Computational Logic
Constraint Logic Programming
Constraints

- Constraint: conditions that a solution must satisfy
 - $X + Y = 20$
 - $X \land Y$ is true
 - The third field of the data structure is greater than the second
 - The murderer is one of those who had met the cabaret entertainer

- CLP: LP plus the ability to compute with some form of constraints (which are solved by the system during computation)

- Features of a CLP system:
 - Domain of computation (reals, rationals, integers, booleans, structures, ...)
 - *Expressions* that can be built ($+, *, \land, \lor$)
 - *Constraints* allowed: equations, disequations, inequations, etc. ($=, \neq, \leq, \geq, <, >$)
 - *Constraint solving algorithms*: simplex, gauss, etc.

- Solutions: assignments to variables, or new constraints among variables.
A comparison with classic LP (I)

• Example (plain Prolog): \(q(X, Y, Z) : - Z = f(X, Y) \).

\[
\begin{align*}
?&- q(3, 4, Z). \\
&Z = f(3, 4) \\
\end{align*}
\]

\[
\begin{align*}
?&- q(X, Y, f(3,4)). \\
&X = 3, Y = 4 \\
\end{align*}
\]

\[
\begin{align*}
?&- q(X, Y, Z). \\
&Z = f(X,Y) \\
\end{align*}
\]

• Example (plain Prolog): \(p(X, Y, Z) : - Z \mathbf{is} X + Y \).

\[
\begin{align*}
?&- p(3, 4, Z). \\
&Z = 7 \\
\end{align*}
\]

\[
\begin{align*}
?&- p(X, 4, 7). \\
&\text{\{INSTANTIATION ERROR\}} \leftarrow \text{is/2 not reversible, does not work!} \\
\end{align*}
\]
A Comparison with classic LP (II)

- Example (**CLP(ℜ) package**):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Solutions:
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

 % Find three consecutive numbers in the p/1 relation.

 solution(X, Y, Z) :-
 p(X), p(Y), p(Z),
 test(X, Y, Z).

 test(X, Y, Z) :- Y is X + 1, Z is Y + 1.

- Query:

 ?- solution(X, Y, Z).
 X = 14, Y = 15, Z = 16 ;

- 458 steps (all solutions: 475 steps).
Example of Search Space Reduction

- Using the **CLP(R) package** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  :- use_package(clpr).
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
  ```

- Query:

  ```prolog
  ;- solution(X, Y, Z).
  X =. 14, Y =. 15, Z =. 16 ;
  no
  ```

- 458 steps (all solutions: 475 steps).
Generate–and–test Search Tree

```
X=11   X=3   X=7   X=16   X=15   X=14
A1     A2     A3     A4     A5
```

```
Y=11   Y=3   Y=7   Y=16   Y=15   Y=14
B1     B2     B3     B4     B5
```

```
Z=11   Z=3   Z=7   Z=16   Z=15   Z=14
```

A
B
Example of Search Space Reduction

- Move `test(X, Y, Z)` to the beginning (constrain-and-generate):

% Find three consecutive numbers in the p/1 relation.
```prolog
:- use_package(clpr).
solution(X, Y, Z) :-
    test(X, Y, Z),
    p(X), p(Y), p(Z).
```

- Using plain Prolog:

```prolog
?- solution(X, Y, Z).
{INSTANTIATION ERROR}
```

- Using the CLP(ℜ) package:

```prolog
?- solution(X, Y, Z).
X .=. 14, Y .=. 15, Z .=. 16 ? ;
no
```

In **11 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree

\[Y = 16 \]
\[X = 15 \]
\[X = 16 \]
\[X = 7 \]
\[X = 11 \]
\[X = 14 \]
\[Z = 16 \]
\[g \]
• The semantics is parameterized by the *constraint domain* \mathcal{X}: \(\text{CLP}(\mathcal{X})\), where $\mathcal{X} \equiv (\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T})$:
 - Σ: set of *predicate* and *function symbols*, together with their arity
 - $\mathcal{L} \subseteq \Sigma$–formulae: constraints
 - \mathcal{D}: the set of actual elements in the constraint domain
 - \mathcal{D}: meaning of predicate and function symbols (and hence, constraints).
 - \mathcal{T}: a first–order theory (axiomatizes some properties of \mathcal{D})
• $(\mathcal{D}, \mathcal{L})$ is a *constraint domain*
• Assumptions:
 - \mathcal{L} built upon a first–order language
 - $= \in \Sigma$ and $=$ is *identity* in \mathcal{D}
 - There are identically false and identically true constraints in \mathcal{L}
 - \mathcal{L} is closed w.r.t. renaming, conjunction, and existential quantification
Constraint Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), D interprets Σ as usual, $\mathbb{R} = (D, \mathcal{L})$
 - Arithmetic over the reals ("\mathbb{R}" domain).
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ (≡ $xxx + xxy + xxy < y \land 0 < x$)
 - Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathbb{R}_{Lin} = (D', \mathcal{L}')$
 - Linear arithmetic ("\mathbb{R}_{Lin}" domain)
 - Eg.: $3x - y < 3$ (≡ $x + x + x < 1 + 1 + 1 + y$)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathbb{R}_{LinEq} = (D'', \mathcal{L}'')$
 - Linear equations ("\mathbb{R}_{LinEq}" domain)
 - Eg.: $3x + y = 5 \land y = 2x$

- A corresponding set of domains can be defined on the rationals ("\mathbb{Q}" domain)
Constraint Domains (II)

- A very special domain:
 - $\Sigma = \{ \text{<constant and function symbols>}, = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, \mathcal{L})$

\rightarrow **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
- Eg.: $g(h(Z), Y) = g(Y, h(a))$

- **LP \equiv CLP(\mathcal{FT})**
 - I.e., classical LP can be viewed as constraint logic programming over *Herbrand terms* with a single *constraint predicate symbol*: \equiv.
Constraint Domains (III)

- $\Sigma = \{<\text{constants}>, \lambda, ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets $.$ as string concatenation, $::$ as string length

\rightarrow **Equations over strings of constants** (D domain)
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$

\rightarrow **Boolean constraints** ($BOOL$ domain)
 - Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$–formulae are the constraints

- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
 - **Atom**: $p(t_1, t_2, \ldots, t_n)$, where $p \in \Pi$ and t_1, t_2, \ldots, t_n are terms
 - **Primitive constraint**: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
 - **Constraint**: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A **CLP program** is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints

- A fact is a rule $a \leftarrow c$ where c is a constraint

- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ): language based on Prolog + constraint solving over the reals (\mathcal{R}_{Lin})
 - Same execution strategy as standard Prolog (depth–first, left–to–right)
 - Allows linear equations and disequations over the reals
 - Linear constraints are solved; non-linear constraints are passive: delayed until linear or simple checks:
 - $X \times Y = 7$ becomes linear when X is assigned a definite value
 - $X \times X + 2 \times X + 1 = 0$ becomes a check when X is assigned a definite value
 - Prolog arithmetic is subsumed by constraint solving
- Note: CLP(ℜ) is really CLP((ℜ, $\mathcal{F}T$)) — $\mathcal{F}T$ is often omitted.

- Supported in modern Prologs coexisting with the ISO primitives $\text{is}/2$, $>/2$ etc.
- In Ciao, via the clpr package:
 - Uses $.=.$, $.>.$, etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - I.e., $X \ .= \ Y + 5$, $Y \ .> \ 1$ vs. $X \text{ is} Y + 5$, $Y > 1$
Linear Equations (CLP(ℜ) package)

- Vector \(\times \) vector multiplication (dot product):
 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}
 \]
 \[
 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- Vectors represented as lists of numbers

  ```prolog
  :- use_package(clpr).
  prod([], [], Result) :- Result .==. 0.
  prod([X|Xs], [Y|Ys], Result) :-
      Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
  ```

- Unification becomes constraint solving!

