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Abstract. Module systems are an essential feature of programming lan-
guages as they facilitate the re-use of existing code and the development
of general purpose libraries. Unfortunately, there has been no consensual
module system for Prolog, hence no strong development of libraries, in
sharp contrast to what exists in Java for instance. One difficulty comes
from the call predicate which interferes with the protection of the code,
an essential task of a module system. By distinguishing the called module
code protection from the calling module code protection, we review the
existing syntactic module systems for Prolog. We show that no module
system ensures both forms of code protection, with the noticeable excep-
tions of Ciao-Prolog and XSB. We then present a formal module system
for logic programs with calls and closures, define its operational seman-
tics and formally prove the code protection property. Interestingly, we
also provide an equivalent logical semantics of modular logic programs
without calls nor closures, which shows how they can be translated into
constraint logic programs over a simple module constraint system.

1 Introduction

Module systems are an essential feature of programming languages as they facili-
tate the re-use of existing code and the development of general purpose libraries.
Unfortunately, there has been no consensual module system for Prolog, hence
no strong development of libraries, in sharp contrast to what exists in Java for
instance.

One difficulty in Prolog comes from the call predicate which interferes with
the protection of the code, an essential task of a module system. There has
been therefore several proposals of module systems realizing different trade-offs
between code protection and the preservation of meta-programming facilities.

In order to enforce the proper segmentation of the code, and to guarantee the
semantics of the predicates defined in a library, a module system has however to
strictly prevent any predicate execution not allowed by the programmer. This
means that it should be possible to restrict the access to the code of a module (by
predicate calls, dynamic calls, dynamic asserts or retracts, syntax modifications,
global variable assignments, etc.) from extra-modular code. This property is
called code protection.

The relationship between the calling module and the called module is how-
ever asymmetric. The called module code protection ensures that only the visible



predicates of a module can be called from outside. The calling module code pro-
tection should ensure that the called module does not call any predicate of the
calling module, as they are not visible. The following example illustrates however
the need to provide an exception to this rule with a mechanism for executing a
predicate in the calling environment, which we will call a closure.

Example 1. The list iterator predicate forall/2 defined below in ISO-Prolog
[13], checks that every element of a list, passed in the first argument, satisfies a
given property, passed as a unary predicate in the second argument:

forall([], _).
forall([H|T], P):- G=..[P,H], call(G), forall(T, P).

Such a predicate forall cannot be defined in a library (for lists as it should)
without violating the calling module code protection, as the intended meaning
of the predicate is indeed to call the predicate passed as argument in the calling
module environment.

Most module systems for Prolog solve the difficulty either by abandoning any
form of code protection, or by introducing ad-hoc mechanisms to escape from
the code protection rules. Our proposal here is to keep a strict code protection
discipline but distinguish closures from dynamic calls, closures being executed
in the environment where they are created. From a functional perspective, a
closure here is basically a lambda expression with only one parameter, i.e., that
closure(X,G,C) ) is somehow equivalent to C = (λX.G) and apply(C,X) to
C.X. This makes it possible to define a module for lists which exports a forall
predicate taking a closure from outside as argument.

Example 2. :- module(lists, [forall/2, ...]).
forall([], C).
forall([X|T], C) :- apply(C, [X]), forall(T, C).

That definition of forall using closures instead of dynamic calls can be used
from any module importing the list module, by passing to it a closure constructed
from a unary predicate like var/1 for instance:

:- module(foo, ...).
:- use_module(lists).
all_variables(L) :- closure([X],var(X),C), forall(L,C).

In this paper, we first review the main module systems for Prolog in the
light of the two forms of module code protection. We show that no module
system ensures both forms of code protection, with the noticeable exceptions of
Ciao-Prolog and XSB.

Then we give a formal presentation of a safe module system with calls and
closures. We precisely define its operational semantics and show the full code
protection property.

We also provide an equivalent logical semantics for modular logic programs
without calls nor closures. That semantics, obtained by translating modular logic

2



programs into constraint logic programs over a simple constraint module system,
shows how the module system can be compiled into a constraint logic program.

We then conclude on the relevance of these results to an on-going implemen-
tation of a fully bootstrapped constraint programming language, from which this
work originated.

