Computational Logic

A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(Using Prolog notation conventions)

- **Variables:** start with uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants:** lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

- **Structures:** a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

Arguments can in turn be variables, constants and structures.

- **Arity:** is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the data structures of a logic program.
Syntax: Terms

(Using Prolog notation conventions)

- **Examples of terms**:

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as *prefix*, *postfix*, or *infix* [operators](#) (just syntax!):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Term</th>
<th>Operator</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>is the term</td>
<td>’+’(a,b)</td>
<td>if +/2 declared infix</td>
</tr>
<tr>
<td>- b</td>
<td>is the term</td>
<td>’-’(b)</td>
<td>if −/1 declared prefix</td>
</tr>
<tr>
<td>a < b</td>
<td>is the term</td>
<td>’<’(a,b)</td>
<td>if </2 declared infix</td>
</tr>
</tbody>
</table>

John father mary is the term father(john,mary) if father/2 declared infix

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule:** an expression of the form:

 \[p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow \]
 \[p_1(t_1^1, t_2^1, \ldots, t_{n_1}^1), \]
 \[\ldots \]
 \[p_m(t_1^m, t_2^m, \ldots, t_{n_m}^m). \]

 - \(p_0(\ldots) \) to \(p_m(\ldots) \) are *syntactically* like *terms*.
 - \(p_0(\ldots) \) is called the **head** of the rule.
 - The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called *procedure calls*.

- **Fact:** an expression of the form \(p(t_1, t_2, \ldots, t_n) \leftarrow . \) (i.e., a rule with empty body).

 Example:
 \[
 \text{meal}(\text{soup, beef, coffee}) \leftarrow .
 \]
 \[
 \text{meal}(\text{First, Second, Third}) \leftarrow \text{appetizer}(\text{First}),
 \text{main_dish}(\text{Second}),
 \text{dessert}(\text{Third}).
 \]

- Rules and facts are both called **clauses**.
Syntax: Predicates, Programs, and Queries

- **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

  ```
  pet(spot) <- .
  pet(X) <- animal(X), barks(X).
  pet(X) <- animal(X), meows(X).
  ```

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

- **Logic Program**: a set of predicates.

- **Query**: an expression of the form:

 (i.e., a clause without a head).

 A query represents a *question to the program*.

 Example: `← pet(X).`
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p <- .” can be seen as the rule “p <- true.”)

 Example: the fact \(\text{animal(spot)} <- \) can be read as “spot is an animal”.

- **Rules**:

 ◦ Commas in rule bodies represent conjunction, i.e.,
 \[p \leftarrow p_1, \ldots, p_m. \text{ represents } p \leftarrow p_1 \land \cdots \land p_m. \]
 ◦ “\(\leftarrow \)” represents as usual logical implication.

 Thus, a rule \(p \leftarrow p_1, \ldots, p_m. \) means “if \(p_1 \) and \(\ldots \) and \(p_m \) are true, then \(p \) is true”

 Example: the rule \(\text{pet(X)} \leftarrow \text{animal(X)}, \text{barks(X)}. \) can be read as “X is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 \[\ldots \]

 provide different alternatives (for \(p \)).

 Example: the rules

 \[\text{pet}(X) \leftarrow \text{animal}(X), \text{barks}(X). \]

 \[\text{pet}(X) \leftarrow \text{animal}(X), \text{meows}(X). \]

 express two ways for \(X \) to be a pet.

- **Note** (variable scope): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are local to clauses (and are renamed any time a clause is used—as with vars. local to a procedure in conventional languages).

- A **query** represents a question to the program.

 Examples:

 \[\text{\textless - pet(spot).} \] asks whether \textit{spot} is a pet.
 \[\text{\textless - pet}(X). \] asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

• Example of a logic program:

  ```prolog
  pet(X) <- animal(X), barks(X).
  pet(X) <- animal(X), meows(X).
  animal(spot) <-.
  barks(spot) <-.
  animal(barry) <-.
  meows(barry) <-.
  animal(hobbes) <-.
  roars(hobbes) <-.
  ```

• Execution: given a program and a query, executing the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `<- pet(X).` the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 ◇ The declarative semantics specifies what should be computed (all possible answers).
 ⇒ Intuitively, we have two possible answers: `X = spot` and `X = barry`.

 ◇ The operational semantics specifies how answers are computed (which allows us to determine how many steps it will take).
Running Pure Logic Programs: the Ciao System’s bf/af Packages

- We will be using *Ciao*, a multiparadigm programming system which includes (as one of its “paradigms”) a *pure logic programming* subsystem:
 - A number of *fair* search rules are available (breadth-first, iterative deepening, ...): we will use “breadth-first” (bf or af).
 - Also, a module can be set to *pure* mode so that impure built-ins are not accessible to the code in that module.
 - This provides a reasonable first approximation of “Greene’s dream” (of course, at a cost in memory and execution time).

- Writing programs to execute in bf mode:
 - All files should start with the following line:
    ```prolog
    :- module(_,_,[bf]).
    ```
 (or :- module(_,_,['bf/af'])).
 - or, for “user” files, i.e., files that are not modules: :- use_package(bf).
 - The *neck* (arrow) of rules must be <=.
 - Facts must end with <=.
Ciao Programming Environment: file being edited and top-level
Top Level Interaction Example

- File `pets.pl` contains:
  ```prolog
  :- module(_,_,[bf]).
  + the pet example code as in previous slides.
  ```

- Interaction with the system query evaluator (the “top level”):

  ```prolog
  Ciao 1.13 #0: Mon Nov 7 09:48:51 MST 2005
  ?- use_module(pets).
  yes
  ?- pet(spot).
  yes
  ?- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
  ?-
  ```
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query \(\leftarrow p \) is an initial *procedure call*.
- A procedure definition with one *clause* \(p \leftarrow p_1, \ldots, p_m \). means:
 “to execute a call to \(p \) you have to call \(p_1 \) and \(\ldots \) and \(p_m \)”

 ◦ In principle, the order in which \(p_1, \ldots, p_n \) are called does not matter, but, in practical systems it is fixed.

