
Issues in Parallel Execution of Non-monotononic

Reasoning Systems

E. Pontelli1, M. Balduccini2, F. Bermudez1, O. El-Khatib1, and L. Miller1

1 Department of Computer Science,
New Mexico State University

epontell@cs.nmsu.edu
2 Dept. Computer Science,

Texas Tech University
marcello.balduccini@ttu.edu

1 Introduction

In recent years we have witnessed a rapid development of logical systems—
non-monotonic logics—that provide the ability to retract existing theorems via
introduction of new axioms. In the context of logic programming, non-monotonic
behavior has been accomplished by allowing the use of negation in the body of
clauses. The presence of negation leads to a natural support for non-monotonic
reasoning, allowing for intelligent reasoning in presence of incomplete knowl-
edge. Negation is also important for various forms of database technology (e.g.,
deductive databases).

Stable model semantics [20] is one of the most commonly accepted approaches
to provide semantics to logic programs with negation. Stable model semantics
relies on the idea of accepting multiple minimal models as a description of the
meaning of a program. In spite of its wide acceptance and its extensive mathe-
matical foundations, stable models semantics have only recently found its way
into mainstream “practical” logic programming. The recent successes have been
sparked by the availability of very efficient inference engines (such as smodels
[34], DeRes [9], and DLV [17]) and a substantial effort towards understanding
how to write programs under stable models semantics [33, 30, 26]. This has lead
to the development of a novel programming paradigm, commonly referred to as
Answer Set Programming (ASP). ASP is a computation paradigm in which log-
ical theories (Horn clauses with negation) serve as problem specifications and
solutions are represented by collection of models. ASP has been concretized in a
number of related formalism—e.g., disjunctive logic programming and Datalog
with constraints [17, 14]. In comparison to other non-monotonic logics, ASP is
syntactically simpler and, at the same time, very expressive. The mathemati-
cal foundations of ASP have been extensively studied; in addition, there exist
a large number of building block results about specifying and programming us-
ing ASP—e.g., results about dealing with incomplete information and abductive
assimilation of new knowledge. ASP has been successfully adopted in various
domains (e.g., [26, 24, 36]).

113

114 E. Pontelli et al

In spite of the continuous effort in developing fast execution models for ASP
[17, 14, 34], computation of significant programs remains a challenging task, lim-
iting the scope of applicability of ASP in a number of domains (e.g., planning).
In this work we propose the use of parallelism to improve performance of ASP
engines and improve the scope of applicability of this paradigm. The core of our
work is the identification of a number of potential sources for implicit exploita-
tion of parallelism from a basic execution model for ASP programs—specifically
the execution model proposed in the smodels system [34]. We show that ASP has
the potential to provide considerable amounts of independent tasks, which can
be concurrently explored by different ASP engines. Exploitation of parallelism
can be accomplished in a fashion similar to the models proposed to parallelize
Prolog [23] and constraint propagation [32].

In this paper we overview the main issues in the exploitation of parallelism
from the basic execution model of ASP. We identify two major forms of paral-
lelism, Horizontal parallelism and Vertical parallelism, that respectively corre-
spond to the two instances of non-determinism present in the propagation-based
operational semantics commonly used for ASP. Building on recent theoretical
results regarding the efficiency of parallel development of search trees [40, 38],
we investigate the development of techniques to handle the different forms of
parallelism in an ASP engine and we present preliminary experimental results
accomplished.

The work proposed—along with the work concurrently conducted by Finkel
et al. [19]—represents the first exploration in the use of scalable architectures
for ASP computations ever proposed.

2 Non-monotonic Reasoning and Answer Set

Programming

2.1 Answer Set Semantics

Answer Sets Semantics (AS) [20] (a.k.a. Stable Models semantics) was designed
in the mid 80s as a tool to provide semantics for LP with negation [4]. Tradi-
tional LP [29] provides the ability to derive only positive consequences from a
program. However, in a large number of cases it is useful to reason also about
negative consequences, by allowing negative knowledge to be inferred and allow-
ing negative assumptions in the rules of the program. The presence of negation
leads to a natural support for non-monotonic reasoning, and the availability of
efficient computational mechanisms provides a natural setting for the study of
proof systems for non-monotonic reasoning.

The introduction of negation in logic programming leads to a number of
complications, starting from the fact that negation may lead to the loss of one of
the key properties of standard LP, the existence of a unique intended model for
each program—i.e., intuitively, there is no ambiguity in what is true and what is
false w.r.t. the program. Two classes of proposals have been developed to tackle
the problem of providing semantics to logic programs in presence of negation.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 115

The first class [3, 47] attempts to reconstruct a single intended model, either
by narrowing the class of admissible programs (e.g., stratified programs [44]) or
by switching to 3-valued semantics—i.e., admitting the fact that formulae can
be not only true or false, but also undefined. The second direction of research
instead admits the existence of a collection of intended models for a program
[10, 20]. Answer sets is the most representative approach in this second class. AS
has been recognized to provide the right semantics for LP with negation—e.g.,
it subsumes the intended model of logic programs without negation, it subsumes
the intended model in the approach based on stratification [4], etc.

AS relies on a very simple definition. Given a program P 3 and given a ten-
tative model M , we can define a new program P M (the reduct of P w.r.t. M)
which is obtained by

– removing all rules containing negative elements which are contradicted by
the model M ;

– removing all negative elements from the remaining rules.

Thus, P M contains only those rules of P that are applicable given the model M .
Furthermore, P M is a standard logic program, without negation, which admits
a unique intended model M ′ [29]. M is an answer set (a.k.a. stable model) if M

and M ′ coincide. Intuitively, a stable model contains all and only those atoms
which have a justification in terms of the applicable rules in the program. These
models can be proved to be minimal, and in general a program with negation
may admit more than one answer set.

Example 1. If we have a database indicating people working in different depart-
ments

dept(hartley,cs). dept(pfeiffer,cs).

dept(gerke,math). dept(prasad,ee).

and we would like to select the existing departments and one representative
employee for each of them:

depts employee(Name,Dep) :- dept(Name,Dep), not other emps(Name,Dep).

other emps(Name,Dep) :- dept(Name1,Dep), depts employees(Name1,Dep),

Name 6= Name1.

The rules assert that Name/Dep should be added to the solution only if no other
member of the same department has been selected. AS produces for this program
2 answer sets:

{〈hartley, cs〉, 〈gerke, math〉, 〈prasad, ee〉}

{〈pfeiffer, cs〉, 〈gerke, math〉, 〈prasad, ee〉}

3 Let us assume for the sake of simplicity that it does not contain variables.

116 E. Pontelli et al

2.2 Answer Sets Programming: a Novel Paradigm

As recognized by a number of authors [30, 33], the adoption of AS requires a
paradigm shift to reconcile the peculiar features of AS with the traditional pro-
gram view of logic programming. This need arises for a number of reasons. In
first place, under AS, each program potentially admits more than one intended
model. This ends up creating an additional level of non-determinism—specifically
a form of don’t know non-determinism—on top of the forms of non-determinism
typically identified in traditional LP (and directly ensuing from the use of res-
olution). The presence of multiple answer sets complicates the framework in
two ways. First of all, we need to provide programmers with a way of handling
the multiple answer sets. On one hand, one could attempt to restore a more
“traditional” view, where a single “model” exists. This has been attempted, for
example, using skeptical semantics [30], where an atom is considered entailed
from the program only if it is true in each answer set. For certain classes of pro-
grams skeptical semantics coincides with other semantics proposed for LP with
negation. Nevertheless, skeptical semantics is often inadequate—e.g., in many
situations it does not provide the desired result (see example 1), and in its gen-
eral form provides excessive expressive power [30, 31]. The additional level of
non-determinism—removed by skeptical semantics—is indeed a real need for a
number of applications; it is also possible to see some similarities between this
and some of the proposals put forward in other communities—such as the choice
and witness constructs used in the database community [25, 1, 41].

The presence of multiple answer sets, in turn, leads to a new set of require-
ments on the computational mechanisms used. Given a program, now the main
goal of the computation is not to provide a goal-directed tuple-at-a-time answer
(i.e., a true/false answer or an answer substitution), as in traditional LP, but
the goal is to return whole answer sets. The traditional resolution-based control
used in LP is largely inadequate, and should give place to a different form of
control and different execution mechanisms.

In this project we embrace a different view of LP under AS, interpreted as a
novel programming paradigm—that we will refer to as Answer Sets Programming
(ASP). This term was originally created by V. Lifschitz, and nicely blends the
notion of programming with the idea that the entities produced by the compu-
tation are answer sets. The notion of ASP is not completely new and has been
advocated by others during the last two years: Niemela has recently proposed
answer sets semantics as a constraint programming paradigm [33], while Marek
& Truszczynski have coined the term Stable Logic Programming [30] to capture
the notion we are describing.

In simple terms, the goal of an ASP program is to identify a collection of
answer sets—i.e., each program is interpreted as a specification of a collection
of sets of atoms. Each rule in the program plays the role of a constraint [33] on
the collection of sets specified by the program: a generic rule

Head : −B1, . . . , Bn, not G1, . . . , not Gm

Issues in Parallel Execution of Non-monotononic Reasoning Systems 117

requires that whenever B1, . . . , Bn are part of the answer set and G1, . . . , Gm are
not, then Head has to be in the answer set as well. The shift of perspective from
LP to ASP is very important. The programmer is lead to think about writing
programs as manipulating sets of elements, and the outcome of the computation
is going to be a collection of sets. This perspective comes very natural in a large
number of application domains (graph problems deal with set of nodes/edges,
planning problems deal with sets of actions or states, etc.).