Related work

Modularity in the context of Logic Programming has been considerably studied,
and there has been some standardization attempts for ISO-Prolog [14]. Different
approaches can be distinguished however.

The syntactic approach mainly deals with the alphabet of symbols, as a mean
to partitionate large programs, safely re-use existing code and develop general
purpose libraries. This approach is often chosen for its simplicity and compati-
bility with existing code. For instance, a constraint solver like OEFAI CLP(q,r)
[12], or a Prolog implementation of the Constraint Handling Rules language
CHR [24], should be portable as libraries in a modular Prolog system. Most of
the current modular Prolog systems, such as SICStus [25], SWI [29], ECLiPSe
[2], XSB [22], Ciao [4, 7, 6] for instance, fall into this category. We will focus on
this approach in this paper, together with the object-oriented approach [19, 20]
which is somewhat similar.

The algebraic approach defines module calculi with operations over sets of
program clauses [21, 5, 23]. They are somehow more general than the object-
oriented extensions of Prolog, as they consider a great variety of operations on
predicate definitions, like overriding, merging, etc. On the other hand, the greater
versatility does not facilitate reasoning on large programs, and this approach has
not been widely adopted.

The logical approach to module systems extends the underlying logic of pro-
grams. One can cite extensions with nested implications [16, 17], meta-logic [3]
or second order predicates [9]. Such logical modules can be created dynamically,
similarly to other approaches such as Contextual Logic Programming [18, 1].
Perhaps because their poor compatibility with existing code, they are also not
widely used however, and will not be considered in this paper.

2 Review of existing syntactic module systems

In this section, we analyze the main syntactic module systems developed for
Prolog. A reference example will be used to illustrate their peculiarities, and
classify them according to the two previously introduced properties: the called
module code protection and the calling module code protection.

Following ISO Prolog terminology [14], a module is a set of Prolog clauses
associated to a unique identifier, the module name. The calling context – or sim-
ply context – is the name of the module from where a call is made. A qualified
goal M:G is a classical Prolog goal G prefixed by a module name M in which it
must be interpreted. A predicate is visible from some context if it can be called
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from this particular context without any qualification. A predicate is accessible
from some context if it can be called from this particular context with or with-
out qualification. A meta-predicate is a predicate that handles arguments to be
interpreted as goals. Those arguments are called meta-arguments.

2.1 A Basic Module System

We first consider a basic module system from which the syntactic module systems
of Prolog can be derived through different extensions.

In this basic system, the predicates that are visible in a module are either
defined in the module, or imported from another module. In order to ensure
the protection of the called module code, only the predicates explicitly exported
in the defining module can be imported by other modules. Furthermore, the
qualification of predicates is not allowed.

The basic module system thus trivially satisfies both forms of code protection
properties, but is not able to modularize the predicate forall of example 1.

2.2 SICStus Prolog

The modules of SICStus Prolog [25] make accessible any predicate, by using
qualifications. The list iterator forall can thus be modularized, and used sim-
ply by passing to it goals qualified with the calling module. As a consequence
however, this versatile module system does not ensure any form of module code
protection.

It is also possible to explicitly declare meta-predicates and meta-arguments.
In that case, the non-qualified meta-arguments are qualified dynamically with
the calling context of the meta-predicate. With this feature, the called module
is thus able to manipulate explicitly the name of the calling module and call any
predicate in the calling module.

Example 3. This example, that will be also used in the following, tests the ca-
pabilities of calling private predicates in modules.

:-module(library, [mycall/1]).

p :-
write(’library:p/0 ’).

:-meta_predicate(mycall(:)).
mycall(M:G):-
M:p, call(M:G).

:- module(using, [test/0]).
:- use_module(library).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
library:p, mycall(q).

| ?- using:test.
library:p/0 using:p/0 using:q/0
yes
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The private predicate p of the library is called from the using module, the library
correctly calls the predicate q of the calling module, but is also able to call the
private predicate p of the calling module.

This module system is similar to the ones of Quintus Prolog [26] and Yap
Prolog [27]. The standardization attempt of ISO-Prolog [14] is also very close
in spirit, but the accessibility rules of qualified predicates have been left to the
implementation.

