
School of Computer Science (FI) Technical University of Madrid (UPM)

Computational Logic

Introduction to Prolog Implementation:
The Warren Abstract Machine

(WAM)

(Text derived from the tutorial at the
1989 International Conference

on Logic Programming)

School of Computer Science (FI) Technical University of Madrid (UPM)

Evolution of the WAM:

1974 Battani-Meloni Interpreter Structure-sharing
Marseille Prolog in Fortran

↓
1977 DEC-10 Prolog Compiler to Structure-sharing,
Edinburgh ↓ native code multiple stacks:

recovery of storage
↓→ Icot Machine (PSI) on det. ret., TRO, cut
↓
Portable Prolog Compiler [Bowen et. al] ...
↓

1983 "Old Engine" compiler to structure copying,
SRI ↓ abstract machine goal stacking

↓ code + emulator
↓

1983/4 "New Engine" compiler to structure copying,
SRI (WAM) abstract machine environment stacking,

↓ code + emulator env. trimming,
↓ → SW → Quintus, SICStus, BIM, ALS, LPA, etc.
↓ → HW → Tick/Warren "overlapped Prolog processor,"
↓ Berkeley PLM, NEC HPM, ECRC, etc.
↓ → Multiprocessor implementations (RAP-WAM, SRI, ...).
...

WAM [Warren 83]: A series of compilation techniques and run-
time algorithms which attain high execution speed and storage ef-
ficiency.

Format: abstract machine, i.e. instruction set + storage model.

[Hogger 84, Maier & D.S. Warren 88, Ait-Kaci 90]
"Up to and including the WAM"

School of Computer Science (FI) Technical University of Madrid (UPM)

Fundamental Operations:

Procedure control

• calling procedures
• allocating storage
• returning
• tail (last call) recursion

Parameter passing / unification

• unification (customized)
• loading and unloading of parameter registers
• variable classification
• variable binding / trailing

Choice points, failure, backtracking

• creation, update, and deletion of choice points
• recovery of space on backtracking
• unbinding of variables

Indexing

• on parameter type (tag = var, struct, const, list...)
• on principal functor / constant (hash table)

Other

• cut
• arithmetic
• etc.

School of Computer Science (FI) Technical University of Madrid (UPM)

Functions performed and elements perform-

ing them:

¤ Parameter Passing:

˚ Through argument registers

..., f(a), ...

..
put_constant a,X1
call f/1, ...

allows register allocation optimizations

¤ Unification:

˚ "Customization" (open coding)

˚ push-down list (PDL)

f(x) :- ...

get_var Y1,X1
...

f(a) :- ...

get_constant a,X1
...

AX0

AX1

AXn

PDL

PDL

School of Computer Science (FI) Technical University of Madrid (UPM)

Functions performed and elements perform-

ing them:

¤ Code Storage and Sequencing:

˚ Code Space (a stack/heap)

˚ P: Program Counter

˚ CP: Continuation Pointer

..., f(a), ...

...
put_constant a,X1
call f/1,...

f(a).

get_constant a,X1
proceed

P

CP
Code

WAM
Instructions

School of Computer Science (FI) Technical University of Madrid (UPM)

Functions performed and elements perform-

ing them:

¤ Global Data Storage:

• The Heap (a stack/heap). Contains lists, structures, and
global variables.

˚ H: Top of Heap

˚ HB: Heap Backtrack pointer

˚ S: Structure Pointer (Read Mode)

Heap

H

HB

S

Lists and
Structures

Globalized
Variables

School of Computer Science (FI) Technical University of Madrid (UPM)

Functions performed and elements perform-

ing them:

¤ Local data storage + control (forward execution):

• The Stack (a stack/heap). Contains environments and
choice points.

˚ A: Top of Stack (not required)

˚ B: Choice Point pointer

˚ E: Environment pointer

• Environments:

˚ Permanent (local) variables

˚ Control information

Stack

E

B

(A)

CP (parent CP)

Y1 Register

Yn Register

CE (Prev. En.)

(perm. vars.)

Environments

School of Computer Science (FI) Technical University of Madrid (UPM)

Stack

E

B

(A)

N

AX1

AXN

CP

TR

H

E

BP (Next. Alt.)

B’ (Prv. Ch.P.)

