Computational Logic

Fundamentals (of Definite Programs):

Syntax and Semantics
Towards Logic Programming

- Conclusion: resolution is a complete and effective deduction mechanism using:
 - Horn clauses (related to “Definite programs”),
 - Linear, Input strategy
 - Breadth-first exploration of the tree (or an equivalent approach)
 (possibly ordered clauses, but not required – see Selection rule later)
- Very close to what is generally referred to as SLD-resolution (see later)
- This allows to some extent realizing Greene’s dream (within the theoretical limits of the formal method), and efficiently!
Towards Logic Programming (Contd.)

- Given these results, why not use logic as a general purpose *programming language*? [Kowalski 74]

- A “logic program” would have two interpretations:
 - *Declarative* (“LOGIC”): the logical reading (facts, statements, knowledge)
 - *Procedural* (“CONTROL”): what resolution does with the program

- **ALGORITHM = LOGIC + CONTROL**

- Specify these components separately

- Often, worrying about control is not needed at all (thanks to resolution)

- Control can be effectively provided through the ordering of the literals in the clauses
Towards Logic Programming: Another (more compact) Clausal Form

- All formulas are transformed into a set of *Clauses*.
 - A clause has the form:
 \[
 \text{conc}_1, \ldots, \text{conc}_m \leftarrow \text{cond}_1, \ldots, \text{cond}_n
 \]
 where
 \[
 \text{conc}_1, \ldots, \text{conc}_m \quad \text{“or”} \quad \text{cond}_1, \ldots, \text{cond}_n \quad \text{“and”}
 \]
 are literals, and are the *conclusions* and *conditions* of a rule:

- All variables are implicitly universally quantified: (if \(X_1, \ldots, X_k\) are the variables)
 \[
 \forall X_1, \ldots, X_k \quad \text{conc}_1 \lor \ldots \lor \text{conc}_m \leftarrow \text{cond}_1 \land \ldots \land \text{cond}_n
 \]

- More compact than the traditional clausal form:
 - no connectives, just commas
 - no need to repeat negations: all negated atoms on one side, non-negated ones on the other

- A *Horn Clause* then has the form:
 \[
 \text{conc}_1 \leftarrow \text{cond}_1, \ldots, \text{cond}_n
 \]
 where \(n\) can be zero and possibly \(\text{conc}_1\) empty.
Some Logic Programming Terminology – “Syntax” of Logic Programs

- **Definite Program**: a set of positive Horn clauses
 \[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n \]
- The single **conclusion** is called the **head**.
- The conditions are called “goals” or “procedure calls”.
- \(\text{goal}_1, \ldots, \text{goal}_n \) \((n \geq 0) \) is called the “body”.
- If \(n = 0 \) the clause is called a “fact” (and the arrow is normally deleted)
- Otherwise it is called a “rule”
- **Query** (question): a negative Horn clause (a “headless” clause)
- A procedure is a set of rules and facts in which the heads have the same predicate symbol and arity.
- Terms in a goal are also called “arguments”.
Some Logic Programming Terminology (Contd.)

- Examples:
 \[
 \text{grandfather}(X,Y) \leftarrow \text{father}(X,Z), \text{mother}(Z,Y).
 \]
 \[
 \text{grandfather}(X,Y) \leftarrow .
 \]
 \[
 \text{grandfather}(X,Y).
 \]
 \[
 \leftarrow \text{grandfather}(X,Y).
 \]
LOGIC: Declarative “Reading” (Informal Semantics)

- A rule (has head and body)

\[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n. \]

which contains variables \(X_1, \ldots, X_k\) can be read as
for all \(X_1, \ldots, X_k\):
“head” is true if “goal_1” and ... and “goal_n” are true

- A fact \(n=0\) (has only head)

\[\text{head}. \]
for all \(X_1, \ldots, X_k\): “head” is true (always)

- A query (the headless clause)

\[\leftarrow \text{goal}_1, \ldots, \text{goal}_n \]

can be read as:
for which \(X_1, \ldots, X_k\) are “goal_1” and ... and “goal_n” true?
LOGIC: Declarative Semantics – Herbrand Base and Universe

- Given a first-order language L, with a non-empty set of variables, constants, function symbols, relation symbols, connectives, quantifiers, etc. and given a syntactic object A,

$$ground(A) = \{ A\theta | \exists \theta \in \text{Subst}, \text{var}(A\theta) = \emptyset \}$$

i.e. the set of all “ground instances” of A.

- Given L, U_L (Herbrand universe) is the set of all ground terms of L.

- B_L (Herbrand Base) is the set of all ground atoms of L.

- Similarly, for the language L_P associated with a given program P we define U_P, and B_P.

