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Abstract. In a seminal paper, Huet introduced abstract properties of
term rewriting systems, and the confluence analysis of terminating term
rewriting systems by critical pairs computation. In this paper, we pro-
vide an abstract notion of critical pair for arbitrary binary relations
and context operators. We show how this notion applies to the conflu-
ence analysis of various transition systems, ranging from classical term
rewriting systems to production rules with constraints and partial con-
trol strategies, such as the Constraint Handling Rules language CHR.
Interestingly, we show in all these cases that some classical critical pairs
can be disregarded. The crux of these analyses is the ability to com-
pute critical pairs between states built with general context operators,
on which a bounded, not necessarily well-founded, ordering is assumed.

Dedicated to Gérard Huet on his 60th birthday.

1 Introduction

In a seminal paper [9], Huet introduced abstract properties of term rewriting
systems, and the confluence analysis of terminating term rewriting systems by
critical pairs computation. Since then, the notion of critical pairs obtained by su-
perposing the left-hand sides of rewriting rules has been applied to a wide variety
of rewriting systems, ranging from pure term rewriting systems (TRS), to TRS
in equational theories [14], conditional TRS [7], rewriting models of concurrency
[13], rewriting logic [12,4], higher-order rewriting [2] and graph rewriting [5,15].
Similarly, Knuth-Bendix like procedures [14,10,16] for completing non confluent
rewriting systems into confluent rewriting systems have been generalized to these
different settings.

To date however, although the notion of critical pairs has been adapted to
a variety of formalisms, there is no general definition of an abstract notion of
critical pairs from which the concrete definitions could be obtained as particu-
lar instances. In the categorical formulations of rewriting systems, the notion of
relative pushouts [11] does provide an abstract condition for contextual equiva-
lences but we are not aware of an abstract critical pair lemma in the categorical
setting. Recently, in the framework of canonical inference [3,6], notions of criti-
cality and completions have been developed for abstract proof systems, assuming
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a well-founded ordering on proofs. However, we will show that this assumption
is too strong for the confluence analysis of binary relations in dense structures,
and will illustrate this situation with a concrete example.

In this paper, we provide an abstract notion of critical pair for arbitrary
binary relations and context operators. We show how this notion applies to the
confluence analysis of term rewriting systems, conditional TRS, and production
rules with constraints such as the Constraint Handling Rules language CHR [8],
under both its naive semantics and its refined semantics with partial control
structures [1]. The crux of these analyses is the ability to compute critical pairs
between states built with general context operators, on which a bounded, not
necessarily well-founded, ordering is assumed.

The next section gives some preliminary notations about binary relations
and their composition. In section 3 we propose some abstract counterparts of
the notions of context, context compatibility and substitution stability from [9],
and prove an abstract critical pair theorem for establishing the confluence of
arbitrary binary relations. In section 4 we show how our abstract definitions can
be instantiated to prove the soundness of the classical notions of critical pairs in
ordinary TRS and conditional TRS. In section 5 we proceed similarly to show
the soundness of the classical definitions of critical pairs in CHR, respectively
under its naive semantics and under its refined semantics that includes a partial
control strategy stating that a rule is fired only once on the same instances [1].

Interestingly, we show in all these cases that some classical critical pairs can
be disregarded. We conclude on the generality of this work, and on some per-
spectives for future work.

2 Preliminaries

Let E be an arbitrary set and →⊂ E × E be an arbitrary relation on E, called
here reduction. We shall use the following notations and definitions:

– i = {e → e | e ∈ E} is the identity relation on E ;
– ◦ is the composition : →a ◦ →b= {(e1, e2) | ∃e ∈ E (e1 →a e ∧ e →b e2)} ;
– →−1= {(e2, e1) | (e1 → e2} is the inverse relation of → ;
– →0= i and →n=→ ◦ →n−1 for n ≥ 1;
– →∗ = ∪i≥0 →i, the transitive-reflexive closure of → ;
– →ε =→ ∪ i;
– ↑= →∗ −1 ◦ →∗ , the common ancestor relation ;
– ��=→−1 ◦ →, the common direct ancestor relation.
– ↓= →∗ ◦ →∗ −1 the common descendent relation ;
– ↓ε= →ε ◦ →ε −1.
– → is noetherian if there is no infinite sequence e0 → e1 → . . .

– → is confluent if ∀e1, e2 ∈ E(e1↑e2 ⇒ e1↓e2).
– → is locally confluent if ∀e1, e2 ∈ E(e1 ��e2 ⇒ e1↓e2).
– → is strongly confluent if ∀e1, e2 ∈ E(e1 ��e2 ⇒ e1 ↓ε e2).
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Obviously, strong confluence implies confluence, and by Newman’s lemma we
know that a noetherian reduction relation is confluent if and only if it is locally
confluent [9]. A pair (e1, e2) of elements in E is →-joinable if e1↓e2, and →-
strongly joinable if e ↓ε e2. A set of pairs will be said →-joinable if all its pairs
are →-joinable.

