
the requirements with which the component is written may be quite restrictive and may
fundamentally conflict with the requirements of the system in which this component is
needed.

4 Domain Specific Languages and Software Components

In this position paper we espouse an approach that makes use of both DSLs and soft-
ware components thereby producing a framework in which, we believe, software can be
developed faster and more reliably. Our thesis is that components should be embedded
in a domain specific language once and for all and this DSL should then be used by
developers for writing applications. This is in contrast to having developers use compo-
nents directly in their applications. The DSL can be thought of as a high-level wrapper
language built around a set of components that are likely to be used in an application
domain. The task of matching the requirements of the components and their suitabil-
ity becomes the responsibility of the DSL designer(s) during language design, rather
than of every application developer who uses components. Essentially, the language de-
signer provides a proper abstraction for the components in the DSL itself in a cohesive



A Language-centric Approach to Software. . . 75

way, freeing the developer from having to deal with the vagaries of a component’s in-
terface. The application developer only has to master the DSL, and thus avoids having
to struggle with understanding the component’s interface.

We have developed a semantics-based approach for combining DSL with compo-
nents which works as follows. An application domain in which problems need to be
solved is identified. A high-level domain specific language is designed so that domain
experts can write applications at their level of abstraction. The semantics of this domain
specific language is denotationally specified in terms of software components available
for that domain. These software components have to be identified by the language de-
signer(s). The semantics is coded using Horn Logic (pure Prolog) [28, 17] and is exe-
cutable. The executable semantics automatically yields an interpreter for the DSL (this
interpreter will call the various components during execution of a DSL program). The
executable semantics can be extended in a simple way to obtain debuggers and profilers
[19]. This is possible because the declarative semantic of the DSL explicitly passes the
execution state as an argument of a predicate; hooks can be added after each call to
semantic predicates that cause execution to pause and exhibit the execution state just
as a debugger would. Likewise hooks can be added that record and compile execution
statistics just as a profiler would. Given a program P written in the DSL, the semantic
interpreter of the DSL can be partially evaluated [21] w.r.t. P (using partial evaluators
for Prolog such as Mixtus [26]) to obtain “compiled code” in terms of calls to these
software components [17, 15].

A complete description of the framework as well as examples illustrating our ap-
proach [17, 19, 18] can be found elsewhere and are not included here due to lack of
space. Our approach is currently being applied to develop a domain specific language
called Φ-log [24] for allowing biologists to program phylogenetic applications. Φ-log is
being implemented on top of software components developed by computational biolo-
gists for solving problems in phylogenetics. Our approach also being applied to develop
a DSL for e-commerce applications.

5 Advantages of the Framework

Our framework combining DSLs and CBSE eliminates many of the disadvantages as-
sociated with software components and DSLs. The availability of components makes
the design and specification of DSL much faster. The DSL in turn acts as a high-level
“wrapper” around software components, freeing individual application developers from
having to worry about potential mismatches between the interface of software compo-
nents and the applications.

The principal advantage of combining DSL and software components via a semantics-
based approach is that that the implementation infrastructure (interpreter, compiler, de-
bugger, profiler) for a DSL can be rapidly prototyped. This can considerably speed up
the iterative design-implement-modify-reimplement cycle involved in DSL design, thus
removing what we believe to be one of the major hurdles that has precluded widespread
use of DSL technology.

A semantic-based approach also facilitates development of DSLs based on software
components available in a particular domain. Thus, a software engineering expert can



76 Gopal Gupta

look at a components repository, identify a set of software components in a particular
domain and then design a DSL around these components to facilitate programming of
tasks in that domain. The Horn logical semantics of the DSL will be written in terms of
this set of components to obtain the implementation infrastructure for this DSL.

Thus, our approach can be applied in two ways: (i) in a top down manner, where an
application domain is identified, a DSL designed, and its implementation infrastructure
obtained around a set of software components using our semantics based framework; or,
(ii) in a bottom up fashion, i.e., a set of closely related software components in a large
repository is identified (in consultation with the users), and then a DSL designed around
these software components, and its implementation infrastructure obtained. Note that in
both cases, identification of the components and the design of the DSL will be collabo-
ratively done by computer experts and the domain experts, however, the implementation
infrastructure will be developed by the computer expert alone.

Once the design of a DSL has been fixed, and its implementation prototyped, highly
efficient implementations can be obtained by implementing optimizing compilers for
the DSL using the traditional compiler technology.

