
School of Computer Science (FI) Technical University of Madrid (UPM)

Computational Logic

Introduction to Prolog Implementation:
The Warren Abstract Machine

(WAM)

(Text derived from the tutorial at the 
1989 International Conference

on Logic Programming )



School of Computer Science (FI) Technical University of Madrid (UPM)

Evolution of the WAM:

1974 Battani-Meloni Interpreter Structure-sharing
Marseille Prolog in Fortran

↓
1977 DEC-10 Prolog Compiler to Structure-sharing,
Edinburgh ↓ native code multiple stacks:

recovery of storage 
↓→ Icot Machine (PSI) on det. ret., TRO, cut
↓
Portable Prolog Compiler [Bowen et. al] ...
↓

1983 "Old Engine" compiler to structure copying,
SRI ↓ abstract machine goal stacking

↓ code + emulator
↓

1983/4 "New Engine" compiler to structure copying,
SRI (WAM) abstract machine environment stacking,

↓ code + emulator env. trimming, 
↓ → SW → Quintus, SICStus, BIM, ALS, LPA, etc.
↓ → HW → Tick/Warren "overlapped Prolog processor,"
↓ Berkeley PLM, NEC HPM, ECRC, etc.
↓ → Multiprocessor implementations (RAP-WAM, SRI, ...).
...

WAM [Warren 83]: A series of compilation techniques and run-
time algorithms which attain high execution speed and storage ef-
ficiency. 

Format: abstract machine, i.e. instruction set + storage model.

[Hogger 84, Maier & D.S. Warren 88, Ait-Kaci 90] 
"Up to and including the WAM"
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Fundamental Operations:

Procedure control

• calling procedures
• allocating storage
• returning
• tail (last call) recursion

Parameter passing / unification

• unification (customized)
• loading and unloading of parameter registers
• variable classification
• variable binding / trailing

Choice points, failure, backtracking

• creation, update, and deletion of choice points
• recovery of space on backtracking
• unbinding of variables

Indexing

• on parameter type (tag = var, struct, const, list...)
• on principal functor / constant (hash table)

Other

• cut
• arithmetic
• etc.
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Functions performed and elements perform-

ing them:

¤ Parameter Passing:

˚ Through argument registers

..., f(a), ...

..
put_constant  a,X1
call  f/1, ...

allows register allocation optimizations

¤ Unification:

˚ "Customization" (open coding)

˚ push-down list (PDL)

f(x) :- ...

get_var  Y1,X1
...

f(a) :- ...

get_constant  a,X1
...

AX0

AX1

AXn

PDL

PDL
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Functions performed and elements perform-

ing them:

¤ Code Storage and Sequencing:

˚ Code Space (a stack/heap)

˚ P: Program Counter

˚ CP: Continuation Pointer

..., f(a), ...

...
put_constant  a,X1
call  f/1,...

f(a).

get_constant  a,X1
proceed

P

CP
Code

WAM 
Instructions
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Functions performed and elements perform-

ing them:

¤ Global Data Storage: 

• The Heap (a stack/heap). Contains lists, structures, and
global variables.

˚ H: Top of Heap

˚ HB: Heap Backtrack pointer

˚ S: Structure Pointer (Read Mode)

Heap

H

HB

S

Lists and
Structures

Globalized 
Variables
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Functions performed and elements perform-

ing them:

¤ Local data storage + control (forward execution): 

• The Stack (a stack/heap). Contains environments and
choice points.

˚ A: Top of Stack (not required)

˚ B: Choice Point pointer

˚ E: Environment pointer

• Environments:

˚ Permanent (local) variables

˚ Control information

Stack

E

B

(A)

CP (parent CP)

Y1 Register

Yn Register

CE (Prev. En.)

(perm. vars.)

Environments
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Stack

E

B

(A)

N

AX1 

AXN

CP

TR

H

E

BP (Next. Alt.)

B’ (Prv. Ch.P.)

Choice Points

(arg. regs.)