- If several clauses (definitions) \(p \leftarrow p_1, \ldots, p_n \) \(p \leftarrow q_1, \ldots, q_m \) means:
 “to execute a call to \(p \), call \(p_1 \) \& \(\ldots \) \& \(p_n \), or, alternatively, \(q_1 \) \& \(\ldots \) \& \(q_n \), or \(\ldots \)”

 ◦ Unique to logic programming –it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in procedure calls to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.
Unification

- **Unifying two terms (or literals) A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - I.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, **fail**).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X = m(h), M = t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), t(M))$</td>
<td>Impossible (1)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (2)</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**.
Unification

• Often several solutions exist, e.g.:

\[
\begin{array}{|c|c|c|c|}
\hline
A & B & \theta_1 & A\theta_1 \text{ and } B\theta_1 \\
\hline
f(X, g(T)) & f(m(H), g(M)) & \{ X=m(a), H=a, M=b, T=b \} & f(m(a), g(b)) \\
\hline
" & " & \{ X=m(H), M=f(A), T=f(A) \} & f(m(H), g(f(A))) \\
\hline
\end{array}
\]

These are correct, but a simpler ("more general") solution exists:

\[
\begin{array}{|c|c|c|c|}
\hline
A & B & \theta_1 & A\theta_1 \text{ and } B\theta_1 \\
\hline
f(X, g(T)) & f(m(H), g(M)) & \{ X=m(H), T=M \} & f(m(H), g(M)) \\
\hline
\end{array}
\]

• Always a unique (modulo variable renaming) most general solution exists (unless unification fails).

• This is the one that we are interested in.

• The unification algorithm finds this solution.
Unification Algorithm

• Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$
2. While not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term $S \rightarrow$ halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different \rightarrow halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- **Unify**: \(A = p(X,X) \) and \(B = p(f(Z),f(W)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X,X) = p(f(Z), f(W)) }</td>
<td>p(X,X)</td>
<td>p(f(Z), f(W))</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = f(Z), X = f(W) }</td>
<td>X</td>
<td>f(Z)</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ f(Z) = f(W) }</td>
<td>f(Z)</td>
<td>f(W)</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ Z = W }</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>{ X = f(W), Z = W }</td>
<td>{ }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Unify**: \(A = p(X, f(Y)) \) and \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(Y)) = p(Z, X) }</td>
<td>p(X, f(Y))</td>
<td>p(Z, X)</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = Z, f(Y) = X }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = Z }</td>
<td>{ f(Y) = Z }</td>
<td>f(Y)</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = f(Y), Z = f(Y) }</td>
<td>{ }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

\[
\begin{array}{cccc}
\theta & E & T & S \\
\{\} & \{ p(X, f(Y)) = p(a, g(b)) \} & p(X, f(Y)) & p(a, g(b)) \\
\{\} & \{ X = a, f(Y) = g(b) \} & X & a \\
\{ X = a \} & \{ f(Y) = g(b) \} & f(Y) & g(b) \\
\text{fail} & & & \\
\end{array}
\]

- Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

\[
\begin{array}{cccc}
\theta & E & T & S \\
\{\} & \{ p(X, f(X)) = p(Z, Z) \} & p(X, f(X)) & p(Z, Z) \\
\{\} & \{ X = Z, f(X) = Z \} & X & Z \\
\{ X = Z \} & \{ f(Z) = Z \} & f(Z) & Z \\
\text{fail} & & & \\
\end{array}
\]
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program \(P \), a query \(Q \)
Output: \(Q_\mu \) (answer substitution) if \(Q \) is provable from \(P \), failure otherwise

Algorithm:

1. Initialize the “resolvent” \(R \) to be \(\{Q\} \)
2. While \(R \) is nonempty do:
 2.1. Take the leftmost literal \(A \) in \(R \)
 2.2. Choose a (renamed) clause \(A' \leftarrow B_1, \ldots, B_n \) from \(P \), such that \(A \) and \(A' \) unify with unifier \(\theta \) (if no such clause can be found, branch is failure; explore another branch)
 2.3. Remove \(A \) from \(R \), add \(B_1, \ldots, B_n \) to \(R \)
 2.4. Apply \(\theta \) to \(R \) and \(Q \)
3. If \(R \) is empty, output \(Q \) (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
Since step 2.2 is left open, a given logic *programming* system must specify how it deals with this by providing one (or more)

- **Search rule(s):** “how are clauses/branches selected in 2.2.”

If the search rule is not specified execution is *nondeterministic*, since choosing a different clause (in step 2.2) can lead to different solutions (finding solutions in a different order).

Example (two valid executions):

```
?- pet(X).
X = spot ? ;
X = barry ? ;
no
?- pet(X).
X = barry ? ;
X = spot ? ;
no
?- 
```

In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

- **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

C1: pet(X) <- animal(X), barks(X).
C2: pet(X) <- animal(X), meows(X).
C3: animal(spot) <-.
C4: animal(barry) <-.
C5: animal(hobbes) <-.
C6: barks(spot) <-.
C7: meows(barry) <-.
C8: roars(hobbes) <-.