3 Abstract Critical Pairs

3.1 Abstract Contexts

In all this section, a binary relation →⊂ E×E is assumed. We provide an abstract
counterpart of the notions of contexts, context compatibility and substitution
stability, introduced in [9] for TRS. To this end, we study families of operators on
E that generalize the operations of putting a term in a context or instantiating
a term by a substitution.

Definition 1 (→-compatible operators). An n-ary operator C : En → E is
→-compatible if C(e1, . . . , en) →∗ C(e1, . . . , ei−1, e

′, ei+1, . . . , en) whenever ei →
e′ for any index i, 1 ≤ i ≤ n.

Proposition 1. An n-ary operator C over E is →-compatible if and only if
C(e1, . . . , en) →∗ C(e′1, . . . , e

′
n) whenever ei →∗ e′i for all i, 1 ≤ i ≤ n.

Proposition 2
(i) The composition of →-compatible operators is →-compatible.
(ii) The projection πn

i = λx1 . . . xn.xi (with 1 ≤ i ≤ n) is →-compatible.
(iii) Permuting the arguments of an operator preserves its compatibility.

Proof To prove (i) let us suppose that C1 and C2 are two →-compatible op-
erators over E of arity n1 and n2 respectively. Let n = n1 +n2 − 1 and let us
suppose ei →∗ e′i for all 1 ≤ i ≤ n. We have C1(ei, . . . , ei+n1) →∗ C1(e′i, . . . , e

′
i+n1

)
by the previous proposition, for any i, 1 ≤ i ≤ n2. Furthermore we have
C2(e1, . . . ei−1, C1(ei, . . . , ei+n1), ei+n1+1, . . . , en2) →∗ C2(e′1, . . . , e

′
i−1, C1(e′i, . . . ,

e′i+n1
), e′i+n1+1, . . . , e

′
n2

) since → and the identity relation are included in →∗ .
Hence the composition of C1 and C2 is →-compatible. For (ii) and (iii), the
→-compatibility of the projection operators and of any →-compatible operator
with a permutation of its arguments follows directly from the definition. �

Definition 2 (→-Contexts). A family of →-contexts is a family of →-com-
patible operators containing E (as constant operators) and closed by projection,
composition and argument permutation. We will denote by Cn the set of n-ary
contexts of C, for n ≥ 0.

3.2 Abstract Linear Contexts

Definition 3 (Linear →-contexts). An n-ary →-context C is linear if when-
ever ei → e′ then C(e1, . . . , en) →ε C(e1, . . . , ei−1, e

′, ei+1, . . . , en).
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A linear →-context is obviously →-compatible. Furthermore, we have :

Proposition 3. The composition of linear contexts is linear. The projections
are linear contexts. Permuting the arguments of a context preserves its linearity.

Now, let us denote by en the sequence of n repetitions of the element e.

Definition 4 (Absorbing →-contexts). An n-ary →-context C is absorbing
if there exists an index i, 1 ≤ i ≤ n, such that ∀e0, e1 . . . , en ∈ E C(e1, . . . , en) =
C(e1, . . . , ei−1, e0, ei+1, . . . , en).

Definition 5 (Linear decomposition of →-contexts). A linear n-ary →-
context C is a linear decomposition of an unary →-context C′ if for any element
e ∈ E we have C′(e) = C(en). A family of linear →-contexts is linear if any
linear decomposition of its unary contexts is either unary or absorbing.

3.3 C-Safe Pairs

A family C of →-contexts induces a preordering relation over pairs of elements
in E as follows :

Definition 6. The preorder induced by a family C of contexts is the relation ≥C
on pairs satisfying: (e′1, e

′
2) ≥C (e1, e2) ⇔ ∃C ∈ C.(e′1 = C(e1) ∧ e′2 = C(e2)).

Proposition 4. (E, ≥C) is a preorder.

Proof. The reflexivity of ≥C follows from the fact that the projection π1
1 is in

C. The transitivity of ≥C follows from the closure of contexts under arbitrary
compositions. �

In the following, we will denote by >C the strict preorder associated to ≥C . In
this preorder, the joinability of a pair entails the joinability of all its ≥C-greater
pairs :

Lemma 1. Let C be a family of →-contexts and (e1, e2) and (e′1, e
′
2) be two pairs

in E such that (e′1, e′2) ≥C (e1, e2). (i) If e1↓e2 then e′1↓e′2. Furthermore (ii), if C
is linear and e1↓εe2 then e′1↓εe

′
2.

