
Computational Logic

An Introduction to Abstract Interpretation
(and Abstract Interpretation of Logic Programs)
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Introduction

Many CS problems related to program analysis / synthesis:

• Derive properties which hold for program P

→ program analysis

• Prove that some property holds for program P

→ program analysis for verification

• Given a program P , generate a program P ′ which is

⋄ in some way equivalent to P , and
⋄ behaves better than P w.r.t. some criteria

Typical approach:

⋄ identify that some invariant holds, and
⋄ specialize the program for the particular case

→ program analysis for program transformation and synthesis
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Program Analysis

• Frequent in compilers although seldom treated in a formal way:

⋄ “code optimization”,
⋄ “dead code elimination”,
⋄ “code motion”,
⋄ ...

[Aho, Ullman 77]

• Often referred to as “dataflow analysis”

• Abstract interpretation provides a formal framework
for developing program analysis tools

• Analysis phase + synthesis phase ≡
Abstract Interpretation + (abstract) Program Transformation
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What is abstract interpretation?

• Consider detecting that one of the branches will not be taken in:
int x, y, z;
y = read_int_from_stdin();
x = y * y;
if( x >= 0 ) then { z=1; } else { z=0; }

⋄ Exhaustive analysis in the standard domain (all the integers): non-termination
⋄ Human reasoning about programs – uses abstractions or approximations:

signs, order of magnitude, odd/even, ...
⋄ Basic Idea: use approximate (generally finite) representations of computational

objects to make the problem of program dataflow analysis tractable

• Abstract interpretation is a formalization of this idea:

⋄ define a non-standard semantics which can approximate the meaning
or behaviour of the program in a finite way
⋄ expressions are computed over an approximate (abstract) domain rather than

the concrete domain (i.e., meaning of operators has to be reconsidered w.r.t.
this new domain)
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Comparison to other methods

• Very general:
applicable to any language with well defined semantics (procedural or declarative)

• Automatic – (vs. proof methods)

• Static – can be done at compile-time, no need to run the program

• Sound – no possible run omitted
(vs. testing, traditional model checking, debugging, ...)
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Example: integer sign arithmetic

• Consider the domain D = Z (integers)
and the multiplication operator: ∗ : Z2 → Z

• We define an “abstract domain:” Dα = {[−], [+]}

and abstract multiplication: ∗α : D2
α → Dα defined by:

∗α [−] [+]

[−] [+] [−]
[+] [−] [+]

• This allows us to conclude, for example, that y = x2 = x ∗ x is never negative

• Some observations:

⋄ The basis is that whenever we have z = x ∗ y then:
if x, y ∈ Z are approximated by xα, yα ∈ Dα

then z ∈ Z is approximated by zα = xα ∗α yα
⋄ It is important to formalize this notion of approximation,

in order to be able to prove an analysis correct
⋄ Approximate computation is generally less precise but faster (tradeoff)
⋄ Most interesting: such “speed differential” is often extreme: i.e., termination vs.

non-termination
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Example: integer sign arithmetic (Contd.)

• Again, D = Z (integers)
and: ∗ : Z2 → Z

• Let’s define a more refined “abstract domain”: D′α = {[−], [0], [+]}

• Abstract multiplication: ∗α : D′2α → D′α defined by

∗α [−] [0] [+]

[−] [+] [0] [−]
[0] [0] [0] [0]

[+] [−] [0] [+]

• This now allows us to reason that z = y ∗ (0 ∗ x) is zero

• Some observations:

⋄ There is a degree of freedom in defining different abstract operators and
domains
⋄ The minimal requirement is that they be “safe” or “correct”
⋄ Different “safe” definitions result in different kinds of analyses
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Example: integer sign arithmetic (Contd.)