Choice Points

(arg. regs.)

S
T
A
T
E

Functions performed and elements perform-

ing them:

¤ Control (backtracking):

• Choice Points: reside in the Stack.

˚ State of the machine at the time of entering an alternative

˚ Pointer to next alternative

• The Trail:

˚ Addresses of variables which need to be unbound during
backtracking.

Trail

Variable
Addresses

School of Computer Science (FI) Technical University of Madrid (UPM)

AX1
AX2

AXn

P

CP

Heap

Stack

PDL

Trail

Code

PDL

E

B

H

HB

S

TR

(A)

WAM Storage Model

ARGUMENT AND
MACHINE REGS.

PROGRAM AND
DATA AREAS

CONTENTS OF
DATA AREAS

CP (parent CP)

Y1 Register

Yn Register

CE (Prev. En.)

N

AX1

AXN

CP

TR

H

E

BP (Next. Alt.)

B’ (Prv. Ch.P.)

(perm. vars.)

WAM
Instructions

Lists and
Structures

Globalized
Variables

Variable
Addresses

Environments

Choice Points

(arg. regs.)

S
T
A
T
E

School of Computer Science (FI) Technical University of Madrid (UPM)

Data Types:

1.- Reference: represents variables.

2.- Constant: represents atoms, ints., ..

.

3.- Structure: represents structures
(other than lists).

4.- List: special case of structure.

<tag> <value>

ref

ref
Unbound var

Bound var
value

const a"a"

const foo / 3
const a
const b
const c

struct

"foo(a, b, c)"

const a
list •

const b
list •

const c
list []

list

"[a, b, c]"

". (a, . (b, . (c, [])))"

School of Computer Science (FI) Technical University of Madrid (UPM)

Variable Classification:

• Permanent Variables: those which need to "survive"
across procedure calls. They live in the Stack ("Y" regis-
ters in the environment).

• Temporary Variables: all others, they are allocated in the
real registers ("AX" registers).

• Global Variables: those which need to survive the envi-
ronment. They live in the Heap.

Permanent and Temporary variables correspond to the traditional
concept of local variables.

grandparent(X, Y):- parent(X, Z), parent(Z, Y).

temporary

permanent global ("unsafe")

School of Computer Science (FI) Technical University of Madrid (UPM)

Variable Binding and Dereferencing:

1.- Binding a variable to a non-variable:

• Overwrite (trail if necessary).

2.- Binding a variable to another variable:

• Bind so that younger variables point to older variables

• Bind at end of dereferencing chain

• Variables in the Stack should point to the Heap (not oth-
erwise).

Accomplished with a simple address comparison (if data areas ar-
ranged correctly in memory).

Trailing:

Store in the Trail the address of a variable which is being bound
only if it is

• Before HB if in the Heap

• Before B if in the Stack

School of Computer Science (FI) Technical University of Madrid (UPM)

Failure: (at "get," "unify," ...)

1.- Restore registers from current choice-point (machine
and AX registers)

2.- Get TR from Choice Point. Pop addresses from Trail
until TR. Set all these variables to "unbound" (fast)

3.- Begin execution of the next alternative at BP

Stack

E

B

(A)

N

AX1

AXN

CP

TR

H

E

BP (Next. Alt.)

B’ (Prv. Ch.P.)

Choice Points

(arg. regs.)

S
T
A
T
E

Trail

Variable
Addresses

School of Computer Science (FI) Technical University of Madrid (UPM)

Unification Modes:

¤ Unification can perform two tasks (during execution of "unify"
instructions):

• Pattern matching → READ mode

• Term construction → WRITE mode

The decision is made dynamically: "append"

append([X|L1], L2, [X|L3]) :- append(L1,L2,L3).

get_list A1 % [
unify_variable X4 % X |
unify_variable A1 % L1], L2,
get_list A3 % [
... % ...

READ mode: X4 := next arg. (from S); (S++)
WRITE mode: X4 := ref to next arg (from H), which is

initialized to "unbound"; (H++)

The same code for "append" has to do both tasks: READ and
WRITE.

Mode must be preserved across instructions.

School of Computer Science (FI) Technical University of Madrid (UPM)

Last Call Optimization:

An extension of tail recursion optimization:

• All storage local to a clause (i.e. the environment) is deal-
located prior to calling the last goal in the body.