• <- pet(P).

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C2*</td>
<td>{P = X1}</td>
</tr>
<tr>
<td>pet(X1)</td>
<td>animal(X1), meows(X1)</td>
<td>C4*</td>
<td>{X1 = barry}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>meows(barry)</td>
<td>C7</td>
<td>{}</td>
</tr>
<tr>
<td>pet(barry)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

• System response: P = barry ?

• If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in C2* or C4*).
Running programs (different strategy)

\[\text{C}_1: \quad \text{pet}(X) \leftarrow \text{animal}(X), \text{barks}(X). \]
\[\text{C}_2: \quad \text{pet}(X) \leftarrow \text{animal}(X), \text{meows}(X). \]
\[\text{C}_3: \quad \text{animal(spot)} \leftarrow. \]
\[\text{C}_4: \quad \text{animal(barry)} \leftarrow. \]
\[\text{C}_5: \quad \text{animal(hobbes)} \leftarrow. \]
\[\text{C}_6: \quad \text{barks(spot)} \leftarrow. \]
\[\text{C}_7: \quad \text{meows(barry)} \leftarrow. \]
\[\text{C}_8: \quad \text{roars(hobbes)} \leftarrow. \]

\(\text{← pet}(P). \) (different strategy)

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(\text{C}_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>(\text{C}_5^*)</td>
<td>({ X_1 = \text{hobbes} })</td>
</tr>
<tr>
<td>pet(hobbes)</td>
<td>barks(hobbes)</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in \(\text{C}_1^* \) or \(\text{C}_5^* \)) to find a solution. We take \(\text{C}_3 \) instead of \(\text{C}_5 \):

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(\text{C}_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>(\text{C}_3^*)</td>
<td>({ X_1 = \text{spot} })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(\text{C}_6)</td>
<td>({ })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.

Example: query ← pet(X) with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query → different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Role of Unification in Execution and Modes

- As mentioned before, unification used to access data and give values to variables.
 Example: Consider query \(-\) animal(A), named(A,Name). with:
 animal(dog(barry)) \<- . named(dog(Name),Name) \<- .

- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>{ P=X_1 }</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>(C_3^*)</td>
<td>{ X_1=spot }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(C_6)</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- In fact, argument positions are not fixed a priori to be input or output.
 Example: Consider query \(-\) pet(spot). vs. \(-\) pet(X).
 or \(-\) add(s(0),s(s(0)),Z). vs. \(-\) add(s(0),Y,s(s(s(0)))).

- Thus, procedures can be used in different modes
 (different sets of arguments are input or output in each mode).
A Logic Database is a set of facts and rules (i.e., a logic program):

\[
\begin{align*}
\text{father_of}(\text{john}, \text{peter}) & \iff \\
\text{father_of}(\text{john}, \text{mary}) & \iff \\
\text{father_of}(\text{peter}, \text{michael}) & \iff \\
\text{mother_of}(\text{mary}, \text{david}) & \iff
\end{align*}
\]

\[
\begin{align*}
\text{grandfather_of}(L, M) & \iff \text{father_of}(L, N), \\
& \quad \text{father_of}(N, M).
\end{align*}
\]

\[
\begin{align*}
\text{grandfather_of}(X, Y) & \iff \text{father_of}(X, Z), \\
& \quad \text{mother_of}(Z, Y).
\end{align*}
\]

Given such database, a logic programming system can answer questions (queries) such as:

\[
\begin{align*}
\iff \text{father_of}(\text{john}, \text{peter}).
\text{Answer: } & \text{Yes} \\
\iff \text{father_of}(\text{john}, \text{david}).
\text{Answer: } & \text{No} \\
\iff \text{father_of}(\text{john}, X).
\text{Answer: } & \{X = \text{peter}\} \\
\text{Answer: } & \{X = \text{mary}\}
\end{align*}
\]

Rules for \text{grandmother_of}(X, Y)?
Another example:

\[
\begin{align*}
\text{resistor(power,n1)} & \leftarrow. \\
\text{resistor(power,n2)} & \leftarrow. \\
\text{transistor(n2,ground,n1)} & \leftarrow. \\
\text{transistor(n3,n4,n2)} & \leftarrow. \\
\text{transistor(n5,ground,n4)} & \leftarrow. \\
\text{inverter(Input,Output)} & \leftarrow \text{transistor(Input,ground,Output), resistor(power,Output)}. \\
\text{nand_gate(Input1,Input2,Output)} & \leftarrow \text{transistor(Input1,X,Output), transistor(Input2,ground,X), resistor(power,Output)}. \\
\text{and_gate(Input1,Input2,Output)} & \leftarrow \text{nand_gate(Input1,Input2,X), inverter(X, Output)}.
\end{align*}
\]

Query \text{and_gate(In1,In2,Out)} has solution: \{In1=n3, In2=n5, Out=n1\}
Structured Data and Data Abstraction (and the ’=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:

  ```
  course(complog,wed,19,00,20,30,’M.’,’Hermenegildo’,new,5102) <-.
  ```

- When is the Computational Logic course?

  ```
  ```

- Structured version:

  ```
  course(complog,Time,Lecturer, Location) <-
  Time = t(wed,18:30,20:30),
  Lecturer = lect(’M.’,’Hermenegildo’),
  Location = loc(new,5102).
  ```

 Note: “\(X=Y\)” is equivalent to “\(’=’(X,Y)\)” where the predicate \(=/2\) is defined as the fact “\(’=’(X,X) <-\)” – Plain unification!