Proof. Since (e′1, e
′
2) ≥C (e1, e2), let C ∈ C be a context such that e′1 = C(e1)

and e′2 = C(e2). Concerning (i), as e1↓e2, there exists an e such that e1 →∗ e
and e2 →∗ e. Hence by proposition 1 we have C(e1) →∗ C(e) and C(e2) →∗ C(e),
hence e′1↓e′2. (ii) is a direct consequence of the linearity of the contexts in C. �

One can also remark that a symmetrical pair is greater than any other pair
thanks to the projection operators in C. The joinability of symmetrical pairs is
thus subsumed by the joinability of non symmetrical pairs. We call C-Safe pairs
those pairs that are joinable by the →-compatibility of contexts. C-safe pairs can
thus be removed from the confluence analysis of ��pairs.
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Definition 7 (C-Safe Pairs). A C-safe pair w.r.t. a context C ∈ C2 and two
transitions l1 → r1 and l2 → r2 is a pair of the form (C1(s1 . . . sm), C2(t1 . . . tn))
such that:

– for all 1≤ i≤m, si ∈ {l2, r2} and for all 1≤j≤m, tj ∈ {l1, r1}.
– C1 ∈ Cm and C2 ∈ Cn are linear decompositions of respectively λx.C(l1, x)

and λx.C(x, l2).

Lemma 2. All C-safe pairs are joinable.

Proof. In a C-safe pair as in the definition above, we trivially have ti →∗ r2
for all 1 ≤ i ≤ m, and sj →∗ r1 for all 1 ≤ j ≤ m. Hence, by proposition 1,
C1(t1, . . . , tm) →∗ C1(rm

2 ) and C2(s1, . . . , sn) →∗ C2(rn
1 ). Since C1 and C2 are the

respective linear decompositions of λx.C(l1, x) and λx.C(x, l2) for some context
C, we also have C1(rm

2 ) = C(l1, r2) and C2(rn
1 ) = C1(r1, l2). The pairs are thus

joinable by the →-compatibility of C. �

Now, by considering the linear decomposition of →-contexts, we get :

Lemma 3. Let C be a linear familly of contexts and C an unary context in C.
If Cn ∈ Cn is a linear decomposition of C then there existe 1 ≤ i ≤ n such that
for all e1, . . . , en ∈ E, Cn(e1, . . . , en) = C′(ei).

Proof. The proof is by induction on n. The base case, where n = 1, is trivial.
In the inductive case, where n > 1, since the familly C is linear, Cn is absorb-
ing. Hence there exist i, 1 ≤ j ≤ n, and e′ ∈ E such that for all e ∈ E Cn(en) =
Cn(e(j−1), e′, e(n−j−1)). The context λx1, . . . , xn−1.Cn(x1, . . . xj−1, e

′, xj . . . xn−1)
is thus a linear decomposition of C′, and the induction hypothesis concludes the
proof.

Proposition 5. Let C be a linear family of →-contexts. Any C-safe pair w.r.t.
two transitions l1 → r1 and l2 → r2 is of the form (C(l1, r2), C(r1, l2)) for some
binary →-context C ∈ C2.

Proof. By lemma 3, any C-safe pair w.r.t. some context C′ and transitions
l1 → r1 and l2 → r2, is of the form (C′(l1, s), C′(t, l2)) with s ∈ {l2, r2} and
t ∈ {l1, r1}, i.e. of the form : (i) (C′(l1, l2), C′(l1, l2)), (ii) (C′(l1, l2), C′(r1, l2)),
(iii) (C′(l1, r2), C′(l1, l2)), or (iv) (C′(l1, r2), C′(r1, l2)). Hence the choice C =
λx1.x2.π

3
1(x1, x2, C

′(l1, l2)) for (i), C = λx1.x2.π
2
1(C′(x1, l2), x2) for (ii), C =

λx1.x2.π
2
2(x1, C

′(l1, x2)) for (iii) or C = λx1.x2.π
3
1(x1, x2, C

′(l1, l2)) for (iv) re-
spectively, ends te proof. �

Lemma 4. If C is a linear family of →-context, then all C-safe pairs are strongly
joinable.

Proof. By the previous proposition, we know that any C-safe pair is of the form
(C(l1, r2), C(r1, l2)) with l1 → r1 and l2 → r2. Hence, by the linearity of C we
have C(l1, r2) →ε C(r1, r2) and C(r1, l2) →ε C(r1, r2). �
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3.4 C-Critical Pairs

Let us recall that an ordered set (E, ≥) is lower bounded if any element of E is
greater than or equal to some minimal element of E.

Definition 8 (C-critical pair). A C-critical pair is a ≥C-minimal element of
(��) that is not C-safe.

Theorem 1. Let C be a family of →-contexts (resp. family of linear →-contexts)
such that (��) is lower bounded w.r.t. ≥C. → is locally confluent (resp. strongly
confluent) if and only if all C-critical pairs are joinable (resp. strongly joinable).

Proof. For the if direction, let us suppose that all C-critical pairs are joinable.
We know that any pair in (��) is either a C-safe pair, or is comparable to a C-
critical pair. It is thus joinable in both cases, using respectively lemma 2 and
lemma 1. The “only if” is trivial since C-critical pairs are in (��).

The proof of strong confluence is similar using lemma 4. �

This theorem can be used to establish the local (resp. strong) confluence of
an arbitrary binary relation →, by finding a family C of (linear) →-context
operators for which ≥C is lower bounded on brother pairs and admits a finite set
of ≥C-minimal elements. In the following sections, we illustrate this approach
on several examples. We also show that some classical critical pairs are not C-
critical, and can thus be disregarded. Furthermore, one example in section 5.2
shows a concrete case where the preordering ≥C is not well-founded but only
lower bounded on brother pairs, as the theorem requires.