• Again D = Z (integers)
and the addition operator: + : Z2 → Z

• We cannot use D′α = {[−], [0], [+]} because we wouldn’t know how to represent
the result of [+] +α [−]
(i.e., our abstract addition would not be closed)

• New element “⊤” (supremum): approximation of any integer

• New “abstract domain”: D′′α = {[−], [0], [+],⊤}

• Abstract addition: +α : D′′2α → D′′α defined by:
+α [−] [0] [+] ⊤
[−] [−] [−] ⊤ ⊤
[0] [−] [0] [+] ⊤
[+] ⊤ [+] [+] ⊤
⊤ ⊤ ⊤ ⊤ ⊤

... (alt:

+α [−] [0] [+] ⊤
[−] ⊤ ⊤ ⊤ ⊤
[0] ⊤ ⊤ ⊤ ⊤
[+] ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤

)

• We can now reason, e.g., that z = x2 + y2 is never negative
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Important observations

• In addition to the imprecision due to the coarseness of Dα, the abstract versions
of the operations (dependent on Dα) may introduce further imprecision

• Thus, the choice of abstract domain and the definition of the abstract operators
are crucial
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Issues in Abstract Interpretation

• Required:

⋄ Correctness – safe approximations: because most “interesting” properties are
undecidable the analysis necessarily has to be approximate. We want to
ensure that the analysis is “conservative” and errs on the “safe side”
⋄ Termination – compilation should definitely terminate

(Note: not always the case in everyday program analysis tools!)

• Desirable – “practicality”:

⋄ Efficiency – in practice finite analysis time is not enough: finite and small
⋄ Accuracy – of the collected information: depends on the appropriateness of

the abstract domain and the level of detail to which the interpretation
procedure mimics the semantics of the language
⋄ “Usefulness” – determines which information is worth collecting

10



Safe Approximations

• Basic idea in approximation: for some property p we want to show that

∀x, x ∈ S ⇒ p(x)

Alternative: construct a set Sa ⊇ S, and prove

∀x, x ∈ Sa ⇒ p(x)

then, Sa is a safe approximation of S

• Approximation on functions: for some property p we want to show that

∀x, x ∈ S ⇒ p(F (x))

• A function
G : S → S

is a safe approximation of F if

∀x, x ∈ S, p(G(x))⇒ p(F (x))
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Approximation of the meaning of a program

• Let the meaning of a program P be a mapping FP from input to output, input and
output values ∈ “standard” domain D:

FP : D → D

• Let’s ‘lift’ this meaning to map sets of inputs to sets of outputs

F ∗P : ℘(D)→ ℘(D)

where ℘(S) denotes the powerset of S, and

F ∗P (S) = {FP (x)|x ∈ S}

• A function
G : ℘(D)→ ℘(D)

is a safe approximation of F ∗P if

∀S, S ∈ ℘(D), G(S) ⊇ F ∗P (S)

• Properties can be proved using G instead of F ∗P
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Approximation of the meaning of a program (Contd.)

• For some property p we want to show that
for a set of inputs S, p(F ∗P (S)) holds

• Assume we can somehow show that
for some set of inputs Sa, p(G(Sa)) holds

• Since G(Sa) ⊇ F ∗P (Sa) this implies that
for inputs Sa, p(F ∗P (Sa)) holds

• As long as F ∗P is monotonic:

Sa ⊇ S ⇒ F ∗P (Sa) ⊇ F ∗P (S)

• And since Sa ⊇ S, then we have proved that, for the set inputs S

p(F ∗P (S)) holds
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Abstract Domain and Concretization Function

• The domain ℘(D) can be represented by an “abstract” domain Dα of finite
representations of (possibly) infinite objects in ℘(D)

• The representation of ℘(D) by Dα is expressed by a (monotonic) function called a
concretization function:

γ : Dα → ℘(D)

s.t. γ(λ) = d if d is the largest element (under ⊆) of ℘(D) that λ describes
[ (℘(D),⊆) is obviously a complete lattice – see later]

E.g., in the “signs” example, with Dα = {[−], [0], [+],⊤}, γ is given by

γ([−]) = {x ∈ Z | x < 0}
γ([0]) = {0}
γ([+]) = {x ∈ Z | x > 0}
γ(⊤) = Z

• γ(?) = ∅ → we define ⊥ | γ(⊥) = ∅
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Abstraction Function