- Equivalent to:

  ```
  course(complog, t(wed,18:30,20:30),
  lect(’M.’,’Hermenegildo’), loc(new,5102)) <-.
  ```
Structured Data and Data Abstraction (and The Anonymous Variable)

- **Given:**

 course(complog,Time,Lecturer, Location) <-
 Time = t(wed,18:30,20:30),
 Lecturer = lect(’M.’,’Hermenegildo’),
 Location = loc(new,5102).

- **When is the Computational Logic course?**

 <- course(complog,Time, A, B).
 has solution:
 {Time=t(wed,18:30,20:30), A=lect(’M.’,’Hermenegildo’), B=loc(new,5102)}

- **Using the *anonymous variable* (“_”):**

 <- course(complog,Time, _, _).
 has solution:
 {Time=t(wed,18:30,20:30)}
• The circuit example revisited:

\[
\begin{align*}
\text{resistor}(r_1, \text{power}, n_1) & \leftarrow \text{transistor}(t_1, n_2, \text{ground}, n_1) \leftarrow. \\
\text{resistor}(r_2, \text{power}, n_2) & \leftarrow \text{transistor}(t_2, n_3, n_4, n_2) \leftarrow. \\
\text{transistor}(t_3, n_5, \text{ground}, n_4) & \leftarrow.
\end{align*}
\]

\[
\begin{align*}
\text{inverter}(\text{inv}(T, R), \text{Input}, \text{Output}) & \leftarrow \\
\text{transistor}(T, \text{Input}, \text{ground}, \text{Output}), \text{resistor}(R, \text{power}, \text{Output}).
\end{align*}
\]

\[
\begin{align*}
\text{nand}_\text{gate}(\text{nand}(T_1, T_2, R), \text{Input}_1, \text{Input}_2, \text{Output}) & \leftarrow \\
\text{transistor}(T_1, \text{Input}_1, X, \text{Output}), \text{transistor}(T_2, \text{Input}_2, \text{ground}, X), \\
\text{resistor}(R, \text{power}, \text{Output}).
\end{align*}
\]

\[
\begin{align*}
\text{and}_\text{gate}(\text{and}(N, I), \text{Input}_1, \text{Input}_2, \text{Output}) & \leftarrow \\
\text{nand}_\text{gate}(N, \text{Input}_1, \text{Input}_2, X), \text{inverter}(I, X, \text{Output}).
\end{align*}
\]

• The query \(\leftarrow \text{and}_\text{gate}(G, \text{In}_1, \text{In}_2, \text{Out}). \)

has solution: \(\{ G=\text{and}(\text{nand}(t_2, t_3, r_2), \text{inv}(t_1, r_1)), \text{In}_1=n_3, \text{In}_2=n_5, \text{Out}=n_1 \} \)
Logic Programs and the Relational DB Model

Traditional → Codd’s Relational Model

File → Relation
Record → Tuple
Field → Attribute

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

Person

Lived-in

- The order of the rows is immaterial.
- (Duplicate rows are not allowed)
Logic Programs and the Relational DB Model (Contd.)

Relational Database → Logic Programming
Relation Name → Predicate symbol
Relation → Procedure consisting of ground facts
 (facts without variables)
Tuple → Ground fact
Attribute → Argument of predicate

- **Example:**

 person(brown, 20, male) <-.
 person(jones, 21, female) <-.
 person(smith, 36, male) <-.

- **Example:**

 lived_in(brown, london, 15) <-.
 lived_in(brown, york, 5) <-.
 lived_in(jones, paris, 21) <-.
 lived_in(smith, brussels, 15) <-.
 lived_in(smith, santander, 5) <-.
Logic Programs and the Relational DB Model (Contd.)

- The operations of the relational model are easily implemented as rules.
 - **Union**:

 \[
 \text{r_union_s}(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n).
 \]
 \[
 \text{r_union_s}(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n).
 \]
 - **Set Difference**:

 \[
 \text{r_diff_s}(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \text{not } s(X_1, \ldots, X_n).
 \]
 \[
 \text{r_diff_s}(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \text{not } r(X_1, \ldots, X_n).
 \]
 (we postpone the discussion on negation until later.)
 - **Cartesian Product**:

 \[
 \text{r_x_s}(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}).
 \]
 - **Projection**:

 \[
 \text{r_1_3}(X_1, X_3) \leftarrow r(X_1, X_2, X_3).
 \]
 - **Selection**:

 \[
 \text{r_selected}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq (X_2, X_3).
 \]
 (see later for definition of $\leq/2$)
Logic Programs and the Relational DB Model (Contd.)

- Derived operations – some can be expressed more directly in LP:
 - Intersection:
 \[
 \text{r_meet_s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n), \text{s}(X_1, \ldots, X_n).
 \]
 - Join:
 \[
 \text{r_joinX2_s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, X_2, X_3, \ldots, X_n), \text{s}(X'_1, X_2, X'_3, \ldots, X'_n).
 \]
- Duplicates an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop *logic-based databases*.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
Recursive Programming

- Example: ancestors.

\[
\text{parent}(X, Y) \leftarrow \text{father}(X, Y).
\]

\[
\text{parent}(X, Y) \leftarrow \text{mother}(X, Y).
\]

\[
\text{ancestor}(X, Y) \leftarrow \text{parent}(X, Y).
\]

\[
\text{ancestor}(X, Y) \leftarrow \text{parent}(X, Z), \text{parent}(Z, Y).
\]

\[
\text{ancestor}(X, Y) \leftarrow \text{parent}(X, Z), \text{parent}(Z, W), \text{parent}(W, Y).
\]

\[
\text{ancestor}(X, Y) \leftarrow \text{parent}(X, Z), \text{parent}(Z, W), \text{parent}(W, K), \text{parent}(K, Y).
\]

...