2.3 ECLiPSe

ECLiPSe [2] introduces two mechanisms to call non visible predicates. The first
is the qualified call, where only the exported predicates are accessible. The sec-
ond one, which uses the construct call(Goal)@Module, makes any predicate
accessible as with a qualified goal Module:Goal in SICStus Prolog. This system
provides also a directive tool/2 for adding the calling context as an extra ar-
gument to the meta-predicate. This solution has the advantage of limiting the
unauthorized calls made in a unconscious way.

Example 4.

:- module(library, [mycall/1]).

p :-
write(’library:p/0 ’).

:- tool(mycall/1,mycall/2).
mycall(G, M):-
call(p)@M, call(G)@M.

:- module(using, [test/0]).
:- use_module(library).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
call(p)@library, mycall(q).

[eclipse 2]: using:test.
library:p/0 using:p/0 using:q/0
Yes

As beforehand, the system does not ensure module code protection.

2.4 SWI Prolog

For compatibility reasons, SWI accepts qualified predicates and uses the same
policy as SICStus Prolog. Hence the complete system does not ensure the called
module code protection. Meta-programming in SWI Prolog [29] has a slightly dif-
ferent semantics. For a meta-call made in the clause of a meta-predicate declared
with the directive module transparent/1, the calling context is the calling con-
text of the goal that invoked the meta-predicate. Hence, by declaring the list
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iterator forall/2 as a module transparent predicate, one obtains the expected
behavior, since the meta-call to G is invoked in the module that called forall,
i.e. in the calling module.

Nonetheless, this choice has two main disadvantages:

Example 5.

:-module(library, [mycall/1]).

p :-
write(’library:p/0 ’).

:-module_transparent(mycall/1).
mycall(G):-
p, call(p), call(G).

:- module(using, [test/0]).
:- use_module(library).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
mycall(q).

?- using:test.
library:p/0 using:p/0 using:q/0
Yes

First, a dynamic call call(p(x)) does not behave as the static one p(x).
Second, the conventions for meta-predicates break the protection of the calling
module code.

2.5 Logtalk

Logtalk [19, 20] is not really a syntactic module system but an object-oriented
extension of Prolog. Nonetheless by restricting its syntax – by forbidding pa-
rameterized objects and inheritance – one obtains a module system close to the
ones studied here.

The object/1 directive can be read as a module/2 directive, where the public
predicates are the exported predicates. Then, message sending plays the role of
goal qualification. Indeed, sending the message P to the object M – which is
denoted by M::P instead of M:P – calls the predicate P defined in the module M,
only if P have been declared public in M. Therefore this module system ensures
the protection of the called module code.

In order to deal with meta-predicates, Logtalk provides its own version of
the meta predicate/1 directive, which can be used in a similar way to the
SICStus one, with :: used instead of : for declaring meta-argument. As SWI,
Logtalk does not realize a module name expansion of the meta-arguments, but
realize dynamic calls in a context which may be different from a static call. In
this system, the dynamic context is the module (i.e. object) that sent the last
message. Since the non qualified calls are not considered as messages however,
it is possible to call any predicate of the calling module.

Example 6.
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:- object(library).
:- public(mycall/1).

p :-
write(’library:p/0 ’).

mycall(G) :- mycall(G,p).
:-metapredicate(mycall(::,::)).
mycall(G1,G2) :-
call(G1), call(G2).

:-end_object.

:- object(using).
:- public(test/0).

p :-
write(’using:p/0 ’).

q :-
write(’using:q/0 ’).

test :-
library::mycall(q).

:- end_object.

| ?- using::test.
using:q/0 using:p/0
yes

That module system does not ensure the calling module protection.

2.6 Ciao Prolog.

The module system of Ciao Prolog [4] satisfies the two forms of code protection.
Only exported predicates are accessible for outside a module, and this property
is checked for qualified goals. The manipulation of meta-data through the mod-
ule system is possible through an advanced version of the meta predicate/1
directive.