Example 2. [27] The following simple ASP program computes the hamiltonian
cycles of a graph.

%% Graph:

vertice(0). vertice(1). vertice(2). vertice(3).

edge(0,1). edge(0,2). edge(1,3). edge(1,2). edge(2,3). edge(3,0).

%% choice rules to select one edge

in(U,V) :- vertice(U), vertice(V), edge(U,V), not nin(U,V).

nin(U,V) :- vertice(U), vertice(V), edge(U,V), not in(U,V).

%% each node is traversed once

:- vertice(U), vertice(V), vertice(W), neq(V,W), in(U,V), in(U,W).

:- vertice(U), vertice(V), vertice(W), neq(U,V), in(U,W), in(V,W).

reachable(U) :- vertice(U), in(0,U).

reachable(V) :- vertice(U),vertice(V),reachable(U), in(U,V).

%% Guarantees that each vertex is reachable

:- vertice(U), not reachable(U).

For the graph in the example, the program admits a single answer set:

{in(0, 1), in(1, 2), in(2, 3), in(3, 0)}

In spite of these differences, ASP maintains many of the properties of LP, includ-
ing its declarative nature, the separation between logic and control—where the
logic is given by the content of the program and the control by the mechanisms
used to compute the answer sets—and an underlying similar syntax.

2.3 Why ASP?

ASP has received great attention in knowledge representation and deductive
databases, as it enables to represent default assumptions, constraints, uncer-
tainty and nondeterminism in a direct way [5]. The automation of nonmonotonic
reasoning may well rely upon automatic ASP, through the well-studied equiva-
lences with, e.g., autoepistemic logic. ASP is related both ideally and through
formal equivalences to the algorithmic study of satisfaction of boolean formulas
(SAT). It is believed that ASP encoding of traditionally hard problems should
be more compact than SAT encoding. For instance, [30] argues that ASP en-
codings of the Hamiltonian cycle problem are asymptotically more concise than
SAT ones. This implies that, other things being equal, ASP interpretations can
be as efficient as satisfiability and even as constraint satisfiability systems. For

118 E. Pontelli et al

example, [12] reports ASP solutions of planning problems in time comparable to
ad-hoc planning algorithms. Finally, ASP syntax corresponds to DATALOG¬ of
deductive databases, and should make database access transparent and straight-
forward.

3 Execution of ASP Programs

Computing with ASP is fairly different from computing in standard LP—in the
latter we are interested in a single answer substitution computed w.r.t. a unique
intended model, while in the former we are interested in computing sets of atoms
representing different models. Designing an architecture for the computation of
answer sets is not a straightforward task—indeed, the original definition of AS
[20] is inherently non-constructive, as it requires guessing models and succes-
sively verifying whether they are answer sets or not. Nevertheless, in recent
years a number of proposals have been made which provide approaches for com-
putation of answer sets [7–9, 34, 17]. Chen & Warren [8] propose a method for
computing answer sets which builds on their work on tabled evaluation of LP
[39]. The method has the advantages of allowing a more relaxed program syn-
tax and of being integrated in the context of an efficient Prolog system. On the
other hand, the goal directed nature of this approach does not make it directly
applicable as an engine for ASP [5]. Work is in progress by the XSB team to
overcome this limitation. The three most efficient systems which support com-
putation in the ASP paradigm are dlv [17], DeRes [9], and Smodels [34]. These
systems, which have been proposed very recently and are continuously devel-
oping, provide comparable efficiency and relatively similar features. DeRes is a
system originally developed to deal with a larger class of programs than ASP—
default theories—but capable of efficiently handling ASP programs. The DeRes
group currently provide a version of DeRes (called stable) which is specialized
for the computation of answer sets, highly suitable as computational engine for
ASP. dlv supports a very general language (which includes disjunction) and it
provides different application specific front-ends—e.g., a front-end for abductive
diagnosis [16]. This engine is very efficient—it is comparable or superior in speed
to DeRes and smodels on various benchmarks [17]. The development of different
implementations capable of handling ASP programs is very important—as it
indicates the existence of a community which needs the power of ASP as well as
it demonstrates that efficient execution of ASP is not beyond our reach.

3.1 Sequential Execution Models

The sequential architecture we propose
in this project is a new generation engine
obtained from the original design of the
Smodels system [34]. Smodels relies on ef-
ficient and robust algorithms for the execu-
tion of ASP programs. The basic structure
is sketched in Fig. 2—the algorithm alter-

Pure
ASP

A-Prolog

B

. . . .

P
ro

gr
am

T
ra

ns
fo

rm
at

io
n

Lp
ar

se

Pre-processor

Engine
Models

Fig. 1: Sequential Architecture

Issues in Parallel Execution of Non-monotononic Reasoning Systems 119

nates choices and propagations, in the style of typical constraint programming
solutions. Figure 1 provides a schematic illustration of the overall proposed ar-
chitecture. The components are described in this section.

Preprocessor Many of the systems proposed so far rely on the use of a prepro-
cessor to transform the input program to a format suitable for processing. The
preprocessor we propose includes the following components:

• Program Transformation: this is a collection of different modules used to per-
form source-to-source code transformation. Source transformations are used,
first of all, to support alternative input languages which are mapped to the
core ASP language [5, 6, 35]. Another objective of program transformations is
to determine code transformations which can improve efficiency of execution.

• Lparse: answer sets semantics [20] relies on the manipulation of ground pro-
grams—i.e., programs which have been completely instantiated on a domain
of interest and do not contain variables. During preprocessing it is necessary
to ground the input program—identifying finite domains for each variable.
Both smodels and DeRes rely on the same software, called lparse [46], which
provides sophisticated grounding procedures.

Engine: The analogy between ASP and constraint programming, advocated by
various researchers [30, 33] has been used to a certain extent in the design of exist-
ing ASP engines. Computation of answer sets relies on propagation techniques—
selecting an atom as being true or false constrains, via the program rules, a
number of other atoms to a specific logical value. Most systems take advantage
of this feature (e.g., the expand procedure in Fig. 2). The proposal in [7] even
translates the problem of computing answer sets into a problem of solving a
linear programming problem—which can be tackled directly via constraint pro-
gramming techniques. choose literal selects one literal (i.e., an atom or its
negation) to add to the answer set, while expand determines which atoms have
a determined value in the partial answer set A. The actual algorithms used in
many systems are refinements of this execution cycle.

The meaning of the partial answer set B is that, if atom a belongs to B,
then a will belong to the final model. If not a belongs to B, a will not belong to
the final model. Inconsistent interpretations are those containing contradictory
atoms.

As ensues from Fig. 2, computation of answer sets is a highly non-deterministic
and time-consuming activity. Non-determinism arises in different phases of this
computation. The expand phase involves applying program rules in various ways
(e.g., forward and backward chaining) to infer truth values of other literals. This
process is seen as a fixpoint computation where, at each step, one rule is selected
and used. Being the result of this phase deterministic, expand can be seen as
an instance of don’t care non-determinism. The fact that ASP programs may
admit different answer sets implies that the choose literal procedure is also
non-deterministic; different choices will potentially lead to distinct answer sets.
Thus, the process of selecting literals to add to the answer set represents a form
of don’t know non-determinism. This form of non-determinism has some resem-

120 E. Pontelli et al

blance to the non-determinism present in traditional LP (rule selection during
one resolution step).

function compute (Π : Program , A : LiteralsSet)
B := expand(Π, A) ;

while ((B is consistent) and

(B is not complete))

l := choose literal(Π, B);

B := expand(Π , A ∪ { l }) ;

endwhile

if (B stable model of Π) then

return B;

Fig. 2. Basic Execution Model for ASP

function expand (Π : Program , A : LiteralsSet)
B := A ;

while (B 6= B’) do

B’ := B;

B := apply rule(Π, B);

endwhile

return B ;

Fig. 3. Expand procedure

Each non-deterministic computation can terminate either successfully—i.e.,
B assigns a truth value to all the atoms and it represents an answer set of Π—or
unsuccessfully—if either the process tries to assigns two distinct truth values to
the same atom or if B does not represent an answer set of the program (e.g., truth
of certain selected atoms is not “supported” by the rules in the program). As in
traditional logic programming, non-determinism is handled via backtracking to
the choice points generated by choose literal. Observe that each choice point
produced by choose literal has only two alternatives: one assigns the value
true to the chosen literal, and one assigns the value false to it.

The expand procedure mentioned in the algorithm in Figure 2 is intuitively
described in Figure 3. This procedure repeatedly applies expansion rules to the
given set of literals until no more changes are possible. The expansion rules are
derived from the program Π and allow to determine which literals have a def-
inite truth value w.r.t. the existing partial answer set. This is accomplished by
applying the rules of the program Π in different ways [34]. Efficient implemen-
tation of this procedure requires considerable care to avoid unnecessary steps,
e.g., by dynamically removing invalid rules and by using smart heuristics in the
choose literal procedure [34], e.g.,

1. forward rule: if the rule h ← a1, . . . , an, not b1, . . . , not bm is in Π and all
the elements in the body of the rule are true (i.e., they are in B), then also
h can be assumed to be true in B

2. nullary rule: if there are no rules having the atom a as a head, then a can
assumed to be false in B

3. single positive rule: if the atom h is true (i.e., it is in B) and there is a single
rule

h← a1, . . . , an, not b1, . . . , not bm

in Π having h as head, then all the elements of the body of the rule can be
added to B (i.e., they have to be true as well)

Issues in Parallel Execution of Non-monotononic Reasoning Systems 121

4. negative rules: if the literals not h, l1, . . . , li−1, li+1, . . . , lm are in B and the
rule

h← l1, . . . , lm

is in Π , then l̄i can be added to B, where l̄ indicates the complement of the
literal l

Efficient implementation of this procedure requires considerable care to avoid
unnecessary steps, e.g., by dynamically removing invalid rules and by using smart
heuristics in the choose literal procedure [45].

