Computational Logic

CLP Semantics and Fundamental Results

Constraint Domains

e Semantics parameterized by the constraint domain:
CLP(X), where X = (3X,D, L, T)

e Signature X: set of predicate and function symbols, together with their arity
e L C Y—formulae: constraints
e D is the set of actual elements in the domain

e >—structure D: gives the meaning of predicate and function symbols (and hence,
constraints).

e 7 a first—order theory (axiomatizes some properties of D)
e (D, L) is a constraint domain
e Assumptions:

o L built upon a first—order language

o =€ Y is identity in D

o There are identically false and identically true constraints in £

o L is closed w.r.t. renaming, conjunction and existential quantification

Domains ()

o> ={0,1,+,%,=,<,<},D=R, Dinterprets ¥ as usual, ® = (D, L)

o Arithmetic over the reals
oEgia?+2zy <4 ANz >0 (=zer+ary+ary <yA0<x)

e Question: is 0 needed? How can it be represented?

e Letus assume X' ={0,1,+,=, <, <}, Rpin = (D', L)

o Linear arithmetic
oEQi3r—y<3 (Zax+r+r<l+1+1+y)

o Letus assume ¥ = {0,1,+,=}, Rping, = (D", L")

o Linear equations
oEQi3r+y=5Ay=2x

Domains (ll)

e Y = {<constant and function symbols>, =}
e D = { finite trees }
e D interprets X as tree constructors

e Each f € X with arity n maps n trees to a tree with root labeled f and whose
subtrees are the arguments of the mapping

e Constraints: syntactic tree equality

o FT =(D, L)
o Constraints over the Herbrand domain
o EQ.i g(W(2),Y) = g(Y, h(a))

e LP = CLP(FT)

Domains (lll)

e > = {<constants>, \, ., ::,=}
e D = { finite strings of constants }
e D interprets . as string concatenation, :: as string length

o Equations over strings of constants
o Eg: X.AX=X.A

o> ={0,1,-,A,=}

e D = {true, false}

e D interprets symbols in X as boolean functions
e BOOL = (D, L)

< Boolean constraints
oEg.i—(zAy) =1

CLP(X) Programs

e Recall that:

© Y is a set of predicate and function symbols
o L C Y—formulae are the constraints

e II: set of predicate symbols definable by a program
o Atom: p(ty,ta,...,t,), Where ti,ts, ..., t, are terms and p € II

e Primitive constraint: p(ty, o, ..., t,), where
ti,t9,...,1, are terms and p € ¥ is a predicate symbol

e Every constraint is a (first—order) formula built from primitive constraints

e The class of constraints will vary (generally only a subset of formulas are
considered constraints)

e A CLP program is a collection of rules of the form a < by,...,b, where a is an
atom and the b;'s are atoms or constraints

e A factis arule a «— ¢ where c is a constraint

e A goal (or query) G is a conjunction of constraints and atoms

Basic Operations on Constraints

e Constraint domains are expected to support some basic operations on constraints

1. Consistency (or satisfiability) test: D E 3,
2. Implication or entailment: D = ¢y — ¢4,

3. Projection of a constraint ¢, onto variables z to obtain a constraint ¢; such that
D }: C1 < EL@C(),

4. Detection of uniqueness of variable value: D = ¢(z,2) A c(y,w) - x =y
e Actually, only the first one is really required

e In actual implementations, some of these operations—in particular the test of
consistency—may be incomplete

e Examples:
o x*x < 0isinconsistent in ® (because ~dx € R: z*xx < 0)
oDExAy=1)—= (zVy=1)in BOOL
o In FT, the projection of z = f(y) Ay = f(z) on {z, z} is x = f(f(2))
oINnWE DEzar=xaNyby=yb—>x=y

e Prove the last assertion!

Properties of CLP Languages

e 7 axiomatizes some of the properties of D

e For a given X, let (D, £) be a constraint domain with signature >, and 7 a
>—theory.

e D and 7T correspond on L if:

o D is a model of T, and
o for every constraint ¢ € £, D |= ¢ iff T = 3e.

o T is gatisfaction qomplete with respect to L if for every constraint ¢ € L, either
T Edcor T E —de.

e (D, L) is solution compact if

Ved{citier : D EVI—e(T) +— V ()

el

l.e., any negated constraint in £ can be expressed as a (in)finite disjunction of
constraints

Solution Compactness

e Important to lift SLDNF results to CLP(X)
e We have to deal only with user predicates
e E.Q.

ox 2yin CLP(R)isz <y
ocx#yinCLPR)isz<yVy<zx
o Rr;n With constraint « # 7 is not s.c.

e How can we express x # y in CLP(FT)?

Logical Semantics (l)

e Two common logical semantics exist.

e The first one interprets a rule
p(f) < bl,...,bn
as the logic formula

Vi, § p(@) V —b V...V —b,

10

Logical Semantics (ll)

e The second one associates a logic formula to each predicate in II
o If the set of rules of P with p in the head is:

p(T) <+ Bs

p(z) < B,
then the formula associated with p is:
Vip(E) < 3B
V. dys By
vV 3y, By
o If p does not occur in the head of a rule of P, the formula is: Vi—p(z)
o The collection of all such formulas is the Clark completion of P (denoted by P*)

e These two semantics differ on the treatment of the negation

11

Logical Semantics (lll)

e A valuation is a mapping from variables to D, and the natural extension which
maps terms to D and formulas to closed £*—formulas.

e A D—interpretation of a formula is an interpretation of the formula with the same
domain as D and the same interpretation for the symbols in X as D.

e It can be represented as a subset of Bp where
Bp = {p(d) | p € I,d € D"}

e A D—model of a closed formula is a D—interpretation which is a model of the
formula.

e The usual logical semantics is based on the D—models of P and the models of
P+ T.

e The least D—model of a formula @ is denoted by Im(Q, D).

e A solutionto a query G is a valuation v such that v(G) C Iim(P, D).