• We can also define (not strictly needed) a (monotonic) abstraction function

α : ℘(D)→ Dα

s.t. α(d) = λ if λ is the “least” element of Dα that describes d

(under a suitable ordering defined on the elements of Dα)E.g., in the “signs” example,

α({1, 2, 3}) = [+] (and not ⊤)
α({−1,−2,−3}) = [−] (and not ⊤)
α({0}) = [0]

α({−1, 0, 1}) = ⊤

• λ ∈ Dα safely approximates d ∈ D iff d ⊆ γ(λ)#
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Abstract Meaning and Safety

• We can now define an abstract meaning function as

Fα : Dα → Dα

which is then safe if
∀λ, λ ∈ Dα, γ(Fα(λ)) ⊇ F ∗P (γ(λ))
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• We can then prove a property of the output of a given class of inputs represented
by λ by proving that all elements of γ(Fα(λ)) have such property

• E.g., in our example, a property such as “if this program takes a positive number it
will produce a negative number as output” can be proved
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Proving properties in the abstract

• Generating Fα:

⋄ FP obtained from program and predefined semantics of operators
P = (x+z)*3 ⇒ FP = (x + z) ∗ 3
⋄ Automatic analysis: Fα should be obtainable from the program given

* the abstract domain (odd, even, ...α, γ) and
* abstractions of the operations in the language (+α, ∗α, ...)
⇒ Fα = (x +α z) ∗α odd (compositional properties)

• Proving:
“If P takes a positive number it will produce a negative number as output”

⋄ P : y=x*-3

⋄ FP : y = x ∗ −3
⋄ Fα : y = x ∗α α(−3) = x ∗α [−]

⋄ Fα([+]) = [+] ∗α [−] = [−]
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Program Points, Collecting Semantics

• “Input-output” semantics often too coarse for useful analysis: information about
“state” at program points generally required→ “extended semantics”

• Program points can be reached many times, from different points, and in different
“states”→ “collecting” (“sticky”) semantics
E.g., assume that for y=x*-3; we have two possible pre- and post-states:

{x > 3} y=x*-3; {y < −9} or {x < −3} y=x*-3; {y > 9}{x = [+]} y = x ∗ [−] {y = [−]} or {x = [−]} y = x ∗ [−] {y = [+]}

• Analysis can obtain a collection of abstract states for a given program point :

{x = {[+], [−]}} y = x ∗ −3 {y = {[−], [+]}}

• Also, consider if( x>=0 ) then { y=1; } else { y=-1; }
Analysis may also infer y = {[−], [+]} if sign of x unknown.

• We can use Dα = ℘(D) or represent a set of abstract states with one which gives
the best overall description→ lattice structure in abstract domain

{x = ⊔{[+], [−]}} y = x ∗ −3 {y = ⊔{[−], [+]}}
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Lattice Structure

• The ordering on ℘(D), ⊆, induces an ordering on Dα, ≤α (“approximates better”)

⋄ E.g., we can choose either α({1, 2, 3}) = [+] or α({1, 2, 3}) = ⊤,
but γ([+]) = {x ∈ Z|x > 0} and γ(⊤) = Z, and
{x ∈ Z|x > 0} ⊆ Z so [+] ≤α ⊤,
i.e., [+] approximates better than ⊤, it is more precise

• It is generally required that (Dα,≤α) be a complete lattice This means that, for all
S ⊆ Dα there exists a unique least upper bound ⊔S ∈ Dα, i.e., s.t.

⋄ ∀λs ∈ S, λs ≤α ⊔S
⋄ ∀λs ∈ S, λs ≤α λ⇒ ⊔S ≤α λ

• Intuition: given a set of approximations of the “current state” at a given point in a
program, to ensure that it is the best “overall” description for the point:

⋄ ⊔S approximates everything the elements of S approximate
⋄ ⊔S is the best approximation in Dα
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Example: integer sign arithmetic

• We consider Dα = {[−], [0], [+],⊤}

⋄ We add ⊥ (infimum) so that α(∅) exists and to have a complete lattice:
Dα = {⊥, [−], [0], [+],⊤}
(Intuition: it represents a program point that is never reached)
⋄ The concretization function has to be extended with

γ(⊥) = ∅
⋄ The lattice is then given by:

!!!!!!!!!!aaaaaaaaaa

aaaaaaaaaa

!!!!!!!!!!