3.2 The NMSU System

The execution model sketched in the previous section has been originally pro-
posed in the context of the smodels system, and adopted in a variety of other
systems computing answer sets (e.g., some versions of the DLV system [19]).
This execution model is at the core of the prototypes used for the investigation
in parallel execution of ASP programs presented in this paper. The most com-
plete system of these prototypes is called jmodels and it has been developed at
NMSU. jmodels is a Java-based implementation of the propagation-based execu-
tion model for ASP computation, and it includes a number of advanced features,
including:

– support for various language extensions, such as choice rules [46] and weak
constraints [15];

– an object-oriented interface with Prolog, which allows Prolog programs to
include ASP modules.

4 Sources of Parallelism

As described in Section 3.1, the execution model for ASP includes two major
forms of non-determinism: a don’t care choice in the selection of the rules during
the expansion of a partial mode, and a don’t know choice in the selection of a new
(undefined) literal to be added to the current partial model. The presence of these
two classes of non-determinism suggests a direction for automatic parallelization
of the computation of answer sets.

5 Vertical Parallelism

The alternative choices of literals during the derivation of answer sets (choose literal

in Fig. 2) are independent and can be concurrently explored, generating sepa-
rate threads of computation, each potentially leading to a distinct answer set.
We will refer to this form of parallelism as Vertical Parallelism. Thus, vertical
parallelism parallelizes the computation of different answer sets.

122 E. Pontelli et al

5.1 Issues in Managing Vertical Parallelism

As ensues from research on parallelization of search tree applications and non-
deterministic programming languages [40, 2, 11, 23], the issue of designing the
appropriate data structures to maintain the correct state in the different con-
current branches, is essential to achieve efficient parallel behavior. Observe that
straightforward solutions to related problems have been formally proved to be
ineffective, leading to unacceptable overheads [40].

The architecture for vertical parallel ASP that we envision is based on the
use of a number of ASP engines (agents) which are concurrently exploring the
search tree generated by the search for answer sets—specifically the search tree
whose nodes are generated by the execution of the choose literal procedure.
Each agent explores a distinct branch of the tree; idle agents are allowed to
acquire unexplored alternatives generated by other agents.

The major issue in the design of such architecture is to provide efficient
mechanisms to support this sharing of unexplored alternatives between agents.
Each node P of the tree is associated to a partial answer set B(P)—the partial
answer set computed in the part of the branch preceding P . An agent acquiring
an unexplored alternative from P needs to continue the execution by expanding
B(P) together with the literal selected by choose literal in node P . Efficient
computation of B(P) for the different nodes in the tree is a known complex
problem [40].

Since ASP computations can be very ill-balanced and irregular, we opt to
adopt a dynamic scheduling scheme, where idle agents navigate through the
system in search of available tasks. Thus, the partitioning of the available tasks
between agents is performed dynamically and is initiated by the idle agents. This
justifies the choice of a design where different agents are capable of traversing
a shared representation of the search tree to detect and acquire unexplored
alternatives. In addition, this view allows one to reuse the optimization schemes
developed i for other parallel execution models to improve efficiency of these
mechanisms, via run-time transformations of the search tree [22]—e.g., flattening
the tree to facilitate work sharing.

Basic Structure of the Parallel Engine As mentioned earlier, the system
is organized as a collection of agents which are cooperating in computing the
answer sets of a program. Each agent is a separate ASP engine, which owns
a set of private data structures employed for the computation of answer sets.
Additionally, a number of global data structures, i.e., accessible by all the agents,
are introduced to support cooperation between agents. This structuring of the
system implies that we rely on a shared-memory architecture.

The different agents share a common representation of the ASP program to
be executed. This representation is stored in one of the global data structures.
Program representation has been implemented following the general data struc-
ture originally proposed in [13]—proved to guarantee very efficient computation
of standard models. This representation is summarized in Figure 4. Each rules

Issues in Parallel Execution of Non-monotononic Reasoning Systems 123

is represented by a descriptor; all rules descriptors are collected in a single ar-
ray, which allows for fast scan of the set of rules. Each rule descriptor contains,
between the other things, pointers to the descriptors for all atoms which appear
in the rule—the head atom, the atoms which appear positive in the body of the
rule, and the atoms which appear negated in the body of the rule.

Each atom descriptor contains information such as

– an array containing pointers to the rules in which the atom appears as head
– an array containing pointers to the rules in which the atom appears as pos-

itive body element
– an array containing pointers to the rules in which the atom appears as neg-

ative body element
– an atom array index

Differently from the schemes adopted in sequential ASP engines [13, 34], our
atom descriptors do not contain the truth value of the atom. Truth values
of atoms are instead stored in a separate data structure, called atom array.
Each agent maintains a separate atom array, as shown in Figure 4; this allows
each agent to have an independent view of the current (partial) answer set con-
structed, allowing atoms to have different truth values in different agents. E.g.,
in Figure 4, the atom of index i is true in the answer set of one agent, and false
in the answer set computed by another agent.

Each agent essentially acts as a separate ASP engine. Each agent maintains
a local stack structure (the trail) which keeps track of the atoms whose truth
value has already been determined. Each time the truth value of an atom is
determined (i.e., the appropriate entry in the atom array is set to store the
atom’s truth value), a pointer to the atom’s descriptor is pushed in the trail
stack. The trail stack is used for two purposes:

– (during expand) the agent uses the elements newly placed on the trail to
determine which program rules may be triggered for execution;

– a simple test on the current size of the trail stack allows each agent to
determine whether all atoms have been assigned a truth value or not.

The use of a trail structure provides also convenient support for exploitation of
horizontal parallelism [18].

To support the exploitation of vertical parallelism, we have also introduced
an additional simple data structure: a choice point stack (or core stack). The
elements of the choice point stack are pointers to the trail stack. These pointers
are used to identify those atoms whose truth value has been “guessed” by the
choose literal function. The choice points are used during backtracking: they
are used to determine which atoms should be removed from the answer set
during backtracking, as well as which alternatives can be explored to compute
other answer sets. This is akin to the mechanisms used to support backtracking
in trail-based constraint systems [42, 43].

The open issue which remains to be discussed is how agents interact in
order to exchange unexplored alternatives—i.e., how agents share work. Each

124 E. Pontelli et al

....

Atoms

....
Rules

Head
PBody
NBody

HeadRules
PosRules

NegRules

Atom i

Rule j

....

Atom Array
Processor 1

Atom Array
Processor 2

Atom Array
Processor n

true false trueiii

Indexi

Fig. 4. Representation of Rules and Atoms

idle agent attempts to obtain unexplored alternatives from other active agents.
In our context, an unexplored alternative is represented by a partial answer set
together with a new literal to be added to it.

In this project we have explored two alternative approaches to tackle this
problem:

– Recomputation-based Work Sharing: agents share work just by exchanging
the list of chosen literals which had been used in the construction of an
answer set; the receiving agent will use these to reconstruct the answer set
and then perform local backtracking to explore a new alternative.

– Copy-based Work Sharing: agents share work by exchanging a complete copy
of the current answer set (both chosen as well as determined literals) and
then performing local backtracking.

The two schemes provide a different balance between amount of data copied from
one agent to the other and amount of time needed to restart the computation
with a new alternative in a different agent. These two methods are discussed
in detail in the next sections. Although many alternative methods have been
discussed in the literature to handle parallel execution of search-based applica-
tions (e.g., see [21] for a survey), we have focused on these two models for the
following reasons:

– these two methodologies have been theoretically demonstrated to be opti-
mal with respect to a reasonable abstraction of the problem of supporting
concurrent search;

– our intention is to target exploitation of vertical parallelism across a wide
range of parallel platforms, including distributed memory platforms. It has
been proved that these two methodologies are the most effective in absence
of shared memory.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 125

Another important aspect that has to be considered in dealing with this sort
of systems is termination detection. The overall computation needs to determine
when a global fixpoint has been reached—i.e., all the answer sets have been
produced and no agent is performing active computation any longer. In the
system proposed we have adopted a centralized termination detection algorithm.
One of the agents plays the role of controller and at given intervals polls the other
agents to verify global termination. Details of this algorithm are omitted for lack
of space.

Model Recomputation The idea of recomputation-based sharing of work is
derived by similar schemas adopted in the context of or-parallel execution of
Prolog [23]. In the recomputation-based scheme, an idle agent obtains a partial
answer set from another agent in an implicit fashion. Let us assume that agent
A wants to send its partial answer set B to agent B. To avoid copying the whole
partial answer set B, the agents exchange only a list containing the literals which
have been chosen by A during the construction of B. These literals represent the
“core” of the partial answer set. In particular, we are guaranteed that an expand

operation applied to this list of literals will correctly produce the whole partial
answer set B. This communication process is illustrated in Fig. 5. The core of
the current answer set is represented by the set of literals which are pointed to
by the choice points in the core stack (see Fig. 5). In particular, to make the
process of sharing work more efficient, we have modified the core stack so that
each choice point not only points to the trail, but also contains the corresponding
chosen literal (the literal it is pointing to in the trail stack). As a result, when
sharing of work takes place between agent A and agent B, the only required
activity is to transfer the content of the core stack from A to B. Once B receives
the chosen literals, it will proceed to install their truth values (by recording the
literals’ truth values in the Atom Array) and perform an expand operation to
reconstruct (on the trail stack) the partial answer set. The last chosen literal
will be automatically complemented to obtain the effect of backtracking and
constructing the “next” answer set. This copying process can be also made more
efficient by making it incremental : agents exchange only the difference between
the content of their core stacks. This reduces the amount of data exchanged and
allows to reuse part of the partial answer set already existing in the idle agent.

