Conclusion: resolution is a complete and effective deduction mechanism using:
Horn clauses (related to "Definite programs"),
Linear, Input strategy
Breadth-first exploration of the tree (or an equivalent approach)
(possibly ordered clauses, but not required – see Selection rule later)

• Very close to what is generally referred to as SLD-resolution (see later)
• This allows to some extent realizing Greene’s dream (within the theoretical limits
 of the formal method), and efficiently!
Towards Logic Programming (Contd.)

- Given these results, why not use logic as a general purpose *programming language*? [Kowalski 74]
- A “logic program” would have two interpretations:
 - *Declarative* (“LOGIC”): the logical reading (facts, statements, knowledge)
 - *Procedural* (“CONTROL”): what resolution does with the program
- ALGORITHM = LOGIC + CONTROL
- Specify these components separately
- Often, worrying about control is not needed at all (thanks to resolution)
- Control can be effectively provided through the ordering of the literals in the clauses

Towards Logic Programming: Another (more compact) Clausal Form

- All formulas are transformed into a set of *Clauses*.
 - A clause has the form: $conc_1, ..., conc_m \rightarrow cond_1, ..., cond_n$
 where $conc_1, ..., conc_m$ “or” $cond_1, ..., cond_n$ are literals, and are the *conclusions* and *conditions* of a rule:
 $conc_1, ..., conc_m \leftarrow cond_1, ..., cond_n$
 “conclusions” “conditions”
 - All variables are implicitly universally quantified: (if $X_1, ..., X_k$ are the variables)
 $\forall X_1, ..., X_k \ conc_1 \lor \ldots \lor conc_m \leftarrow cond_1 \land \ldots \land cond_n$
 - More compact than the traditional clausal form:
 - no connectives, just commas
 - no need to repeat negations: all negated atoms on one side, non-negated ones on the other
 - A *Horn Clause* then has the form: $conc_1 \leftarrow cond_1, ..., cond_n$
 where n can be zero and possibly $conc_1$ empty.
Some Logic Programming Terminology – “Syntax” of Logic Programs

- **Definite Program**: a set of positive Horn clauses $head \leftarrow goal_1, ..., goal_n$
 - The single conclusion is called the head.
 - The conditions are called “goals” or “procedure calls”.
 - $goal_1, ..., goal_n \ (n \geq 0)$ is called the “body”.
 - if $n = 0$ the clause is called a “fact” (and the arrow is normally deleted)
 - Otherwise it is called a “rule”
- **Query** (question): a negative Horn clause (a “headless” clause)
- A procedure is a set of rules and facts in which the heads have the same predicate symbol and arity.
- Terms in a goal are also called “arguments”.

Some Logic Programming Terminology (Contd.)

- Examples:
 grandfather(X,Y) ← father(X,Z), mother(Z,Y).
 grandfather(X,Y) ←.
 grandfather(X,Y).
 ← grandfather(X,Y).
LOGIC: Declarative “Reading” (Informal Semantics)

- A rule (has head and body)

 \[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n. \]

 which contains variables \(X_1, \ldots, X_k \) can be read as
 for all \(X_1, \ldots, X_k \):
 “head” is true if “goal_1” and ... and “goal_n” are true

- A fact n=0 (has only head)

 \[\text{head}. \]

 for all \(X_1, \ldots, X_k \): “head” is true (always)

- A query (the headless clause)

 \[\leftarrow \text{goal}_1, \ldots, \text{goal}_n \]

 can be read as:
 for which \(X_1, \ldots, X_k \) are “goal_1” and ... and “goal_n” true?

LOGIC: Declarative Semantics – Herbrand Base and Universe

- Given a first-order language \(L \), with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object \(A \),

 \[\text{ground}(A) = \{ A\theta \mid \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset \} \]

 i.e. the set of all “ground instances” of \(A \).

- Given \(L, U_L \) (Herbrand universe) is the set of all ground terms of \(L \).

- \(B_L \) (Herbrand Base) is the set of all ground atoms of \(L \).

- Similarly, for the language \(L_P \) associated with a given program \(P \) we define \(U_P \), and \(B_P \).

- Example:

 \[P = \{ \quad p(f(X)) \leftarrow p(X). \quad p(a). \quad q(a). \quad q(b). \quad \} \]

 \[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]

 \[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
Herbrand Interpretations and Models

- A **Herbrand Interpretation** is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \mathcal{P}(B_L)$.