[+][0][−]

⊥

⊤

and ⊔{[+], [−]} = ⊔{[−], [+]} = ⊤
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Example: integer sign arithmetic (Contd.)

• To make ⊔ more meaningful we consider Dα = {⊥, [−], [0−], [0], [0+], [+],⊤}
γ(⊥) = ∅ γ(⊤) = Z

γ([−]) = {x ∈ Z|x < 0} γ([+]) = {x ∈ Z|x > 0} γ([0]) = {0}
γ([0−]) = {x ∈ Z|x ≤ 0} γ([0+]) = {x ∈ Z|x ≥ 0}

• The lattice is then given by: ⊔{[+], [−]} = ⊤?
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• ⊔{[−], [0]} = [0−]

accurately represents a program point where a variable can be negative or zero
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The Galois Insertion Approach

• In the following, we will refer to ℘(D) simply as D

• Assume: D and Dα are complete lattices;
γ : Dα → D and α : D → Dα are monotonic functions.

A structure (Dα, γ,D, α) is called a Galois Insertion if:

⋄ ∀λ ∈ Dα.λ = α(γ(λ))

⋄ ∀d ∈ D.d ⊆ γ(α(d))

• If both α and γ are defined, then, for the given framework, there is always a best
safe approximate semantic function

Fα = α ◦ F ◦ γ

Fα(d) = α(F (γ(d)))

(not always true if the requirement that α exist is dropped)
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Abstracting fixpoint-based semantics

• So far we have not talked about loops or recursion...

• Because of them, the program semantics JP K is often given as a least fixpoint
lfp (F ): the least S s.t. S = F (S)

(with F the program-dependent semantic function in the concrete domain D)

⋄ E.g., in the case of logic programs this applies to the TP operator (see later)

• How do we approximate JP K = lfp (F ) by operating in the abstract domain?

⋄ Is there a relationship between this fixpoint in the concrete domain and some
fixpoint of the abstract semantic function Fα

(which approximates F and operates on elements of the abstract domain Dα)

• Fundamental Theorem [Cousot]:

Given a Galois insertion (Dα, γ,D, α), and
two (monotonic) functions F : D → D and Fα : Dα → Dα, then
if Fα approximates F , lfp (Fα) approximates lfp (F )
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Termination: conditions on Fα and Dα

• An important related question is whether lfp (Fα) is finitely computable

• Fα operates on elements of the abstract domain Dα,
which we have required to be a complete lattice,
and Fα is monotonic

• Kleene’s theorem guarantees that:
lfp Fα = Fα↑n
I.e., we can obtain lfp Fα by applying Fα repeatedly to itself
but the sequence can in general be infinite.

• However, we want any static analysis to terminate in finite time,
i.e., we would like the Kleene sequence to be finite.

• Some sufficient conditions for the Kleene sequence to be finite:

⋄ Dα is finite
⋄ Dα is ascending chain finite
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Lattice Structures
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Termination: Discussion

• Showing monotonicity of Fα may be more difficult than showing that Dα meets the
finiteness conditions

• There may be an Fα which terminates even if the conditions are not met

• Conditions may also be relaxed by restricting the class of programs (e.g.,
non-recursive/non-looping programs pose few difficulties, although they are
hardly interesting)

• In some cases an approximation from above (gfp (Fα)) can also be interesting

• There are other alternatives to finiteness: dynamic bounded depth, etc.
(See: Widening and Narrowing)
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Origins (General Programming)

• The idea itself (i.e., rule of signs) predates computation...

