
Systematic Component Adaptation

Antonio Brogi

Department of Computer Science
University of Pisa, Italy

[brogi@di.unipi.it]

Abstract. Component adaptation is widely recognised as one of crucial
problems in component-based software development. In this talk, we will
present a formal methodology for adapting components with mismatch-
ing interaction behaviours. The four main ingredients of the methodology
are:

1. The inclusion of behaviour specifications in component interfaces,
2. a simple, high-level notation to express adaptor specifications,
3. a fully automated procedure to derive concrete adaptors from given

high-level specifications, and
4. an effective technique to verify properties of adaptors.

1 Motivations

Component adaptation is widely recognised to be one of the crucial problems in
Component-Based Software Engineering (CBSE) [4]. The possibility for applica-
tion builders to easily adapt off-the-shelf software components to work properly
within their application is a must for the creation of a true component market-
place and for component deployment in general [2].

Available component-oriented platforms (e.g., CORBA, COM, JavaBeans,
VisualStudio .NET) address software interoperability by using Interface Descrip-
tion Languages (IDLs). The provision of an IDL interface defining the signature
of the methods offered (and possibly required) by a component is an important
step towards software integration. IDL interfaces highlight signature mismatches
between components in the perspective of adapting or wrapping them to over-
come such differences.

However, even if signature problems may be overcome, there is no guarantee
that the components will suitably interoperate. Indeed, mismatches may also
occur at the protocol level, because of the ordering of exchanged messages and
of blocking conditions [7], that is, because of differences in the behaviour of the
components involved. While case-based testing can be performed to check the
compatibility of software components, more rigorous techniques are needed to
lift component integration from hand-crafting to an engineering activity.

The problem of component adaptation has been the subject of intensive at-
tention in the last few years. A number of practice-oriented studies have been
devoted to analyse different issues to be faced when an application builder has
to (manually) adapt a third-party component for a (possibly radically) different

1



2 Antonio Brogi

use (e.g., see [3, 5]). A formal foundation for component adaptation was set by
Yellin and Strom in their seminal paper [8]. They used finite state machines for
specifying component behaviours, and formally introduced the notion of adap-

tor as a software entity capable of letting two components with mismatching
behaviours interoperate.

2 A systematic approach to component adaptation

In this talk, I will first present a formal methodology for adapting components
with mismatching interaction behaviours. Following [1], the four main aspects
of the methodology are the following:

– Component interfaces. Traditional IDL interfaces are extended with a des-
cription of component behaviour. A component interface therefore consists
of two parts: A signature definition (describing the functionality offered and
required by the component), and a behaviour specification (describing the in-
teraction protocol followed by the component). Syntactically, signatures are
expressed in the style of traditional IDLs, while behaviours are expressed
by using a subset of π-calculus [6] — a process algebra which has proved
to be particularly well suited for the specification of dynamic and evolving
systems.

– Adaptor specification. A simple notation is introduced to express the speci-
fication of an adaptor intended to feature the interoperation of two compo-
nents with mismatching behaviours. The adaptor specification is given by
simply stating a set of correspondences between actions and parameters of
the two components. The distinguishing aspect the notation is to allow a
high-level, partial specification of the adaptor.

– Adaptor derivation. A concrete adaptor component is then automatically
generated, given its partial specification and the interfaces of two compo-
nents. The process of adaptor generation consists of exhaustively trying to
build an adaptor that will allow the components to interoperate while satis-
fying the given specification. The advantage of separating adaptor specifica-
tion and derivation is to automate the error-prone, time-consuming task of
generating a detailed implementation of a correct adaptor, thus simplifying
the task of the (human) software developer.

– Adaptor properties. An important part of the described methodology is the
formal specification and the verification of properties that an adaptor should
satisfy. Indeed the constraints defined by an adaptor specification, as well
as other interesting properties of adaptors, can be naturally expressed and
verified by means of processes characterising the behaviour of a valid adaptor.

3 Concluding remarks

The above described methodology employs π-calculus [6] to describe the inter-
action behaviour of components. Indeed π-calculus has proved to be particularly



Systematic Component Adaptation 3

well suited for the specification of concurrent applications with changing topolo-
gies, such as those that live in open systems.

In the last part of this talk, I will try to illustrate how computational logic
— and logic programming in particular — can be exploited for the process of
deriving a concrete adaptor from a given high-level specification. Indeed the
Prolog programming language is particularly well-suited to program the nonde-
terministic incremental construction of a possible adaptor capable of letting two
components properly interact according to a given specification.

An interesting direction for future work is to investigate the use of compu-
tational logic to fully automatize the adaptation of components. More precisely,
the adaptor specification is currently generated by the user after analyzing and
comparing the interfaces of two components. The symbolic reasoning capabili-
ties of computational logic may sensibly contribute to automatize the analysis
of component interfaces represented in RDF/XML formats.

Acknowledgements. I would like to thank A. Bracciali and C. Canal for their
contribution in developing the methodology presented in this talk. This research
was partly supported by the EU-funded project SOCS IST-2001-32530.

References

1. A. Bracciali A. Brogi and C. Canal. Adapting components with mismatching be-
haviours. In J. Bishop, editor, Component deployment, IFIP/ACM Working Con-
ference, LNCS 2370, pages 185–199. Springer-Verlag, 2002.

2. A.W. Brown and H.C. Wallnau. The current state of CBSE. IEEE Software, 1998.
3. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so

hard. IEEE Software, 12(6):17–26, 1995.
4. G. T. Heineman. An evaluation of component adaptation techniques. In 2nd ICSE

Workshop on Component-Based Software Engineering, 1999.
5. S. Hissam K. Wallnau and R. Seacord. Building Systems from Commercial Compo-

nents. The SEI Series in Software Engineering, 2001.
6. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Journal of

Information and Computation, 100:1–77, 1992.
7. A. Vallecillo, J. Hernández, and J. M. Troya. New issues in object interoperability.

In Object-Oriented Technology: ECOOP 2000 Workshop Reader, number 1964 in
LNCS, pages 256–269. Springer Verlag, 2000.

8. D. M. Yellin and R. E. Strom. Protocol specifications and components adaptors.
ACM Trans. on Programming Languages and Systems, 19(2):292–333, March 1997.