S
T
A
T
E

Functions performed and elements perform-

ing them:

¤ Control (backtracking): 

• Choice Points: reside in the Stack.

˚ State of the machine at the time of entering an alternative

˚ Pointer to next alternative

• The Trail: 

˚ Addresses of variables which need to be unbound during
backtracking.

Trail

Variable 
Addresses
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AX1
AX2

AXn

P

CP

Heap

Stack

PDL

Trail

Code

PDL

E

B

H

HB

S

TR

(A)

WAM Storage Model

ARGUMENT AND
MACHINE REGS.

PROGRAM AND
DATA AREAS

CONTENTS OF
DATA AREAS

CP (parent CP)

Y1 Register

Yn Register

CE (Prev. En.)

N

AX1 

AXN

CP

TR

H

E

BP (Next. Alt.)

B’ (Prv. Ch.P.)

(perm. vars.)

WAM 
Instructions

Lists and
Structures

Globalized 
Variables

Variable 
Addresses

Environments

Choice Points

(arg. regs.)

S
T
A
T
E
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Data Types:

1.- Reference: represents variables.

2.- Constant: represents atoms, ints., ..

.

3.- Structure: represents structures
(other than lists).

4.- List: special case of structure.

<tag> <value>

ref

ref
Unbound var

Bound var
value

const a"a"

const foo / 3
const a
const b
const c

struct

"foo(a, b, c)"

const a
list •

const b
list •

const c
list [ ]

list

"[a, b, c]"

". (a, . ( b, . ( c, [ ] )))"
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Variable Classification:

• Permanent Variables: those which need to "survive"
across procedure calls. They live in the Stack ("Y" regis-
ters in the environment).

• Temporary Variables: all others, they are allocated in the
real registers ("AX" registers). 

• Global Variables: those which need to survive the envi-
ronment. They live in the Heap.

Permanent and Temporary variables correspond to the traditional
concept of local variables.

grandparent(X, Y):- parent(X, Z), parent(Z, Y).

temporary

permanent global ("unsafe")
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Variable Binding and Dereferencing:

1.- Binding a variable to a non-variable:

• Overwrite (trail if necessary).

2.- Binding a variable to another variable:

• Bind so that younger variables point to older variables

• Bind at end of dereferencing chain

• Variables in the Stack should point to the Heap (not oth-
erwise).

Accomplished with a simple address comparison (if data areas ar-
ranged correctly in memory).

Trailing:

Store in the Trail the address of a variable which is being bound
only if it is

• Before HB if in the Heap

• Before B if in the Stack
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Failure: (at "get," "unify," ...)

1.- Restore registers from current choice-point (machine
and AX registers)

2.- Get TR from Choice Point. Pop addresses from Trail
until TR. Set all these variables to "unbound" (fast)

3.- Begin execution of the next alternative at BP

Stack

E

B

(A)

N

AX1 

AXN

CP

TR

H

E

BP (Next. Alt.)

B’ (Prv. Ch.P.)

Choice Points

(arg. regs.)

S
T
A
T
E

Trail

Variable 
Addresses
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Unification Modes:

¤ Unification can perform two tasks (during execution of "unify"
instructions):

• Pattern matching → READ mode 

• Term construction → WRITE mode 

The decision is made dynamically:  "append"

append([X|L1], L2, [X|L3]) :- append(L1,L2,L3).

get_list A1 % [
unify_variable X4 %   X |
unify_variable A1 %        L1], L2, 
get_list A3 %                     [
... %                       ...

READ mode:  X4 := next arg. (from S);  (S++)
WRITE mode: X4 := ref to next arg (from H), which is 

initialized to "unbound";  (H++)

The same code for "append" has to do both tasks: READ and
WRITE. 

Mode must be preserved across instructions.
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Last Call Optimization:

An extension of tail recursion optimization:

• All storage local to a clause (i.e. the environment) is deal-
located prior to calling the last goal in the body.

• Turns tail recursions and last call mutual recursions into
real iteration: the stack doesn’t grow.