Model Copying The copying-based approach to work sharing adopts a sim-
pler approach then recomputation. Upon work sharing from agent A to B, the
entire partial answer set existing in A is directly copied to agent B. The use
of copying has been frequently adopted to support computation in constraint
programming systems [43] as well as to support or-parallel execution of logic
and constraint programs [23]. The partial answer set owned by A has an explicit
representation within the agent A: it is completely described by the content of
the trail stack. Thus, copying the partial answer set from A to B can be simply
reduced to the copying of the trail stack of A to B. This is illustrated in Figure
6. Once this copying has been completed, B needs to install the truth value of

126 E. Pontelli et al

Processor i Processor j

Trail Core TrailCore

atom a

atom b

atom c

atom d

atom a
atom b
atom c
atom d } copy

atom a
atom b
atom c
atom d

atom a
atom b
atom c
atom d}

Fig. 5. Recomputation Sharing of Work

the atoms in the partial answer set—i.e., store the correct truth values in the
atom array. Computation of the “next” answer set is obtained by identifying
the most recently literal whose value has been “guessed” and performing local
backtracking to it. The identification of the backtracking literal is immediate as
this literal lies always at the top of copied trail stack. As in the recomputation
case, we can improve performance by performing incremental copying, i.e., by
copying not the complete answer set but only the difference between the answer
set in A and the one in B.

Processor i Processor j

Trail

atom a

atom b

atom c

atom d

copying

Trail

}
atom a

atom b

atom c

atom d

Atom Array

installation

Fig. 6. Copy-based Sharing of Work

Hybrid Sharing Schemes The experiments performed on shared memory
architectures (described in the next Section) have indicated that Model Copying
behaves better than Model Recomputation in most of the cases. This is due to
the high cost of recomputing parts of the answer set w.r.t. the cost of simply
performing a memory copying operation. This property does not necessarily hold
any longer when we move to distributed memory architectures (as the Beowulf
platform used in this project), due to the considerably higher cost for copying
data between agents.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 127

To capture the best of both worlds, we have switched in our prototype to
an hybrid work sharing scheme, where both Model Recomputation and Model
Copying are employed. The choice of which method to use is performed dynam-
ically (each time a sharing operation is required). Various heuristics have been
considered for this selection, which take into account the size of the core and the
size of the partial answer set. Some typical observations that have been made
from our experiments include: (i) if the size of the core is sufficiently close to the
size of the answer set, then recomputation would lead to a loss w.r.t. copying.
(ii) if the size of the answer set is very large compared to the size of the core,
then copying appears still to be more advantageous than recomputation. This
last property is strongly related to the speed of the underlying interconnection
network—the slower the interconnection network, the larger is the partial answer
set that one can effectively recompute. We have concretized these observations
by experimentally identifying two thresholds (low and high) and a function f

which relates the size of the core and the size of the answer set; Recomputation is
employed whenever low ≤ f(sizeof (Core), sizeof (Partial Answer Set)) ≤ high.
The same considerations are even more significant in the context of execution
of ASP on distributed memory platforms: in this context the cost of copying is
higher (due to the higher cost of moving data across the interconnection network)
and the threshold in favor of recomputation is wider.

5.2 Experimental Results

Model Recomputation on Shared Memory Platforms In this section we
present performance results for a preliminary prototype which implements an
ASP engine with Recomputation-based vertical parallelism. The prototype used
has been developed in C and the performance results have been obtained on a
14-processor Sun Enterprise. The prototype is capable of computing the answer
sets of standard ASP programs, pre-processed by the lparse grounding program
[46]. The prototype is largely unoptimized (e.g., it does not include many of
the heuristics adopted in similar ASP engines [45]) but its sequential speed is
reasonably close to that of the efficient Smodels system4 [34].

All performance figures presented are in milliseconds and have been achieved
as average execution times over 10 consecutive runs on a very lightly loaded
machine. The benchmarks adopted are programs obtained from various sources
(all written by other researchers); they include some large scheduling applica-
tions (sjss, rcps), planners (logistics 1,2, strategic), graph problems (color), as well
various synthetic benchmarks (T4, T5, T15, T8, P7). These benchmarks range
in size from few tens of rules (e.g., T4, T5) to hundreds of rules (e.g., rcps).

As can be seen from the figures in Table 1, the system is capable of pro-
ducing good speedups from most of the selected benchmarks. On the scheduling
(sjss, rcps), graph coloring, and planning (strategic, logistics) benchmarks the
speedups are very high (mostly between 6 and 8 using 10 agents). This is quite
a remarkable result, considering that these benchmarks are very large and some

4 Comparisons made with the lookahead feature of Smodels turned off.

128 E. Pontelli et al

Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents

Scheduling (sjss) 131823.88 66146.75 44536.16 34740.25 19132.63 16214.49

Scheduling (rcps) 72868.48 36436.24 28923.33 18040.35 13169.61 10859.68

Color (Random) 1198917.24 599658.62 389737.88 300729.31 178942.87 158796.98

Color (Ladder) 1092.81 610.73 441.61 353.80 325.00 306.67

Logistics (1) 10054.68 10053.78 10054.71 4545.31 3695.67 3295.23

Logistics (2) 6024.67 3340.44 2763.14 2380.36 1407.53 1371.47

Strategic 13783.51 7317.02 5018.43 4005.83 2278.18 1992.51

T5 128.21 67.32 69.97 72.11 76.55 77.62

T4 103.01 78.14 78.33 84.11 91.79 118.21

T8 3234.69 1679.29 1164.25 905.21 761.69 710.37

P7 3159.11 1679.86 1266.91 981.75 445.33 452.19

T15 415.73 221.70 178.94 132.10 135.99 137.11

T23 3844.41 1991.76 1595.75 1433.56 1341.79 1431.70

Table 1. Recomputation-based Sharing: Execution Times (msec.)

produce highly unbalanced computation trees, with tasks having very different
sizes. The apparently low speedup observed on the logistics with the first plan
(logistics 1), is actually still a positive result, since the number of choices per-
formed across the computation is just 4 (thus we cannot expect a speedup higher
than 4). On the very fine-grained benchmarks T4 and T5 the system does not
behave as well; in particular we can observe a degradation of speedup for a large
number of agents—in this case the increased number of interactions between
agents overcome the advantages of parallelization, as the different agents at-
tempt to exchange very small tasks. In T4 we even observe a slow-down when
using more than 8 agents. Two slightly disappointing results are in T8 and P7.
T8 is a benchmark which produces a very large number of average-to-small size
tasks; the top speedup is below 5 and denotes some difficulty in maintaining
good efficiency in presence of frequent task switching. P7 on the other hand has
a very low number of task switching, but generates extremely large answer sets.
The speedup tends to decrease with large number of agents because some agents
end up obtaining choice points created very late in the computation, and thus
waste considerable time in rebuilding large answer sets during the recomputation
phase. The speedups obtained for all these benchmarks are plotted in Figure 7.

Note that the sequential overhead observed in all cases (the ratio between
the sequential engine and the parallel engine running on a single processor) is
extremely low, i.e., within 5% for most of the benchmarks.

Model Copying on Shared Memory Platforms We have modified our
implementation to support Copy-based work sharing, and we have tested its

Issues in Parallel Execution of Non-monotononic Reasoning Systems 129

0 2 4 6 8 10
Number of Agents

0

2

4

6

8

10
S

pe
ed

up

Speedups using Recomputation

SJSS
RCPS
Color (Random)
Color (Ladder)
Logistics (1)

0 2 4 6 8 10
Number of Agents

0

2

4

6

8

S
pe

ed
up

Speedups using Recomputation

Logistics (2)
Strategic
T4
T8
P7
T15

Fig. 7. Speedups using Recomputation

performance on the same pool of benchmarks. Also in this case, the sequential
overhead is very low (on average it is below 5%).

Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents

Scheduling (sjss) 131823.89 65911.94 44236.20 33038.57 18182.61 15187.08

Scheduling (rcps) 72868.49 36434.25 22421.09 18217.13 9794.15 6854.99

Color (Random) 1198917.31 599458.66 355761.84 282763.52 164010.55 135013.21

Color (Ladder) 1092.80 590.70 401.77 337.28 287.58 286.07

Logistics (1) 10054.70 4429.38 4224.67 4206.99 2739.70 2674.12

Logistics (2) 6024.67 3089.57 2619.43 2042.26 1149.75 1079.69

Strategic 13662.61 7273.10 5043.04 3534.24 2015.14 1832.87

T5 81.60 42.70 43.90 44.10 48.53 51.14

T4 98.20 61.42 54.01 65.47 65.06 65.96

T8 3232.58 1602.89 1086.90 798.38 437.77 362.49

P7 3160.00 1847.95 1392.07 1078.49 556.34 497.64

T15 416.00 208.01 138.67 118.17 120.23 122.35

T23 2695.81 1395.12 1017.61 769.31 402.55 464.18

Table 2. Copy-based Sharing: Execution Times (msec.)

The results reported in Table 2 (and the corresponding speedups plotted
in Figure 8) are remarkable. The large benchmarks (e.g., the two scheduling
applications) report speedups in the range 8.5 − 10 for 10 agents, maintaining
linear speedups for small number of agents (from 2 to 5 agents).