6 Language-centric Software Engineering

It can be argued that any complex software system that interacts with the outside world
defines a domain specific language. This is because the input language that a user uses
to interact with this software can be thought of as a domain specific language. For
instance, consider a file-editor; the command language of the file-editor constitutes a
domain specific language. This language-centric view can be quite advantageous to
support the software development process. This is because the semantic specification of
the input language of a software system is also a specification of that software system—
we assume the semantic specification also includes the syntax specification of the input
language. If the semantic specification of the input language is executable, then we
obtain an executable specification of the software system. Note that this semantic speci-
fication can be given in terms of software components (i.e., s/w components are treated
as primitive operations in the semantic specification). The preceding observations can
be used to design a language semantics based framework for specifying, (efficiently)
implementing using s/w components, and verifying (rather model checking or debug-
ging in a structured way) software systems. The syntax and semantics of the input lan-
guage is specified using Horn logic/Constraints, and is executable. Efficient, provably
correct, compilation of the software systems in terms of software components can be
obtained via partial evaluation. The resulting executable specification can also be used
for verification, model checking and structured debugging. Thus, in the light of the
above discussion, software design is seen as the task of designing an input language.
Implementation is seen as specifying the semantics of this input language in terms of
software components.

An obvious candidate framework for specifying the semantics of a domain specific
language is denotational semantics [27]. Denotational semantics has three components:
(i) syntax, which is typically specified using a BNF, (ii) semantic algebras, or value
spaces, in terms of which the meaning is given (in our framework software components



A Language-centric Approach to Software. . . 77

will be treated as a semantic algebras), and, (iii) valuation functions, which map abstract
syntax to semantic algebras. In traditional denotational definitions, syntax is specified
using BNF, and the semantic algebra and valuation functions using λ-calculus. There
are various practical problems with the traditional approach: (i) the syntax is not directly
executable, i.e., it does not immediately yield a parser, (ii) the semantic specification
cannot be easily used for automatic verification or model checking. Additionally, the use
of separate notations for the different components of the semantics implies the need of
adopting different tools, further complicating the process of converting the specification
into an executable tool. Verification should be a major use of any semantics, however,
this has not happened for denotational semantics; its use is mostly limited to studying
language features, and (manually) proving properties of language constructs (e.g., by
use of fixpoint induction). In our framework, we use Horn logic (or pure Prolog) for
expressing denotational semantics as this facilitates the specification, implementation,
and automatic verification/debugging of DSL programs, all in one framework. In the
Horn logical denotational semantics framework, the BNF grammar can be specified
as a definite clause grammar (syntax specification), which automatically yields a parser
(executable syntax). The semantic algebras are defined in terms of software components
and pure Prolog while the valuation functions (rather valuation predicates) are defined
using pure Prolog. The valuation predicates can be executed on a Prolog interpreter
yielding an executable semantics.

7 Applications of the Framework

Our logic programming based approach to software engineering is being applied to
solve a number of problems. We are currently designing a domain specific language to
enable biologists to program solutions to phylogenetic inference problems [24]. Phylo-
genetic inference [10] involves study of the biocomplexity of the environment based on
genetic sequencing and genetic matching. Solving a typical problem requires use of a
number of software systems—Genbank [6] (a repository of genetic data), BLAST [7]
(a program for querying genetic databases), CLUSTAL W [8] (a program for aligning
molecular sequences), PHYLIP [12] and PAUP [9] (both are programs for inferring
evolutionary paths), etc., along with a number of manual steps (e.g., judging which
sequence alignment for two genes is the “best”), as well as extra low-level coding
to glue everything together. A biologist has to be considerably sophisticated in use
and programming of computers to solve these problems, as outputs from various soft-
ware systems have to be massaged and transformed, and then fed to other software
systems. We are developing a DSL for phylogenetic inference that will allow biolo-
gists to program such interactions at a very high level, essentially allowing them to
write/debug/profile programs at their level of abstraction. The semantic specification of
this DSL is given in terms of available software components for phylogenetic inference
(Genbank, CLUSTAL W, BLAST, PHYLIP, PAUP, etc). The task of solving phyloge-
netic problems will become much simpler for the biologist, giving them the opportunity
to become more productive as well as be able to try out different “what-if?” scenarios.

Our approach is also being used to facilitate the navigation of complex web-structures
(e.g. tables and frame-based pages) by blind users (blind-users typically access the



78 Gopal Gupta

WEB using audio-based interfaces). Given a complex structure, say a table, the web-
page designer may wish to communicate only the essential parts of the table to a blind-
user. In our approach, the web page-writer (or a third party) will attach to the web-page
a domain specific language program that encodes the table navigation instructions [23].