Example:

?:- a(3).

a(0).
a(N) :- b, c, NN is N-1, a(NN).

or
a(0).
a(N) :- b, c(N).
c(N) :- NN is N-1, a(NN).

Stack

E

. . .
Env. for a

(1, no LCO)

(1)

(2)

Env. for a

Env. for a

Stack

E

. . .
Env. for a

(2, no LCO)

Env. for c

Env. for a

Env. for c

Env. for a

Env. for c

Stack

E . . .

(1, 2, LCO)



School of Computer Science (FI) Technical University of Madrid (UPM)

Stack

E

B

"Environment Protection":

¤ Environments apparently deallocated can be preserved ("pro-
tected") by a Choice Point for reuse on backtracking:

a :- b, e.
b :- c.
c :- d, h.
c :- d.
d.
e :- fail.
h.

(2)

(1)

. . .

Choice Point

for c

Env. For c

Env. For b

Env. For a

(1)

Stack

. . .

Choice Point

for c

(Env. For b)

Env. For a

(2)

E

B

Stack

E

B

. . .

Env. for c

Env. for b

Env. for a

(3)

(3)
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Backtracking: Control and storage recovery

Heap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

E

. . .. . .
B

H

Trail

. . .

TR



School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

Backtracking: Control and storage recovery

Heap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

. . .. . .

BH

try

E

a1:

Trail

. . .

TR
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a1:

Backtracking: Control and storage recovery

Heap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

E

. . .. . .

BH

allocate

Env. for a1:

a1:

Trail

. . .

TR
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a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . 

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

. . . . . .. . .

H

try

b1:CP
bb2:

E

B

TR

Env. for b1:

allocate

b1:

Env. for a1:
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a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . fail

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

. . . . . .. . .

H

fail

CP
bb2:

E

B

TR

Env. for a1:
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a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . fail

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

. . . . . .. . .

H

try

b2:CP
bb3:

E

B

TR

Env. for b2:

allocate

b2:

Env. for a1:
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b1: b :- . . . fail

b2: b :- . . . fail

b3: b :- . . .

a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

?:- a.

CP
aa2:

. . . . . .. . .

H

fail

CP
bb3:

E

B

TR

Env. for a1:
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a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . fail

b2: b :- . . . fail

b3: b :- . . .

?:- a.

CP
aa2:

. . . . . .. . .

H

trust

b3:
E

B

TR

Env. for b3:

allocate

b3:

Env. for a1:
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The WAM Instruction Set (Simplified):

"put" instructions:

• transfer arguments to argument regs.

call / execute

• procedure invocation

allocate / deallocate

• create / discard environments

"get" instructions

• get arguments from argument registers,
unification ("customized"), failure

"unify" instructions

• full unification (read/write mode), failure

proceed

• return (success)

try / retry / trust

• create / update / discard choice points

cut

switch (indexing) instructions:

switch_on_term Lv,Lc,Ll,Ls    (jump on tag)
switch_on_constant   N,table  (hashing)
switch_on_structure  N,table  (hashing)
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WAM Code Example: append/3

append([],L,L).
append([H|T1],L2,[H|T2]):- append(T1,L2,T2).

------------------------------------------------------------------

procedure append/3

switch_on_term _951,_952,fail (const,list,struct) var

try                   3,_951
trust                _952

_951:
get_nil              X1 % [ ]
get_value         X2,X3 % L,L
proceed %

_952:
get_list             X1 % [
unify_variable   X4 %   H|
unify_variable   X1 %      T1],L2,
get_list             X3 % [
unify_u_value   X4 %   H|
unify_variable  X3 %       T2]
execute         append/3 %

end
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Prolog Program

WAM Code

68020 Code

68020 (SUN) WAM 

Bytecode

Interpreter

Compilation

Compilation

Interpretation

InterpretationOptimization

µprogrammed
host

WAM- Some Implementation Strategies:

Processor
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WAM- Some Implementation Strategies:

Bytecode interpreters

• written in ‘C’ (e.g. SICStus, SB-Prolog, &-Prolog, PLM,
Lcode, ...)

