Computational Logic
Constraint Logic Programming
Constraints

- Constraint: conditions that a solution must satisfy
 - \(X + Y = 20 \)
 - \(X \land Y \) is true
 - The third field of the data structure is greater than the second
 - The murderer is one of those who had met the cabaret entertainer

- CLP: LP plus the ability to compute with some form of constraints (which are solved by the system during computation)

- (Additional) features of a CLP system:
 - Domain of computation (reals, rationals, integers, booleans, structures, . . .)
 - Expressions that can be built (\(+, *, \land, \lor \))
 - Constraints allowed: equations, disequations, inequations, etc.
 (\(=, \neq, \leq, \geq, <, > \))
 - Constraint solving algorithms: simplex, gauss, etc.

- Solutions: assignments to variables, or new constraints among variables.
A comparison with classic LP (I)

- Example (plain Prolog): \[q(X, Y, Z) :- Z = f(X, Y). \]

\[\text{?- } q(3, 4, Z). \]
\[Z = f(3, 4) \]

\[\text{?- } q(X, Y, f(3,4)). \]
\[X = 3, Y = 4 \]

\[\text{?- } q(X, Y, Z). \]
\[Z = f(X,Y) \]

- Example (plain Prolog): \[p(X, Y, Z) :- Z \text{ is } X + Y. \]

\[\text{?- } p(3, 4, Z). \]
\[Z = 7 \]

\[\text{?- } p(X, 4, 7). \]
\[\{ \text{INSTANTIATION ERROR} \} \leftarrow \text{is/2 not reversible, does not work!} \]
A Comparison with classic LP (II)

- Example (**CLP(\(\mathbb{R}\))** package):

<table>
<thead>
<tr>
<th>:- use_package(clpr).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z := X + Y.</td>
</tr>
</tbody>
</table>

?- p(3, 4, Z).
Z := 7

?- p(X, 4, 7).
X := 3

4 ?- p(X, Y, 7).
X := 7 - Y ← with clpr arithmetic is reversible!
A Comparison with classic LP (III)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 * LP: generate-and-test.
 * CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Some solutions:
 - Better algorithms.
 - Compile-time optimizations (program transformation, global analysis, etc).
 - Parallelism.
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.
  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).
  
  
test(X, Y, Z) :-  Y is X + 1, Z is Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X = 14, Y = 15, Z = 16 ? ;
  no
  ```

- 458 steps (all solutions: 475 steps).
Example of Search Space Reduction

- Using the **CLP(ℜ) package** (generate–and–test):

```prolog
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).

solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


test(X, Y, Z) :- Y == X + 1, Z == Y + 1.
```

- Query:

```
?- solution(X, Y, Z).
X == 14, Y == 15, Z == 16 ? ;
no
```

- 458 steps (all solutions: 475 steps).
Generate–and–test Search Tree

X=11 X=3 X=7 X=16 X=15 X=14
A1 A2 A3 A4 A5

Y=11 Y=3 Y=7 Y=16 Y=15 Y=14
B1 B2 B3 B4 B5

Z=11 Z=3 Z=7 Z=16 Z=15 Z=14
Example of Search Space Reduction

- Move `test(X, Y, Z)` to the beginning (constrain–and–generate):

 % Find three consecutive numbers in the p/1 relation.
 :- use_package(clpr).
 solution(X, Y, Z) :-
 test(X, Y, Z),
 p(X), p(Y), p(Z).

- Using **plain Prolog**: `test(X, Y, Z):-Y is X +1, Z is Y +1.`

 ?- solution(X, Y, Z).
 {INSTANTIATION ERROR}

- Using the **CLP(ℜ)** package: `test(X, Y, Z):-Y ..=. X +1, Z ..=. Y +1.`

 ?- solution(X, Y, Z).
 X ..=. 14, Y ..=. 15, Z ..=. 16 ? ;
 no

In **11 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree

\[\begin{align*}
 &\text{g} \\
 &\text{X=11} \quad \text{X=3} \quad \text{X=7} \quad \text{X=16} \quad \text{X=15} \quad \text{X=14} \\
 &\quad \text{Y=16} \\
 &\quad \quad \text{Y=15} \\
 &\quad \quad \quad \text{Z=16}
\end{align*} \]
The semantics is parameterized by the constraint domain \mathcal{X}: CLP(\mathcal{X}), where $\mathcal{X} \equiv (\Sigma, D, L, T)$:

- Σ: set of predicate and function symbols, together with their arity
- $L \subseteq \Sigma$–formulae: constraints
- D: the set of actual elements in the constraint domain
- D: meaning of predicate and function symbols (and hence, constraints).
- T: a first–order theory (axiomatizes some properties of D)

(D, L) is a constraint domain

Assumptions:

- L built upon a first–order language
- $= \in \Sigma$ and $=$ is identity in D
- There are identically false and identically true constraints in L
- L is closed w.r.t. renaming, conjunction, and existential quantification
Constraint Domains (I)

- $\Sigma = \{0, 1, +, *, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), \mathcal{D} interprets Σ as usual, $\mathcal{R} = (\mathcal{D}, \mathcal{L})$

 \rightarrow **Arithmetic over the reals** ("\mathcal{R}" domain).
 - Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ (≡ $xxx + xxy + xxy < y \land 0 < x$)
 - Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (\mathcal{D}', \mathcal{L}')$

 \rightarrow **Linear arithmetic** ("\mathcal{R}_{Lin}" domain)
 - Eg.: $3x - y < 3$ (≡ $x + x + x < 1 + 1 + 1 + y$)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (\mathcal{D}'', \mathcal{L}'')$

 \rightarrow **Linear equations** ("\mathcal{R}_{LinEq}" domain)
 - Eg.: $3x + y = 5 \land y = 2x$

- A corresponding set of domains can be defined on the **rationals** ("\mathbb{Q}" domain)
Constraint Domains (II)

- A very special domain:
 - $\Sigma = \{ \text{<constant and function symbols>, } = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 * Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, \mathcal{L})$

→ **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- LP \equiv CLP(\mathcal{FT})
 - I.e., classical LP can be viewed as constraint logic programming over Herbrand terms with a single constraint predicate symbol: \equiv.
Constraint Domains (III)

- \(\Sigma = \{<\text{constants}>, \lambda, :, :, =\} \)
- \(D = \{ \text{finite strings of constants} \} \)
- \(D \) interprets \(. \) as string concatenation, \(:: \) as string length

\[\text{→ Equations over strings of constants (} D \text{ domain)} \]
- Eg.: \(X.A.X = X.A \)

- \(\Sigma = \{0, 1, \neg, \land, =\} \)
- \(D = \{\text{true, false}\} \)
- \(D \) interprets symbols in \(\Sigma \) as boolean functions
- \(BOOL = (D, L) \)

\[\text{→ Boolean constraints (} BOOL \text{ domain)} \]
- Eg.: \(\neg(x \land y) = 1 \)
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$—formulae are the constraints
- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
 - Atom: $p(t_1, t_2, \ldots, t_n)$, where $p \in \Pi$ and t_1, t_2, \ldots, t_n are terms
 - Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints
- A fact is a rule $a \leftarrow c$ where c is a constraint
- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ): language based on Prolog + constraint solving over the reals (ℜLin)
 - Same execution strategy as standard Prolog (depth–first, left–to–right)
 - Allows linear equations and disequations over the reals
 - Linear constraints are solved; non-linear constraints are passive: delayed until linear or simple checks:
 * \(X\times Y = 7\) becomes linear when \(X\) is assigned a definite value
 * \(X\times X + 2\times X + 1 = 0\) becomes a check when \(X\) is assigned a definite value
 - Prolog arithmetic is subsumed by constraint solving
- Note: CLP(ℜ) is really CLP((ℜ, ℱT)) — ℱT is often omitted.

- Supported in modern Prologs coexisting with the ISO primitives \texttt{is/2, >/2} etc.
- In Ciao, via the \texttt{clpr} package:
 - Uses \texttt{.=., ./>.}, etc. to distinguish the \texttt{clpr} constraints from the ISO-Prolog arithmetic primitives.
 - I.e., \(X = . Y + 5, Y >. 1\) vs. \(X \texttt{ is} Y + 5, Y >1\)
Linear Equations (CLP(\(\mathbb{R}\)) package)

- Vector \(\times\) vector multiplication (dot product):

 \[
 \cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \\
 (x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n
 \]

- Vectors represented as lists of numbers

```prolog
:- use_package(clpr).
prod([], [], Result) :- Result .==. 0.
prod([X|Xs], [Y|Ys], Result) :-
    Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
```

- Unification becomes constraint solving!