  ```prolog
  ?- prod([2, 3], [4, 5], K).
  K .==. 23
  ?- prod([2, 3], [5, X2], 22).
  X2 .==. 4
  ?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
  Vx .==. -1.5*Vz - 3.5*Vy
  ```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(\(\mathbb{R}\)))

- Can we solve systems of equations? E.g.,

 \[
 3x + y = 5 \\
 x + 8y = 3
 \]

- Write them down at the top level prompt:

  ```prolog
  ?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
  X = 1.6087, Y = 0.173913
  ```

- A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):

  ```prolog
  system(_Vars, [], []).  
  system(Vars, [Co|Coefs], [Ind|Indeps]) :-  
    prod(Vars, Co, Ind),  
    system(Vars, Coefs, Indeps).
  ```

- We can now express (and solve) equation systems

  ```prolog
  ?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).
  X = 1.6087, Y = 0.173913
  ```
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed

```
?- sin(X) .==. cos(X).
sin(X) .==. cos(X)
```

- This is also the case if there exists some procedure to solve them

```
?- X*X + 2*X + 1 .==. 0.
-2*X - 1 .==. X * X
```

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

```
?- X .==. cos(sin(Y)), Y .==. 2+Y*3.
Y .==. -1, X .==. 0.666367
```

- Disequations are solved using a modified, incremental Simplex

```
?- X + Y .<=. 4, Y .>=. 4, X .>=. 0.
Y .==. 4, X .==. 0
```
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

 \[
 \begin{align*}
 F_0 &= 0 \\
 F_1 &= 1 \\
 F_{n+2} &= F_{n+1} + F_n
 \end{align*}
 \]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =. 0.
fib(N,N) :- N =. 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0,
            N1 =. N - 1, N2 =. N - 2,
            fib(N1,F1), fib(N2,F2),
            R =. F1 + F2.
```

- Note all constraints included in program (F₁ ≥ 0, F₂ ≥ 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```prolog
?- fib(N, F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(\mathbb{R}))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (I), voltage (V) and frequency (W) in steady state
- Entry point: $\text{circuit}(C, V, I, W)$ states that:
 - across the network C, the voltage is V, the current is I and the frequency is W
- V and I must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number $X + Yi$ modeled as $c(X, Y)$
- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 =. Re1+Re2,
    Im12 =. Im1+Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 =. Re1 * Re2 - Im1 * Im2,
    Im3 =. Re1 * Im2 + Re2 * Im1.
```

(equality is `c_equal(c(R, I), c(R, I))`, can be left to [extended] unification)
Analog RLC circuits (CLP(ℜ))

- Circuits in series:

```prolog
circuit(s-series(N1, N2), V, I, W) :-
c_add(V1, V2, V),
circuit(N1, V1, I, W),
circuit(N2, V2, I, W).
```

- Circuits in parallel:

```prolog
circuit(parallel(N1, N2), V, I, W) :-
c_add(I1, I2, I),
circuit(N1, V, I1, W),
circuit(N2, V, I2, W).
```
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i) \)

 \[
 \text{circuit}(\text{resistor}(R), V, I, _W) :- \\
 \text{c_mult}(I, c(R, 0), V).
 \]

- **Inductor:** \(V = I \times (0 + WL_i) \)

 \[
 \text{circuit}(\text{inductor}(L), V, I, W) :- \\
 \text{Im} = \text{W} \times L, \\
 \text{c_mult}(I, c(0, \text{Im}), V).
 \]

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC}i) \)

 \[
 \text{circuit}(\text{capacitor}(C), V, I, W) :- \\
 \text{Im} = -1 / (\text{W} \times C), \\
 \text{c_mult}(I, c(0, \text{Im}), V).
 \]
Analog RLC circuits (CLP(ℜ))

- Example:

\[I = 0.65 \]
\[L = 0.073 \]
\[C = ? \]
\[R = ? \]
\[V = 4.5 \]
\[\omega = 2400 \]

\[I = 0.65 \]
\[L = 0.073 \]

?- circuit(parallel(inductor(0.073),
 series(capacitor(C), resistor(R))),
 c(4.5, 0), c(0.65, 0), 2400).

R = 6.91229, C = 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other
- Data structure: a list holding the column position for each row
- The final solution is a permutation of the list $[1, 2, \ldots, N]$
- E.g.: the solution is represented as $[2, 4, 1, 3]$
- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
 queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
 no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs). % OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
 N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathbb{R}\)) (in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
 N >. 0, X >. 0, X <=. Range, N1 =. N - 1,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen .>. Y + Nb, Queen .>. Y - Nb, Nb1 =. Nb + 1,
 no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N >. 0,
 member(N, Q),
 N1 =. N - 1,
 place_queens(N1, Q).
The N Queens Problem in CLP(ℜ)

- This last program can attack the problem in its most general instance:

```
?- queens(N,L).
L = [], N .-. 0 ;
L = [1], N .-. 1 ;
L = [2, 4, 1, 3], N .-. 4 ;
L = [3, 1, 4, 2], N .-. 4 ;
L = [5, 2, 4, 1, 3], N .-. 5 ;
L = [5, 3, 1, 4, 2], N .-. 5 ;
L = [3, 5, 2, 4, 1], N .-. 5 ;
L = [2, 5, 3, 1, 4], N .-. 5
...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list Xs in `no_attack(Xs, X, 1)`)

- Note that in fact we are using both ℜ and ℱ⊥
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(ℜ)

- CLP(ℜ) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
nonzero(_E), _A.=<.4.0, _E.=.3.0+_{-}A_{-}D,
nonzero(_F), _A.>.0, _F.=.-3.0+_{-}A_{-}D,
nonzero(_G), _B.=<.4.0, _G.=.2.0+_{-}A_{-}C,
nonzero(_H), _B.>.0, _H.=.-2.0+_{-}A_{-}C,
nonzero(_I), _C.=<.4.0, _I.=.1+_{-}A_{-}B,
nonzero(_J), _C.>.0, _J.=.-1+_{-}A_{-}B,
nonzero(_K), _D.=<.4.0, _K.=.2.0+_{-}B_{-}D,
nonzero(_L), _D.>.0, _L.=.-2.0+_{-}B_{-}D,
nonzero(_M), _M.=.1+_{-}B_{-}C,
nonzero(_N), _N.=.-1+_{-}B_{-}C,
nonzero(_O), _O.=.1+_{-}C_{-}D,
nonzero(_P), _P.=.-1+_{-}C_{-}D
```

- `place_queens(4, [_A, _B, _C, _D])` adds all possible queens in `[_A, _B, _C, _D]`
The N Queens Problem in CLP(\(\mathbb{R}\))

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [A,B,C,D],
nonzero(_E), _A = 3.0, _E = 6.0-D,
nonzero(_F), _B = 1.0, _F = -D,
nonzero(_G), _C = 4.0, _G = 5.0-C,
nonzero(_H), _C = 1.0, _H = 1.0-C,
nonzero(_I), _D = 4.0, _I = 3.0-D,
nonzero(_J), _D = 1.0, _J = -1.0-D,
nonzero(_K), _K = 2.0-C,
nonzero(_L), _L = -C,
nonzero(_M), _M = 1+C-D,
nonzero(_N), _N = -1+C-D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \mathbb{Z}

- Example: $E \in \{-123, -10..4, 10\}$

 Can be represented as, e.g.,

 $E :: [-123, -10..4, 10]$

 or as

 $E \in -123 \lor (-10..4) \lor 10$

- We can:

 ◦ Establish the *domain* of a variable (**in**).

 ◦ Perform arithmetic operations (**+, -, *, /**) on the variables

 ◦ Establish linear relationships among arithmetic expressions (**#=, #<, #=<**)

- These operations / relationships narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

 :- use_package(clpfd).

 directive in the source code –or, equivalently, adding in the module declaration:

 :- module(_, ..., [clpfd]).
Examples:

?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- **domain(Variables, Min, Max)**: A shorthand for several in constraints

- **labeling(Options, VarList)**:
 - instantiates variables in VarList to values in their domains
 - Options dictates the search order

```
?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- **minimize(G, X)**: solve G minimizing the value of variable X

- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

% SEND
% + MORE
% _________
% MONEY

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
 domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
 0 #< S, 0 #< M, % No leftmost zeros
 all_different([S,E,N,D,M,O,R,Y]), % All digits different
 S*1000 + E*100 + N*10 + D + %
 M*1000 + O*100 + R*10 + E #= % Arith. constr.
 M*10000 + O*1000 + N*100 + E*10 + Y, %
 labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

```prolog
pn1(A,B,C,D,E,F,G) :-
    domain([[A,B,C,D,E,F,G], 0, 10]),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + 1.
```
A Project Management Problem (II)