+ portability, small code size (≈ source)

- speed (but it can be quite good with appropriate optimi-
zations) (c.f. SICStus)

• written in assembler (e.g. Quintus Prolog)

+ speed (2x ‘C’ interpreter), small code size (≈ source)

- needs to be rewritten for each architecture

Compilation to native code (e.g. BIM Prolog)

+ speed (in principle 2x assembler interpreter possible),
extensive optimization possible

- code size, back-end rewrite for each architecture

µcoded WAM (e.g. Carlsson on LM’s, Gee et. al UCB ICLP87,
...):

+ small code size (≈ source), good performance (75% of
PLM), original intent of the wam, 

- writing µcode not easy, expensive host, µcoding more
and more outdated...
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WAM- Some Implementation Strategies:

 (contd.)

Compilation to ‘C’, a la KCL (e.g. Proteus Prolog)

+ good speed, extensive optimization possible, ‘C’ com-
piler optimization for free, portable

- modification to ‘C’ compiler needed for good perfor-
mance, complex compiler, large code size (?)

Specialized Prolog machine (e.g. Xenologic, IPP, CHI-II, ECRC,
...)

+ high-performance potential, can be added as a co-pro-
cessor to other machines

- first designs cost / reduced market, long design time,
complexity of hardware debugging, difficulty in keep-
ing up with technology generations, it is not clear yet
what the ideal Prolog organization is...



School of Computer Science (FI) Technical University of Madrid (UPM)

Optimizations in the WAM:

Storage Efficiency:

• last call (“tail recursion”) optimization: deallocation of
current environment before last call,

• selective allocation of choice points,

• space recovery on backtracking (auto GC),

• static/dynamic detection of unsafe vars.: put_unsafe_-
value will "globalize" a dereferenced ptr. that lands in the
current environment (because such a value may be de-
stroyed by subsequent TRO),

• immediate reclamation of local storage (environment
trimming): environments are "open-ended" and dynami-
cally trimmed by overlaying callee’s environment

Execution Speed:

• efficient indexing (+ hashing on argument values),

• “customization” of unification,

• register allocation possible,

• fast backtracking, 

• fast “cut,” etc.
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WAM memory performance studies: 
[Tick 88 - KAP] WAM Memory Referencing characteristics (data

/ instructions, CP / Env., caching approaches). 

Conclusions:

• dereferencing chains are short.

• general unification is shallow.

• shallow backtracking major contributor to bandwidth re-
quirement.

• small caches and local buffers quite effective.

• split-stack architecture efficient (2.5% extra references)
method of simplifying architecture.

• ‘‘smart’’ cache gets largest savings by avoiding fetching
the top of heap during structure writes.  Second in savings
is avoidance of copying-back of dead portions of the
stack.

• Pascal benchmarks displayed lower traffic ratios for equal
sized caches (for 1024 word caches):

˚ 2-word-lines: Pascal is 33% traffic of Prolog

˚ 4-word-lines: Pascal is 50% traffic of Prolog

•  best choice Prolog local memories:

˚ low-cost (<16 words): choice point buffer

˚ medium-cost (32--128 words): stack buffer

˚ high-cost (>200 words): copyback caches
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WAM memory performance studies:
[Touati et. al] (PLM -- UCB) Confirmation of some of Tick’s

conclusions and some new ones:

• savings in environment bandwidth can be attained by us-
ing a split-stack architecture and reusing top environ-
ments: for Puzzle, 52% of environment creations are
"avoidable".

• large savings in choice point bandwidth can be attained by
relatively simple compiler optimizations: 
for N-Queens, 25%--55% of choice point creations are
"avoidable".

• cdr-coding is ineffective.