- Defining ancestor recursively:

\[
\text{parent}(X, Y) \leftarrow \text{father}(X, Y).
\]

\[
\text{parent}(X, Y) \leftarrow \text{mother}(X, Y).
\]

\[
\text{ancestor}(X, Y) \leftarrow \text{parent}(X, Y).
\]

\[
\text{ancestor}(X, Y) \leftarrow \text{parent}(X, Z), \text{ancestor}(Z, Y).
\]

- Exercise: define “related”, “cousin”, “same generation”, etc.
Types

• **Type**: a (possibly infinite) set of terms.

• **Type definition**: A program defining a type.

• **Example**: Weekday:
 ◦ Set of terms to represent: Monday, Tuesday, Wednesday, ...
 ◦ Type definition:
 is_weekday('Monday') <-.
 is_weekday('Tuesday') <-. ...

• **Example**: Date (weekday * day in the month):
 ◦ Set of terms to represent: date('Monday',23), date(Tuesday,24), ...
 ◦ Type definition:
 is_date(date(W,D)) <- is_weekday(W), is_day_of_month(D).
 is_day_of_month(1) <-.
 is_day_of_month(2) <-.
 ...
 is_day_of_month(31) <-.
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: 0, s(0), s(s(0)), …
 - Type definition:
 - \texttt{nat(0) <- .nat(s(X)) <- nat(X).}

A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).

- We can reason about *complexity*, for a given class of queries (“mode”). E.g., for mode \texttt{nat(ground)} complexity is *linear* in size of number.
- **Example**: integers:
 - Set of terms to represent: 0, s(0), -s(0), …
 - Type definition:
 - \texttt{integer(X) <- nat(X).}
 - \texttt{integer(-X) <- nat(X).}
Recursive Programming: Arithmetic

- Defining the natural order (\(\leq\)) of natural numbers:

 \[
 \text{less_or_equal}(0,X) \leftarrow \text{nat}(X).
 \]

 \[
 \text{less_or_equal}(s(X),s(Y)) \leftarrow \text{less_or_equal}(X,Y).
 \]

- **Multiple uses:** \text{less_or_equal}(s(0),s(s(0))), \text{less_or_equal}(X,0), ...

- **Multiple solutions:** \text{less_or_equal}(X,s(0)), \text{less_or_equal}(s(s(0)),Y), etc.

- **Addition:**

 \[
 \text{plus}(0,X,X) \leftarrow \text{nat}(X).
 \]

 \[
 \text{plus}(s(X),Y,s(Z)) \leftarrow \text{plus}(X,Y,Z).
 \]

- **Multiple uses:** \text{plus}(s(s(0)),s(0),Z), \text{plus}(s(s(0)),Y,s(0))

- **Multiple solutions:** \text{plus}(X,Y,s(s(s(0)))), etc.
Recursive Programming: Arithmetic

• Another possible definition of addition:
 \[\text{plus}(X, 0, X) \leftarrow \text{nat}(X)\].
 \[\text{plus}(X, s(Y), s(Z)) \leftarrow \text{plus}(X, Y, Z)\].

• The meaning of \text{plus} is the same if both definitions are combined.

• Not recommended: several proof trees for the same query \rightarrow not efficient, not concise. We look for minimal axiomatizations.

• The art of logic programming: finding compact and computationally efficient formulations!

• Try to define: \text{times}(X, Y, Z) (Z = X \times Y), \text{exp}(N, X, Y) (Y = X^N),
 \text{factorial}(N, F) (F = N!), \text{minimum}(N1, N2, Min),...
Recursive Programming: Arithmetic

• Definition of $\text{mod}(X, Y, Z)$
 “Z is the remainder from dividing X by Y”
 $(\exists \ Q \text{ s.t. } X = Y\times Q + Z \text{ and } Z < Y)$:
 $\text{mod}(X, Y, Z) \gets \text{less}(Z, Y), \text{times}(Y, Q, W), \text{plus}(W, Z, X)$.

 $\text{less}(0, s(X)) \gets \text{nat}(X)$.
 $\text{less}(s(X), s(Y)) \gets \text{less}(X, Y)$.

• Another possible definition:
 $\text{mod}(X, Y, X) \gets \text{less}(X, Y)$.
 $\text{mod}(X, Y, Z) \gets \text{plus}(X, Y, X), \text{mod}(X, Y, Z)$.

• The second is much more efficient than the first one (compare the size of the proof trees).
Recursive Programming: Arithmetic/Functions

- The Ackermann function:
 \[
 \text{ackermann}(0,N) = N+1 \\
 \text{ackermann}(M,0) = \text{ackermann}(M-1,1) \\
 \text{ackermann}(M,N) = \text{ackermann}(M-1,\text{ackermann}(M,N-1))
 \]

- In Peano arithmetic:
 \[
 \text{ackermann}(0,N) = s(N) \\
 \text{ackermann}(s(M),0) = \text{ackermann}(M,s(0)) \\
 \text{ackermann}(s(M),s(N)) = \text{ackermann}(M,\text{ackermann}(s(M),N))
 \]

- Can be defined as:
 \[
 \text{ackermann}(0,N,s(N)) \leftarrow . \\
 \text{ackermann}(s(M),0,Val) \leftarrow \text{ackermann}(M,s(0),Val). \\
 \text{ackermann}(s(M),s(N),Val) \leftarrow \text{ackermann}(s(M),N,Val1), \\
 \text{ackermann}(M,Val1,Val).
 \]

- In general, *functions* can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).