Finally, our approach is also being used to generate provably correct code for SCR
[1] specifications, and for developing a domain specific language for writing e-commerce
applications.

8 Formal Verification

Automated or semi-automated verification is also possible in our semantics-based frame-
work. Component contracts can also be enforced in the same framework. The semantic
specification of a DSL L coded in Horn logic can be viewed as an axiomatization of the
language constructs of L. The denotation of a program PL written in L w.r.t. the Horn
logical semantics of L, Pd, can be thought of as an axiomatization of the logic implicit
in the program PL or as an axiomatization of the problem that PL is supposed to solve.
This axiomatization can be used in conjunction with a logic programming engine to
perform verification. Additionally, the relational nature of logic programming allows
for the state space of a program written in L to be explored with ease. This fact can also
be exploited to debug/verify properties of programs.

One standard way of gaining more confidence is to prove interesting properties
about PL but instead of using PL we use its Horn logical denotation, Pd, instead. Thus,
given a property Φ that we want to prove about PL, we show that Φ is a logical conse-
quence of axioms in Pd, i.e., Pd |= Φ. However, note that the program may have been
written under certain assumptions that were made regarding the input to the program.

Let us assume that we have a precondition I on inputs, X̄, and a postcondition O

on outputs, Ȳ , of the program PL. This means that for program PL, if I(X̄) is true and
PL(X̄) terminates and produces outputs Ȳ , then O(Ȳ ) must be true if PL is correct.
Let us assume that main p(X̄, Ȳ ) represents PL’s Horn logical-denotation. Then, the
formula

(I(X̄) ∧ main p(X̄, Ȳ ) → O(Ȳ )) (1)

must hold true. Alternatively, the formula

(I(X̄) ∧ main p(X̄, Ȳ ) ∧ ¬O(Ȳ )) (2)

must be false. We can use the formula above as a query to an LP system on which the
logic program Pd has been loaded. If the program is correct (i.e., program terminates
and the postconditions hold) then the above query would fail. Note that if components
are being used as part of the semantic algebra in defining the semantics, then precondi-
tions and postconditions that component satisfies may have to identified for each com-
ponent and coded as logic/constraint programs. It is customary to specify component
contracts via preconditions and postconditions. These preconditions and postconditions
will be used during the verification of the program that employs these components in
the above query.



A Language-centric Approach to Software. . . 79

If component contracts are specified as constraints, i.e., both preconditions and post-
conditions of a component C are specified as constraints, then these preconditions can
be directly inserted into the denotation of the program that uses C. If these constraints
are consistent with the rest of the program denotation, then the constraints comprising
the postconditions can be conjoined with the program denotation to complete the con-
sistency proof. Note that use of constraints and logic programs for enforcing component
contracts have also been advocated by others [15, 11], however, our approach embeds
them in a semantics-based framework.

9 Conclusion

In this position paper we presented a framework that combines on domain specific lan-
guages with software components. In this framework, Domain Specific Languages are
built around software components for rapid design, and their implementation infrastruc-
ture rapidly realized using a semantics based approach. The semantics based approach
also permits automatic verification as well as generation of provably correct code. Note
that the semantics and logic programming based approach is transparent to the end-user,
i.e., the end-user only writes a program in the DSL, and is completely unaware of the
underlying implementation technology used. We believe that using the semantics and
logic programming based approach DSLs can be rapidly designed around collections
of components in a particular domain, reducing the cost of prototyping and software
development.

Acknowledgments The authors wish to thank Neil Jones, Enrico Pontelli, and Kishore
Kamarupalle for helpful input. The author has been partially supported by grants from
the NSF.

References

1. C. L. Heitmeyer, R. Jeffords, B. Labaw. Automated Consistency Checking of Requirements
Specification. ACM TOSEM 5(3):231-261. 1996.

2. K. Bergner, A. Rausch, M. Sihling. Componentware—the Big Picture. 20th ICSE Workshop
on Component-based Software Engineering. 1998.

3. M. Zaremski, J. M. Wing. Specification Matching of Software Components. ACM TOSEM.
6(4):33-369. 1997.

4. R. Schmidt and U. Assman. “Concepts for developing components-based systems.” 20th
ICSE Workshop on Component-based Software Engg., Japan, 1998.