4 Applications to Term Rewriting Systems

4.1 Preliminaries

Let T be the set of terms (denoted by t, s, r,. . . ) built from a countable infinite
set V of variables (denoted by x, y, z, . . . ) and a countable set F of function
symbols (denoted by f, g, h, . . . ) given with their arity. We will use the classical
propositions and notations borrowed from [9] :

– V(t) ⊂ V for the set of variables of t,
– O(t) for the set of occurrences of t (denoted by u, v, . . . ),
– t/u for the subterm of t at u,
– t[u ← s] for the subterm replacement at u,
– u.v for the concatenation of u and v,
– ≤ the prefix ordering on occurrences,
– u|v to note disjoint occurrences.

A substitution σ is mapping from V to T with xσ = x almost everywhere.
Substitution are extended as morphisms to T . If {x1, . . . xn} is the domain of σ
(i.e. the set {x ∈ V|σ(x) �= x}) we will also denote σ by [x1\x1σ, . . . , xn\xnσ].
A renaming is a substitution [x1\y1, . . . , xn\yn] where the yi’s are pairwise
distinct variables. A most general unifier (mgu) for two given terms t and s is
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a substitution σ satisfying (i) tσ=sσ and (ii) for all subsitution σ1 if tσ1 =sσ1
then there exists a subsitution σ2 such that σ1 = σ2 ◦ σ.

A rewriting rule is a pair 〈l → r〉 where l and r are two first order terms such
that l /∈ V and V(r) ⊂ V(l). A term rewriting system R is a set of rewriting
rules. The relation →R is the least relation satisfying s →R t if there exists a
position p, a rule 〈l → r〉 ∈ R and a substitution σ such that s/u = lσ and
t = s[u ← rσ].

4.2 C-critical Pairs of Ordinary Term Rewriting Systems

Let R be a TRS over a set of terms T .

Definition 9. Let Ct be the family of operators over T containing all the opera-
tors of the form Cy1,...yn = λs, s1, . . . , sn . s[y1\s1, . . . , yn\sn] for {y1, . . . , yn} ⊂
V, and closed under composition, projection and argument permutation.

One can easily show :

Proposition 6. Ct is a family of →R-contexts.

Proposition 7. ≥Ct is well-founded.

Therefore all subsets of (E ×E), and in particular (��), are lower bounded. Now
a classical critical pair, between two rules 〈li → ri〉 and 〈lj → rj〉 is a pair of the
form (liσ[u ← rjρσ], riσ) where :

1. ρ is a renaming and σ is a substitution such that V(li) ∩ V(ljρ) = ∅;
2. u is an occurrence of li such that li/u is not a variable;
3. σ is an mgu for li/u and ljρ.

Proposition 8. Le t be an arbitrary term and y a variable. (i) λs.Cy(s, t) is a
linear →R-context. (ii) λs1 . . . sn.Cy1,...,yn(t[u1 ← y1] . . . [un ← yn], s1, . . . , sn),
where the ui’s are the occurrences of y in t and yi’s are pairwise distinct variables
free in t, is a linear decompositions of λs.Cy(t, s).

Then by tedious case analysis, one can show :

Proposition 9. Let R be a rewriting system. A Ct-critical pair of →R is a
classical critical pair between two rules of R.

This proposition together with theorem 1 establishes that the local confluence
of arbitrary rewriting systems can be deduced from the joinability of its classical
critical pairs. However, some classical critical pairs may be not Ct-critical, and
can thus be disregarded.

Example 1. Let R be the following system:

R = {〈a → f(c, b)〉, 〈a → g(b)〉, 〈f(x, x) → g(x)〉, 〈b → c〉}

(f(c, b), g(b)) is a classical critical pair for →R. However this critical pair is
a Ct-safe pair w.r.t. the transitions f(x, x) → g(x) and b → c. Indeed C1 =
λs1, s2.f(s1, s2) is a linear decomposition of λs.Cx(g(x), s), C2 = λs.Cx(s, b) is
linear, f(c, b) = C1(c, b) and g(b) = C2(g(x)) with c → b and f(x, x) → g(x).
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4.3 Strong Confluence of Linear Term Rewriting Systems

A term t is linear if any variable appears at most once in t. A system R is linear
iff for all rules 〈l → r〉 ∈ R, l and r are linear. Let →l

R be the restriction of →R
to linear terms.

Definition 10. Let Cl be the family of contexts, closed by composition, argument
permutation, projection and containing the operators

Cρ
y1,...,yn

= λs0, . . . , sn.(φ0(s0)[y1\φ1(s1), . . . , yn\φn(sn)])ρ

where y1, . . . , yn are pairwise distinct variables, ρ is a renaming, ∪i∈N{Vi} is a
partition of V where the Vi’s are infinite, and for any i ∈ N, φi is a one-to-one
mapping between V and Vi.

Let Cs be the family of operators containing all substitution operators, closed
by projection, argument permutation and composition.