• Turns tail recursions and last call mutual recursions into
real iteration: the stack doesn’t grow.

Example:

?:- a(3).

a(0).
a(N) :- b, c, NN is N-1, a(NN).

or
a(0).
a(N) :- b, c(N).
c(N) :- NN is N-1, a(NN).

Stack

E

. . .
Env. for a

(1, no LCO)

(1)

(2)

Env. for a

Env. for a

Stack

E

. . .
Env. for a

(2, no LCO)

Env. for c

Env. for a

Env. for c

Env. for a

Env. for c

Stack

E . . .

(1, 2, LCO)

School of Computer Science (FI) Technical University of Madrid (UPM)

Stack

E

B

"Environment Protection":

¤ Environments apparently deallocated can be preserved ("pro-
tected") by a Choice Point for reuse on backtracking:

a :- b, e.
b :- c.
c :- d, h.
c :- d.
d.
e :- fail.
h.

(2)

(1)

. . .

Choice Point

for c

Env. For c

Env. For b

Env. For a

(1)

Stack

. . .

Choice Point

for c

(Env. For b)

Env. For a

(2)

E

B

Stack

E

B

. . .

Env. for c

Env. for b

Env. for a

(3)

(3)

School of Computer Science (FI) Technical University of Madrid (UPM)

Backtracking: Control and storage recovery

Heap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

E

.
B

H

Trail

. . .

TR

School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

Backtracking: Control and storage recovery

Heap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

.

BH

try

E

a1:

Trail

. . .

TR

School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

Backtracking: Control and storage recovery

Heap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

E

.

BH

allocate

Env. for a1:

a1:

Trail

. . .

TR

School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . .

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

.

H

try

b1:CP
bb2:

E

B

TR

Env. for b1:

allocate

b1:

Env. for a1:

School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . fail

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

.

H

fail

CP
bb2:

E

B

TR

Env. for a1:

School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . fail

b2: b :- . . .

b3: b :- . . .

?:- a.

CP
aa2:

.

H

try

b2:CP
bb3:

E

B

TR

Env. for b2:

allocate

b2:

Env. for a1:

School of Computer Science (FI) Technical University of Madrid (UPM)

b1: b :- . . . fail

b2: b :- . . . fail

b3: b :- . . .

a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

?:- a.

CP
aa2:

.

H

fail

CP
bb3:

E

B

TR

Env. for a1:

School of Computer Science (FI) Technical University of Madrid (UPM)

a1:

a1:

Backtracking: Control and storage recovery

TrailHeap Stack

a1: a :- b, c, d.

a2: a :- b, c, d.

a3: a :- b, c, d.

b1: b :- . . . fail

b2: b :- . . . fail

b3: b :- . . .

?:- a.

CP
aa2:

.

H

trust

b3:
E

B

TR

Env. for b3:

allocate

b3:

Env. for a1:

School of Computer Science (FI) Technical University of Madrid (UPM)

The WAM Instruction Set (Simplified):

"put" instructions:

• transfer arguments to argument regs.

call / execute

• procedure invocation

allocate / deallocate

• create / discard environments

"get" instructions

• get arguments from argument registers,
unification ("customized"), failure

"unify" instructions

• full unification (read/write mode), failure

proceed

• return (success)

try / retry / trust

• create / update / discard choice points

cut

switch (indexing) instructions:

switch_on_term Lv,Lc,Ll,Ls (jump on tag)
switch_on_constant N,table (hashing)
switch_on_structure N,table (hashing)

School of Computer Science (FI) Technical University of Madrid (UPM)

WAM Code Example: append/3

append([],L,L).
append([H|T1],L2,[H|T2]):- append(T1,L2,T2).