• The idea of computing by approximations was used as early as 1963 by Naur
(“pseudo evaluation”, in the Gier Algol compiler),
“a process which combines the operators and operands of the source text in the manner in which an actual evaluation

would have to do it, but which operates on descriptions of the operands, not on their values”

• 1972: Sintzoff (proving well-formedness and termination properties)

• 1975: Wegbreit appears to be the first to develop a lattice-theoretic model

• Mid 70’s: Kam, Kindall, Tarjan, Ullman, ...
• 1976,77: Patrick and Radhia Cousot proposed a formal model for the analysis of

imperative (“flowchart”) languages: unifying framework
⋄ Define a “static” semantics: associate a set of possible storage states with each program point
⋄ Dataflow analysis constructed then as a finitely computable approximation to the static

semantics

• 1980’s/90’: Application in actual compilers and much progress within (C)LP

• 2000s onwards: Wide application across programming paradigms
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Analyzing Logic Programs

• Why logic programs?

⋄ Because it is a very cool programming paradigm
⋄ Because if you can analyze full Prolog well you know how to analyze any

language
⋄ Because if you have an analyzer for full Prolog you can analyze any language

with it (cf., “transformation to Horn clauses”)

(This idea was the basis of the CiaoPP analyzer and is quite popular today)
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Analyzing Logic Programs

• Which semantics?

⋄ Declarative semantics: what are the logical consequences of the program
* Model-theoretic semantics
* Fixpoint (TP operator-based) semantics

can in some cases be what the program actually does
(cf. database-style bottom-up evaluation, Datalog, ASP, ...)
⋄ Operational semantics: close to the behavior of the program

* SLD-resolution based (success sets)
* Denotational
* Can cover possibilities other that SLD: reactive, parallel, ...

• Analyses based on declarative semantics typically called “bottom up” analyses
• If based on (top-down) operational semantics often called “top-down” analyses

• Also, intermediate cases:
e.g., “magic sets” transformation, “top-down driven bottom-up” (PLAI), ...
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Case Study: LP Fixpoint Semantics

• Given the first-order language L associated with a given program P , the Herbrand
universe (U ) is the set of all ground terms of L.

• The Herbrand Base (B) is the set of all ground atoms of L.

• A Herbrand Interpretation is a subset of B.
I is the set of all Herbrand interpretations (℘(B)).

• A Herbrand Model, H, is a Herbrand interpretation which contains all logical
consequences of the program.

• The Immediate Consequence Operator (TP ) is a mapping TP : I → I defined by:

TP (M) = {h ∈ B | ∃C ∈ ground(P ), C = h← b1, ..., bn and b1, . . . bn ∈M}

(in particular, if (a←) ∈ P , then ground(a) ⊆ TP (M), for every M ).

• TP is monotonic, so it has a least fixpoint lfp(TP ) which can be obtained as TP ↑ω
starting from the bottom element of the lattice (the empty interpretation, ∅).

• (Characterization Theorem) [Van Emden and Kowalski]:
The Least Herbrand Model of P , H is lfp (TP )
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LP Fixpoint Semantics: Example

• Example:

P = { p(f (X))← p(X).

p(a).

q(a).

q(b). }

U = {a, b, f (a), f (b), f (f (a)), f (f (b)), . . .}
B = {p(a), p(b), q(a), q(b), p(f (a)), p(f (b)), q(f (a)), . . .}
I = all subsets of B

H = {q(a), q(b), p(a), p(f (a)), p(f (f (a))), . . .}

TP ↑0 = {p(a), q(a), q(b)}
TP ↑1 = {p(a), q(a), q(b), p(f (a))}
TP ↑2 = {p(a), q(a), q(b), p(f (a)), p(f (f (a)))}
. . .

TP ↑ω = H

But infinite in the general case...
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“Bottom-up” Abstract Interpretation

• Objective: find a safe approximation of H by approximating lfp (TP )

• We apply directly the abstract interpretation technique:

⋄ Domain: Iα, s.t. elements of Iα approximate elements of I = ℘(B).
⋄ Concretization function: γ : Iα → I

⋄ Abstraction function: α : I → Iα

⋄ Operator abstraction: abstract version of the TP operator T α
P : Iα → Iα

⋄ Correctness:
* (Iα, γ, I, α) should be a Galois insertion, i.e., , Iα complete lattice and it

should approximate I: ∀M ∈ I, γ(α(M)) ⊇M

* T α
P safe approximation of TP , i.e., ∀d, d ∈ Iα, γ(T α

P (d)) ⊇ TP (γ(d))

⋄ Termination:
* T α

P monotonic.
* Iα (at least) ascending chain finite.