Before calling the meta-predicates, the system dynamically translates the
meta-arguments into an internal representation containing the goal and the con-
text in which the goal must be called. Since this translation is done before calling
the meta-predicate, the system correctly selects the context in which the meta-
data must be called. As far as the system does not document any predicate
able to create or manipulate the internal data, the protection of the code is pre-
served. In this sense, Ciao Prolog does make a distinction between terms and
higher-order data (i.e. goals manipulated as terms) [8].

Example 7.

:-module(library, [mycall/1]).

p :- write(’library:p/0 ’).

:-meta_predicate(mycall(:)).
mycall(G):-
writeq(G), write(’ ’), call(G).

:- module(using, [test/0]).
:- use_module(library).

p :- write(’using:p/0 ’).

test :- mycall(p).

?- using:test.
$:(’using:p’) using:p/0
yes

7



The program realizes the expected behavior without compromising the called
module protection, nor the calling module protection.

2.7 XSB

The module system of XSB [22] is an atom-based, rather than predicate-based,
syntactic module system. This means that function symbols, as well as predicate
symbols, are modularized in XSB. Similar terms constructed in different modules
may thus not unify. In a module, it is possible however to import public symbols
from another module, with the effect that the modules share the same symbols.

Then, the semantics of the call/1 predicate is very simple: the meta-call of
a term corresponds to the call of the predicate of the same symbol and arity as
the module where the term has been created. The system fully satisfies the code
protection property.

Example 8.

:-export mycall/1.

p(_) :-
write(’library:p/1 ’).

mycall(G):-
call(G).

:- export test/1.
:- import mycall/1 from library.

p(_) :-
write(’using:p/0 ’).

test(_) :-
mycall(p(_)).

| ?- test(_).
using:p/0
yes

On the other hand, the problem of defining the visibility rules for meta-
programming predicates is moved to the construction of the terms. Indeed,
in XSB, the terms constructed with =../2, functor/2 and read/1 belong to
the module user. As a consequence, in a module different from user, the goal
(functor(X,q,1), X=q( )) fails, whereas (X=q( ), functor(X,q,1)) succeeds.

3 A safe module system with calls and closures

In this section, we define a formal module system with calls and closures. We
present the operational semantics of modular logic programs, and formally prove
that they satisfy both forms of module code protection.
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3.1 Syntax of Modular Logic Programs

For the sake of simplicity of the presentation, the following conventions are
adopted. First, a simple form of closures, that abstract only one argument in
an atom, is considered. Second, the syntax of constraint logic programs is cho-
sen with some syntactic conventions to distinguish between the constraints, the
closures and the other atoms within goals. Third, all goals are assumed to be ex-
plicitly qualified, thereby eliminating the need to describe the conventions used
for automatically prefixing the non-qualified atoms in a clause or a goal. Fourth,
all public predicates in a module are assumed to be accessible from outside, with
no consideration of directives such as use module.

The following disjoint alphabets of symbols given with their arity are con-
sidered:

– V a countable set of variables (of arity 0) denoted by x, y . . . ;
– ΣF a set of constant (of arity 0) and function symbols;
– ΣC a set of constraint predicate symbols containing = /2 and true/0;
– ΣP a set of program predicate symbols containing call/2, closure/3 and

apply/2 ;
– ΣM a set of module names (of arity 0), noted µ, ν . . .

Furthermore, in order to interpret calls and closures, two coercion relations,
P∼: ΣF × ΣP and M∼: ΣF × ΣM , are assumed to interpret function symbols
as predicate symbols and module names respectively. It is worth noting that
in classical Prolog systems, where function symbols are not distinguished from
predicate symbols, these relations are just the identity, while here they formally
relate disjoint sets.

The sets of terms, formed over V and ΣF , of atomic constraints, formed
with predicate symbols in ΣC and terms, and of atoms, formed with predicate
symbols in ΣP and terms, are defined as usual. In addition, atoms qualified by
a module name are noted µ :A. The call predicate has two arguments, the first
being the module name qualifying the second argument.

A closure closure(x, µ :A, z) associates to the variable z a qualified atom µ :A
(the meta-argument) in which the variable x is abstracted. The meta-argument
in a closure must be a qualified atom, i.e. not a variable as in a call.