--

procedure append/3

switch_on_term _951,_952,fail (const,list,struct) var

try 3,_951
trust _952

_951:
get_nil X1 % []
get_value X2,X3 % L,L
proceed %

_952:
get_list X1 % [
unify_variable X4 % H|
unify_variable X1 % T1],L2,
get_list X3 % [
unify_u_value X4 % H|
unify_variable X3 % T2]
execute append/3 %

end

School of Computer Science (FI) Technical University of Madrid (UPM)

Prolog Program

WAM Code

68020 Code

68020 (SUN) WAM

Bytecode

Interpreter

Compilation

Compilation

Interpretation

InterpretationOptimization

µprogrammed
host

WAM- Some Implementation Strategies:

Processor

School of Computer Science (FI) Technical University of Madrid (UPM)

WAM- Some Implementation Strategies:

Bytecode interpreters

• written in ‘C’ (e.g. SICStus, SB-Prolog, &-Prolog, PLM,
Lcode, ...)

+ portability, small code size (≈ source)

- speed (but it can be quite good with appropriate optimi-
zations) (c.f. SICStus)

• written in assembler (e.g. Quintus Prolog)

+ speed (2x ‘C’ interpreter), small code size (≈ source)

- needs to be rewritten for each architecture

Compilation to native code (e.g. BIM Prolog)

+ speed (in principle 2x assembler interpreter possible),
extensive optimization possible

- code size, back-end rewrite for each architecture

µcoded WAM (e.g. Carlsson on LM’s, Gee et. al UCB ICLP87,
...):

+ small code size (≈ source), good performance (75% of
PLM), original intent of the wam,

- writing µcode not easy, expensive host, µcoding more
and more outdated...

School of Computer Science (FI) Technical University of Madrid (UPM)

WAM- Some Implementation Strategies:

 (contd.)

Compilation to ‘C’, a la KCL (e.g. Proteus Prolog)

+ good speed, extensive optimization possible, ‘C’ com-
piler optimization for free, portable

- modification to ‘C’ compiler needed for good perfor-
mance, complex compiler, large code size (?)

Specialized Prolog machine (e.g. Xenologic, IPP, CHI-II, ECRC,
...)

+ high-performance potential, can be added as a co-pro-
cessor to other machines

- first designs cost / reduced market, long design time,
complexity of hardware debugging, difficulty in keep-
ing up with technology generations, it is not clear yet
what the ideal Prolog organization is...

School of Computer Science (FI) Technical University of Madrid (UPM)

Optimizations in the WAM:

Storage Efficiency:

• last call (“tail recursion”) optimization: deallocation of
current environment before last call,

• selective allocation of choice points,

• space recovery on backtracking (auto GC),

• static/dynamic detection of unsafe vars.: put_unsafe_-
value will "globalize" a dereferenced ptr. that lands in the
current environment (because such a value may be de-
stroyed by subsequent TRO),

• immediate reclamation of local storage (environment
trimming): environments are "open-ended" and dynami-
cally trimmed by overlaying callee’s environment

Execution Speed:

• efficient indexing (+ hashing on argument values),

• “customization” of unification,

• register allocation possible,

• fast backtracking,

• fast “cut,” etc.

School of Computer Science (FI) Technical University of Madrid (UPM)

WAM memory performance studies:
[Tick 88 - KAP] WAM Memory Referencing characteristics (data

/ instructions, CP / Env., caching approaches).

Conclusions:

• dereferencing chains are short.

• general unification is shallow.

• shallow backtracking major contributor to bandwidth re-
quirement.

• small caches and local buffers quite effective.

• split-stack architecture efficient (2.5% extra references)
method of simplifying architecture.

• ‘‘smart’’ cache gets largest savings by avoiding fetching
the top of heap during structure writes. Second in savings
is avoidance of copying-back of dead portions of the
stack.

• Pascal benchmarks displayed lower traffic ratios for equal
sized caches (for 1024 word caches):

˚ 2-word-lines: Pascal is 33% traffic of Prolog

˚ 4-word-lines: Pascal is 50% traffic of Prolog

• best choice Prolog local memories:

˚ low-cost (<16 words): choice point buffer

˚ medium-cost (32--128 words): stack buffer

˚ high-cost (>200 words): copyback caches

School of Computer Science (FI) Technical University of Madrid (UPM)

WAM memory performance studies:
[Touati et. al] (PLM -- UCB) Confirmation of some of Tick’s

conclusions and some new ones:

• savings in environment bandwidth can be attained by us-
ing a split-stack architecture and reusing top environ-
ments: for Puzzle, 52% of environment creations are
"avoidable".

• large savings in choice point bandwidth can be attained by
relatively simple compiler optimizations:
for N-Queens, 25%--55% of choice point creations are
"avoidable".