- Query:

  ```prolog
  ?- pn1(A,B,C,D,E,F,G).
  A in 0..4, B in 0..5, C in 0..4,
  D in 0..6, E in 2..6, F in 3..9, G in 6..10.
  ```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:

  ```prolog
  ?- minimize(pn1(A,B,C,D,E,F,G), G).
  A = 0, B in 0..1, C = 0, D in 0..2,
  E = 2, F in 3..5, G = 6
  ```

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

$$\text{pn2}(A, B, C, D, E, F, G, X) :-$$

 \begin{align*}
 &\text{domain([A,B,C,D,E,F,G,X], 0, 10),} \\
 &A \#>= 0, G \#<= 10, \\
 &B \#>= A, C \#>= A, D \#>= A, \\
 &E \#>= B + 1, E \#>= C + 2, \\
 &F \#>= C + 2, F \#>= D + 3, \\
 &G \#>= E + 4, G \#>= F + X.
 \end{align*}

- We do not want to accelerate it more than needed!

→ minimize G and maximize X.

\[
\begin{align*}
A &= 0, & B \text{ in } 0..1, & C = 0, & D = 0, \\
E &= 2, & F = 3, & G = 6, & X = 3.
\end{align*}
\]
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

```
pn3(A,B,C,D,E,F,G,X,Y) :-
  domain([A,B,C,D,E,F,G,X,Y], 0, 10),
  A #>= 0, G #=< 10,
  X #>= 2, Y #>= 2, X + Y #= 6,
  B #>= A, C #>= A, D #>= A,
  E #>= B + X, E #>= C + 2,
  F #>= C + 2, F #>= D + Y,
  G #>= E + 4, G #>= F + 1.
```

- Query:

```
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G).
A = 0, B = 0, C = 0, D in 0..1, E = 2,
F in 4..5, X = 2, Y = 4, G = 6
```

- I.e., we must devote more resources to task B

- All tasks but F and D are critical now

- Sometimes, `minimize/2` not enough to provide best solution (pending constr.):

```
?- minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).
```
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

- By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :- % Type is labeling strategy
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type, Qs). % Labeling places the queens
```

```prolog
constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).
```

```prolog
no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

- Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

```
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
```
CLP(\(\mathcal{FT}\)) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).
```

```prolog
?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L = b, X = u, Y = v, Z = W ? ;
L = b, X = u, Y = W, Z = v ? ;
L = b, W = t(_C, _B, _A), X = u, Y = t(_C, _A, _B), Z = v ? ;
L = b, W = t(_E, t(_D, _C, _B), _A), X = u, Y = t(_E, _A, t(_D, _B, _C)), Z = v ?
```
CLP(\mathcal{WE})

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

  ```prolog
  ?- "123".Z = Z."231", Z::0.  no
  ?- "123".Z = Z."231", Z::3.  no
  ?- "123".Z = Z."231", Z::1.  Z = "1"
  ?- "123".Z = Z."231", Z::4.  Z = "1231"
  ?- "123".Z = Z."231", Z::2.  no
  ```

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over \(\mathbb{Q} \) (rational numbers)

Prove that the sequence \(x_{i+2} = |x_{i+1}| - x_i \) has a period of length 9 (for any starting \(x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```prolog
seq(<Y, X>).
abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :-
    seq(<Y, X>.U)
    abs(Y, Y1).
```