- Syntactic support available (see, e.g., the Ciao *functions* package).
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.
- We need:
 - a constant symbol: the empty list denoted by the *constant* \[\]
 - a functor of arity 2: traditionally the dot “.” (which is overloaded).
- Syntactic sugar: the term \(.(X,Y) \) is denoted by \[X|Y\] (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>Cons pair syntax</th>
<th>Element syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(.(a,[]))</td>
<td>[a</td>
<td>[]]</td>
</tr>
<tr>
<td>(.(a,.(b,[])))</td>
<td>[a</td>
<td>b</td>
</tr>
<tr>
<td>(.(a,.(b,.(c,[]))))</td>
<td>[a</td>
<td>b</td>
</tr>
<tr>
<td>(.(a,X))</td>
<td>[a</td>
<td>X]</td>
</tr>
<tr>
<td>(.(a,.(b,X)))</td>
<td>[a</td>
<td>b</td>
</tr>
</tbody>
</table>

- Note that:
 - \[a,b\] and \[a|X\] unify with \(\{ X = [b]\} \)
 - \[a\] and \[a|X\] unify with \(\{ X = []\} \)
 - \[a\] and \[a,b|X\] do not unify
 - \[] and \[X\] do not unify
Recursive Programming: Lists

- Type definition (no syntactic sugar):

 \[
 \text{list}([]) \leftarrow .
 \]

 \[
 \text{list}(.(X,Y)) \leftarrow \text{list}(Y).
 \]

- Type definition (with syntactic sugar):

 \[
 \text{list}([]) \leftarrow .
 \]

 \[
 \text{list}([X|Y]) \leftarrow \text{list}(Y).
 \]
Recursive Programming: Lists (Contd.)

- X is a *member* of the list Y:

 \[
 \begin{align*}
 \text{member}(a, [a]) & \leftarrow. \text{member}(b, [b]) \leftarrow. \text{etc.} \quad \Rightarrow \text{member}(X, [X]) \leftarrow. \\
 \text{member}(a, [a, c]) & \leftarrow. \text{member}(b, [b, d]) \leftarrow. \text{etc.} \quad \Rightarrow \text{member}(X, [X, Y]) \leftarrow. \\
 \text{member}(a, [a, c, d]) & \leftarrow. \text{member}(b, [b, d, l]) \leftarrow. \text{etc.} \quad \Rightarrow \text{member}(X, [X, Y, Z]) \leftarrow. \\
 \Rightarrow \text{member}(X, [X|Y]) & \leftarrow \text{list}(Y). \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{member}(a, [c, a]), \text{member}(b, [d, b]). \text{etc.} & \quad \Rightarrow \text{member}(X, [Y, X]). \\
 \text{member}(a, [c, d, a]), \text{member}(b, [s, t, b]). \text{etc.} & \quad \Rightarrow \text{member}(X, [Y, Z, X]). \\
 \Rightarrow \text{member}(X, [Y|Z]) & \leftarrow \text{member}(X, Z). \\
 \end{align*}
 \]

- Resulting definition:
 \[
 \begin{align*}
 \text{member}(X, [X|Y]) & \leftarrow \text{list}(Y). \\
 \text{member}(X, [_|T]) & \leftarrow \text{member}(X, T). \\
 \end{align*}
 \]
Recursive Programming: Lists (Contd.)

• Resulting definition:
 member(X, [X|Y]) <- list(Y).
 member(X, [_|T]) <- member(X, T).

• Uses of member(X,Y):
 ◦ checking whether an element is in a list (member(b, [a,b,c]))
 ◦ finding an element in a list (member(X, [a,b,c]))
 ◦ finding a list containing an element (member(a, Y))

• Define: prefix(X, Y) (the list X is a prefix of the list Y), e.g.
 prefix([[a, b], [a, b, c, d]])

• Define: suffix(X, Y), sublist(X, Y), ...

• Define length(Xs, N) (N is the length of the list Xs)
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - **Base case:**

    ```
    append([], [a], [a]) <-. append([], [a, b], [a, b]) <-. etc.
    ⇒ append([], Ys, Ys) <- list(Ys).
    ```

 - **Rest of cases (first step):**

    ```
    append([a], [b], [a, b]) <-.
    append([a], [b, c], [a, b, c]) <-. etc.
    ⇒ append([X], Ys, [X|Ys]) <- list(Ys).
    ```

    ```
    append([a, b], [c], [a, b, c]) <-.
    append([a, b], [c, d], [a, b, c, d]) <-. etc.
    ⇒ append([X, Z], Ys, [X, Z|Ys]) <- list(Ys).
    ```

This is still infinite → we need to generalize more.
Recursive Programming: Lists (Contd.)