• cdr-coding is ineffective.

Touati and Despain - SLP87

Other studies have obtained similar conclusions.

School of Computer Science (FI) Technical University of Madrid (UPM)

WAM Limitations Identified:

• arg. registers modified in head: shallow backtracking
overhead,

• it is difficult to make use of mode information,

• indexing as described is simplistic: execution profile is se-
quence of jumps,

• abstract instruction set too high-level: restricts optimiza-
tions,

• environments and choice points allocated on same stack:
reduces locality, increases complexity.

• read and write modes can cause complexity/inefficiency
in emulator.

• architecture too complex, e.g., environment trimming,
many pipeline breaks.

Not necessarily wrong, but due to the original execution target
(µprogrammed CISC). Most newer proposals are evolutions of
the WAM.

School of Computer Science (FI) Technical University of Madrid (UPM)

Prolog Program

Optimized Code

68020 Code

68020 (SUN) (mod.)WAM

Bytecode

Interpreter

Compilation

Compilation

Interpretation

InterpretationOptimization

µprogrammed
host, RISC, ...

Mod-WAM Implementation Strategies:

Processor

Int. code (WAM deriv.)

Optimization

(C)

School of Computer Science (FI) Technical University of Madrid (UPM)

Some Special-purpose Sequential Prolog Machines

Machine Group Language Comments
PSI-I ICOT/Mitsub. Prolog(ESP) microcoded (mc) interpreter
PSI-II ICOT/Mitsub. Prolog(ESP) mc super-CISC WAM
CHI-I NEC Prolog mc WAM co-proc.
CHI-II NEC Prolog mc super-CISC WAM co-proc.
PLM UCB Prolog mc WAM co-proc.
X1 XenoLogic Prolog mc WAM co-proc.
IPP Hitachi Prolog supermini-based mc/mod WAM
IP704 Toshiba Prolog mc WAM co-proc
Pegasus Mitsubishi Prolog tagged-RISC
MAIA CNET/CGE Prolog mc Lisp machine
KCM ECRC Prolog mc mod WAM
Low-RISC Indiana U. Prolog mod WAM / native RISC
PLUM UCB Prolog mod WAM
ICM4 ECRC Prolog RISC

Some Special-purpose Parallel Prolog Machines

PIM-D Oki Prolog AND/OR dataflow
PIM-R Hitachi Prolog AND/OR reduction
Kabuwake Fujitsu Prolog OR-parallel
Aquarius-2 UCB Prolog/... PPPs on a crossbar (proposed)
DDM Bristol/Sics Prolog/... Shared virtual address space

Some Interesting Host Implementations

SUNS etc. Quintus Prolog Q Prolog - WAM, Industry standard
SUNS etc. BIM Prolog native code, WAM+opt, high-perf
SUNS etc. SUNY Prolog SB-Prolog, WAM, public domain
SUNS etc. UCB PLM Prolog WAM, public domain
SUNS etc. SICStus Prolog Portable mod WAM, good perf.
SPUR UCB Prolog native-coded WAM on tag-RISC
VAX-8600 UCB Prolog mc WAM on general purpose
Symmetry Gigalips Prolog OR-parallel WAM emulator
Symmetry MCC/UT Prolog Ind. AND-parallel RAP-WAM em.
Transp. Parsytec Prolog Ind. AND-parallel RAP-WAM

School of Computer Science (FI) Technical University of Madrid (UPM)

Relative Speeds

(absolute speed is of course cycle dependent)

Examples (circa 1989):

1.- BIM-Prolog 200 Klips
Sicstus-Prolog (native) 200 Klips

2.- Quintus-Prolog 100 Klips
Sicstus-Prolog 80 Klips
SB-Prolog 30 Klips

3.- Hitachi IPP 1000 Klips
ECRC ICM-3 530 Klips
CHI-II 500 Klips
Xenologic X1 300 Klips
ICOT PSI-II 250 Klips

School of Computer Science (FI) Technical University of Madrid (UPM)

Global Analysis of Logic Programs:

p(X,Y) :- q(X,Y).
q(W,W).

• Could be done by collecting all possible substitutions at
each point in the program: but, given that there are term
constructors in the language the set can be infinite → non-
terminating computation.