12

Fixpoint Semantics

» Based on one-step consequence operator 175 (also called “immediate
consequence operator”).

o Take as semantics [fp(TF), where:

T2(I) = {p(d) | p(&) < ¢,b1,...,by € P,a; €1,
D k= v(e),v(z) = d,v(b) = a;}

e Theorems:

1. TPt w=1fp(TF)
2. Im(P, D) = lfp(TF)

13

Top—Down Operational Semantics ()

e General framework for operational semantics
e Formalized as a transition system on states
e State: a 3—tuple (A, C, S), or fail, where

o A is a multiset of atoms and constraints,

o C'U.S multiset of constraints,

o (', active constraints (awake)

o S, passive constraints (asleep)

e Computation and Selection rules depend on A

e Transition system: parameterized by a predicate consistent and a function in fer:
o consistent(C') checks the consistency of a constraint store

o Usually “consistent(C) iff D |= 3¢”, but sometimes “if D = 3¢ then
consistent(C')”

o infer(C,S) computes a new set of active and passive constraints

14

Top—Down Operational Semantics (ll)

e Transition r: computation step; rewriting using user predicates
(AUua,C,S) =, (AUuB,C,SU(a = h))
if h +— B € P, and a and h have the same predicate symbol, or
(Aua,C,S) =, fail
if there is no rule h < B of P such that a and h have the same predicate symbol

(a = h is a set of argument—wise equations) if a is a predicate symbol selected by
the computation rule

e Transition c: selects constraints
(Auc,C,8) —. (A, C,SUc)
if ¢ is a constraint selected by the computation rule

e Transition i: infers new constraints
(A, C,89) —; (A, C" ") if (C',S") =infer(C,S)
o In particular, may turn passive constraints into active ones
e Transition s: checks satisfiability

(A, C,S) if consistent(C)
(4, C,5) = { fail if =consistent(C)

15

Top—Down Operational Semantics (lll)

e Initial state: (G, 0, 0)

e Derivation: (A;,C1,51) — ... = (A;,C;,S;) — ...

e Final state: £ — F

e Successful derivation: final state ((), C, S)

e A derivation flounders if finite and the final state is (A, C,S) with A # ()
e A derivation is failed if it is finite and the final state is fail

e Answer: 4_;C A S, where z are the variables in the initial goal

e A derivation is fairif it is failed or, for every ¢ and every a € A;, a is rewritten in a
later transition

e A computation rule is fair if it gives rise only to fair derivations

16

Top—Down Operational Semantics (1V)

e Computation tree for goal G and program P:

o~ Nodes labeled with states

o Edges labeled with —,, —., —; or —,

o Root labeled by (G, 0, ()

< All sons of a given node have the same label
o Only one son with transitions —., —; or —,
o A son per program clause with transition —,

17

Computation Tree: Example

e Consider the program
p(X +3,X) + X <3. {p(5, X)}, 0,0)
p(X+3,X)+ X >3 pX,Y). r r

and the goal + p(5, X)
({X<3}, 0, {5=X+3}) ({X>3, p(X,Y)}, 0, {5=X+3})

I I
({X<8} {X=2},0) {{X>3,p(X,Y)}, {X=2},0)

e A possible computation tree is:

C C
(0, {X=2}, {X<3}) {p(X,Y), }X=2}= {X>3})

i i

(0, {X=2},0)° ({p(XY), {X=2, X3}, 0)

ls

fail

e Dotted rectangle: previous state was final as well

18

Types of CLP(X) Systems

e Quick—checking CLP(X) system: its operational semantics can be described by
—ris="7r i 7s and P cis="7cT 7 7s

e |l.e., always selects either an atom or a constraint, infers and checks consistency

e Progressive CLP system: for all (A, C, S) with A # (), every derivation from that
state either fails or contains a —, or — transition

e Ideal CLP system:

& Quick-checking

& Progressive
oinfer(C,S)=(CUS,0)

o consistent(C)) holds iff D = 3¢

19

Soundness and Completeness Results

e Success set: the set of queries plus constraints which have a successful
derivation in the program:
SS(P)=A{p(x) + c| (p(x),0,0) =*(D,c, "), DEc+ I ;d AN}

e Consider a program P in the CLP language determined by a 4—tuple (3, D, L, T)
and executing on an ideal CLP system. Then:
1. [SS(P)|p = Ilm(P, D), where
[SS(P)lp ={v(a) | (a <= ¢) € SS(P),D = v(c)}
2. SS(P) = 1fp(SP)

3. (Soundness) if the goal G has a successful derivation with answer constraint
c,then PT Ec— G

4. (Completeness) if P, T = ¢ — G then there are derivations for the goal G with
answer constraints ¢, ..., ¢, suchthat 7 = ¢ — VI, ¢

5. Assume 7 is satisfaction complete w.r.t. £. Then the goal G is finitely failed
for P iff P*, T E —G.

20

Negation in CLP(X)

e Most LP results can be lifted to CLP(X)
e In particular, negation as failure (a la SLDNF) is still valid using:

o Satisfiability instead of unification
o Variable elimination instead of groundness

e Added bonus: if the system is solution compact, then negated constraints can be
expressed in terms of primitive constraints

e Less chances of a floundered / incorrect computation

21