The fine grained benchmarks (such as T4 and T5) provide speedups similar
(usually slightly better) to those observed earlier. In both cases we note a slight

130 E. Pontelli et al

degradation of speedup for large number of agents. As in the case of recompu-
tation, this indicates that if the tasks are too fine grained, additional steps are
needed in order to achieve performance improvements. We have experimented
with a simple optimization, which semi-automatically unfolds selected predicates
a constant number of times, in order to create larger grain tasks (by effectively
combining together consecutive tasks). The simple optimization has produced
improvements, as show in Table 3.

Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents

T5 1.0 1.99/1.91 1.99/1.86 1.97/1.85 1.95/1.68 1.93/1.60

T4 1.0 1.92/1.60 1.93/1.82 1.95/1.50 1.93/1.51 1.91/1.49

Table 3. Speedup Improvement using Task-collapsing Optimization (new/old)

The Copy-based scheme behaves quite well in presence of a large number of
average-to-small tasks, as seen in the T8 benchmark. The speedups reported in
this case are excellent. This is partly due to the lower cost, in this particular case,
of copying w.r.t. recomputation, as well as the adoption of a smarter scheduling
strategy, made possible by the use of copying, as discussed in the next section.

For what concerns the benchmark P7, the situation is sub-optimal. In this
case the need of copying large answer sets during sharing operations penalizes
the overall performance. We expect this case to become less of a problem with
the introduction of incremental copying techniques—i.e., instead of copying the
whole answer set, the agents compute the actual difference between the answer
sets currently present in their stacks, and transfer only such difference. Our
current prototype does not include this optimization.

0 2 4 6 8 10
Number of Agents

0

2

4

6

8

10

12

14

S
pe

ed
up

Speedups using Copying

SJSS
RCPS
Color (Random)
Color (Ladder)
Logistics (1)

0 2 4 6 8 10
Number of Agents

0

2

4

6

8

10

S
pe

ed
up

Speedups using Copying

Logistics (2)
Strategic
T5
T8
P7
T23

Fig. 8. Speedups using Copying

Issues in Parallel Execution of Non-monotononic Reasoning Systems 131

Performance on Distributed Memory Platforms The engine used in the
previous experiment has been converted to support execution on distributed
platforms—simply converting memory copying operation to message passing
(based on MPI). The results have been obtained on the Pentium-based Beowulf
(purely distributed memory architectures) at NMSU—Pentium II (333Mhz) con-
nected via Myrinet. The results reported have been obtained from two similar
implementations of ASP, one developed at NMSU and one at TTU. Both systems
have been constructed in C using MPI for dealing with interprocessor commu-
nication. The experiments have been performed by executing a number of ASP
programs (mostly obtained from other researchers) and the major objective was
to validate the feasibility of parallel execution of ASP programs on Beowulf
platforms.

All timings presented have been obtained as average over 10 runs. As men-
tioned in Sect. 5.1, in our design we have decided to adopt an Hybrid Method
to support exchange of unexplored tasks between agents. This is different from
what we have observed in the case of shared memory execution, where Model
Copying was observed to be the winning strategy in the last majority of the
benchmarks. In the context of distributed memory architectures, the higher cost
of communication between processors leads to a higher number of situations
where the model copying provides sub-optimal performances.

Table 4 reports the execution times observed on a set of benchmarks, while
Fig. 9 illustrates the speedups observed using the hybrid scheme on a set of ASP
benchmarks. Some of the benchmarks, e.g., T8 and P7, are synthetic benchmarks
developed to study specific properties of the inference engine, while others are
ASP programs obtained from other researchers. Color is a graph coloring prob-
lem, Logistics and Strategic are scheduling problems, while sjss is a planner.
Note also that sjss is executed searching for a single model while all others are
executed requiring all models to be produced. The tests marked [*] in Fig. 9
indicate those cases where Recomputation instead of Copying has been triggered
the majority of the times. The results presented have been accomplished by us-
ing an experimentally determined threshold to discriminate between copying and
recomputation. The rule adopted in the implementation can be summarized as:
if

min ≤
size(Partial Answer Set)

size(Core)
≤ max

then model recomputation is applied, otherwise model copying is used. The in-
tuition is that (i) if the ratio is too low, then, there is no advantage in copying
just the core, while (ii) if the ratio is too high, then the cost of recomputing the
answer set is likely to be excessive. The min and max used for these experiments
where set to 1.75 and 12.5. Fig. 10 shows the impact of using recomputation in
the benchmarks marked with [*] in Fig. 9. Some benchmarks have shown rather
low speedups—e.g., Color on a ladder graph and Logistics. The first generates
very fine grained tasks and suffers the penalty of the cost of communication be-
tween processors—the same benchmarks on a shared-memory platform produces
speedups close to 4. For what concerns Logistics, the results are, after all, quite

132 E. Pontelli et al

positive, as the maximum speedup possible is actually 5 and there seem to be
no degradation of performance when the number of agents is increased beyond
5.

Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents

Color (Ladder) 345201 249911 235421 292932 295420

Color (Random2) 2067987 1162905 829685 604586 310622

Logistics 2 3937246 2172124 1842695 1652869 1041534

Strategic 76207 40169 28327 21664 12580

sjss 93347226 46761140 31012367 22963465 13297326

T8 1770106 865175 590035 444730 226930

P7 1728001 918172 690924 536646 216040

Table 4. Execution Times (in µs.) on Beowulf

0 2 4 6 8
Number of Agents

0

2

4

6

8

S
pe

ed
up

Speedups
(Distributed Memory Engine)

Color (Ladder) [*]
Color (Random)
Logistics
Sjss [*]

0 2 4 6 8
Number of Agents

0

2

4

6

8

S
pe

ed
up

Speedups
(Distributed Memory Engine)

P7 [*]
Strategic
T8

Fig. 9. Speedups from Vertical Parallelism

It is interesting to compare the behavior of the distributed memory imple-
mentation with that of the shared memory engine presented in the previous
subsection. Fig. 11 presents a comparison between the speedups observed on
selected benchmarks in the shared memory and the distributed memory en-
gines. In the majority of the cases we observed relatively small degradation in
the speedup. Only benchmarks where frequent scheduling of small size tasks is
required lead to a more relevant difference (e.g., Color for the ladder graph).

Issues in Parallel Execution of Non-monotononic Reasoning Systems 133

0 2 4 6 8
Number of Agents

0.0

2.0

4.0

6.0

8.0

S
pe

ed
up

Color (Ladder)

Recomputation
Copying

0 2 4 6 8
Number of Agents

0

2

4

6

8

S
pe

ed
up

P7

Recomputation
Copy

0 2 4 6 8
Number of Agents

0

2

4

6

8

S
pe

ed
up

Sjss

Recomputation
Copy

Fig. 10. Impact of using Recomputation

1.0 3.0 5.0 7.0
No. of Agents

1.0

3.0

5.0

7.0

S
pe

ed
up

Shared vs. Distributed Memory

Color (Ladder) Distrib.
Color (Ladder) SHMem
Strategic Distrib.
Strategic SHMem

1 3 5 7
No. of Agents

1

3

5

7

S
pe

ed
up

Shared vs. Distributed Memory

sjss Distrib.
sjss SHMem
T8 Distrib.
T8 SHMem

Fig. 11. Comparison of Shared and Distributed Memory Engines

5.3 Scheduling Vertical Parallelism

In the context of our system, two scheduling decisions have to be taken by each
idle processor in search of work:

1. select from which agent work will be taken;

2. select which unexplored alternative will be taken from the selected agent.

In the current prototype, we have tackled the first issue simply by maintaining
a work-load count (i.e., number of local unexplored alternatives) for each agent
and attempting to take work from the agent with the highest work-load. This
simple scheme has proved to work well in practice.

The second decision turned out to be more complicated and has a deeper im-
pact on the performance of the system. Our experimental results have indicated
that the choice of which unexplored alternative to take work from (i.e., which
choice point to steal from another agent) may lead to substantial variations in
parallel performance.

In our experiments we have considered two approaches to this problem. In
the first approach, agents are forced to steal the first choice point (i.e., the oldest

134 E. Pontelli et al

choice point) from another agent (we call this approach Top scheduling). This
technique was expected to perform well since:

– detecting the first choice point is a fast operation;
– selecting the first choice point reduces the size of the partial answer set

transfered between agents;
– if the computation tree is balanced, then by taking the first choice point we

should minimize the frequency of sharing operations.

The alternative technique considered is the dual of the one described above:
at each sharing operation the last choice point created is taken (we call this
approach Bottom scheduling). This approach is expected to have the following
advantage: with simple modifications to the backtracking scheme, it allows to
share at once not just a single choice point but a collection of them—e.g., all
the choice points owned by an agent. On the other hand, the cost of sharing
work under this scheme is considerable higher, since larger answer sets have to
be exchanged.

The implementation of the first method is relatively simple; the first choice
point is easily detected (by keeping an additional register in each agent for
this purpose). The choice point indicates the segment of trail that has to be
transferred to the other agent.

The second method has been realized as follows:

– the last choice point is easily detected as it lies on the top of the choice point
stack; this allows to determine immediately what is the part of the trail that
has to be copied;

– to allow sharing of multiple choice points at once, we push on the choice point
stack a special choice point, which simply represents a link to a choice point
lying in another processor’s stack. This allows the backtracking activity to
seamlessly flow between choice points belonging to different agents. (This
technique resembles a similar methodology used for public backtracking in
and-parallel logic programming systems [37]).