• Then, Hα = lfp (T α
P ) = T α

P ↑n will be obtained in a finite number of steps n

and Hα will approximate H.
32



“Bottom-up” Abstract Interpretation (Contd.)
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Such “bottom-up” analyses have been proposed for example by Marriott and
Sondergaard; Codish, Dams, and Yardeni; Debray and Ramakrishnan; Barbuti,
Giacobazzi, and Levi; and others.
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Example: simple “type” inference

• Minimal “type inferencing” problem [Sondergaard]:
Approximating which predicates are in H (“reachability”)

• pred(a): denotes the predicate symbol for an atom a

E.g., predp(a, b) = p.

• Bα = S (set of predicate symbols in a program P )
Then Iα = ℘(S), we call it S∗

• Concretization function:
γ : S∗ → I

γ(D) = {a ∈ B | pred(a) ∈ D}

• Abstraction function:
α : I → S∗

α(M) = {p ∈ S | ∃a ∈M, pred(a) = p}

• (S∗, γ, I, α) is a Galois insertion
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Example: simple “type” inference (Contd.)

• Abstract version of TP (after some simplification):
T α
P : S∗ → S∗

T α
P (D) = { p ∈ S | ∃C ∈ P,

C = h← b1, . . . , bn,

pred(h)← pred(b1), . . . , pred(bn) ≡ p← p1, . . . , pn,

and p1, . . . , pn ∈ D}

• S∗ finite (finite number of predicate symbols in program) and T α
P monotonic

→
analysis will terminate in a finite number of steps n and
Hα = T α

P ↑n approximates H.
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Example: simple “type” inference (Contd.)

• Example:

P = { p(f (X))← p(X). Pα = { p← p.

p(a). p.

r(X)← t(X, Y ). r ← t.

q(a). q.

q(b). } }

⋄ S = {p/1, q/1, r/1, t/2}
⋄ Abstraction:
α({p(a), p(b), q(a)}) = {p/1, q/1}
⋄ Concretization:

γ({p/1, q/1}) = {A ∈ B | pred(A) = p/1 ∨ pred(A) = q/1}
= {p(a), p(b), p(f (a)), p(f (b)), . . . , q(a), q(b), q(f (a)), . . .}

⋄ Analysis:
T α
P ↑0 = T α

P (∅) = {p/1, q/1}
T α
P ↑1 = T α

P ({p/1, q/1}) = {p/1, q/1} = T α
P ↑0 = Hα
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TP -based Bottom-up Analysis: Discussion

• Advantages:

⋄ Simple and elegant. Based on the declarative, fixpoint semantics
⋄ General: results independent of the query form

• Disadvantages:

⋄ Information only about “procedure exit.” Normally information needed at
various program points in compilation, e.g., “call patterns” (closures)
⋄ The “logical variable” (a.k.a, pointers) not observed (uses ground data).

Information on instantiation state, substitutions, aliasing, etc. often needed in
compilation
⋄ Not query-directed: analyzes whole program, not the part (and modes) that

correspond to “normal” use (expressed through a query form)
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TP -based Bottom-up Analysis: Discussion (II)

• Solutions:

⋄ Call patterns obtainable via “magic sets” transformation
[Marriott and Sondergaard]
Used also for query-directed analysis by [Barbuti et al.], [Codish et al.],
[Gallagher et al.], [Ramakrishnan et al.], and others
⋄ Enhanced fixpoint semantics

(e.g, S-semantics [Falaschi et al.], [Gaifman and Shapiro])
⋄ Performing top-down analysis
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“Top-down” analysis (summarized)

• Define an extended (collecting) concrete semantics, derived from SLD resolution,
making relevant information observable.

• Abstract domain: generally “abstract substitutions”.

• Abstract operations: unification, composition, projection, extension, ...

• Abstract semantic function: takes a query form (abstraction of initial goal or set of
initial goals) and the program and returns abstract descriptions of the
substitutions at relevant program points.

