Elements of First-Order Predicate Logic

First Order Language:

- An alphabet consists of the following classes of symbols:
 1. variables denoted by \(X, Y, Z, Boo, \ldots \) (infinite)
 2. constants denoted by \(1, a, boo, john, \ldots \)
 3. functors denoted by \(f, g, +, -, \ldots \)
 4. predicate symbols denoted by \(p, q, dog, \ldots \)
 5. connectives, which are: \(\neg \) (negation), \(\lor \) (disjunction), \(\land \) (conjunction), \(\rightarrow \) (implication) and \(\iff \) (equivalence),
 6. quantifiers, which are: \(\exists \) (there exists) and \(\forall \) (for all),
 7. parentheses, which are: (and) and the comma, that is: ,.

- Each functor and predicate symbol has a fixed \textit{arity}, they are often represented in \textit{Functor/Arity} form, e.g. f/3.
- A constant can be seen as a functor of arity 0.
- Propositions are represented by a predicate symbol of arity 0.
Important: Notation Convention Used

(A bit different from standard notational conventions in logic, but good for compatibility with LP systems)

- Variables: start with a capital letter or a “” (X, Y, a, 1)
- Atoms, functors, predicate symbols: start with a lower case letter or are enclosed in ’ ‘ (f, g, a, 1, x, y, z, ’X’, ’1’)

Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.

- The class of terms:
 - a variable is a term,
 - a constant is a term,
 - if f is an n-ary functor and t_1, ..., t_n are terms then f(t_1, ..., t_n) is a term.

- The class of atoms (different from LP!):
 - a proposition is an atom,
 - if p is an n-ary pred. symbol and t_1, ..., t_n are terms then p(t_1, ..., t_n) is an atom,
 - true and false are atoms.

- The class of Well Formed Formulas (WFFs):
 - an atom is a WFF,
 - if F and G are WFFs then so are ¬F, (F ∨ G), (F ∧ G), (F → G) and (F ↔ G),
 - if F is a WFF and X is a variable then ∃X F and ∀X F are WFF.

- Literal: positive or negative (non-negated or negated) atom.
Examples

Examples of Terms

- Given:
 - constants: a, b, c, 1, spot, john...
 - functors: f/1, g/3, h/2, +/3...
 - variables: X, L, Y...
- Correct: spot, f(john), f(X), +(1,2,3), +(X,Y,L), f(f(spot)), h(f(h(1,2)),L)
- Incorrect: spot(X), +(1,2), g, f(f(h))

Examples of Literals

- Given the elements above and:
 - predicate symbols: dog/1, p/2, q/0, r/0, barks/1...
- Correct: q, r, dog(spot), p(X,f(john))...
- Incorrect: q(X), barks(f), dog(barks(X))

Examples (Contd.)

Examples of WFFs

- Given the elements above
- Correct: q, q → r, r ← q, dog(X) ← barks(X), dog(X), p(X,Y), ∃ X (dog(X) ∧ barks(X) ∧ ¬ q), ∃ Y (dog(Y) → bark(Y))
- Incorrect: q ∨, ∃ p
More about WFFs

- Allow us to represent knowledge and reason about it
 - Marcus was a man \(\text{man}(\text{marcus}) \)
 - Marcus was a pompeian \(\text{pompeian}(\text{marcus}) \)
 - All pompeians were romans \(\forall X \text{ pompeian}(X) \rightarrow \text{roman}(X) \)
 - Caesar was a ruler \(\text{ruler}(\text{caesar}) \)
 - All romans were loyal to Caesar or they hated him
 \[\forall X \text{ roman}(X) \rightarrow (\text{loyalto}(X, \text{caesar}) \lor \text{hate}(X, \text{caesar})) \]
 - Everyone is loyal to someone \(\forall X \exists Y \text{ loyalto}(X, Y) \)

- We can now reason about this knowledge using standard deductive mechanisms.
- But there is in principle no guarantee that we will prove a given theorem.

Towards Efficient Automated Deduction

- Automated deduction is search.
- Complexity of search: directly dependent on branching factor at nodes (exponentially!).
- It is vital to cut down the branching factor:
 - Canonical representation of nodes (allows identifying identical nodes).
 - As few inference rules as possible.
Towards Efficient Automated Deduction (Contd.)