Proposition 10. For any relation a linear TRS R we have :

(i) Cl and Cs are linear families of respectively →l
R-contexts and →R-contexts;

(ii) the brother pairs w.r.t. →l
R are lower bounded w.r.t. ≥Cl

;
(iii) Cl-critical pairs of →l

R are classical critical pairs;
(iv) Any →R-brother pair is greater than or equal to a →l

R-brother pair.

The propositions (i), (ii) and (iii) can be used with theorem 1 to analyze the
strong confluence of →l

R. The strong confluence analysis of any linear rewriting
system follows from (i), (iv) and lemma 1.

4.4 Conditional Term Rewriting Systems

A Conditional Term Rewriting Systems (CTRS) is a TRS in which the applica-
tion of rules is controlled by some condition. In this section we focus on particular
CRTS known as join systems [16].

A conditional term rewriting rule has the form (l → r ⇐ t↓t′) where 〈l → r〉
is a classical rewriting rule and t and t′ are terms. A conditional term rewriting
system(CTRS) is a set of conditional term rewriting rules. For a given CTRS
RC , the relation →RC is defined inductively by the following rule :

u ∈ O(s) (l → r ⇐ t↓t′) ∈ RC tσ↓RC t′σ
s[u ← lσ] →RC s[u ← rσ]

Definition 11. A primary critical pair between two conditional rules (li → ri ⇐
ti↓t′i) and (〈lj → rj ⇐ tj ↓t′j) is a conditioned pair of the form ((tiσ, t′jρσ)↓
(t′iσ, t′jρσ) : (liσ[u ← rjρσ], riσ)) where:

– ρ is a renaming and σ is a substitution such that V(li) ∩ V(ljρ) = ∅;
– u is an occurrence of li such that li/u is not a variable;
– σ is an mgu for li/u and ljρ;
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A conditioned pair (t↓t′ : (s, s′)) is joinable if sσ↓s′σ for any substitution σ such
that tσ↓t′σ.

This definition of critical pair was proposed in [7]. Nonetheless the authors of this
paper underlined that there exist noetherian non locally confluent systems for
which all those critical pairs are joinable. The following example illustrates why
the previous definition is not consistent with our definition of abstract critical
pairs. We then introduce the definition of secondary critical pairs.

Example 2. Let RC = {(f(x) → g(x) ⇐ x↓a), (a → b ⇐ a↓a)}. The family of
contexts Ct, defined in section 4.2 for ordinary TRS, is a family of contexts for
any →RC . Nonetheless, since f(x) �→RC g(x), the pair (f(b), g(a)) is not Ct-safe.
Furthermore, as it is minimal in (��), it is Ct-critical and should be considered.

Definition 12. A secondary critical pair between two conditional rules (li →
ri ⇐ ti ↓t′i) and (〈lj → rj ⇐ tj ↓t′j) is a pair of the form ((ti, tjρ)↓(t′i, t

′
jρ) :

(li[x\u[p ← rjρ]], ri[x\u[p ← ljρ]]) where:

– ρ is a renaming such that and V(li) ∩ V(ljρ) = ∅;
– u is an arbitrary term and p ∈ O(u);
– x ∈ V(li) ∩ V(ti↓t′i).

According to the definition of joinability of conditioned pairs, a conditioned pair
(t↓t′ : (s, s′)) defines the set of pairs {(sσ, s′σ) | tσ↓t′σ)}. Let us call an instance
of (t↓t′ : (s, s′)), any element of this set. With a proof analogous to proposition
9, we obtain :

Proposition 11. Let RC be a rewriting system. A Ct-critical pair of →RC is an
instance of a primary or secondary critical pair between two rules of RC.

This shows the soundness of deriving the local confluence of CTRS from the
joinability of both primary and secondary critical pairs. For this, an effective
definition of secondary critical pairs is thus worth investigating.

5 Applications to Production Rules with Constraints

Production rules are condition-action rules that transform a base of facts by
adding or removing facts at each rule firing. The Constraint Handling Rules
(CHR) language [8] generalizes production rules by lifting the base of ground
facts to a store of constraints over uninstantiated variables, and interpreted in
an arbitrary mathematical structure.

In this section, we focus on the confluence analysis of CHR rules, and show
how the abstract notion of C-critical pairs can be instantiated to analyze the
confluence of CHR rules as proposed in [1]. This is shown under both the naive
semantics of CHR without control strategy, and under the refined semantics
of CHR that integrates partial control strategies based on the history on rule
firings, captured here by context operators. Furthermore, the necessity to deal
with constrained states illustrates the difficulty to define well-founded orderings,
and our use of bounded orderings instead.
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5.1 Preliminaries

In CHR, a language of built-in constraints interpreted over some structure X
and assumed to contain the equality =, is distinguished from the language of
user-defined CHR constraints formed over a different set of predicate symbols.
A CHR program is a finite sequence of CHR rules, where a CHR rule is either:

– a simplification rule of the form:
H1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

– or a propagation rule of the form:
H1, . . . , Hi ==> G1, . . . , Gj | B1, . . . , Bk

where i > 0, j ≥ 0, k ≥ 0, l > 0, H1, . . . , Hi are CHR constraints, the guards
G1, . . . , Gj are built-in constraints, and the body B1, . . . , Bk is composed of CHR
and built-in constraints (with k > 0 in propagation rules).