We have implemented both schemes and compared them on the selected pool of
benchmarks. Figure 12 compares the speedups achieved using the two schedul-
ing schemes in the Copy-based sharing scheme. The results clearly indicate that
the second scheme (Bottom scheduling) is superior in the large majority of the
cases. Particularly significant are the differences in the sjss and the graph col-
oring problems. These are all programs where a large number of choices points
are created; the bottom scheduling scheme allows to share in a single sharing
operation a large number of alternatives, thus reducing the number of scheduling
interactions between agents. The Top scheduling scheme provides better perfor-
mance in those benchmarks where either there are few choices (e.g., T15) or the
choice tend to be located always towards the beginning of the trail stack (T8).

Also in this case we can clearly identify a preferable scheme (the Bottom
scheduling scheme); nevertheless a mixed approach which selects alternative
scheduling policies depending on the structure of the program or the structure
of the current answer set is likely to provide superior performance.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 135

0 2 4 6 8 10
Number of Agents

0

2

4

6

8

10

S
pe

ed
up

Scheduling
(Top vs. Bottom)

SJSS (Top)
SJSS (Bottom)
RCPS (Top)
RCPS (Bottom)

0 2 4 6 8 10
Number of Agents

0.0

2.0

4.0

6.0

8.0

10.0

S
pe

ed
up

Scheduling
(Top vs. Bottom)

Color (Top)
Color (Bottom)
P7 (Top)
P7 (Bottom)

0 2 4 6 8 10
Number of Agents

0.0

2.0

4.0

6.0

8.0

10.0

S
pe

ed
up

Scheduling
(Top vs. Bottom)

T8 (Top)
T8 (Bottom)
T15 (Top)
T15 (Bottom)

Fig. 12. Scheduling: Top vs. Bottom Scheduling

5.4 Optimizing Vertical Parallelism

We have also explored the performance of the distributed engine on a number
of other benchmarks. The preliminary results obtained on this second batch of
benchmarks were rather disappointing; indeed, on a number of sufficiently large
grain computations, we observed severe slow-downs when increasing the number
of agents employed. The problem was pinpointed to derive from the large size
of the models generated by these benchmarks. During the sharing operations,
each idle agent has to undo the existing computation (via backtracking), receive a
complete copy of the trail, and install the new entries. As pointed out earlier, the
current prototype does not include the notion of incremental copying, which may
improve this sort of situations. Instead of building the complete infrastructure
for incremental copying—which is potentially quite complex—we have tried to
simply optimize the task of abandoning the current computation. Instead of
blindly proceeding in a complete backtracking phase, the idle processor performs
a test on the current size of the partial model located in its trail stack. If the size
is above an experimentally determined threshold, then complete backtracking is
replaced by a brute-force memory zeroing operation (using Unix’s memset) to
wipe out the content of the atom array. Experimental results have shown that if
the trail’s content is very large, this operation is considerably faster.

Figure 13 compares the speedup curves achieved with and without this op-
timization. While for the benchmarks in the left diagram the improvements
are relatively small, the benchmarks on the right indicate that the impact of
this optimization can be very high. Both benchmarks (Color 6 is the coloring
of another large ladder graph, while rpcs 4 is a different version of the rpcs

scheduling program) lead to a slowdown using a large number of agents. The use
of the optimization allows the benchmarks to produce acceptable (for the Color

6 program) or really good (for the rpcs 4 benchmark) speedups. It is important
to observe that the cost of the optimization is negligible (a simple test), com-
pared to the cost of performing a full-blown incremental copying (e.g., cost of
determining the part of the trail in common between two interacting agents).

136 E. Pontelli et al

1 3 5 7
No. of Agents

1.0

3.0

5.0

7.0

S
pe

ed
up

P8
P8 (incremental)
sjss sched3
sjss sched 3 (increm.)

0 2 4 6 8
No. of Agents

0.0

1.0

2.0

3.0

4.0

5.0

S
pe

ed
up

Color 6
Color 6 (increm.)
rpcs 4
rpcs 4 (increm.)

Fig. 13. Speedup Curves with and without Memory Zeroing Optimization

6 Horizontal Parallelism

An orthogonal direction for parallel ASP can be achieved by parallelizing the
steps occurring along one branch of the search tree. This implies, as in Fig. 2,
the parallel evaluation of the individual executions of expand. expand determines
what are the literals whose truth value is immediately determined by the partial
answer set B. This is achieved by applying in various ways the program rules
(e.g., forward and backward chaining), to expand the partial answer set, without
performing any choice. Each rule can provide a different contribution, depending
on the partial answer set. Horizontal parallelism can be achieved by allowing
concurrent application of different rules to expand the partial answer set.

6.1 Static Horizontal Parallelism

The most direct approach in the exploitation of horizontal parallelism arises
from the parallelization of the operations present in the expand procedure. As
illustrated in Section 3.1, the expand operation consists of a fixpoint computation
aimed at expanding the partial answer set by applying in different ways the rules
present in the program.

Static parallelization of this process is obtained by partitioning the set of
program rules between the different processors, so that each processor is in charge
of applying a given set of rules (program fragment) to the partial answer set.

Two major issues have to be considered when developing an horizontal par-
allel ASP solution:

1. partitioning scheme: the partitioning scheme is the policy used to distribute
the program rules between the set of available processors.

2. interaction policy: the interaction policy determines the frequency and pat-
tern of interaction between the processors cooperating in the expansion of a
partial answer set.

In our preliminary experiments we have adopted the following policies:

Issues in Parallel Execution of Non-monotononic Reasoning Systems 137

1. partitioning scheme: the current policy is derived from the work on parallel
constraint propagation [32] and assigns to each processor a collection of
procedures—where a procedure is a collection of all the rules with the same
predicate in the head. The partitioning is static and it is not modified during
the execution of the program. The collection of procedures assigned to the
processors are determined according to two heuristics:
– processors should receive fragments of the same size—where the size is

given by the total number of atoms in the fragment;
– procedures which are “close” in the dependence graph of the ASP pro-

gram are assigned to the same processor. In particular, the current
heuristics tries to keep elements belonging to a strongly connected com-
ponent of the dependence graph within the same and-agent.

2. interaction policy: each and-agent maintains a local stack where it maintains
the part of the partial answer set that has been determined exclusively using
the locally available program rules. Each time a local fixpoint is determined,
the content of the local stack is transferred to a global representation (in
shared memory) of the partial answer set.

We have initiated the development of an horizontal parallel ASP engine con-
structed according to the previously described policies. The preliminary proto-
type has been developed using Posix Threads and tested on a Pentium-based
shared-memory platform with 4-processors (200Mhz Pentium-Pro, running So-
laris 8). The prototype is still under completion, and it has been tested only on
a collection of automatically generated synthetic benchmarks (Synth1 through
Synth4). The benchmarks are composed of 50,000 program rules, each having a
random number of body elements (between 0 and 4). The results are presented
in Table 5.

Benchmark Number of Agents

1 2 3 4

Synth1 393662 37945 17720 2048

Synth2 811335 89353 2337 1852

Synth3 2565765 132473 61480 3426

Synth4 64386763 260800 211890 45162

Table 5. Execution Times (in µsec)

The current prototype has the following properties:

– the indicated benchmarks show super-linear speedups; this arises from the
fact that all the synthetic benchmarks considered do not have models—the
parallel execution allows to detect inconsistencies faster.

– it provides sub-optimal sequential performance, due to excessive locking in
the access of the shared representation of the partial answer set.

138 E. Pontelli et al

Wok is in progress to attempt to reduce communication costs and sustain ac-
ceptable speedups on regular (non-contradictory) benchmarks.

6.2 Lookahead Parallelism

The (sequential) smodels algorithm presented earlier builds the stable models
of an answer set program incrementally. The algorithm presented in Fig. 2 can
be refined to introduce the use of lookahead during the “guess” of a literal.
The algorithm is modified as follows: (1) Before guessing a literal to continue
expansion, unexplored literals are tested to verify whether there is a literal l such
that expand(Π, B ∪ {l}) is consistent and expand(Π, B ∪ {not l}) is inconsistent.
Such literals can be immediately added to B. (2) After such literals have been
found, choose literal can proceed by guessing an arbitrary unexplored literal. Step
1 is called the lookahead step. It is important to observe that any introduction of
literals performed in this step is deterministic and does not require the creation
of a choice point. In addition, the work performed while testing for the various
unexplored literals can be used to choose the “best” literal to be used in step 2,
according to some heuristic function.

During the lookahead step, every test performed on a pair 〈l, not l〉 is sub-
stantially independent from the tests run on any other pair 〈l ′, not l′〉. Each
test involves up to two calls to expand (one for a, the other one for not a),
thus resulting in a comparatively expensive computation. These characteristics
make the lookahead step a natural point where the algorithm could be paral-
lelized. Notice that Parallel Lookahead is an instance of the general concept of
Horizontal Parallelism, since the results of the parallel execution of lookahead
are combined, rather than being considered alternative to each other, as in Ver-
tical Parallelism. The appeal of exploiting Horizontal Parallelism at the level
of lookahead, rather than at the level of expand, lies in the fact that the first
involves a coarser-grained type of parallelism.

Basic Design The parallelization of the lookahead step is obtained in a quite
straightforward way by splitting the set of unexplored literals, and assigning
each subset to a different agent. Each agent then performs the test described in
step 1 on the unexplored literals that it has been assigned. Finally, a new partial
answer set, B′ is built by merging the results generated by the agents. Work
sharing is the Model Copying technique.