Clausal Form

- The complete set of logical operators (\(\neg, \land, \lor, \neg\),...) is redundant.
- A minimal (canonical) form would be interesting.
- It would be interesting to separate the quantifiers from the rest of the formula so that they did not need to be considered.
- It would also be nice if the formula were flat (i.e. no parenthesis).
- Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

- A good example:
 Resolution – only two inference rules (Resolution rule and Replacement rule).

Classical Clausal Form: Conjunctive Normal Form

- General formulas are converted to:
 - Set of Clauses.
 - Clauses are in a logical conjunction.
 - A clause is a disjunction of the form. \(\text{literal}_1 \lor \text{literal}_2 \lor \ldots \lor \text{literal}_n\)
 - The \(\text{literal}_i\) are negated or non-negated atoms.
 - All variables are implicitly universally quantified: i.e. if \(X_1, \ldots, X_k\) are the variables that appear in a clause it represents the formula:
 \(\forall X_1, \ldots, X_k \quad \text{literal}_1 \lor \text{literal}_2 \lor \ldots \lor \text{literal}_n\)
- Any formula can be converted to clausal form automatically by:
 1. Converting to Prenex form.
 2. Converting to conjunctive normal form (conjunction of disjunctions).
 3. Converting to Skolem form (eliminating existential quantifiers).
 4. Eliminating universal quantifiers.
 5. Separating conjunctions into clauses.
- The unsatisfiability of a system is preserved.
Substitutions

A substitution is a finite mapping from variables to terms, written as
\[\theta = \{ X_1/t_1, ..., X_n/t_n \} \] where
- the variables \(X_1, ..., X_n \) are different,
- for \(i = 1, ..., n \) \(X_i \equiv t_i \).

A pair \(X_i/t_i \) is called a binding.
- \(\text{domain}(\theta) = \{ X_1, ..., X_n \} \) and \(\text{range}(\theta) = \text{vars}(\{ t_1, ..., t_n \}) \).
- If \(\text{range}(\theta) = \emptyset \) then \(\theta \) is called ground.
- If \(\theta \) is a bijective mapping from variables to variables then \(\theta \) is called a renaming.

Examples:
- \(\theta_1 = \{ X/f(A), Y/X, Z/h(b, Y), W/a \} \)
- \(\theta_2 = \{ X/a, Y/a, Z/h(b, c), W/f(d) \} \) (ground)
- \(\theta_3 = \{ X/A, Y/B, Z/C, W/D \} \) (renaming)

Substitutions (Contd.)

Substitutions operate on expressions, i.e. a term, a sequence of literals or a clause, denoted by \(E \).
- The application of \(\theta \) to \(E \) (denoted \(E\theta \)) is obtained by simultaneously replacing each occurrence in \(E \) of \(X_i \) by \(t_i \), \(X_i/t_i \in \theta \).
- The resulting expression \(E\theta \) is called an instance of \(E \).
- If \(\theta \) is a renaming then \(E\theta \) is called a variant of \(E \).

Example:
- \(\theta_1 = \{ X/f(A), Y/X, Z/h(b, Y), W/a \} \)
- \(p(X, Y, X) \ \theta_1 = p(f(A), X, f(A)) \)
Composition of Substitutions

- Given \(\theta = \{X_1/t_1, \ldots, X_n/t_n\} \) and \(\eta = \{Y_1/s_1, \ldots, Y_m/s_m\} \) their composition \(\theta \eta \) is defined by removing from the set
 \[\{X_1/t_1\eta, \ldots, X_n/t_n\eta, Y_1/s_1, \ldots, Y_m/s_m\} \]
 those pairs \(X_i/t_i \eta \) for which \(X_i = t_i \eta \), as well as those pairs \(Y_i/s_i \) for which \(Y_i \in \{X_1, \ldots, X_n\} \).

- Example: if \(\theta = \{X/3, Y/f(X, 1)\} \) and \(\eta = \{X/4\} \) then \(\theta \eta = \{X/3, Y/f(4, 1)\} \).

- For all substitutions \(\theta, \eta \) and \(\gamma \) and an expression \(E \)
 i) \((E\theta)\eta \equiv E(\theta\eta) \)
 ii) \((\theta\eta)\gamma = \theta(\eta\gamma) \).

- \(\theta \) is more general than \(\eta \) if for some \(\gamma \) we have \(\eta = \theta\gamma \).

- Example: \(\theta = \{X/f(Y)\} \) more general than \(\eta = \{X/f(h(G))\} \).