Touati and Despain - SLP87

Other studies have obtained similar conclusions.
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WAM Limitations Identified:

• arg. registers modified in head: shallow backtracking
overhead,

• it is difficult to make use of mode information,

• indexing as described is simplistic: execution profile is se-
quence of jumps,

• abstract instruction set too high-level: restricts optimiza-
tions,

• environments and choice points allocated on same stack:
reduces locality, increases complexity.

• read and write modes can cause complexity/inefficiency
in emulator.

• architecture too complex, e.g., environment trimming,
many pipeline breaks.

Not necessarily wrong, but due to the original execution target
(µprogrammed CISC). Most newer proposals are evolutions of
the WAM. 
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Prolog Program

Optimized Code

68020 Code

68020 (SUN) (mod.)WAM 

Bytecode

Interpreter

Compilation

Compilation

Interpretation

InterpretationOptimization

µprogrammed
host, RISC, ...

Mod-WAM Implementation Strategies:

Processor

Int. code (WAM deriv.)

Optimization

(C)
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Some Special-purpose Sequential Prolog Machines

Machine  Group  Language  Comments
PSI-I     ICOT/Mitsub.  Prolog(ESP)  microcoded (mc) interpreter
PSI-II    ICOT/Mitsub.  Prolog(ESP)  mc super-CISC WAM
CHI-I     NEC           Prolog  mc WAM co-proc. 
CHI-II    NEC           Prolog  mc super-CISC WAM co-proc. 
PLM       UCB           Prolog  mc WAM co-proc. 
X1        XenoLogic     Prolog  mc WAM co-proc.
IPP       Hitachi       Prolog  supermini-based mc/mod WAM
IP704  Toshiba  Prolog  mc WAM co-proc
Pegasus   Mitsubishi    Prolog  tagged-RISC
MAIA      CNET/CGE  Prolog  mc Lisp machine
KCM  ECRC  Prolog  mc mod WAM
Low-RISC  Indiana U.  Prolog  mod WAM / native RISC
PLUM  UCB  Prolog  mod WAM
ICM4  ECRC  Prolog  RISC

Some Special-purpose Parallel Prolog Machines

PIM-D       Oki           Prolog  AND/OR dataflow
PIM-R       Hitachi      Prolog  AND/OR reduction
Kabuwake  Fujitsu      Prolog  OR-parallel
Aquarius-2  UCB         Prolog/...  PPPs on a crossbar (proposed)
DDM  Bristol/Sics  Prolog/...  Shared virtual address space

Some Interesting Host Implementations

SUNS etc.  Quintus  Prolog  Q Prolog - WAM, Industry standard
SUNS etc.  BIM  Prolog  native code, WAM+opt, high-perf
SUNS etc.  SUNY  Prolog  SB-Prolog, WAM, public domain
SUNS etc.  UCB PLM  Prolog  WAM, public domain
SUNS etc.  SICStus  Prolog  Portable mod WAM, good perf.
SPUR       UCB           Prolog     native-coded WAM on tag-RISC 
VAX-8600   UCB           Prolog     mc WAM on general purpose
Symmetry   Gigalips       Prolog     OR-parallel WAM emulator
Symmetry   MCC/UT     Prolog     Ind. AND-parallel RAP-WAM em.
Transp.  Parsytec  Prolog  Ind. AND-parallel RAP-WAM
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Relative Speeds 

(absolute speed is of course cycle dependent)

Examples (circa 1989):

1.- BIM-Prolog 200 Klips
Sicstus-Prolog (native) 200 Klips

2.- Quintus-Prolog 100 Klips
Sicstus-Prolog 80 Klips
SB-Prolog 30 Klips

3.- Hitachi IPP 1000 Klips
ECRC ICM-3 530 Klips
CHI-II 500 Klips
Xenologic X1 300 Klips
ICOT PSI-II 250 Klips
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Global Analysis of Logic Programs:

p(X,Y) :- q(X,Y).
q(W,W).

• Could be done by collecting all possible substitutions at
each point in the program: but, given that there are term
constructors in the language the set can be infinite → non-
terminating computation.