```prolog
?- prod([2, 3], [4, 5], K).
K .==. 23
?- prod([2, 3], [5, X2], 22).
X2 .==. 4
?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
Vx .==. -1.5*Vz - 3.5*Vy
```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(\mathbb{R}))

- Can we solve systems of equations? E.g.,

\[
\begin{align*}
3x + y &= 5 \\
-x + 8y &= 3
\end{align*}
\]

- Write them down at the top level prompt:

\[
\text{?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).}
X \:=. \ 1.6087, \ Y \:=. \ 0.173913
\]

- A more general predicate can be built mimicking the mathematical vector notation $A \cdot x = b$:

\[
\text{} \ \text{system}(_\text{Vars}, [], []). \\
\text{system}(\text{Vars}, [\text{Co|Coefs}], [\text{Ind|Indeps}]) :- \\
\text{prod(Vars, Co, Ind),} \\
\text{system}(\text{Vars, Coefs, Indeps}).
\]

- We can now express (and solve) equation systems

\[
\text{?- system([X, Y], [[3, 1],[1, 8]], [5, 3]).}
X \:=. \ 1.6087, \ Y \:=. \ 0.173913
\]
Non–linear Equations (CLP(\(\mathbb{R}\)))

- Non–linear equations are delayed

 \[
 \begin{align*}
 ?-\ sin(X) & \text{.} =.\ cos(X) \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \sin(X) & \text{.} =.\ cos(X) \\
 \end{align*}
 \]

- This is also the case if there exists some procedure to solve them

 \[
 \begin{align*}
 ?-\ X^2 + 2X + 1 & \text{.} =.\ 0 \\
 -2X - 1 & \text{.} =.\ X^2 \\
 \end{align*}
 \]

- Reason: no general solving technique is known. CLP(\(\mathbb{R}\)) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

 \[
 \begin{align*}
 ?-\ X & \text{.} =.\ \cos(\sin(Y)),\ Y & \text{.} =.\ 2+Y^3. \\
 Y & \text{.} =.\ -1,\ X & \text{.} =.\ 0.666367 \\
 \end{align*}
 \]

- Disequations are solved using a modified, incremental Simplex

 \[
 \begin{align*}
 ?-\ X + Y & \text{.} <=.\ 4,\ Y & \text{.} >=.\ 4,\ X & \text{.} >=.\ 0. \\
 Y & \text{.} =.\ 4,\ X & \text{.} =.\ 0 \\
 \end{align*}
 \]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
\begin{align*}
F_0 &= 0 \\
F_1 &= 1 \\
F_{n+2} &= F_{n+1} + F_n
\end{align*}
\]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =. 0.
fib(N,N) :- N =. 1.
fib(N,R) :- N >. 1, F1 =. 0, F2 =. 0,
            N1 =. N - 1, N2 =. N - 2,
            fib(N1,F1), fib(N2,F2),
            R =. F1 + F2.
```

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```prolog
?- fib(N,F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(ℜ))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (\(I\)), voltage (\(V\)) and frequency (\(W\)) in steady state
- Entry point: \texttt{circuit}(C, V, I, W) states that:
 - across the network \(C\), the voltage is \(V\), the current is \(I\) and the frequency is \(W\)
- \(V\) and \(I\) must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Complex number \(X + Yi\) modeled as \(c(X, Y)\)
- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
  Re12 .==. Re1 + Re2,
  Im12 .==. Im1 + Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
  Re3 .==. Re1 * Re2 - Im1 * Im2,
  Im3 .==. Re1 * Im2 + Re2 * Im1.
```

(equality is \(c_equal(c(R, I), c(R, I))\), can be left to [extended] unification)
Analog RLC circuits (CLP(\mathbb{R}))

- Circuits in series:

 \[
 \text{circuit}(\text{series}(N1, N2), V, I, W) :-
 \text{c_add}(V1, V2, V),
 \text{circuit}(N1, V1, I, W),
 \text{circuit}(N2, V2, I, W).
 \]

- Circuits in parallel:

 \[
 \text{circuit}(\text{parallel}(N1, N2), V, I, W) :-
 \text{c_add}(I1, I2, I),
 \text{circuit}(N1, V, I1, W),
 \text{circuit}(N2, V, I2, W).
 \]
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i) \)