- Example:

 $P = \{ \text{p}(f(X)) \leftarrow \text{p}(X). \ \text{p}(a). \ \text{q}(a). \ \text{q}(b). \ \}$

 $U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \}$

 $B_P = \{ \text{p}(a), \text{p}(b), \text{q}(a), \text{q}(b), \text{p}(f(a)), \text{p}(f(b)), \text{q}(f(a)), \ldots \}$
A *Herbrand Interpretation* is a subset of B_L, i.e. the set of all Herbrand interpretations $I_L = \varnothing(B_L)$.

(Note that I_L forms a *complete lattice* under \subseteq – important for fixpoint operations to be introduced later).

Example: $P = \{ p(f(X)) \leftarrow p(X). \quad p(a). \quad q(a). \quad q(b). \}$

$U_P = \{a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots\}$

$B_P = \{p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots\}$

$I_P = \text{all subsets of } B_P$

A *Herbrand Model* is a Herbrand interpretation which contains all logical consequences of the program.

The *Minimal Herbrand Model* H_P is the smallest Herbrand interpretation which contains all logical consequences of the program. (It is unique.)

Example:

$H_P = \{q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots\}$
Declarative Semantics, Completeness, Correctness

- **Declarative semantics of a logic program** \(P \):
 the set of ground facts which are logical consequences of the program (i.e., \(H_P \)).
 (Also called the “least model” semantics of \(P \)).

- **Intended meaning of a logic program** \(P \):
 the set \(M \) of ground facts that the user expects to be logical consequences of the program.

- A logic program is **correct** if \(H_P \subseteq M \).
- A logic program is **complete** if \(M \subseteq H_P \).

- Example:

 father(john,peter).
 father(john,mary).
 mother(mary,mike).
 grandfather(X,Y) ← father(X,Z), father(Z,Y).

 with the usual intended meaning is **correct** but **incomplete**.
CONTROL: Linear (Input) Resolution in this Clausal Form

We now turn to the *operational semantics* of logic programs, given by a concrete operational procedure: *Linear (Input) Resolution*.

- Complementary literals:
 - in two different clauses
 - on different sides of \leftarrow
 - unifiable with unifier θ

\[
\text{father}(\text{john}, \text{mary}) \leftarrow \\
\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z), \text{mother}(Z, Y)
\]

$\theta = \{X/john, Z/mary\}$
CONTROL: Linear (Input) Resolution in this Clausal Form (Contd.)

- Resolution step (linear, input, ...):
 - given a clause and a resolvent, we can build a new resolvent which follows from them by:
 * renaming apart the clause (“standardization apart” step)
 * putting *all* the conclusions to the left of the ←
 * putting *all* the conditions to the right of the ←
 * if there are complementary literals (unifying literals at different sides of the arrow in the two clauses), eliminating them and applying θ to the new resolvent

- LD-Resolution: linear (and input) resolution, applied to definite programs
 Note that then all resolvents are negative Horn clauses (like the query).
Example

• from
 father(john,peter) ←
 mother(mary,david) ←
 we can infer
 father(john,peter), mother(mary,david) ←

• from
 father(john,mary) ←
 grandfather(X,Y) ← father(X,Z), mother(Z,Y)
 we can infer
 grandfather(john,Y') ← mother(mary,Y')
CONTROL: A proof using LD-Resolution

- Prove “grandfather(john,david) ←” using the set of axioms:
 1. father(john,peter) ←
 2. father(john,mary) ←
 3. father(peter,mike) ←
 4. mother(mary,david) ←
 5. grandfather(L,M) ← father(L,N), father(N,M)
 6. grandfather(X,Y) ← father(X,Z), mother(Z,Y)

- We introduce the predicate to prove (negated!)
 7. ← grandfather(john,david)

- We start resolution: e.g. 6 and 7
 8. ← father(john,Z₁), mother(Z₁,david) \(X₁/\text{john}, Y₁/\text{david} \)

- using 2 and 8
 9. ← mother(mary,david) \(Z₁/\text{mary} \)

- using 4 and 9
 ←
Two control-related issues are still left open in LD-resolution. Given a current resolvent R and a set of clauses K:

- given a clause C in K, several of the literals in R may unify the non-negated a complementary literal in C
- given a literal L in R, it may unify with complementary literals in several clauses in K

A *Computation* (or *Selection* rule) is a function which, given a resolvent (and possibly the proof tree up to that point) returns (selects) a literal from it. This is the goal that will be used next in the resolution process.

A *Search* rule is a function which, given a literal and a set of clauses (and possibly the proof tree up to that point), returns a clause from the set. This is the clause that will be used next in the resolution process.
SLD-resolution: Linear resolution for Definite programs with Selection rule.

An SLD-resolution method is given by the combination of a computation (or selection) rule and a search rule.

Independence of the computation rule: Completeness does not depend on the choice of the computation rule.

Example: a “left-to-right” rule (as in ordered resolution) does not impair completeness – this coincides with the completeness result for ordered resolution.