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

```prolog
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

• **In general:**
 ◦ Data structures (Herbrand terms) for free
 ◦ Each logical variable may have constraints associated with it (and with other variables)

• **Problem modeling:**
 ◦ Rules represent the problem at a high level
 * Program structure, modularity
 * Recursion used to set up constraints
 ◦ Constraints encode problem conditions
 ◦ Solutions also expressed as constraints

• **Combinatorial search problems:**
 ◦ CLP languages provide backtracking: enumeration is easy
 ◦ Constraints keep the search space manageable

• **Tackling a problem:**
 ◦ Keep an open mind: often new approaches possible
Some complex constraints allow expressing simpler constraints

May be operationally treated as passive constraints

E.g.: cardinality operator \#(L, [c_1, \ldots, c_n], U) meaning that the number of true constraints lies between \(L \) and \(U \) (which can be variables themselves)
- If \(L = U = n \), all constraints must hold
- If \(L = U = 1 \), one and only one constraint must be true
- Constraining \(U = 0 \), we force the conjunction of the negations to be true
- Constraining \(L > 0 \), the disjunction of the constraints is specified

Disjunctive constructive constraint: \(c_1 \lor c_2 \)
- If properly handled, avoids search and backtracking

E.g.:
\[\text{nz}(X) \leftarrow X > 0. \]
\[\text{nz}(X) \leftarrow X < 0. \]
\[\text{nz}(X) \leftarrow X < 0 \lor X > 0. \]
Other Primitives

- CLP(\mathcal{X}) systems usually provide additional primitives

- E.g.:
 - \texttt{enum(X)} enumerates \(X\) inside its current domain
 - \texttt{maximize(X)} (c.f. \texttt{minimize(X)}) works out maximum (minimum value) for \(X\) under the active constraints
 - \texttt{delay Goal until Condition} specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed
 - * Its use needs deep knowledge of the constraint system
 - * Also widely available in Prolog systems
 - * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

• Implementation of backtracking more complex than in Prolog
• Need to record changes to constraints
• Constraints typically stored as an association of variable to expression
• Trailing expressions is, in general, costly: cannot be stored at every change
• Avoid trailing when there is no choice point between two successive changes
• A standard technique: use time stamps to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< Y + Z, \ Y = Z + W \\
X &< Y + 4, \ Y = 4 + W, \ Z = 4 \\
X &< 9, \ Y = 5, \ Z = 4, \ W = 1 \\
\text{trail } W, \text{ timestamp it} \\
\text{trail } X, Y, Z, \text{ timestamp them} \\
\text{timestamp } X, Y, Z, W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel, Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHR)s:
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- **Example: Freeze**

```
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 - Specially useful if infer is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

  ```prolog
  max(X,Y,X) :- X >. Y.  ;
  max(X,Y,Y) :- X <=. Y.  ;
  with
  max(X,Y,X) :- X >. Y, !.  ;
  max(X,Y,Y) :- X <=. Y.  ;
  ```
CLP Systems

- As mentioned before, CLP defines a class of languages obtained by
 ◦ Specifying the particular constraint system(s)
 ◦ Specifying the Computation and Selection rules
- Most practical systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms
- Most use the Computation and Selection rules of Prolog
Some Classic CLP Systems

- **CLP(\mathbb{R}):**
 - Linear arithmetic over reals ($\,=,\leq,\geq\,$) – CLP(R)
 - Incremental Gaussian elimination and incremental Simplex

- **PrologIII:**
 - CLP(R)
 - Boolean ($\,=\,$), 2-valued Boolean Algebra – CLP(B)
 - Infinite (rational) trees ($\,=,\neq\,$)
 - Equations over finite strings – CLP(WE)

- **CHIP** (and its successor: the ILOG library):
 - CLP(FD), CLP(B), CLP(Q)
 - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
 - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

- **RISC–CLP:**
 - Arithmetic constraints over reals, also non-linear
 (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
 - CLP(FD).

- **SICStus:**
 - CLP(R), CLP(Q), CLP(FD)
 - Attributed variables and CHR for adding domains.

- **ECLiPS:**
 - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
 - CLP(R), CLP(Q), CLP(FD), CLP(B).
 - Attributed variables and CHR for additional domains.

- **Ciao:**
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for additional domains.
 - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!
Some origins and other instances

- Ancestors:
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- Constraints in logic languages: – the origin of “constraint programming”:
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: c1pr, CHIP, ...
 - Later, included in mainstream Prolog implementations.
 - Has given to a whole

- Constraints in imperative languages:
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables: $x := x + 1 \leftrightarrow x_{i+1} := x_i + 1$
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*