Notice that, even in the parallel implementation, the lookahead step can be
exploited in order to determine the best literal to be used in choose literal

(provided that the results returned by the agents are suitably combined). This
greatly reduces the computation performed by choose literal, and provides
a simple way of combining Vertical and Horizontal Parallelism by applying a
work-sharing method similar to the Basic Andorra Model [23], studied for par-
allelization of Prolog computation.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 139

Scheduling The key for the integration of Vertical and Horizontal Parallelism
is in the way work is divided in work units and assigned to the agents. Our sys-
tem is based on a central scheduler, and a set of agents that are dedicated to the
actual computation of the answer sets. Every work unit corresponds to a looka-
head step performed on a partial answer set, B, using a set of unexplored literals,
U . Work units related to different partial answer sets can be processed at the
same time by the system. Every time all the work units associated with certain
partial answer set have been completed, the scheduler gathers the results and
executes choose literal – which, as we stated before, requires a very small
amount of computation, and can thus be executed directly on the scheduler.
choose literal returns two (possibly) partial answer sets 5, and the scheduler
generates work units for both of them, thus completing a (parallel) iteration
of the algorithm in Fig. 2, extended with lookahead. Under this perspective,
Horizontal Parallelism corresponds to the parallel execution of work units re-
lated to the same partial answer set. Vertical Parallelism, instead, is the parallel
execution of work units related to different partial answer sets. The way the
search space is traversed, as well as the balance between Vertical and Horizontal
Parallelism, are determined by: (1) the number agents among which the set of
unexplored literals is split, and (2) the priority given to pending work units. In
our implementation we assign priorities to pending work units according to a
“simulated depth first” strategy, i.e., the priority of a work unit depends first on
the depth, d, in the search space, of the corresponding node, n, and second on
the number of nodes of depth d present to the left of n. This choice guarantees
that, if a computation based only on Horizontal Parallelism is selected, the order
in which nodes are considered is the same as in a sequential implementation of
our algorithm.

The number of agents among which the set of unexplored literals is split
is selected at run-time. This allows the user to decide between a computation
based on Horizontal Parallelism, useful if the answer set(s) are expected to be
found with little backtracking, and a computation based on Vertical Parallelism,
useful if a more backtracking is expected.

Experimental Results The experiments on Parallel Lookahead have been
conducted using the distributed ASP engine developed at TTU. For our tests,
we have used a subset of the benchmarks available at http://www.tcs.hut.fi/
pub/smodels/tests/lp-csp-tests.tar.gz: (1) color: c-colorability (4 colors,
300 nodes), (2) pigeon: put N pigeons in M holes with at most one pigeon in
a hole (N = 24, M = 24), (3) queens: N -queens problem (N = 14), and (4)
schur: put N items in B boxes such that, for any X, Y ∈ {1, . . . , N}: items
labeled X and 2X are in different boxes, and if X and Y are in the same box,
then X + Y is in a different box (N = 35, B = 15).

The tests consisted in finding one answer set for each of these programs.
Since, for all of these programs, this can be accomplished with a comparatively

5 Our version of choose literal runs expand on the two partial answer sets before
returning them.

140 E. Pontelli et al

0

20

40

60

80

100

120

2 4 6 8 10 12

sp
ee

du
p

fa
ct

or

agents

Speedups (Parallel Lookahead)

Color
Pigeon

Queens
Schur

Fig. 14. Speedups for Parallel Looka-
head

0

2

4

6

8

10

2 4 6 8 10 12

sp
ee

du
p

fa
ct

or

agents

Speedups (Parallel Lookahead) [Detail]

Color
Pigeon

Queens
Schur

Fig. 15. Speedups for Parallel Looka-
head

small amount of backtracking, the engine was run so that Horizontal Parallelism
was given a higher priority than Vertical Parallelism by acting on the number of
agents among which the set of unexplored literals is split. The experiments show,
in general, a good speedup for all programs. The speedup, for 13 processors, is
5 for schur and pigeon, almost 6 for color, and 120 for queens. The speedup
measured for queens is indeed surprising. It is interesting to note that queens

requires (with smodels) the highest amount of backtracking. We conjecture that
the speedup observed is the result of the combined application of both types of
parallelism. However this issue deserves further investigation before any precise
statement can be made. The results are definitely encouraging if we consider
that: to the best of our knowledge, our system is one of the first exploiting
Horizontal Parallelism; the way parallelism is handled is still very primitive if
compared with the other existing parallel systems; the level of refinement of the
algorithms for the computation of answer sets is still far beyond smodels (we
expect the optimizations exploited in smodels to significantly improve speedup).

6.3 Current Research Directions

The current research has highlighted the inherent difficulties in the efficient ex-
ploitation of horizontal parallelism from ASP programs. The experiments con-
ducted indicates that exploitation of horizontal parallelism is heavily hampered
by some key aspects of ASP execution:

1. granularity: the steps performed during the execution of the expand opera-
tion are very fine grained;

2. dependencies: the activities required to expand a partial model require in-
tense interactions—each worker needs to have an up-to-date view of the
partial answer set in order to effectively progress the expansion;

3. irregularity: traditional partitioning techniques (e.g., partitioning based on
predicates) lead to unbalanced computations and/or increased communica-
tion overheads.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 141

In the search for better solutions to this problem, we have initiated an investiga-
tion aimed at developing horizontal parallel models for ASP where partitioning
is driven by the syntactic and semantic properties of the program. This effort is
facilitated by the rich collection of theoretical results that have been developed
over the years in the context of stable models and answer set semantics.

We are currently exploring one main property of answer set programs to drive
horizontal parallel execution: splitting.

Splitting is a property of logic programs under the answer set semantics
originally studied by Lifschitz and Turner [28]. Given a logic program P , a
splitting set of P is a set of atoms U with the following property: for each rule
r in the program, if the head of r belongs to U , the all the atoms in the body of
r belong to U . A splitting set U of P suggests a partitioning of the program in
two parts: the set of all the rules whose head is in U (bottom—bU (P)) and the
set of all rules whose head is not in U (top—tU (P)). The Splitting Theorem [28]
guarantees that each answer set of P can be computed by first computing each
answer set of bU (P) and then using such answer sets to determine the answer
sets of tU (P). Splitting can be generalized to obtain a splitting of a program in
n layers with the same property.

Our current effort is aimed at viewing the computation of answer sets as
a pipelined computation, where the different stages of the pipeline corresponds
to the different components of a program splitting. The pipeline allows data
movement in both directions, since each layer of the pipeline can support the
computation of both the preceding as well as the consecutive layers.

We are currently developing a prototypical implementation of an engine based
on this view of horizontal parallelism. We expect that this approach can be
significant for large size programs with a regular splitting structure—this is, for
example, the case of answer set programs obtained from planning applications
[5].

7 Other Issues: Parallel Grounding

7.1 Parallelizing Lparse

The first phase of the execution is characterized by the grounding of the in-
put program. Although most interesting programs invest the majority of their
execution time in the actual computation of models, the execution of the lo-
cal grounding can still require a non-negligible amount of time. For this reason
we have decided to investigate simple ways to exploit parallelism also from the
preprocessing phase.

The structure of the local grounding process, as illustrated in [46], is based
on taking advantage of the strong range restriction to individually ground
each rule in the program. The process can be parallelized by simply dis-
tributing the task of grounding the different rules to different agents, as in
Fig. 16. The forall indicated in the algorithm represents a parallel com-

142 E. Pontelli et al

putation: the different it-
erations are independent
of each other. The ac-
tual solution adopted in
our system is based on
the use of a distribution
function which statically
computes a partition of
the program Π (after re-
moving all rules defining

function ParallelGround(Π)

ΠG = {a | a is instance of domain predicate}
Π = Π \ ΠG

forall Ri ∈ Π

Ri

G = GroundRule(Ri)
endall

ΠG =
⋃

Ri

G

end

Fig. 16: Parallel Preprocessing

the domain predicates) and assigns the elements of the partition to the available
computing agents. The choice of performing a static assignment is dictated by
(i) the large amount of work typically generated, and (ii) the desire to avoid
costly dynamic scheduling in a distributed memory context. The various com-
puting agents provide as result the ground instantiations of all the rules in their
assigned component of the partition of Π . The partitioning of Π is performed
in a way to attempt to balance the load between processors. The heuristic used
in this context assigns a weight to each rule (an estimation of the number of
instances based on the size of the relations of the domain predicates in the body
of the rule) and attempts to distribute balanced weight to each agent. Although
simplistic in its design, the heuristics have proved effective in the experiments
performed.
The preprocessor has been implemented as part of our ASP system, and it is
designed to be compatible in input/output formats with the lparse preprocessor
used in smodels. The preprocessor makes use of an internal representation of
the program based on structure sharing—the input rule acts as skeleton and the
different instantiations are described as environments for such skeleton. The re-
maining data structures are essentially identical to those described for the lparse
system [46]. The implementation of the preprocessor, developed on a Beowulf
system, has been organized as a master-slave structure, where the master agent
is in charge of computing the program partition while the slaves are in charge
of grounding the rules in each partition.

7.2 Experimental Results

We have analyzed the performance of the parallel preprocessor by comparing its
execution speed with varying number of processors. The parallel preprocessor
is in its first prototype and it is very unoptimized (compared to lparse we have
observed differences in speed ranging from 4% to 48%). Nevertheless, the current
implementation was mostly meant to represent a proof of concept concerning the
feasibility of extracting parallelism from the preprocessing phase.