• Second generalization:
 \[
 \text{append}([X], Ys, [X|Ys]) \leftarrow \text{list}(Ys).
 \]
 \[
 \text{append}([X,Z], Ys, [X,Z|Ys]) \leftarrow \text{list}(Ys).
 \]
 \[
 \text{append}([X,Z,W], Ys, [X,Z,W|Ys]) \leftarrow \text{list}(Ys).
 \]

 \[
 \Rightarrow \text{append}([X|Xs], Ys, [X|Zs]) \leftarrow \text{append}(Xs, Ys, Zs).
 \]

• So, we have:

 \[
 \text{append}([], Ys, Ys) \leftarrow \text{list}(Ys).
 \]

 \[
 \text{append}([X|Xs], Ys, [X|Zs]) \leftarrow \text{append}(Xs, Ys, Zs).
 \]

• Uses of append:

 ◦ concatenate two given lists: \leftarrow \text{append}([a,b], [c], Z)
 ◦ find differences between lists: \leftarrow \text{append}(X, [c], [a,b,c])
 ◦ split a list: \leftarrow \text{append}(X, Y, [a,b,c])
Recursive Programming: Lists (Contd.)

- `reverse(Xs, Ys)`: Ys is the list obtained by reversing the elements in the list Xs

 It is clear that we will need to traverse the list Xs

 For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

  ```prolog
  reverse([X|Xs], Ys) <-
  reverse(Xs, Zs),
  append(Zs, [X], Ys).
  ```

 How can we stop?

  ```prolog
  reverse([], []) <-.
  ```

- As defined, `reverse(Xs, Ys)` is very inefficient. Another possible definition:

  ```prolog
  reverse(Xs, Ys) <- reverse(Xs, [], Ys).
  ```

  ```prolog
  reverse([], Ys, Ys) <-.
  ```

  ```prolog
  reverse([X|Xs], Acc, Ys) <- reverse(Xs, [X|Acc], Ys).
  ```

- Find the differences in terms of efficiency between the two definitions.
Represented by a ternary functor $\text{tree}(\text{Element}, \text{Left}, \text{Right})$.

Empty tree represented by void.

Definition:

\[
\text{binary_tree(\text{void})} \leftarrow \).
\text{binary_tree(\text{tree}(\text{Element}, \text{Left}, \text{Right}))} \leftarrow
\text{binary_tree(\text{Left})}, \text{binary_tree(\text{Right})}.
\]

Defining $\text{tree_member(\text{Element}, \text{Tree})}$:

\[
\text{tree_member(X,tree(X,\text{Left},\text{Right}))} \leftarrow
\text{binary_tree(\text{Left})}, \text{binary_tree(\text{Right})}.
\text{tree_member(X,tree(Y,\text{Left},\text{Right}))} \leftarrow \text{tree_member(X,\text{Left})}.
\text{tree_member(X,tree(Y,\text{Left},\text{Right}))} \leftarrow \text{tree_member(X,\text{Right})}.
\]
Recursive Programming: Binary Trees

- Defining `pre_order(Tree,Order)

 `pre_order(void,[]) <-.
 pre_order(tree(X,Left,Right),Order) <-
 pre_order(Left,OrderLeft),
 pre_order(Right,OrderRight),
 append([X|OrderLeft],OrderRight,Order).

- Define `in_order(Tree,Order), post_order(Tree,Order).`
Creating a Binary Tree in Pascal and LP

- **In Prolog:**
 \[
 T = \text{tree}(3, \text{tree}(2, \text{void}, \text{void}), \text{tree}(5, \text{void}, \text{void}))
 \]

- **In Pascal:**
  ```pascal
  type tree = ^treerec;
  treerec = record
    data : integer;
    left : tree;
    right: tree;
  end;

  var t : tree;

  ...
  new(t);
  new(t^left);
  new(t^right);
  t^left^left := nil;
  t^left^right := nil;
  t^right^left := nil;
  t^right^right := nil;
  t^data := 3;
  t^left^data := 2;
  t^right^data := 5;
  ...
  ```
Polymorphism

• Note that the two definitions of member/2 can be used simultaneously:

 \[
 \text{lt_member}(X, [X|Y]) \leftarrow \text{list}(Y).
 \]

 \[
 \text{lt_member}(X, [_|T]) \leftarrow \text{lt_member}(X, T).
 \]

 \[
 \text{lt_member}(X, \text{tree}(X, L, R)) \leftarrow \text{binary_tree}(L), \text{binary_tree}(R).
 \]

 \[
 \text{lt_member}(X, \text{tree}(Y, L, R)) \leftarrow \text{lt_member}(X, L).
 \]

 \[
 \text{lt_member}(X, \text{tree}(Y, L, R)) \leftarrow \text{lt_member}(X, R).
 \]

Lists only unify with the first two clauses, trees with clauses 3–5!

• $\leftarrow \text{lt_member}(X, [b,a,c])$.
 $X = b$; $X = a$; $X = c$

• $\leftarrow \text{lt_member}(X, \text{tree}(b, \text{tree}(a, \text{void}, \text{void}), \text{tree}(c, \text{void}, \text{void})))$.
 $X = b$; $X = a$; $X = c$