The symbol � is used to represent empty sequences. The empty guard can
be omitted together with the symbol |. The notation name@R gives a name to
a CHR rule R. For the sake of simplicity, we assume without loss of generality
that a variable appears at most once in the head of a rule.

Example 3. The following CHR rules [8] define an ordering constraint solver

reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ X=<Y , Y=<X <=> X=Y.
transitivity @ W=<X , Y=<Z ==> X=Y | W=<Z.

The first rule eliminates the =< constraints with equal arguments, the second
replaces a double inequality by an equality, and the third adds the transitive
closure constraints.

5.2 CHR Under Its Naive Semantics

The naive operational semantics of CHR does not include any control strategy.
As a result, propagation rules can loop forever. This is corrected in the refined
semantics presented in the next section by imposing that a rule is fired once on
the same instances. We first present the confluence analysis of CHR programs
under the naive semantics.

Here, a CHR state is a tuple ∃x̄.〈F, E, D〉 where, x̄ is a set of variables called
anonymous variables, F is a multiset of built-in and CHR constraints called
goal, E is a CHR constraint store, and D is a built-in constraint store. A state is
thus a conjunction of CHR and built-in constraints1. In the following, we work
implicitly modulo the following equivalence ≡ over states :

1 ∃x̄y.〈F, E, D〉 ≡ ∃x̄z(〈F, E, D〉[y\z]) with zy �∈ x̄.
2 ∃x̄ȳ.〈F, E, D〉 ≡ ∃x̄ȳ′.〈F, E, D′〉 if X |= ∃ȳ.D ⇔ ∃ȳ′.D′ if (ȳ∪ȳ′)∩V(F, E) = ∅
1 Usually a CHR goal is annotated with the free variables of the query (i.e. initial

goal). Here, the anonymous variables represent the variables introduced during the
computation that leads to the given state.
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The condition at the end of the second rule ensures that the variables ȳ and ȳ′

are strictly local variables, i.e. anonymous variables appearing only in the built-
in store. Given a CHR program P , the transition relation → over states of the
naive operational semantics, is defined inductively as the least relation satisfying
the following rules :

Solve ∃x̄.〈C ∧ F, E, D〉 → ∃x̄.〈F, E, C ∧ D〉 if C is a built-in constraint
Introduce ∃x̄.〈H ∧ F, E, D〉 → ∃x̄.〈F, H ∧ E, D〉 if H is a CHR constraint.
Simplify ∃x̄.〈F, H ′ ∧ E, D〉 → ∃x̄ȳ.〈B ∧ F, E, H = H ′ ∧ D〉

if (H <=> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃ȳ(H = H ′ ∧ G).

Propagate ∃x̄.〈F, H ′ ∧ E, D〉 → ∃x̄ȳ.〈B ∧ F, H ′ ∧ E, H = H ′ ∧ D〉
if (H ==> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃ȳ(H = H ′ ∧ G).

where the variables appearing in triples stand for conjunctions of constraints,
and x̄ represents the set of variables appearing in the head H .

Example 4. One possible execution of the previous program is :

〈Z=<X, X=<Y∧ Y=<Z, true〉 (Introduce ×2)
〈X=<Z ∧ Z=<X, X=<Y ∧ Y=<Z, true〉 (Propagate transitivity)
〈true, X=<Z∧ Z=<X ∧ X=<Y ∧ Y=<Z, true〉 (Introduce ×2)
〈X=Z, X=<Y ∧ Y=<Z, true〉 (Simplify antisymmetry)
〈true, X=<Y∧ Y=<Z, X=Z〉 (Solve)
〈X=Y, true, X=Z〉 (Simplify antisymmetry)
〈true, true, X=Y ∧ X=Z〉 (Solve)

Definition 13 (Quantified conjunction). The quantified conjunction of two
states is a binary operator +ȳ, parameterized by a set ȳ of variables, defined by:

∃x̄.〈F, E, D〉 +ȳ ∃x̄′.〈F ′, E′, D′〉 = ∃ȳx̄x̄′.〈F ∧ F ′, E ∧ E′, D ∧ D′〉

where ȳ, x̄, x̄′ are supposed disjoint without loss of generality. Let Ch be the
family of quantified conjunction operators.

Proposition 12. Quantified conjunctions are →-linear.

Unlike the orders defined in the previous section for first-order terms, the pre-
order ≥Ch

may be not well-founded. This is the case when logical implication
in X is not well-founded. For example if X is the constraint system (N, ≤), the
chain p1 >Ch

p2 >Ch
p3 . . . (where pi = (〈∅, ∅, 1 ≤ x ∧ x ≤ i〉, 〈∅, ∅, x ≤ i〉)) is

strictly decreasing w.r.t. >Ch
.