Definition 1. A closure is an atom of the form closure(x, µ : A, z) where x
and z are variables, µ : A is a qualified atom. The application of a closure
associated to a variable z to an argument x is the atom apply(z, x).

Definition 2. A modular clause is a formula of the form

A0 ← c1, . . . , cl|κ1, . . . , κn|µ1 :A1, . . . , µm :Am.

where the ci’s are atomic constraints, the κi’s are closures, and the µi : Ai’s are
qualified atoms.
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Definition 3. A module is a tuple (µ,Dµ, Iµ) where µ ∈ ΣM is the name of
the module, Dµ is a set of clauses, called the implementation of the module, and
Iµ ⊂ ΣP is the set of public predicates, called the interface of the module. The
predicates not in Iµ are called private in µ. A modular program P is a set of
modules with distinct names.

Definition 4. A modular goal is a formula

c| 〈ν1 − κ1〉 , . . . , 〈νn − κn〉 | 〈ν′1 − µ1 :A1〉 , . . . , 〈ν′m − µm :Am〉

where c is a set of atomic constraints, the κi’s are closures, the (µi : Ai)’s are
prefixed atoms and both the νi’s and the ν′i’s are module names called calling
contexts.

In the following, the construct 〈ν − (κ1, . . . , κn)〉 denotes the sequence of clo-
sures (〈ν − κ1〉 , . . . , 〈ν − κn〉) and similarly for sequence of atoms with context.

3.2 Operational Semantics

Let P be a program defined over some constraint system X . The transition
relation −→ on goals is defined as the least relation satisfying the rules in table
1, where θ is a renaming substitution with fresh variables. A successful derivation
for a goal G is a finite sequence of transitions from G which ends with a goal
containing only constraints (the computed answer) and closures.

Modular
CSLD

(µ,Dµ, Iµ)∈P (ν =µ)∨(p ∈ Iµ)
(p(s)←c′|k|β)θ∈Dµ X |= ∃(c ∧ s=t ∧ c′)

(c|K|γ, 〈ν − µ :p(t)〉 , γ′) −→ (c, s=t, c′|K, 〈µ− k〉 |γ, 〈µ− β〉 , γ′)

Call
X |= c⇒ (s=g ∧ t=f(x)) g M∼µ f P∼p

(c|K|γ, 〈ν − ν :call(s, t)〉 , γ′) −→ (c, s=g, t=f(x)|K|γ, 〈ν − µ :p(x)〉 , γ′)

Apply
X |= c⇒ z=y

(c|κ1, 〈µ− closure(x, µ′ :A, z)〉 , κ2|γ, 〈ν − ν :apply(y, t)〉 , γ′) −→
(c|κ1, 〈µ− closure(x, µ′ :A, z)〉 , κ2|γ, 〈µ− µ′ :A[x\t]〉 , γ′)

Table 1. Transition relation for goals with calls and closures.

The modular CSLD resolution rule is a restriction of the classical CSLD rule
for CLP [15]. The additional condition (ν = µ) ∨ (p ∈ Iµ) imposes that µ : p(t)
can be executed only if, either the call is made from inside the module (i.e. from
the calling context µ), or the predicate p is a public predicate in µ. Moreover,
this rule propagates the new calling context to the closures and atoms of the
selected clause body.
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The call rule defines the operational semantics of meta-calls. It is worth not-
ing that this transition rule does not change the calling context ν. This property
is necessary to guarantee the calling module code protection. For the sake of
simplicity, a call goal with a free variable as meta-argument has no transition.
Similarly, the call rule does not handle the meta-call of conjunctions of atoms or
constraints. Those meta-calls can nevertheless be easily emulated, by supposing
(’,’/2 P∼ and/2) and by adding the clause (and(x, y) ← µ : call(x), µ : call(y)) to
the implementation of any module µ.

The apply rule allows the invocation of a closure collected by a previous
predicate call, as expected for instance in the example 2 for the definition of
forall. In practice, the apply rule looks for the closure associated to the closure
variable (formally checks the equality of variables z=y), and applies the closure
to the argument in the closure context.