Unifiers

- If \(A\theta \equiv B\theta \), then
 - \(\theta \) is called a unifier of \(A \) and \(B \)
 - \(A \) and \(B \) are unifiable

- A unifier \(\theta \) of \(A \) and \(B \) is called a most general unifier (mgu) if it is more general than any other unifier of \(A \) and \(B \).

- If two atoms are unifiable then they have a most general unifier.

- \(\theta \) is idempotent if \(\theta \theta = \theta \).

- A unifier \(\theta \) of \(A \) and \(B \) is relevant if all variables appearing either in \(\text{domain}(\theta) \) or in \(\text{range}(\theta) \), also appear in \(A \) or \(B \).

- If two atoms are unifiable then they have an mgu which is idempotent and relevant.

- An mgu is unique up to renaming.
Uniﬁcation Algorithm

- Non-deterministically choose from the set of equations an equation of a form below and perform the associated action.
 1. \(f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n) \rightarrow \text{replace by } s_1 = t_1, \ldots, s_n = t_n \)
 2. \(f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m) \text{ where } f \neq g \rightarrow \text{halt with failure} \)
 3. \(X = X \rightarrow \text{delete the equation} \)
 4. \(t = X \text{ where } t \text{ is not a variable } \rightarrow \text{replace by the equation } X = t \)
 5. \(X = t \text{ where } X \neq t \text{ and } X \text{ has another occurrence in the set of equations } \rightarrow \)
 5.1 if \(X \) appears in \(t \) then halt with failure
 5.2 otherwise apply \(\{X/t\} \) to every other equation

- Consider the set of equations \(\{f(x) = f(f(z)), g(a, y) = g(a, x)\} \):
 - (1) produces \(\{x = f(z), g(a, y) = g(a, x)\} \)
 - then (1) yields \(\{x = f(z), a = a, y = x\} \)
 - (3) produces \(\{x = f(z), y = x\} \)
 - now only (5) can be applied, giving \(\{x = f(z), y = f(z)\} \)
 - No step can be applied, the algorithm successfully terminates.

Unifi cation Algorithm revisited

- Let \(A \) and \(B \) be two formulas:
 1. \(\theta = \epsilon \)
 2. while \(A\theta \neq B\theta \):
 2.1 find leftmost symbol in \(A\theta \) s.t. the corresponding symbol in \(B\theta \) is different
 2.2 let \(t_A \) and \(t_B \) be the terms in \(A\theta \) and \(B\theta \) starting with those symbols
 (a) if neither \(t_A \) nor \(t_B \) are variables or one is a variable occurring in the other \(\rightarrow \) halt with failure
 (b) otherwise, let \(t_A \) be a variable \(\rightarrow \) the new \(\theta \) is the result of \(\theta\{t_A/t_B\} \)
 3. end with \(\theta \) being an m.g.u. of \(A \) and \(B \)
Example: $A = p(X, X)$ $B = p(f(A), f(B))$

<table>
<thead>
<tr>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>$p(X, X)$</td>
<td>$p(f(A), f(B))$</td>
<td>${X/f(A)}$</td>
</tr>
<tr>
<td>${X/f(A)}$</td>
<td>$p(f(A), f(A))$</td>
<td>$p(f(A), f(B))$</td>
<td>${A/B}$</td>
</tr>
<tr>
<td>${X/f(B), A/B}$</td>
<td>$p(f(B), f(B))$</td>
<td>$p(f(B), f(B))$</td>
<td></td>
</tr>
</tbody>
</table>

Example: $A = p(X, f(Y))$ $B = p(Z, X)$

<table>
<thead>
<tr>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>$p(X, f(Y))$</td>
<td>$p(Z, X)$</td>
<td>${X/Z}$</td>
</tr>
<tr>
<td>${X/Z}$</td>
<td>$p(Z, f(Y))$</td>
<td>$p(Z, Z)$</td>
<td>${Z/f(Y)}$</td>
</tr>
<tr>
<td>${X/f(Y), Z/f(Y)}$</td>
<td>$p(f(Y), f(Y))$</td>
<td>$p(f(Y), f(Y))$</td>
<td></td>
</tr>
</tbody>
</table>

Resolution with Variables

- It is a formal system with:
 - A first order language with the following formulas:
 - Clauses: without repetition, and without an order among their literals.
 - The empty clause \Box.
 - An empty set of axioms.
 - Two inference rules: resolution and replacement.
Resolution with Variables (Contd.)