5. J. Bentley. Little Languages. CACM, 29(8):711-721, 1986.
6. GenBank Overview. www.ncbi.nlm.nih.gov/Genbank.
7. S.F. Altschul and B.W. Erickson. Significance of nucleotide sequence alignments: a method

for random sequence permutation that preserves dinucleotide and codon usage. Mol. Biol.
Evol., 2:526–538, 1985.

8. D. G. Higgins, J. D. Thompson, and T. J. Gibson. Using CLUSTAL for multiple sequence
alignments. Methods in Enzymology, 266:383–402, 1996.

9. D. L. Swofford. PAUP: phylogenetic analysis using parsimony, version 3.1.1. TR, Illinois
Natural History Survey, 1993.



80 Gopal Gupta

10. D.L. Swofford, G.J. Olsen, P.J. Waddell, and D.M. Hillis. Phylogenetic inference. In
David M. Hillis, Craig Moritz, and Barbara K. Mable, editors, Molecular Systematics, chap-
ter 11, pages 407–514. Sinauer, Sunderland, MA, second edition, 1996.

11. A. Cernuda del Rio, J. E. Labra Gayo, J. M. Cueva Lovelle. Applying the Itacio Verification
Model to a Component-based Real-Time Sound Processing System. Proc. of 2nd Interna-
tional Workshop on Logic Programming and Software Engg., 2001, Paphos, Cyprus.

12. J. Felsenstein. PHYLIP: Phylogeny inference package, version 3.5c, 1993. see
http://evolution.genetics.washington.edu/phylip/software.html, 2000.

13. W. Codenie, K. De Hondt, P. Steyaert and A. Vercammen. From custom applications to
domain-specific frameworks. In Communications of the ACM,Vol. 40, No. 10, pages 70-77,
1997.

14. C. Consel. Architecturing Software Using a Methodology for Language Development. In
Proc. 10th Int’l Symp. on Prog. Lang. Impl., Logics and Programs (PLILP), Springer LNCS
1490, pp. 170-194, 1998.

15. S. M. Daniel. An Optimal Control System based on Logic Programming for Automated
Synthesis of Software Systems Using Commodity Objects. Proc. Workshop on Logic Prog.
and Software Engg. UK, July 2000.

16. L. King, G. Gupta, E. Pontelli. Verification of a Controller for BART: An Approach based
on Horn Logic and Denotational Semantics. In High Integrity Software Systems. Kluwer
Academic Publishers.

17. G. Gupta. Horn Logic Denotations and Their Applications. In The Logic Programming
Paradigm: The next 25 years, Proc. Workshop on Strategic Research Directions in Logic
Prog., LNAI, Springer Verlag, May 1999.

18. G. Gupta. Logic Programming based Frameworks for Software Engineering. Proc. Workshop
on Logic Programming and Software Enginering. London, UK, July 2000.

19. G. Gupta and E. Pontelli. Specification, Implementation, and Verification of Domain Spe-
cific Languages: A Logic Programming-based Approach. Essays in honor of Bob Kowalski.
Spriger Verlag LNAI 2407, 2001, pp. 211-239

20. P. Hudak. Modular Domain Specific Languages and Tools. In IEEE Software Reuse Conf.
2000.

21. N. Jones. Introduction to Partial Evaluation. In ACM Computing Surveys. 28(3):480-503,
1996.

22. N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese. Designing Specification Languages for
Process Control Systems: Lessons Learned and Steps to the Future. In Software Engineering
- ESEC/FSE, Springer Verlag, pages 127-145, 1999.

23. E. Pontelli, W. Xiong, G. Gupta, A. Karshmer. A Domain Specific Language Framework
for Non-Visual Browsing of Complex HTML Structures ACM Int. Conference on Assistive
Technologies, 2000.

24. E. Pontelli, D. Ranjan, G. Gupta, and B. Milligan. ΦLog: A Domain Specific Language
for Describing Phylogenetic Inference Processes. In Proc. First IEEE Computer Society
Bioinformatics Conference. Aug. 2002. IEEE Press, Los Alamitos, CA.

25. C. Ramming. Proc. Usenix Conf. on Domain-Specific Languages. Usenix, 1997.
26. D. Sahlin. An Automatic Partial Evaluator for Full Prolog. Ph.D. Thesis, Royal Inst. of

Techn. Sweden, 1994.
27. D. Schmidt. Denotational Semantics: a Methodology for Language Development. W. C.

Brown Publishers, 1986.
28. L. Sterling and S. Shapiro. The Art of Prolog. MIT Press, 1996.
29. C. Szyperski. Component Software: Beyond Object-oriented Programming ACM Press, New

York. 1998.