• Also, try (somewhat surprising): $\leftarrow \text{lt_member}(M, T)$.
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing polynomials in some term X:
 - X is a polynomial in X
 - a constant is a polynomial in X
 - sums, differences and products of polynomials in X are polynomials
 - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

 \[
 \text{polynomial}(X,X) \leftarrow .
 \text{polynomial}(\text{Term},X) \leftarrow \text{pconstant}(\text{Term}).
 \text{polynomial}(\text{Term}_1+\text{Term}_2,X) \leftarrow \text{polynomial}(\text{Term}_1,X), \text{polynomial}(\text{Term}_2,X).
 \text{polynomial}(\text{Term}_1-\text{Term}_2,X) \leftarrow \text{polynomial}(\text{Term}_1,X), \text{polynomial}(\text{Term}_2,X).
 \text{polynomial}(\text{Term}_1\times\text{Term}_2,X) \leftarrow \text{polynomial}(\text{Term}_1,X), \text{polynomial}(\text{Term}_2,X).
 \text{polynomial}(\text{Term}_1/\text{Term}_2,X) \leftarrow \text{polynomial}(\text{Term}_1,X), \text{pconstant}(\text{Term}_2).
 \text{polynomial}(\text{Term}_1^N,X) \leftarrow \text{polynomial}(\text{Term}_1,X), \text{nat}(N).
 \]
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- **Symbolic differentiation**: deriv(Expression, X, DifferentiatedExpression)

 deriv(X,X,s(0)) <-.
 deriv(C,X,0) <- pconstant(C).
 deriv(U+V,X,DU+DV) <- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U-V,X,DU-DV) <- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U*V,X,DU*V+U*DV) <- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U/V,X,(DU*V-U*DV)/V^s(s(0))) <- deriv(U,X,DU), deriv(V,X,DV).
 deriv(U^s(N),X,s(N)*U^N*DU) <- deriv(U,X,DU), nat(N).
 deriv(log(U),X,DU/U) <- deriv(U,X,DU).

 ...

- <- deriv(s(s(s(0)))*x+s(s(0)),x,Y).

- A simplification step can be added.
Recursive Programming: Automata (Graphs)

- Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

 \[q_0 \xrightarrow{a} q_1 \xrightarrow{b} \]

 where \(q_0 \) is both the initial and the final state.

- Strings are represented as lists of constants (e.g., \([a,b,b]\)).

- Program:

 \[
 \begin{align*}
 \text{initial}(q0) & \leftarrow. \\
 \text{delta}(q0,a,q1) & \leftarrow. \\
 \text{delta}(q1,b,q0) & \leftarrow. \\
 \text{final}(q0) & \leftarrow. \\
 \text{delta}(q1,b,q1) & \leftarrow. \\
 \text{accept}(S) & \leftarrow \text{initial}(Q), \text{accept_from}(S,Q). \\
 \text{accept_from}([],Q) & \leftarrow \text{final}(Q). \\
 \text{accept_from}([X|Xs],Q) & \leftarrow \text{delta}(Q,X,NewQ), \text{accept_from}(Xs,NewQ).
 \end{align*}
 \]
Recursive Programming: Automata (Graphs) (Contd.)

- **A nondeterministic, stack, finite automaton** (NDSFA):

 \[
 \text{accept}(S) \leftarrow \text{initial}(Q), \text{accept}_from(S,Q,[]).
 \]

 \[
 \text{accept}_from([],Q,[]) \leftarrow \text{final}(Q).
 \]

 \[
 \text{accept}_from([X|Xs],Q,S) \leftarrow \text{delta}(Q,X,S,NewQ,NewS),
 \text{accept}_from(Xs,NewQ,NewS).
 \]

 \[
 \text{initial}(q0) \leftarrow.
 \]

 \[
 \text{final}(q1) \leftarrow.
 \]

 \[
 \text{delta}(q0,X,Xs,q0,[X|Xs]) \leftarrow.
 \]

 \[
 \text{delta}(q0,X,Xs,q1,[X|Xs]) \leftarrow.
 \]

 \[
 \text{delta}(q0,X,Xs,q1,Xs) \leftarrow.
 \]

 \[
 \text{delta}(q1,X,[X|Xs],q1,Xs) \leftarrow.
 \]

- **What sequence does it recognize?**
Recursive Programming: Towers of Hanoi

- **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.

![Diagram of Towers of Hanoi for N = 1, 2, 3]
Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate `hanoi_moves(N,Moves)`
- N is the number of disks and $Moves$ the corresponding list of “moves”.
- Each move $\text{move}(A, B)$ represents that the top disk in A should be moved to B.
- Example:

$$\text{hanoi_moves}(\text{s}(\text{s}(\text{s}(0))),
\begin{array}{l}
\text{[move(a,b), move(a,c), move(b,c), move(a,b),}
\text{ move(c,a), move(c,b), move(a,b)]}
\end{array}$$
Recursive Programming: Towers of Hanoi (Contd.)

• A general rule:

• We capture this in a predicate $\text{hanoi}(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves})$ where

 "Moves contains the moves needed to move a tower of N disks from peg Orig to peg Dest, with the help of peg Help.”

 \[
 \text{hanoi}(s(0), \text{Orig}, \text{Dest}, _, \text{Help}, [\text{move}(\text{Orig}, \text{Dest})]) \leftarrow .
 \]

 \[
 \text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) \leftarrow
 \]

 \[
 \quad \text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}),
 \quad \text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}),
 \quad \text{append}([\text{move}(\text{Orig}, \text{Dest})], \text{Moves1}, \text{Moves2}, \text{Moves})
 \]

• And we simply call this predicate:

 \[
 \text{hanoi}_{\text{moves}}(N, \text{Moves}) \leftarrow
 \]

 \[
 \quad \text{hanoi}(N, \text{a}, \text{b}, \text{c}, \text{Moves}).
 \]
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By induction (as in the previous examples): elegant, but generally difficult – not the way most people do it.
- State first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider also if alternative uses make declarative sense.
- Sometimes it helps to look at well-written examples and use the same “schemas”.
- Global top-down design approach:
 - state the general problem
 - break it down into subproblems
 - solve the pieces
- Again, best approach: practice.