
Computational Logic

Concurrent (Constraint) Logic Programming

1

Concurrent Logic Programs

• Predicate: Set of clauses

• Clause: Head :- Guard | Body.
� Head is an atom
� Guard and Body are conjunctions of atoms

• Resolvent: Set of goals (instances of atoms)

• Operational semantics: rewrite a goal in the resolvent with one of the clauses in
the matching predicate definition

• Concurrency:

� “No” goal selection rule (i.e., concurrent selection rule)
� “No” clause search rule (i.e., concurrent search rule)

2

Synchronization Rules

• Clause matching: Head +Guard.

� Head matches the goal
� Guard is successful

• A head matches a goal if the goal is an instance of the head

• A guard is executed in one-way unification mode

• Suspension: if a head does not match the goal, but it could do so in the future,
then it suspends

3

An Example

p(X):- X = a | r.

p(X):- X = b | s.

q(X):- true | X = b.

?- p(X), q(X).

• There is no ordering in the execution of 〈 p(X), q(X) 〉

• There is no ordering in the execution of clauses of p(X)

• Clauses of p(X) suspend

• The clause of q(X) continues (“commits”)

• Then, q(X) instantiates {X/b} in the body

• The second clause of p(X) continues (“commits”),
while first clause fails.

4

Logic vs. Concurrent Logic Programming

• The logical variable as a communication channel

Logic Concurrent Logic
shared logical variable communication channel

instantiation communication
head unification synchronization

• Unification Revisited:

� One-way (Read-only) unification — Ask

* in Head and in Guard
� Two-way (Output) unification — Tell

* only in Body
� Suspension:

* Due to read-only unification in clause selection

5

Logic vs. Concurrent Logic Programming

• Commited-choice: clause selection is irrevocable

• No backtracking allowed

Logic Concurrent Logic
cut commit

“don’t know” (“don’t care” non-determinism)
non-determinism indeterminism

search selection

• Guards:

� Flat guards: only selected predicates in guards
* (Special) builtins
* Possibly also facts

� Deep guards: calls to any predicate allowed in guards
* User-defined predicates, too

6

Logic vs. Concurrent Logic Programming

• Goals as processes:

Logic Concurrent Logic
atomic goal process

goal (set of atoms) process network
clause process instruction

• Process Behaviour:

� Change state of process network:
* Become a new process: A :- G | B.
* Become k concurrent processes: A :- G | B1...Bk.

� Halt: A :- G | true.
� Change state of data: A :- G | ...A.

• Some syntactic sugar:

� A :- G | true.⇔ A :- G | .
� A :- true | G.⇔ A :- | G.⇔ A :- G.
� A :- true | true.⇔ A.

7

Process Behaviour Examples

• Become a new process: A :- G | B.
p(X):- X=f(a,Y) | q(Y).

• Become k concurrent processes: A :- G | B1...Bk.

p(X):- X=f(A,B,C) | q(A), r(B), s(C).

• Halt: A :- G | .
p(X):- X=f(a) |.

• Change state of data: A :- G | . . . A.
p(X):- X=f(a,Y) | Y=f(b,Z), p(Z).

p(I,S):- I=[H|NI], int(H) | NS is S+H, p(NI,NS).

8

Incomplete Messages

• Back-communication:

?- q(X), p(X).

p(X):- X=f(a,Y), check(Y).

check(ok).

q(f(X,Y)):- X=a | Y=ok.

9

Incomplete Messages (Contd.)

• Dialogue:

?- q(X), p(more(X)).

p(more(X)):- X=f(a,Y), p(Y).

p(more(X)):- X=f(b,Y), p(Y).

p(ok).

q(f(X,Y)):- X=b | Y=more(Z), q(Z).

q(f(X,Y)):- X=a | Y=ok.

• Network formation and reconfiguration:

?- q(A), p(A).

p(A):- A=channels(X,Y,Z), p1(X), p2(Y), p3(Z).

q(channels(X,Y,Z)):- q1(X), q2(Y), q3(Z).

10

The Logical Variable

• A shared variable acts like:

� A communication channel to send a message
� A shared location being accessed concurrently

• Equivalences/conceptual view:

� One shared variable = One message
� Instantiation = Sending a message
� Partially instantiated term = incomplete message = open channel
� Ground term = complete message = closed channel
� Recursive term = stream of messages

• Incomplete structures: an incomplete message can be thought of as:

� A message being incrementally sent
� An open communication channel
� A message with sender’s identity
� A structure being co-operatively constructed

11

Streams of Messages

• A stream producer

naturals(N,Is):- Is=[N|Is1], N1 is N+1, naturals(N1,Is1).

• A stream consumer

sum([N|Is],Tmp,Sum):- N>=0 | TN is Tmp+N, sum(Is,TN,Sum).

• Producer/Consumer (asynchronous)

?- naturals(0,I), sum(I,0,Total).