• Abstract interpretation: use "abstract substitutions" in-
stead of actual substitutions

• Abstract substitution: an element of an abstract domain is
associated with each variable. (Other approaches are also
possible)

• Elements of the abstract domain are finite representations
of possibly infinite sets of actual substitutions/terms

• The abstract domain is generally a partial order or cpo of
finite height (termination), "≤"

• Abstraction function α: set of concrete substitutions →
abstract substitution

• Concretization function γ: abstract substitution → set of
concrete substitutions

• For each operation u (e.g. unification) of the language
there is a corresponding abstract operation u’

• Soundness requires that for all x in the abstract domain
u(x) ⊆ γ(u’(α(x))

School of Computer Science (FI) Technical University of Madrid (UPM)

Simple Example

• A simple abstract domain for PROLOG
= {free, ground, any, bottom}

• all ground terms → ground

• all terms → any

• all unbound variables → free

• bottom = ∅, i.e. failure

Partial order: corresponding to set inclusion in the actual domain:

any

groundfree

bottom

School of Computer Science (FI) Technical University of Madrid (UPM)

Abstract interpretation procedure:

• The analysis starts with a set of clauses and one or more
"query forms" (not strictly required).

• The goal of the abstract interpreter is to compute in ab-
stract form the set of substitutions which can occur at each
point in the program, during the execution of all queries
that are concretizations of the query forms.

• Control: one solution is to build an abstract AND/OR tree
(top-down):

• The key issues are related to abstract unification:

˚ computing entry subst. from call subst.

˚ computing success subst. from exit subst.

˚ success substitutions from alternative branches are then
combined (LUB).

• Recursion: consider a recursive predicate p such that there
are two identical or-nodes for p, one an ancestor of the
other, and with identical call substitutions → infinite
loop.

• Fixpoint calculation required (several alternatives).

P

H1 Hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

H

P1 Pnλ1 λ2 λn λn+1......

School of Computer Science (FI) Technical University of Madrid (UPM)

Abstract Interpretation: Issues

• Sound mathematical setting [Cousot and Cousot 77]

• Extended to flow analysis of logic programs [Bruynoo-
ghe, Jones and Sondergaard, Mellish], proved termination
properties given certain constraints imposed on the ab-
stract domain and operations

• Specific algorithms and applications [Debray and Warren
"abstract compilation", Mannila and Ukkonen, Mellish
jlp2, Sondergaard iclp88, Bruynooghe GC slp87, Sato and
Tamaki, Waern, Warren and Hermenegildo, Muthukumar
and Hermenegildo...]

• Difficult issues: dealing with dynamic predicates [Debray
slp87]

• Abstract interpretation has been shown to be a practical
compilation tool [Warren / Hermenegildo / Debray
iclp88], also description of tradeoffs in efficient imple-
mentation

• Important application: support for smart computation
rules - "optimization by not doing the work, rather than by
doing it faster" Freeze, NU-Prolog, ... See Andorra, later.

• Important issue: correct, precise, and efficient tracking of
variable aliasing [Debray, Bruynooghe, Jacobs and Lan-
gen, Muthukumar and Hermenegildo NACLP89, ...]

• Important issue: sharing + freeness [Muthukumar and
Hermenegildo ICLP91, ...]

• See [Carlsson, Debray, Marien et al., Taylor et al.] in
ICLP ’89, ICLP’90, NACLP90.

School of Computer Science (FI) Technical University of Madrid (UPM)

Issues in High Performance Prolog

Implementation:

• Instruction Set Design

˚ WAM-based engines

˚ RISC/CISC designs from WAM

• Compiler optimizations, global analysis (abs. interp.)

• Storage Model and Memory Performance

˚ memory bandwidth requirements

˚ local memory behavior and characteristics

˚ stack-, tree-, heap-based memory management

˚ locking requirements

• Efficiency of Fundamental Operations:
unification, dereferencing, binding, backtracking, cut

• Efficiency of Parallel Management

˚ spawning a process/switching a task

˚ scheduling: suspension/resumption

˚ load balancing

• Available Parallelism

˚ tradeoff between availability and programmability.

˚ issues in automatic parallelization

˚ AND/OR, extension to dep. and-parallelism