However one can prove that the brother pairs (��) admit ≥Ch
-minimal ele-

ments. For this purpose, we assume without loss of generality that no rule in P
is subsumed by another one in P , since P is finit. Here we will say that a simpli-
fication rule (resp. a propagation rule) R subsumes another rule (H <=>G1|B)
(resp. (H ′, H ==>G1|B)) if there exists a renaming of R of the form (H <=>G2|B)
(resp. (H ==>G2|B)) such that the constraint G2 subsumes G1 in X .
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Proposition 13. (��) is lower bounded with respect to ≥Ch
.

Proof. Let min be the mapping of valid reductions to pairs of states defined as
follows :

1. min(∃x̄.〈C ∧ F, E, D〉 → ∃x̄.〈F, E, C ∧ D〉) = (〈C, ∅, �〉, 〈∅, ∅, C〉);
2. min(∃x̄.〈H ∧ F, E, D〉 → ∃x̄.〈F, H ∧ E, D〉) = (〈H, ∅, �〉, 〈∅, H, �〉);
3. min(∃x̄.〈F, H ′ ∧ E, D〉 → ∃x̄ȳ.〈B ∧ F, E, D〉) = (〈∅, H ′, G〉, 〈B, ∅, G〉)

if (H <=> G | B) is in P renamed with fresh variables ȳ;
4. min(∃x̄.〈F, H ′ ∧ E, D〉 → ∃x̄ȳ.〈B ∧ F, H ′ ∧ E, D〉) = (〈∅, H ′, G〉, 〈B, H ′, G〉)

if (H ==> G | B) is in P renamed with fresh variables ȳ

By cases on the type of the reduction, one can check that min is a total function,
i.e. any reduction is mapped to a pair. Moreover, for any reduction S → S′,
min(S → S′) = (T, T ′) defines a reduction T → T ′ that is smaller than or equal
to any other comparable reduction.

Now we prove that any pair (S1, S2) in (��) is comparable to a minimal pair.
Let S be a state such that S → S1 and S → S2. Let (T1, T

′
1) = min(S → S1) and

(T2, T
′
2) = min(S → S2). We suppose that T ′

1 �= T ′
2, otherwise (S1, S2) would be

symmetrical.The proof is by case on T1 and T2 :

– T1 (or T2) is of the form 〈H, ∅, �〉 : since T ′
1 �= T ′

2, H is not in the goal of
T2 (or T1). Hence we deduce that (S1, S2) ≥Ch

(T ′
1 +∅ T2, T1 +∅ T ′

2) that is
clearly minimal in (��).

– T1 (or T2) is of the form 〈C, ∅, �〉 : as in the previous case we infer that
(S1, S2) ≥Ch

(T ′
1 +∅ T2, T1 +∅ T ′

2) that is minimal in (��).
– T1 = 〈∅, H1, C1〉 and T2 = 〈∅, H2, C2〉 : let T ′

1 = 〈B1, H
′
1, C1〉 and T ′

2 =
〈B2, H

′
2, C2〉. Let {H11, H12} and {H21, H22} two partitions of H1 and H2

such that H11 = H22 and H12 ∩ H21 = ∅. Then we have (S1, S2) ≥Ch

(〈B1, H
′
1 ∧H21, G1 ∧G2 ∧H11 = H22〉, 〈B2, H

′
2 ∧H12, G1 ∧G2 ∧H11 = H12〉).

The latter pair is minimal in (��), as otherwise H11, H12 and H21, H22 would
not be the biggest partitions of H1 and H2. �

Let ζ(R) be the constraints in the head of R that are not deleted by its
application, i.e. ζ(R) = true if R is a simplification or ζ(R) = H if R is a
propagation rule with head H . Let R be a rule with guard G, body B and head
H1, . . . , Hn and let R′ be a rule renamed with fresh variables with guard G′,
body B′ and head H ′

1, . . . , H
′
m. A CHR critical pair between R and R′ is a pair

of the form :

(∃ȳ.〈ζ(R), H ′
jk+1

, . . . , Him , B, true, Ḡ〉, ∃ȳ.〈ζ(R′), Hik+1 , . . .Hin , B′, true, Ḡ〉)

where Ḡ = G ∧ G′ ∧ Hi1 = H ′
j1 ∧ · · · ∧ Hik

= H ′
jk

, while {i1, . . . , in} and
{j1, . . . , jm} are permutation of {1, , . . . , n} and {1, . . . , m} respectively, and ȳ
is the set of variables appearing in the bodies but not in the heads.

Proposition 14. Any Ch-critical pair is a CHR critical pair.
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This shows the soundness of analyzing the confluence of CHR programs by com-
puting CHR critical pairs [8]. However a CHR critical pair is not necessarily a
Ch critical pair, as shows the following :

Example 5. Let P be the CHR programe consisting into the two following rules
p,q,r <=> case(1) and p,q,s <=> case(2). P admits three critical pairs :

p1 = (〈case(1), s, true〉, 〈case(2), r, true〉)
p2 = (〈case(1), q ∧ s, true〉, 〈case(2), q ∧ r, true〉)
p3 = (〈case(1), p ∧ s, true〉, 〈case(2), p ∧ s, true〉)

However, p2 and p3 are not Ch-critical as p2 >Ch
p1 and p3 >Ch

p1.