• Producer/Consumer on demand (synchronous)

?- naturals(0,I), sum(I,0,Total), I=[_|_].

naturals(N,[I|Is]):- I=N, N1 is N+1, naturals(N1,Is).

sum([N|Is],Tmp,Sum):- N>=0 | Is=[_|_], TN is Tmp+N, sum(Is,TN,Sum).

• Key issue: who produces the buffer?

12

Merging and Dispatching Streams
• A stream merger:

merge([X|Xs],Ys,Out):- Out=[X|Zs], merge(Xs,Ys,Zs).

merge(Xs,[Y|Ys],Out):- Out=[Y|Zs], merge(Xs,Ys,Zs).

merge([],Ys,Out):- Out=Ys.

merge(Xs,[],Out):- Out=Xs.

• A (copying) stream dispatcher?
dispatch([X|Xs],Out1,Out2):- Out1=[X|Ys], Out2=[X|Zs], dispatch(Xs,Ys,Zs).

dispatch([],Out1,Out2):- Out1=[], Out2=[].

• A (caotic) stream dispatcher:
dispatch([X|Xs],Out1,Out2):- Out1=[X|Ys], dispatch(Xs,Ys,Out2).

dispatch([X|Xs],Out1,Out2):- Out2=[X|Ys], dispatch(Xs,Out1,Ys).

dispatch([],Out1,Out2):- Out1=[], Out2=[].

• A stream dispatcher with senders’ identities
dispatch([mess(1,X)|Xs],Out1,Out2):- Out1=[X|Ys], dispatch(Xs,Ys,Out2).

dispatch([mess(2,X)|Xs],Out1,Out2):- Out2=[X|Ys], dispatch(Xs,Out1,Ys).

dispatch([],Out1,Out2):- Out1=[], Out2=[].

13

Fairness

“An event that may occur will eventually occur”

• Or-Indeterminism: clause selection⇒ Or-Fairness (clauses eventually selected)

• And-Indeterm.: goal reduction⇒ And-Fairness (allows non-terminating procs.)

• A stream merger:

merge([X|Xs],Ys,Out):- Out=[X|Zs], merge(Xs,Ys,Zs).

merge(Xs,[Y|Ys],Out):- Out=[Y|Zs], merge(Xs,Ys,Zs).

merge([],Ys,Out):- Out=Ys.

merge(Xs,[],Out):- Out=Xs.

Key: or-fairness required, otherwise it is just append!

• An eager producer:

naturals(N,Is):- | Is=[N|Is1], N1 is N+1, naturals(N1,Is1).

?- naturals(0,I), sum(I,0,Total).

Key: and-fairness required, otherwise nothing is ever consumed!

14

Termination Issues

• Non–terminating (but running) processes:

?- naturals(I), sum(I,Total), I=[_|_].

naturals(I):- naturals(0,I).

naturals(N,[I|Is]):- | I=N, N1 is N+1, naturals(N1,Is).

sum(I,Total):- sum(I,0,Total).

sum([N|Is],Tmp,Sum):- N>=0 | Is=[_|_], TN is Tmp+N, sum(Is,TN,Sum).

15

Termination Issues (Contd.)

• Deadlock:

?- q(X), p(X).

p(more(X)):- X=f(a,Y), p(Y).

p(more(X)):- X=f(b,Y), p(Y).

p(ok).

q(f(X,Y)):- X=b | Y=more(Z), q(Z).

q(f(X,Y)):- X=a | Y=ok.

16

Bounded-Size Communication Media

• Producer/Consumer with fixed sized communication (e.g., size=4) and
termination:

?- naturals(0,I), sum(I,0,Total), I=[_1,_2,_3,_4].

naturals(N,[I|Is]):- | I=N, N1 is N+1, naturals(N1,Is).

naturals(N,[]).

sum([N|Is],Tmp,Sum):- N>=0 | TN is Tmp+N,sum(Is,TN,Sum).

sum([],Tmp,Sum):- | Sum=Tmp.

Key: the communication media is produced from outside and fixed size!

• Dynamically-sized media:

?- naturals(0,I), sum(I,0,Total), medium(4,I).

medium(0,Stream) :- Stream = [].

medium(N,Stream):- N>0 |Stream=[_|Stream1], medium(N-1,Stream1).

17

Bounded-Buffer Communication
• Bounded buffer:
buffer(0,Stream,Tail):- Stream=Tail.

buffer(N,Stream,Tail):- N>0 | Stream=[_|Stream1], buffer(N-1,Stream1,Tail).

Creates buffer as open list of N elements, passes handle to list end

• Simple producer with termination at Max elements:
naturals(N,[I|Is],Max):- N<=Max | I=N, N1 is N+1, naturals(N1,Is,Max).

naturals(N,I,Max):- N>Max | I=[].

Suspended until buffer available. Closes buffer at Max elements

• Consumer:
sum([N|Is],Tail,Acc,Sum):- N>=0 |

Tail=[_|Tail1], NAcc is Acc+N, sum(Is,Tail1,NAcc,Sum).

sum([],Tail,Acc,Sum) :- Acc = Sum.