Fundamental result:
“Declarative” semantics (H_P) \equiv “operational” semantics (SLD-resolution)
I.e., all the facts in H_P can be deduced using SLD-resolution.
CONTROL: Procedural reading of a logic program

- Given a rule

\[\text{head} \leftarrow \text{goal}_1, \ldots, \text{goal}_n. \]

it can be seen as a description of the goals the solver (resolution method) has to execute in order to solve “head”

- Possible, given computation and search rules.

- In general, “In order to solve ‘head’, solve ‘goal_1’ and ... and solve ‘goal_n’, ”

- If ordered resolution is used (left-to-right computation rule), then read “In order to solve ‘head’, first solve ‘goal_1’ and then ‘goal_2’ and then ... and finally solve ‘goal_n’, ”

- Thus the “control” part corresponding to the computation rule is often associated with the order of the goals in the body of a clause

- Another part (corresponding to the search rule) is often associated with the order of clauses
Example – read “procedurally”:

father(john,peter).
father(john,mary).
father(peter,mike).
father(X,Y) ← mother(Z,Y), married(X,Z).
Towards a Fixpoint Semantics for LP – Fixpoint Basics

- A fixpoint for an operator $T : X \rightarrow X$ is an element of $x \in X$ such that $x = T(x)$.
- If X is a poset, T is monotonic if $\forall x, y \in X, \ x \leq y \Rightarrow T(x) \leq T(y)$.
- If X is a complete lattice and T is monotonic the set of fixpoints of T is also a complete lattice [Tarski].
- The least element of the lattice is the least fixpoint of T, denoted $\text{lfp}(T)$.
- Powers of a monotonic operator (successive applications):
 \[
 T \uparrow 0(x) = x \\
 T \uparrow n(x) = T(T \uparrow (n-1)(x)) \quad (n \text{ is a successor ordinal}) \\
 T \uparrow \omega(x) = \bigsqcup \{ T \uparrow n(x) | n < \omega \}
 \]
 We abbreviate $T \uparrow \alpha(\bot)$ as $T \uparrow \alpha$.
- There is some ω such that $T \uparrow \omega = \text{lfp}(T)$. The sequence $T \uparrow 0, T \uparrow 1, ..., \text{lfp}(T)$ is the Kleene sequence for T.
- In a finite lattice the Kleene sequence for a monotonic operator T is finite.
Towards a Fixpoint Semantics for LP – Fixpoint Basics (Contd.)

- A subset Y of a poset X is an (ascending) chain iff $\forall y, y' \in Y, y \leq y' \lor y' \leq y$
- A complete lattice X is *ascending chain finite* (or *Noetherian*) if all ascending chains are finite
- In an ascending chain finite lattice the Kleene sequence for a monotonic operator T is finite
Lattice Structures

finite

finite_depth

ascending_chain finite
A Fixpoint Semantics for Logic Programs, and Equivalences

- The *Immediate consequence operator* T_P is a mapping: $T_P : I_P \rightarrow I_P$ defined by:

 $$T_P(I) = \{ A \in B_P | \exists C \in \text{ground}(P), C = A \leftarrow L_1, \ldots, L_n \text{ and } L_1, \ldots L_n \in I \}$$

 (in particular, if $(A \leftarrow) \in P$, then every element of $\text{ground}(A)$ is in $T_P(I)$, $\forall I$).

- T_P is monotonic, so it has a least fixpoint I^* so that $T_P(I^*) = I^*$, which can be obtained by applying T_P iteratively starting from the bottom element of the lattice (the empty interpretation).

- (Characterization Theorem) [Van Emden and Kowalski]
 A program P has a Herbrand model H_P such that:

 - H_P is the least Herbrand Model of P.
 - H_P is the least fixpoint of T_P ($\text{lfp } T_P$).
 - $H_P = T_P \uparrow \omega$.

 I.e., least model semantics (H_P) \equiv fixpoint semantics ($\text{lfp } T_P$)

- Because it gives us some intuition on how to build H_P, the least fixpoint semantics can in some cases (e.g., finite models) also be an operational semantics (e.g., in deductive databases).
A Fixpoint Semantics for Logic Programs: Example

- Example:

\[P = \{ \text{ } p(f(X)) \leftarrow p(X). \]
\[\text{ } p(a). \]
\[\text{ } q(a). \]
\[\text{ } q(b). \} \]

\[U_P = \{ a, b, f(a), f(b), f(f(a)), f(f(b)), \ldots \} \]
\[B_P = \{ p(a), p(b), q(a), q(b), p(f(a)), p(f(b)), q(f(a)), \ldots \} \]
\[I_P = \text{all subsets of } B \]
\[H_P = \{ q(a), q(b), p(a), p(f(a)), p(f(f(a))), \ldots \} \]

\[T_P \uparrow 0 = \{ p(a), q(a), q(b) \} \]
\[T_P \uparrow 1 = \{ p(a), q(a), q(b), p(f(a)) \} \]
\[T_P \uparrow 2 = \{ p(a), q(a), q(b), p(f(a)), p(f(f(a))) \} \]
\[\ldots \]
\[T_P \uparrow \omega = H_P \]