- Resolution:
 \[r_1: A \lor F_1 \lor \cdots \lor F_n \]
 \[r_2: \neg B \lor G_1 \lor \cdots \lor G_m \]
 \[\theta \]
 \[(\{F_1 \lor \cdots \lor F_n\} \sigma \lor G_1 \lor \cdots \lor G_m) \theta \]

 where
 - \(A \) and \(B \) are unifiable with substitution \(\theta \)
 - \(\sigma \) is a renaming s.t. \((A \lor F_1 \lor \cdots \lor F_n) \sigma \) and \(\neg B \lor G_1 \lor \cdots \lor G_m \) have no variables in common
 - \(\theta \) is the m.g.u. of \(A \sigma \) and \(B \)

 The resulting clause is called the resolvent of \(r_1 \) and \(r_2 \).

- Replacement: \(A \lor B \lor F_1 \lor \cdots \lor F_n \Rightarrow (A \lor F_1 \lor \cdots \lor F_n) \theta \) where
 - \(A \) and \(B \) are unifiable atoms
 - \(\theta \) is the m.g.u. of \(A \) and \(B \)

Basic Properties

- Resolution is correct – i.e. all conclusions obtained using it are valid.
- There is no guarantee of directly deriving a given theorem.
- However, resolution (under certain assumptions) is refutation complete: if we have a set of clauses \(K = [C_0, C_1, \ldots, C_n] \) and it is inconsistent then resolution will arrive at the empty clause \(\Box \) in a finite number of steps.
- Therefore, a valid theorem (or a question that has an answer) is guaranteed to be provable by refutation. To prove "p" given \(K_0 = [C_0, C_1, \ldots, C_n] \):
 1. Negate it \(\neg p \).
 2. Construct \(K = [\neg p, C_0, C_1, \ldots, C_n] \).
 3. Apply resolution steps repeatedly to \(K \).
- Furthermore, we can obtain answers by composing the substitutions along a path that leads to \(\Box \) (very important for realizing Greene’s dream!).
- It is important to use a good method in applying the resolution steps – i.e. in building the resolution tree (or proof tree).
- Again, the main issue is to reduce the branching factor.
Proof Tree

- Given a set of clauses $K = \{C_0, C_1, \ldots, C_n\}$ the proof tree of K is a tree s.t.:
 - the root is C_0
 - the branch from the root starts with the nodes labeled with C_0, C_1, \ldots, C_n
 - the descendent nodes of C_n are labeled by clauses obtained from the parent clauses using resolution
 - a derivation in K is a branch of the proof tree of K
- The derivation $C_0C_1\cdots C_nF_0\cdots F_m$ is denoted as $K, F_0\cdots F_m$

Proof Tree (Contd.)

- Example: part of the proof tree for K, with:

 $K = \{p, \neg p \lor q, \neg q\}$

 \[
 \begin{array}{c}
 p \equiv C_0 \\
 \neg p \lor q \equiv C_1 \\
 \neg q \equiv C_2 \\
 \hline
 R(C_0, C_1) \equiv q \\
 \neg p \equiv R(C_1, C_2) \\
 \hline
 \hline
 \fbox{\(\neg p \equiv R(C_1, C_2)\)} \\
 \hline
 \fbox{\(R(C_0, C_1) \equiv q\)} \\
 \end{array}
 \]
Characteristics of the Proof Tree

- It can be infinite: \(K = \{ p(e), \neg p(X) \lor p(f(X)) \} \)

 \[
 \begin{align*}
 p(e) & \quad \text{C0} \\
 \neg p(X) \lor p(f(X)) & \quad \text{C1} \\
 p(f(e)) & \quad \emptyset = \{X/e\} \\
 p(f(f(e))) & \quad \emptyset = \{X/f(e)\}
 \end{align*}
 \]

- Even if it is finite, it can be too large to be explored efficiently
- Aim: determine some criteria to limit the number of derivations and the way in which the tree is explored ⇒ strategy
- Any strategy based on this tree is correct: if \(\square \) appears in a subtree of the proof tree of \(K \), then \(\square \) can be derived from \(K \) and therefore \(K \) is unsatisfiable

General Strategies

- Depth-first with backtracking: First descendant to the left; if failure or \(\square \) then backtrack
General Strategies (Contd.)

- Breadth first: all sons of all sibling nodes from left to right

```
  1
 / \
2   3
 |   |
4   5   6  7
|   |   |   |
8   5   6   7
   Fail Fail
```

General Strategies (Contd.) (Contd.)

- Iterative deepening
 - Advance depth-first for a time.
 - After a certain depth, switch to another branch as in breadth-first.