The first interesting result that we have observed is that the rather embar-
rassingly parallel structure of the computation allowed us to make the parallel
overhead (i.e., the added computation cost due to the exploitation of parallelism)
almost negligible. This can be seen in Fig. 17, which compares the execution
times for a direct sequential implementation of the grounding algorithm with

Issues in Parallel Execution of Non-monotononic Reasoning Systems 143

the execution times using a single agent in the parallel preprocessor. In no cases
we have observed overhead higher than 4.1%. Very good speedups have been
observed in each benchmark containing a sufficient number of rules to keep the
agents busy. Fig. 18 shows the preprocessing time for two benchmarks using dif-
ferent numbers of processors. Note that for certain benchmarks the speedup is
slightly lower than linear due to slightly unbalanced distribution of work between
the agents—in the current scheme we are simply relying on a static partitioning
without any additional load balancing activities.

0 1000 2000 3000 4000
Nodes

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

T
im

e
(m

s)

Sequential
Parallel (1 CPU)

10 15 20 25
Nodes

0.0

2000.0

4000.0

6000.0

T
im

e
(m

s)

Sequential
Parallel (1 CPU)

Fig. 17. Preprocessing Overhead (Pi-
geon, Coloring)

1 2 3 4 5 6
Number of Agents

0

500

1000

1500

2000

T
im

e
(m

s)

Grounding Times

color (Ladder)
Family
Pigeon (23)
Rpcs 2

Fig. 18. Parallel Execution of the Pre-
processor

8 Conclusions

In this paper we have presented an overview of the current effort in developing
technology for the parallel execution of Answer Set programs. ASP has quickly
become a leading paradigm for the high-level development of applications in
areas such as planning and scheduling.

The investigation has lead to the identification of two major forms of parallelism—
horizontal parallelism and vertical parallelism—that can be automatically ex-
ploited from the commonly used execution model for ASP. We have illustrated
the major issues behind the exploitation of these forms of parallelism and de-
scribed some possible solutions. These solutions have been integrated in actual
prototypes and the paper reported the performance results obtained.

144 E. Pontelli et al

References

1. S. Abiteboul and V. Vianu. Fixpoint Extensions of First-order Logic and Datalog-
like Languages. In Symposium on Logic in Computer Science, pages 71–89. IEEE
Computer Society, 1989.

2. K.A.M. Ali and R. Karlsson. The Muse Or-parallel Prolog Model and its Perfor-
mance. In 1990 N. American Conf. on Logic Prog., pages 757–776. MIT Press,
1990.

3. K. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann, 1989.

4. K.R. Apt and R.N. Bol. Logic Programming and Negation: A Survey. Journal of
Logic Programming, 19/20, 1994.

5. C. Baral and M. Gelfond. Logic Programming and Knowledge Representation.
Journal of Logic Programming, 19/20:73–148, 1994.

6. C. Baral and M. Gelfond. Reasoning Agents in Dynamic Domains. Technical
report, University of Texas at El Paso, 1999.

7. C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementing Stable Semantics
by Linear Programming. In Logic Programming and Non-monotonic Reasoning,
pages 23–42. MIT Press, 1993.

8. W. Chen and D. S. Warren. Computation of Stable Models and its Integration
with Logical Query Processing. Transactions on Knowledge and Data Engineering,
8(5):742–757, 1996.

9. P. Cholewinski, V.W. Marek, and M. Truszczyński. Default Reasoning System
DeReS. In International Conference on Principles of Knowledge Representation
and Reasoning, pages 518–528. Morgan Kauffman, 1996.

10. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases. Plenum, 1978.

11. W.F. Clocksin and H. Alshawi. A Method for Efficiently Executing Horn Clause
Programs Using Multiple Processors. New Generation Computing, 5:361–376, 1988.

12. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding Planning Problems in Non-
monotonic Logic Programs. In European Workshop on Planning, pages 169–181,
1997.

13. W.F. Dowling and J.H. Gallier. Linear-time Algorithms for Testing the Satisfia-
bility of Propositional Horn Formulae. Journal of Logic Programming, 3:267–289,
1984.

14. D. East and M. Truszczyński. Datalog with Constraints. In Proceedings of the
National Conference on Artificial Intelligence, pages 163–168. AAAI/MIT Press,
2000.

15. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Answer Set Planning
under Action Cost. In European Conference on Logics in AI (JELIA). Springer
Verlag, 2002.

16. T. Eiter, G. Gottlob, and N. Leone. Abduction from Logic Programs: Semantics
and Complexity. Theoretical Computer Science, 189(1-2):129–177, 1997.

17. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons, and Benchmarks. In International Conference on
Principles of Knowledge Representation and Reasoning, pages 406–417, 1998.

18. O. El-Khatib and E. Pontelli. Parallel Evaluation of Answer Sets Programs Pre-
liminary Results. In Workshop on Parallelism and Implementation of Logic Pro-
gramming, 2000.

Issues in Parallel Execution of Non-monotononic Reasoning Systems 145

19. R. Finkel, V. Marek, N. Moore, and M. Truszczyński. Computing Stable Mod-
els in Parallel. In A. Provetti and S.C. Tran, editors, Proceedings of the AAAI
Spring Symposium on Answer Set Programming, pages 72–75, Cambridge, MA,
2001. AAAI/MIT Press.

20. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs.
In International Symposium on Logic Programming, pages 1070–1080. MIT Press,
1988.

21. G. Gupta. Multiprocessor Execution of Logic Programs. Kluwer Academic Press,
Dordrecht, 1994.

22. G. Gupta and E. Pontelli. Optimization Schemas for Parallel Implementation of
Nondeterministic Languages and Systems. In International Parallel Processing
Symposium, Los Alamitos, CA, 1997. IEEE Computer Society.

23. G. Gupta, E. Pontelli, M. Carlsson, M. Hermenegildo, and K.M. Ali. Parallel
Execution of Prolog Programs: a Survey. ACM Transactions on Programming
Languages and Systems, 23(4):472–602, 2001.

24. K. Heljanko and I. Niemela. Answer Set Programming and Bounded Model Check-
ing. In AAAI Spring Symposium, pages 90–96, 2001.

25. R. Krishnamurthy and S.A. Naqvi. Non-deterministic Choice in Datalog. In In-
ternational Conference on Data and Knowledge Bases, pages 416–424. Morgan
Kaufmann, 1988.

26. V. Lifschitz. Action Languages, Answer Sets, and Planning. In The Logic Pro-
gramming Paradigm. Springer Verlag, 1999.

27. V. Lifschitz. Answer Set Planning. In Logic Programming and Non-monotonic
Reasoning, pages 373–374. Springer Verlag, 1999.

28. V. Lifschitz and H. Turner. Splitting a logic program. In Proceedings of the Eleventh
International Conference on Logic Programming, pages 23–37. MIT Press, 1994.

29. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Heidelberg, 1987.
30. V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Pro-

gramming Paradigm. In K.R. Apt, V.W. Marek, M. Truszcziński, and D. S. War-
ren, editors, The Logic Programming Paradigm. Springer Verlag, 1999.

31. W. Marek, A. Nerode, and J.B. Remmel. The Stable Models of Predicate Logic
Programs. In Joint International Conference and Symposium on Logic Program-
ming. MIT Press, 1992.

32. T. Nguyen and Y. Deville. A Distributed Arc-Consistency Algorithm. Science of
Computer Programming, 30(1–2):227–250, 1998.

33. I. Niemela. Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. Annals of Mathematics and AI, (to appear).

34. I. Niemela and P. Simons. Smodels - An Implementation of the Stable Model
and Well-Founded Semantics for Normal LP. In Logic Programming and Non-
monotonic Reasoning, pages 421–430. Springer Verlag, 1997.

35. I. Niemela, P. Simons, and T. Soininen. Stable Model Semantics of Weight Con-
straint Rules. In Logic Programming and Non-monotonic Reasoning. Springer Ver-
lag, 1999.

36. M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog
Descision Support System for the Space Shuttle. In Practical Aspects of Declarative
Languages, pages 169–183. Springer Verlag, 2001.

37. E. Pontelli and G. Gupta. Efficient Backtracking in And-Parallel Implementations
of Non-deterministic Languages. In T. Lai, editor, Proceedings of the International
Conference on Parallel Processing, pages 338–345, Los Alamitos, CA, 1998. IEEE
Computer Society.

146 E. Pontelli et al

38. E. Pontelli and D. Ranjan. On the complexity of dependent and-parallelism in
logic programming. Technical report, New Mexico State University, 2002.

39. I. V. Ramakrishnan, P. Rao, K.F. Sagonas, T. Swift, and D. S. Warren. Efficient
Tabling Mechanisms for Logic Programs. In International Conference on Logic
Programming. MIT Press, 1995.

40. D. Ranjan, E. Pontelli, and G. Gupta. On the Complexity of Or-Parallelism. New
Generation Computing, 17(3):285–308, 1999.

41. D. Saccà and C. Zaniolo. Stable Models and Non-determinism in Logic Programs
with Negation. In Symposium on Principles of Database Systems, pages 205–217.
ACM Press, 1990.

42. C. Schulte. Programming Constraint Inference Engines. In Principles and Practice
of Constraint Programming, pages 519–533. Springer Verlag, 1997.

43. C. Schulte. Compairing Trailing and Copying for Constraint Programming. In
International Conference on Logic Programming, pages 275–289. MIT Press, 1999.

44. J.C. Shepherdson. Negation in Logic Programming. In J. Minker, editor, Founda-
tions of Deductive Databases and Logic Programming. Morgan Kaufmann, 1989.

45. P. Simons. Extending and Implementing the Stable Model Semantics. PhD thesis,
Helsinki University of Technology, 2000.

46. T. Syrjanen. Implementation of Local Grounding for Logic Programs with Stable
Model Semantics. Technical Report B-18, Helsinki University of Technology, 1998.

47. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