 (Note that I_L forms a complete lattice under \subseteq – important for fixpoint operations to be introduced later).

- Example: $P = \{ p(f(X)) \leftarrow p(X), \ p(a), \ q(a), \ q(b) \}$

 $U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}$

 $B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \}$

 $I_P = \text{all subsets of } B_P$

- A **Herbrand Model** is a Herbrand interpretation which contains all logical consequences of the program.

- The **Minimal Herbrand Model** H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (It is unique.)

- Example:

 $H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \}$

Declarative Semantics, Completeness, Correctness

- **Declarative semantics of a logic program P**: the set of ground facts which are logical consequences of the program (i.e., H_P).

 (Also called the “least model” semantics of P).

- **Intended meaning of a logic program P**: the set M of ground facts that the user expects to be logical consequences of the program.

- A logic program is **correct** if $H_P \subseteq M$.

- A logic program is **complete** if $M \subseteq H_P$.

- Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).

 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is **correct** but **incomplete**.
We now turn to the operational semantics of logic programs, given by a concrete operational procedure: Linear (Input) Resolution.

- Complementary literals:
 - in two different clauses
 - on different sides of \leftarrow
 - unifiable with unifier θ

 $\text{father}(\text{john}, \text{mary}) \leftarrow$
 $\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z), \text{mother}(Z, Y)$

 $\theta = \{ X/\text{john}, Z/\text{mary} \}$

- Resolution step (linear, input, ...):
 - given a clause and a resolvent, we can build a new resolvent which follows from them by:
 - renaming apart the clause ("standardization apart" step)
 - putting all the conclusions to the left of the \leftarrow
 - putting all the conditions to the right of the \leftarrow
 - if there are complementary literals (unifying literals at different sides of the arrow in the two clauses), eliminating them and applying θ to the new resolvent

- LD-Resolution: linear (and input) resolution, applied to definite programs
 Note that then all resolvents are negative Horn clauses (like the query).
Example

- from
 father(john,peter) ←
 mother(mary,david) ←
we can infer
 father(john,peter), mother(mary,david) ←

- from
 father(john,mary) ←
 grandfather(X,Y) ← father(X,Z), mother(Z,Y)
we can infer
 grandfather(john,Y') ← mother(mary,Y')

CONTROL: A proof using LD-Resolution

- Prove "grandfather(john,david) ←" using the set of axioms:
 1. father(john,peter) ←
 2. father(john,mary) ←
 3. father(peter,mike) ←
 4. mother(mary,david) ←
 5. grandfather(L,M) ← father (L,N), father(N,M)
 6. grandfather(X,Y) ← father (X,Z), mother(Z,Y)
- We introduce the predicate to prove (negated!)
 7. ← grandfather(john,david)
- We start resolution: e.g. 6 and 7
 8. ← father(john,Z₁), mother(Z₁,david) ← X₁/john, Y₁/david
 using 2 and 8
 9. ← mother(mary,david) ← Z₁/mary
- using 4 and 9
 ←
CONTROL: Rules and SLD-Resolution

- Two control-related issues are still left open in LD-resolution. Given a current resolvent R and a set of clauses K:
 - given a clause C in K, several of the literals in R may unify the non-negated a complementary literal in C
 - given a literal L in R, it may unify with complementary literals in several clauses in K

- A *Computation* (or *Selection* rule) is a function which, given a resolvent (and possibly the proof tree up to that point) returns (selects) a literal from it. This is the goal that will be used next in the resolution process.

- A *Search rule* is a function which, given a literal and a set of clauses (and possibly the proof tree up to that point), returns a clause from the set. This is the clause that will be used next in the resolution process.

CONTROL: Rules and SLD-Resolution (Contd.)

- SLD-resolution: Linear resolution for Definite programs with Selection rule.
- An SLD-resolution *method* is given by the combination of a *computation (or selection) rule* and a *search rule*.

 - Independence of the computation rule: Completeness does not depend on the choice of the computation rule.

 - Example: a “left-to-right” rule (as in ordered resolution) does not impair completeness – this coincides with the completeness result for ordered resolution.

 - Fundamental result:
 - “Declarative” semantics (H_P) ≡ “operational” semantics (SLD-resolution)
 - I.e., all the facts in H_P can be deduced using SLD-resolution.
CONTROL: Procedural reading of a logic program

- Given a rule
 \[
 \text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n.
 \]
 it can be seen as a description of the goals the solver (resolution method) has to execute in order to solve “head”

- Possible, given computation and search rules.