3.3 Module Code Protection

Intuitively, the called module code protection property states that only the public
predicates of a module µ can be called from outside, and produce subgoals in
context µ. The calling module code protection property states that the goal of
a closure can only be executed in the context of creation of the closure. These
properties can be formalized as follows:

Definition 5. The operational semantics of programs satisfies the called mod-
ule code protection if the reduction of a qualified atom µ : p(t) in a context
ν produces qualified atoms and closures in the context µ only, and either p is
public in µ or µ = ν.

Definition 6. The operational semantics of programs satisfies the calling mod-
ule code protection property if the application of a closure created in context
ν produces atoms and closures in the context ν only.

Proposition 1. The operational semantics of modular logic programs satisfies
the called and calling module code protection properties.

Proof. For the called module code protection property, let us consider the re-
duction of a qualified atom µ : p(t) in context ν. Only a modular CSLD or a call
transition can apply, producing a goal in context µ′. In the former case, we have
µ′ = µ and either µ = ν or p public in µ. In the latter case, we have trivially
µ = ν = ν′.

For the calling module code protection property, we first remark that the
transition rules do not change the context of closures, which thus remain in
their context of creation. Given an application of a closure created in context ν,
the transition Apply is the only applicable rule, and produces a goal in context
ν.
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4 Logical Semantics

Syntactic module systems have been criticized for their lack of logical semantics
[21, 23]. Here we provide modular (constraint) logic programs without calls nor
closures (abbreviated MCLP), with a logical semantics based on their trans-
lation into constraint logic programs. In course, that translation describes an
implementation of the module system.

To a given MCLP program P, one can associate a simple module constraint
system M, in which the constraint allow(ν, µ, p) that states that the predicate
p of module µ can be called in module ν, is defined by the following axiom
schemas:

ν ∈ ΣM p ∈ ΣP

M |= allow(ν, ν, p)
ν, µ ∈ ΣM (µ,Dµ, Iµ) ∈ P p ∈ Iµ

M |= allow(ν, µ, p)

This constraint system depends solely on the interface of the different modules
that composes the program P, and not on its implementation.

Then, MCLP programs can be given a logical semantics equivalent to their
operational semantics, obtained by a simple translation of pure MCLP(X ) pro-
grams into ordinary CLP(M,X ) programs. This translation can be used for the
implementation, and shows that the module system can be viewed as simple
syntactic sugar. The alphabet Σ̇P of the associated CLP(M,X ) program, is
constructed by associating one and only one predicate symbol ṗ ∈ Σ̇P of arity
n + 2 to each predicate symbol p ∈ ΣP of arity n.

Let Π be the translation of MCLP programs and goals into CLP programs
overM, defined in table 2.

Π (
S
{(µ,Dµ, Iµ)}) =

S
{Πµ(Dµ)}

Π (γ, γ′) = Π (γ) , Π (γ′)
Π (〈ν − µ :p(t)〉) = ṗ(ν, µ, t)

Πµ (
S
{(A← c|α)}) =

S
{Πµ(A← c|α)}

Πµ

`
p0(t)← c|α

´
= ṗ0(y, µ, t)← allow(µ, y, p0), c|Πµ(α)

Πµ(A, A′) = Πµ(A), Πµ(A′)
Πµ(ν :p(t)) = ṗ(µ, ν, t)

Table 2. Formal translation of MCLP(X ) into CLP(M,X ).

This translation basically adds two arguments to each predicate. The first
argument is the calling context and the second is the qualification. The constraint
allow realizes a dynamic check of accessibility. It is worth noting that for a
qualified atom, the contexts are known at compile-time and the accessibility
check can be done statically, thereby eliminating any overhead due to the added
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constraints and to the module system. On the other hand, for the call predicate
not considered in this section, the allow predicate implements a dynamic check,
hence with an overhead due to the added constraints.

Proposition 2 (Soundness). Let P and (c|γ) be a pure MCLP program and
a pure MCLP goal

if
(

(c|γ) P−−−−→
MCLP

(d|γ′)
)

then

(
(c|Π(γ)) Π(P)−−−→

CLP
(d, allow(y, µ, p), y = ν|Π(γ′))

)
for some ν, µ, p and some y is not free in d.