• Abstract interpretation: use "abstract substitutions" in-
stead of actual substitutions 

• Abstract substitution: an element of an abstract domain is
associated with each variable. (Other approaches are also
possible)

• Elements of the abstract domain are finite representations
of possibly infinite sets of actual substitutions/terms

• The abstract domain is generally a partial order or cpo of
finite height (termination), "≤"

• Abstraction function α: set of concrete substitutions →
abstract substitution

• Concretization function γ: abstract substitution → set of
concrete substitutions

• For each operation u (e.g. unification) of the language
there is a corresponding abstract operation u’

• Soundness requires that for all x in the abstract domain
u(x) ⊆ γ(u’(α(x)) 
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Simple Example

• A simple abstract domain for PROLOG
= {free, ground, any, bottom}

• all ground terms → ground  

• all terms → any

• all unbound variables → free

• bottom = ∅, i.e. failure

Partial order: corresponding to set inclusion in the actual domain:

any

groundfree

bottom



School of Computer Science (FI) Technical University of Madrid (UPM)

Abstract interpretation procedure:

• The analysis starts with a set of clauses and one or more
"query forms" (not strictly required). 

• The goal of the abstract interpreter is to compute in ab-
stract form the set of substitutions which can occur at each
point in the program, during the execution of all queries
that are concretizations of the query forms.

• Control: one solution is to build an abstract AND/OR tree
(top-down):

• The key issues are related to abstract unification:

˚ computing entry subst. from call subst.

˚ computing success subst. from exit subst.

˚ success substitutions from alternative branches are then
combined (LUB).

• Recursion: consider a recursive predicate p such that there
are two identical or-nodes for p, one an ancestor of the
other, and with identical call substitutions  → infinite
loop.

• Fixpoint calculation required (several alternatives). 

P

H1 Hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

H

P1 Pnλ1 λ2 λn λn+1......
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Abstract Interpretation: Issues

• Sound mathematical setting [Cousot and Cousot 77]

• Extended to flow analysis of logic programs [Bruynoo-
ghe, Jones and Sondergaard, Mellish], proved termination
properties given certain constraints imposed on the ab-
stract domain and operations

• Specific algorithms and applications [Debray and Warren
"abstract compilation", Mannila and Ukkonen, Mellish
jlp2, Sondergaard iclp88, Bruynooghe GC slp87, Sato and
Tamaki, Waern, Warren and Hermenegildo, Muthukumar
and Hermenegildo...]

• Difficult  issues: dealing with dynamic predicates [Debray
slp87]

• Abstract interpretation has been shown to be a practical
compilation tool [Warren / Hermenegildo / Debray
iclp88], also description of tradeoffs in efficient imple-
mentation

• Important application: support for smart computation
rules - "optimization by not doing the work, rather than by
doing it faster" Freeze, NU-Prolog, ... See Andorra, later.

• Important issue: correct, precise, and efficient tracking of
variable aliasing [Debray, Bruynooghe, Jacobs and Lan-
gen, Muthukumar and Hermenegildo NACLP89, ...]

• Important issue: sharing + freeness [Muthukumar and
Hermenegildo ICLP91, ...]

• See [Carlsson, Debray, Marien et al., Taylor et al.] in
ICLP ’89, ICLP’90, NACLP90.
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Issues in High Performance Prolog 

Implementation:

• Instruction Set Design

˚ WAM-based engines

˚ RISC/CISC designs from WAM

• Compiler optimizations, global analysis (abs. interp.)

• Storage Model and Memory Performance

˚ memory bandwidth requirements

˚ local memory behavior and characteristics

˚ stack-, tree-, heap-based memory management

˚ locking requirements

• Efficiency of Fundamental Operations: 
unification, dereferencing, binding, backtracking, cut

• Efficiency of Parallel Management

˚ spawning a process/switching a task

˚ scheduling: suspension/resumption

˚ load balancing

• Available Parallelism

˚ tradeoff between availability and programmability.

˚ issues in automatic parallelization

˚ AND/OR, extension to dep. and-parallelism