Suspended until buffer and element available. Adds one more element to the
buffer for each element consumed.

• Usage (e.g., for buffer length = 18, termination at 1000 elements):
?- naturals(0,Buffer,1000), sum(Buffer,Tail,0,Total), buffer(18,Buffer,Tail).

18

Bounded-Buffer Communication (Contd.)

• Overall effect is still asynchronous!

• Producer can get ahead of consumer by a fixed number of elements. After that,
suspended on stream until Consumer requests more.

19

Streams of Messages: Protocols

• One-to-one communication:
One producer + One consumer

• Duplex communication:
Two producer/consumers

• Broadcast communication:
One producer + Many consumers

• Many-to-one communication:
Many producers + One consumer

• Blackboard communication:
Many producers + Many consumers:
Many producers/consumers

20

Broadcast Communication

• Matrix multiplication:

?- vector(V), matrix(M), vm(V,M,Result).

vm(_,[],Zv):- Zv=[].

vm(Xv,[Yv|Ym],Zv):- Zv=[Z|Zv1],

vv(Xv,Yv,Z),

vm(Xv,Ym,Zv1).

vv(Xv,Yv,P):- vv1(Xv,Yv,0,P).

vv1([],[],S,P):- P=S.

vv1([X|Xv],[Y|Yv],S,P):- S1 is S+X*Y |

vv1(Xv,Yv,S1,P).

• Broadcasting of V to all vv/3 processes

• Dynamically configured network of vv/3 processes

21

Many-to-one Communication

• A data abstraction: queues

queue([dequeue(X)|S],Head,Tail):-

Head=[X|NewHead],

queue(S,NewHead,Tail).

queue([enqueue(X)|S],Head,Tail):-

Tail=[X|NewTail],

queue(S,Head,NewTail).

queue([],_,_).

22

Many-to-one Communication (Contd.)

• A simulator of a multiprocessor machine

?- processors(10,Job), Job=...

processors(N,X):-

queue(S,[X|Xs],Xs),

processors(1,N,S).

processors(N,N,S):-

processor(N,idle,S).

processors(N1,N4,S):-

N2 is (N1+N4)/2 | N3 is N2+1,

processors(N1,N2,S1),

processors(N3,N4,S2),

merge(S1,S2,S).

• N processor/3 proc. communicating with one queue/3 proc.

• Statically configured network of proc.: spawning / computing phases (“systolic”)

23

Many-to-many Communication

• A network of producers and consumers

?- consumers(Buffer), producers(Buffer).

producers(Stream):- p1(X), p2(Y), p3(Z),

merge(X,Y,Stream1), merge(Z,Stream1,Stream).

consumers(Stream):- c1(Stream), c2(Stream), c3(Stream).

p1(S):- S=[message(1,Mess)|Xs], produce(Mess), p1(Xs).

p1(S):- S=[].

c1([X|Xs]):- X=message(1,Mess) | consume(Mess), c1(Xs).

c1([X|Xs]):- X=message(Id,Mess), Id=\=1 | c1(Xs).

c1([]).

• Blackboard Communication:

� Needed driver for the blackboard

24

Operational Semantics

• Rewriting system

match(A,A′) =


θ if A = A′θ mgu(A,A′) = θ

fail if mgu(A,A′) = fail

suspend otherwise

try(A, (A′ ← G | B)) =



θ if match(A,A′) = θ∧
check(Gθ) = true

fail if match(A,A′) = θ ∧
check(Gθ) = fail ∨
match(A,A′) = fail

suspend otherwise

25

Operational Semantics (Contd.)

• Reduction: A1...Ai...An; θ → (A1...B1...Bk...An)θ
′
; θ ◦ θ′

if ∃C = A← G | B1...Bn s.t. try(Ai, C) = θ
′

• Failure: A1...Ai...An; θ → fail; θ

if ∀C try(Ai, C) = fail

• Guard checking:

� Flat guards: use match in all unifications
� Deep guards: copy environment

26

(Some) Concurrent Logic Languages

• Parlog [Clark, Gregory 83]

� mode declarations for input/output arguments
� safe clauses: output instantiation in guards is an error
� one-way unification in guards

• Concurrent Prolog [Shapiro 84]

� read-only annotation of variables in calls
� local environments for guards
� atomic extended head unification

• GHC (Guarded Horn Clauses) [Ueda 85]

� different interpretation of unification in guard and body
� suspension on output instantiation in guards
� general unification with guard restriction

27

(Some) Concurrent Logic Languages (Contd.)

• Implementation Issues:

� Parlog
* compile-time safety check

� Concurrent Prolog
* support for local environments
* detection of inconsistency with global environment

� GHC
* identification of variables on which to suspend

• Problems: no backtracking.

• More Recent Systems:

� Andorra-I: only deterministic computations proceed.
� AKL: goals execute in a local environment.
� BinProlog: communication through blackboard.
� CIAO: communication through shared database.

28