• Variables complicate things:

⋄ correctness (due to aliasing),
⋄ termination (merging information related to different renamings of a variable)

• Logic variables are in fact (well behaved) pointers:
X = tree(N,L,R), L = nil, Y = N, Y = 3, ...

this makes analysis of logic programs very interesting
(and quite relevant to other paradigms).
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Domains

• Simple domains [Mellish,Debray], e.g.:
{ ground, don’t know, empty, free, non-var }
(e.g., f (a), ?, ⊥, X, f (X))

• May need to be very imprecise to be correct:

:- entry p(X,Y) : ( var(X), var(Y) ).

p(X,Y) :-

q(X,Y),

X = a.

q(Z,Z).

this is the classic pointer aliasing problem!

• Correct/more accurate treatment of aliasing [Debray]:
associate with a program variable a pair
< abstraction of the set of terms the variable may be bound to ,

set of program variables it may “share” with >.
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Domains: Pair Sharing

• More accurate sharing – pair sharing [Sondergaard] [Codish]:
pairs of variables denoting possible sharing.

:- entry p(X,Y) : ( var(X), var(Y) ).

p(X,Y) :-

q(X,Y), % { X=f, Y=f } and { (X,Y) }

X = a. % { X=g, Y=g } and { (X,Y) }

q(Z,Z).

• Note: we have used a “combined” domain: simple modes plus pair sharing

• Pair sharing can encode linearity: (x, x)

:- entry p(X,Y) : ( var(X), var(Y) ).

p(X,Y) :-

q(X,Y), % { X=f, Y=f } and { (X,Y) }

W = f(X,Y). % { W=nv, X=f, Y=f } and { (W,W), (X,Y) }

q(Z,Z).
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Domains: Set Sharing

• Even more accurate sharing – set sharing [Jacobs et al.] [Muthukumar et al.]:
sets of sets of variables.
θ = {W/a,X/f (A1, A2, A3), Y/g(A2), Z/A3}
θα = {∅, {X}, {X, Y }, {X,Z}}

• A bit tricky to understand. Try:
{X} {X, Y } {X,Z}
A1 A2 A3

θ = {W/a,X/f (A1, A2, A3, B1), Y/g(h(A2, B1)), Z/A3}
θα = {∅, {X}, {X, Y }, {X,Z}}
{X} {X, Y } {X,Z}
A1 A2 +B1 A3

• Encodes groundness, grounding dependencies, and variable independence

⋄ W has no ocurrence in any set: it is ground
⋄ {Y, Z} has no ocurrence in any set: they are independent
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Many other domains

• Sharing+Freeness [Muthukumar et al.] (and + depth-K)

• Type graphs [Janssens et al.] [Vuacheret and Bueno, eterms]

• Depth-K [Sato and Tamaki]

• Pattern structure [Van Hentenryck et al.]

• Variable dereferencing [VanRoy] [Taylor]

• ...

• Plus all the work on numerical domains (intervals [Halbwachs,Cousot], polyhedra,
octagons, floating point, ...), arrays, etc.

• Much work by [Codish et al.] [File et al.] [Giacobazzi et al.] ... on combining and
comparing these domains
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Frameworks

• Predicate level mode inference (call and success patterns for predicates).
Unification reformulated as entry + exit unification. Termination by tabling.
[Debray et al.]

• Bruynooghe:

⋄ Concrete semantics constructs “generalized” AND trees: nodes contain
instance of goal before and after execution: call substitution and success
substitution.
⋄ Analysis constructs “abstract AND-OR trees”. Each represents a (possibly

infinite) set of (possibly infinite) concrete trees. Widening to regular trees for
termination.

• Muthukumar and Hermenegildo: “PLAI” (the “top-down algorithm.”)
Improvement over previous frameworks: Efficient fixpoint algorithms (dependency
tracking) and memory savings (no explicit representation of trees).

Framework is generic: parametric on some basic domain related functions +
conditions for correctness and termination.
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Abstract AND-OR Tree

• Tree exploration: ?- p. h:- p1,...,pn.

p

h1 hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

h

p1 pnλ1 λ2 λn λn+1......