- Completeness issues / possible types of branches:
 - Success (always finite)
 - Finite failure
 - Infinite failure (provably infinite branches)
 - Non-provably infinite branches
Linear Strategies

- Those which only explore linear derivations
- A derivation $K, F_0 \cdots F_m$ is linear if
 - F_0 is obtained by resolution or replacement using C_0
 - $F_i, i < 0$ is obtained by resolution or replacement using F_{i-1}
- Examples:

Examples:

```
\begin{align*}
p & \equiv C_0 \\
\neg p \lor q & \equiv C_1 \\
\neg q & \equiv C_2 \\
q & \equiv F_0
\end{align*}
```

```
\begin{align*}
\neg p \lor q & \equiv C_0 \\
p & \equiv C_1 \\
\neg q & \equiv C_2
\end{align*}
```

Characteristics of these Strategies

1. If \square can be derived from K by using resolution with variables, it can also be derived by linear resolution.
2. Let K be $K' \cup \{C_0\}$ where K' is a satisfiable set of clauses, i.e. \square cannot be derived from K' by using resolution with variables. If \square can be derived from K by using resolution with variables it can also be derived by linear resolution with root C_0.
- From (1), if the strategy is breadth first, it is complete.
- From (2), if we want to prove that B is derived form K' then we can apply linear resolution to $K = K' \cup \{\neg B\}$.
- Depth first with backtracking is not complete:
Input Strategies

- Those which only explore input derivations
- A derivation \(K, F_0 \cdot \cdot \cdot F_m \) is input if
 - \(F_0 \) is obtained by resolution or replacement using \(C_0 \)
 - \(F_i, i < 0 \) is obtained by resolution or replacement using at least a clause in \(K \)

\[K = \{
-\neg p \lor q, p \lor \neg r, r, q \lor \neg s, s \lor q
\} \]

\[\begin{array}{c}
-\neg p \lor \neg q & \text{C0} \\
p \lor \neg r & \text{C1} \\
r & \text{C2} \\
q \lor \neg s & \text{C3} \\
s \lor q & \text{C4} \\
\neg q \lor \neg r & \text{C1 (\&C0)} \\
\end{array} \]

Input + Linear

In an input derivation, if \(F_{i-1} \) does not appear in any derivation of a successor clause, it can be eliminated from the derivation without changing the result

- If \(F_{i-1} \) appears in the derivation of \(F_j, j > 1 \), \(F_{i-1} \) can be allocated in position \(j - 1 \)
- As a result, we can limit ourselves to linear input derivations without losing any input derivable clause

Let \(K \) be \(K^* \cup \{C_0\} \) where \(\Box \) is derived by using resolution with variables, \(C_0 \) is a negative Horn clause and all clauses in \(K^* \) are positive Horn clauses. There is an input derivation with root \(C_0 \) finishing in \(\Box \) and in which the replacement rule is not used (Hernschen 1974)

A Horn clause is a clause in which at most one literal is positive:
 - it is positive if precisely one literal is positive
 - it is negative if all literals are negatives
- As a result, in those conditions, a breadth first input strategy is complete, and a depth first input strategy with backtracking is complete if the tree is finite.
Ordered Strategies

- We consider a new formal system in which:
 1. clauses are ordered sets
 2. ordered resolution of two clauses
 \[A = p_1 \lor \cdots \lor p_n \quad \text{and} \quad B = q_1 \lor \cdots \lor q_m \]
 where \(p_1 \) is a positive literal and \(q_1 \) is a negative literal is possible iff \(\neg p_1 \) and \(\sigma(q_1) \) are unifiable (\(\sigma \) is a renaming, s.t. \(p_1 \) and \(\sigma(q_1) \) have no variables in common)
 3. the resolvent of \(A \) and \(B \) is \(\theta(p_2 \lor \cdots \lor p_n \lor \sigma(q_2 \lor \cdots \lor q_m)) \) where \(\theta \) is an m.g.u of \(\neg p_1 \) and \(\sigma(q_1) \)

- Let \(K = K' \cup \{ C_0 \} \) be a set of clauses s.t. \(\square \) is derived by using resolution with variables, \(C_0 \) is a negative Horn clause and all clauses in \(K' \) are positive Horn clauses with the positive literal in the first place. There is a sorted input derivation with root \(C_0 \) arriving at \(\square \).

- In this context a sorted linear input with:
 - breadth first: is complete
 - depth first with backtracking: is complete if the tree is finite