5.3 CHR Under Its Refined Semantics

The refined operational semantics of CHR includes a partial control strategy
that prevents the looping of propagation rules by restricting their firing only
once on the same instances. By internalizing the necessary information in the
states, one can nevertheless prove local confluence by computing critical pairs
between states enriched with control tokens.

A refined CHR state ∃x̄.〈〈F, E, D, T 〉〉 is composed of a naive state ∃x̄.〈F, E, D〉
together with a set T , the token store, composed of tokens of the form R@C
where C is a conjunction of constraints and R a rule name. T contains the
necessary information about propagation rules, the respective constraints that
can be possibly applied are contained in T . Given a CHR program P and a
CHR constraint C, the tokenset of an user-defined constraint C with respect to
conjunction of constraints CU is the set :

T (C, Cu) =
{

R@H ′ R@(H ==> G | B) ∈ P, C is in H ′,
H ′ is a subset of C ∧ Cu, H unifies with H ′

}

and T (C1 ∧ · · · ∧ Cn, Cu) = T (C1, Cu) ∪ · · · ∪ T (Cn, Cu). The refined transition
relation →+ is given by the following rules, where the variables appearing in
triples stand for conjunctions of constraints and x̄ represents the set of variables
appearing in the head H .

Solve
∃x̄.〈〈C ∧ F, E, D, T 〉〉 →+ ∃x̄.〈〈F, E, C ∧ D, T 〉〉 if C is a built-in constraint

Introduce
∃x̄.〈〈H ∧ F, E, D, T 〉〉 →+ ∃x̄.〈〈F, H ∧ E, D, T ∪ T (H, E)〉〉
if H is a CHR constraint.

Simplify
∃x̄.〈〈F, H ′ ∧ E, D, T 〉〉 →+ ∃x̄ȳ.〈〈B ∧ F, E, D, T ∩ T (H ∧ E, �)〉〉
if (H <=> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃x̄(H = H ′ ∧ G).

Propagate
∃x̄.〈〈F, H ′ ∧ E, D, {R@H ′} ∪ T 〉〉 →+ ∃x̄ȳ.〈〈B ∧ F, H ′ ∧ E, D, T 〉〉
if R@(H ==> G | B) is in P renamed with fresh variables ȳ,
and X |= D → ∃x̄(H = H ′ ∧ G).
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Definition 14 (Refined state conjunction). The refined quantified conjunc-
tion of two states is a binary operator +ȳ, parameterized by a set ȳ of variables
and defined as:

∃x̄.〈〈F, E, D, T 〉〉+ȳ∃x̄′.〈〈F ′, E′, D′, T ′〉〉=∃ȳx̄x̄′.〈〈F ∧F ′, E∧E′, D ∧ D′, T ∪ T ′〉〉

where ȳ, x̄, x̄′ are supposed disjoint without loss of generality. Let C+
h be the

family of refined state conjunction operators.

Definition 15. Let R be a rule with guard G, body B and head H1, . . . , Hn and
let R′ be a rule renamed with fresh variables with guard G′, body B′ and head
H ′

1, . . . , H
′
m. A refined critical pair between R and R′ is a pair of the form :

(∃ȳ.〈〈ζ(R), H ′
jk+1

. . . , HimB, true, Ḡ, ∅〉〉, ∃ȳ.〈〈ζ(R′), Hik+1 . . . Hin , B′, true, Ḡ, ∅〉〉)
where Ḡ = G ∧ G′ ∧ Hi1 = H ′

j1 ∧ · · · ∧ Hik
= H ′

jk
, while {i1, . . . , in} and

{j1, . . . , jm} are permutation of {1, , . . . , n} and {1, . . . , m} respectively and ȳ is
the set of variables appearing in bodies but not in the heads.

With a proof similar to the previous proposition, we get :

Proposition 15. Any C+
h -critical pair is a CHR refined critical pair.

6 Conclusion

By abstracting the notion of critical pairs from term rewriting systems to ar-
bitrary binary relations and arbitrary context operators over some set E, an
abstract critical pair theorem has been proved, and shown useful to establish
the local confluence of a wide variety of transition systems. This has been illus-
trated by instantiating the abstract notion of contexts and critical pairs to prove
the soundness of classical critical pair definitions in term rewriting systems, con-
ditional term rewriting systems, and Constraint Handling Rules programs. In
the latter case, our use of bounded orderings instead of well-founded orderings
has been shown necessary to handle the constrained states of CHR transitions.
Interestingly in all these cases, we have shown that some classical critical pairs
could be disregarded.

An abstract notion of linear contexts and linear decomposition has been
proved useful to establish these results. This could be further developed to define
an abstract notion of orthogonal systems [16]. As for future work, the general-
ization of our approach to n-ary relations might also be worth investigating in
connection to the theory of canonical inference [3,6], with well-founded ordering
assumptions replaced by boundedness conditions.
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