- In general, “In order to solve ‘head’, solve ‘goal\textsubscript{1}’ and ... and solve ‘goal\textsubscript{n}’.”

- If ordered resolution is used (left-to-right computation rule), then read “In order to solve ‘head’, first solve ‘goal\textsubscript{1}’ and then ‘goal\textsubscript{2}’ and then ... and finally solve ‘goal\textsubscript{n}’.”

- Thus the “control” part corresponding to the computation rule is often associated with the order of the goals in the body of a clause

- Another part (corresponding to the search rule) is often associated with the order of clauses

CONTROL: Procedural reading of a logic program (Contd.)

- Example – read “procedurally”:
 father(john,peter).
 father(john,mary).
 father(peter,mike).
 father(X,Y) ← mother(Z,Y), married(X,Z).
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A fixpoint for an operator \(T : X \rightarrow X \) is an element of \(x \in X \) such that \(x = T(x) \).
- If \(X \) is a poset, \(T \) is monotonic if \(\forall x, y \in X, \, x \leq y \Rightarrow T(x) \leq T(y) \)
- If \(X \) is a complete lattice and \(T \) is monotonic the set of fixpoints of \(T \) is also a complete lattice [Tarski]
- The least element of the lattice is the least fixpoint of \(T \), denoted \(\text{lfp}(T) \)
- Powers of a monotonic operator (successive applications):
 \[
 T \uparrow 0(x) = x \\
 T \uparrow n(x) = T(T \uparrow (n-1)(x))(n \text{ is a successor ordinal}) \\
 T \uparrow \omega(x) = \cup\{T \uparrow n(x) | n < \omega\}
 \]
 We abbreviate \(T \uparrow \alpha(\bot) \) as \(T \uparrow \alpha \)
- There is some \(\omega \) such that \(T \uparrow \omega = \text{lfp}(T) \). The sequence \(T \uparrow 0, T \uparrow 1, ..., \text{lfp}(T) \) is the Kleene sequence for \(T \)
- In a finite lattice the Kleene sequence for a monotonic operator \(T \) is finite

Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset \(Y \) of a poset \(X \) is an (ascending) chain iff \(\forall y, y' \in Y, \, y \leq y' \lor y' \leq y \)
- A complete lattice \(X \) is ascending chain finite (or Noetherian) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator \(T \) is finite
A Fixpoint Semantics for Logic Programs, and Equivalences

- The Immediate consequence operator T_P is a mapping: $T_P : I_P \rightarrow I_P$ defined by:
 $$T_P(I) = \{A \in B_P \mid \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots, L_n \in I\}$$
 (in particular, if $(A \leftarrow) \in P$, then every element of $\text{ground}(A)$ is in $T_P(I), \forall I$).

- T_P is monotonic, so it has a least fixpoint I^* so that $T_P(I^*) = I^*$, which can be obtained by applying T_P iteratively starting from the bottom element of the lattice (the empty interpretation).

- (Characterization Theorem) [Van Emden and Kowalski]
 A program P has a Herbrand model H_P such that:
 - H_P is the least Herbrand Model of P.
 - H_P is the least fixpoint of T_P ($lfp T_P$).
 - $H_P = T_P \uparrow \omega$.
 I.e., $\text{least model semantics} (H_P) \equiv \text{fixpoint semantics} (lfp T_P)$

- Because it gives us some intuition on how to build H_P, the least fixpoint semantics can in some cases (e.g., finite models) also be an operational semantics (e.g., in deductive databases).
Example:

\[P = \{ \text{p}(f(X)) \leftarrow \text{p}(X). \]
\[\text{p}(a). \]
\[\text{q}(a). \]
\[\text{q}(b). \} \]

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]
\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]

\[I_P \text{ is all subsets of } B \]
\[H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \} \]
\[T_P \uparrow 0 = \{ p(a), q(a), q(b) \} \]
\[T_P \uparrow 1 = \{ p(a), q(a), q(b), p(f(a)) \} \]
\[T_P \uparrow 2 = \{ p(a), q(a), q(b), p(f(a)), p(f(f(a))) \} \]
\[\ldots \]
\[T_P \uparrow \omega = H_P \]