Proof. Let us suppose ((c|γ) P−−−−→
MCLP

(d|γ′)). Let 〈ν − µ :p(t)〉 be the selected

atom in γ. Then γ is of the form (γ1, 〈ν − µ :p(t)〉 , γ2) for some γ1 and γ2.
Hence we have Π(γ)= (Π(γ1), ṗ(ν, µ, t),Π(γ2)). Now let (p(s) ← c′|α)θ be the
selected clause in module µ. In such a case whe have, in the translation of P,
the clause (ṗ(y, µ, s))← c, allow(y, µ, p)|Πµ(α)) θ. We also have d = (c, t=s, c′),
X |= ∃(d) and (ν = µ) ∨ (p ∈ I). As (ν = µ) ∨ (p ∈ I) is true, the constraint
allow(ν, µ, p) is true in M, hence we have X ,M |= ∃d′ with d′ = (c, (ν, µ, t) =
(y, µ, s), c′, allow(y, µ, p)). Therefore we have ((c|Π(γ)) Π(P)−−−→

CLP
(d′|Π(γ′))).

Lemma 1. The functions Πµ, and Π on goals, are injective.

Proof. As it is the composition of injective functions, the function Π on goals
is injective. For the same reason, the function Πµ on prefixed atoms, atom se-
quences and clauses is injective. As Πµ on modules is the pointwise extension of
the injective function Πµ on clauses, it is injective too.

Proposition 3 (Completeness). Let P and (c|γ) be pure MCLP program and
goal

if

(
(c|Π(γ′)) Π(P)−−−→

CLP
(d|α)

)
then

(
(c|γ) P−−−−→

MCLP
(d′|γ′′)

)
where Π(γ′′)=γ′ and d′=(d, allow(y, µ, p), y=ν) for some ν, µ, p and such that
y is not free in d.

Proof. Because Πµ and Π are injective, we can use their respective inverses
Πµ

−1 and Π−1. Let us suppose that ((c|Π(γ)) Π(P)−−−→
CLP

(d|γ′)). The constraint c

does not contain any allow/3 constraint since (c|γ) is a MCLP goal. Let q(t)
be the selected atom, Π(γ) is of the form (γ1, q(t), γ2) for some γ1 and γ2.
Hence we have γ = Π−1(γ1), p(ν, µ, t′),Π−1(γ2) with q = ṗ and t = (ν, µ, t′).
Let q(s) ← c′|β be the selected clause. We have p(s′) ← c′′|Πµ′

−1(β) in the
implementation of some module µ′, with s=(y, µ′, s′) and c′′=c′, allow(y, µ′, p)
where y is fresh. We have d = (c, c′′, allow(y, µ′, p), (ν, µ, t′) = (y, µ′, s′)) and
X ,M |= ∃(d). Hence for d′ = (c, c′′, t′ = s′), we have X ,M |= ∃(d′). Therefore,
for α = (Π−1(γ1),Π−1(β),Π−1(γ2)), we conclude that (c|γ) can be reduced by
a clause of P to (d′|γ′′) with Π(γ′′) = γ′.
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5 Conclusion

In a paper of D.H.D. Warren [28], the higher-order extensions of Prolog were
questioned as they do not really provide more expressive power than meta-
programming predicates. We have shown here that the situation is different in
the context of modular logic programming, and that module code protection
issues necessitate to distinguish between calls and closures.

The module system we propose is close to the one of Ciao Prolog in its imple-
mentation. We gave an operational semantics for modular logic programs with
calls and closures , and used it to formally prove the full module code protec-
tion property. Furthermore, an equivalent logical semantics for modular logic
programs without calls nor closures has been provided, showing a translation of
modular logic programs into constraint logic programs. The logical semantics of
modular calls and closures is currently under investigation in the framework of
linear logic concurrent constraint (LCC) programming [10].

This module system has been implemented in GNU-Prolog, and has been
used to port some existing code as libraries. The modularization of the Con-
straint Handling Rules language CHR obtained by porting a Prolog implemen-
tation [24] as a library, provides an interesting example of intensive use of the
module system, as it allows the development of several layers of constraint solvers
in CHR. New libraries are also developed with this module system for making a
fully bootstrapped implementation of the LCC language SiLCC [11].
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