(a) (b)

• Basic operations:

⋄ Procedure entry: from λcall obtain β1entry

⋄ Entry-to-exit (b): from β1entry obtain β1exit

⋄ Clause entry: from β1entry obtain λ1 (and clause exit)
⋄ Body traversal: from λ1 obtain λn+1 (iteratively applying (a))
⋄ Procedure exit: from (each or all of the) βiexit obtain λsuccess
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Fixpoint Optimization

• Fixpoint required on recursive predicates only:

p

p

λ λ′

λ λ′

....

....

....

....

.

.

.

δ   q   δ′

δ   q   δ′

λ   p   λ′

(a) (b)

• Simply recursive (a)

• Mutually recursive (b)

“Use current success substitution and iterate until a fixpoint is reached”

46



Analysis of Constraint Logic Programs

• CLP: (relation-based) programs over symbolic and non symbolic domains:
constraint satisfaction instead unification (e.g. CLP(R), PrologIII, CHIP, etc.)

• Jorgensen, Marriott, and Michaylov [ISLP’91] and later Marriott and Stuckey
[POPL’93] identified numerous opportunities for improvement via static analysis

• A number of proposals for analysis frameworks:

⋄ Marriott and Sondergaard [NACLP90]:
denotational approach
⋄ Codognet and Filé [ICPL92]:

uses constraint solving for the analysis itself and “abstract compilation”
⋄ G. de la Banda and Hermenegildo [WICLP’91,ILPS’93]:

Show that specialized frameworks are not necessary and LP frameworks
(and PLAI in particular) can be used.
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Analysis of Constraint Logic Programs (Contd.)

• Example: Definiteness analysis (Def) [G. de la Banda et al.]
Domain: Def = {d, ℘(℘(Pvar)),⊤})

X = Y + Z ⇒ [(X, [[Y, Z]]), (Y, [[X,Z]]), (Z, [[X, Y ]])]

X = f (Y, Z) ⇒ [(X, [[Y, Z]]), (Y, [[X ]]), (Z, [[X ]])]

X :: N ⇒ [(X,⊤), (N, [[X ]])]

X > Y ⇒ [(X,⊤), (Y,⊤)]
X = 3 ⇒ [(X, d)]

• Other analyses:

⋄ Freeness analysis [Dumortier et al.] and combinations.
⋄ LSign [Marriott, Sondergaard and Stuckey, ILPS’94]

• Applications:

⋄ optimization [Keely et al., CP’96]
⋄ parallelization [Bueno et al., PLILP’96]
⋄ ...
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Origins (Declarative Paradigms, to CLP)

• A few milestones (on the road to CLP analysis):

⋄ 1981, Mycroft: strictness analysis of applicative languages
⋄ 1981, Mellish: proposes application to logic programs
⋄ 1986, Debray: framework with safe treatment of logic variables, discussion of

efficiency
⋄ 1987, Bruynooghe: framework for LP based on and-or trees
⋄ 1987, Jones and Sondergaard: framework based on a denotational definition

of SLD
⋄ 1988, Warren, Debray and Hermenegildo: Ms and MA3 practicality of Abs. Int.

for Logic Programs shown (for program parallelization). Abstract compilation.
⋄ 1989, Muthukumar, Hermenegildo: PLAI framew. (the “top-down algorithm”).
⋄ 1990, Van Roy / Taylor: application to sequential optimization of Prolog
⋄ 1991, Marriott et al.: first extension to CLP
⋄ 1992, Garcia de la Banda and Hermenegildo: generalization of Bruynooghe’s

algorithm to CLP, extension of PLAI
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Conclusions

• Abstract Interpretation is a very elegant program analysis technique

• It has in addition been proved useful and efficient. E.g., for LP and CLP:

⋄ Parallelization of logic (and CLP) programs [Hermenegildo et al]
⋄ (Sequential) program optimization [Taylor, VanRoy, ...]
⋄ Optimization of CLP programs [Marriott et al, ...]
⋄ Abstract debugging, etc.

• Demo!
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