  ```prolog
  circuit(resistor(R), V, I, _W) :-
      c_mult(I, c(R, 0), V).
  ```

- **Inductor:** \(V = I \times (0 + WLi) \)

  ```prolog
  circuit(inductor(L), V, I, W) :-
      Im .==. W * L,
      c_mult(I, c(0, Im), V).
  ```

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC}i) \)

  ```prolog
  circuit(capacitor(C), V, I, W) :-
      Im .==. -1 / (W * C),
      c_mult(I, c(0, Im), V).
  ```
Analog RLC circuits (CLP(\mathbb{R}))

- Example:

\[\begin{align*}
R &= \ ? \\
C &= \ ? \\
V &= 4.5 \\
\omega &= 2400 \\
I &= 0.65 \\
L &= 0.073 \\
\end{align*} \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),(c(4.5, 0), c(0.65, 0), 2400)).

R == 6.91229, C == 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

• Problem:
 place \(N\) chess queens in a \(N \times N\) board such that they do not attack each other

• Data structure: a list holding the column position for each row

• The final solution is a permutation of the list \([1, 2, \ldots, N]\)

• E.g.: the solution is represented as \([2, 4, 1, 3]\)

• General idea:
 ◦ Start with partial solution
 ◦ Nondeterministically select new queen
 ◦ Check safety of new queen against those already placed
 ◦ Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

```prolog
queens(N, Qs) :- queens_list(N, Ns), \% E.g., Ns=[4,3,2,1]
                queens(Ns, [], Qs).
queens([], Qs, Qs). \% All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), \% E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1),
    queens(NewUnplaced, [Q|Placed], Qs). \% OK->Choose next q
no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen \= Y + Nb, Queen \= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).
queens_list(0, []).
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```

```prolog
queens_list(0, []).
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(ℜ) (in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
 N .> 0, X .> 0, X .=<. Range, N1 .= N - 1,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen .<> Y + Nb, Queen .<> Y - Nb, Nb1 .= Nb + 1,
 no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N .> 0,
 member(N, Q),
 N1 .= N - 1,
 place_queens(N1, Q).
The N Queens Problem in CLP(ℜ)

- This last program can attack the problem in its most general instance:

```prolog
?- queens(N,L).
L = [], N = 0 ;
L = [1], N = 1 ;
L = [2, 4, 1, 3], N = 4 ;
L = [3, 1, 4, 2], N = 4 ;
L = [5, 2, 4, 1, 3], N = 5 ;
L = [5, 3, 1, 4, 2], N = 5 ;
L = [3, 5, 2, 4, 1], N = 5 ;
L = [2, 5, 3, 1, 4], N = 5
...
```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list `Xs` in `no_attack(Xs, X, 1)`)

- Note that in fact we are using both ℜ and ℱΤ
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(ℜ)

- CLP(ℜ) generates internally a set of equations for each board size

```prolog
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
nonzero(_E), _A.=<.4.0, _E.=.3.0+_A-_D,
nonzero(_F), _A.>.0, _F.=.-3.0+_A-_D,
nonzero(_G), _B.=<.4.0, _G.=.2.0+_A-_C,
nonzero(_H), _B.>.0, _H.=.-2.0+_A-_C,
nonzero(_I), _C.=<.4.0, _I.=.1+_A-_B,
nonzero(_J), _C.>.0, _J.=.-1+_A-_B,
nonzero(_K), _D.=<.4.0, _K.=.2.0+_B-_D,
nonzero(_L), _D.>.0, _L.=.-2.0+_B-_D,
nonzero(_M), _M.=.1+_B-_C,
nonzero(_N), _N.=.-1+_B-_C,
nonzero(_O), _O.=.1+_C-_D,
nonzero(_P), _P.=.-1+_C-_D
```


The N Queens Problem in CLP(ℜ)

• Constraints are (incrementally) simplified as new queens are added

?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-_D,
nonzero(_F), _B.=.1.0, _F.=.-_D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,
nonzero(_H), _C.=>.0, _H.=.1.0-_C,
nonzero(_I), _D.=<.4.0, _I.=.3.0-_D,
nonzero(_J), _D.=>.0, _J.=.-1.0-_D,
nonzero(_K), _K.=.2.0-_C,
nonzero(_L), _L.=.-_C,
nonzero(_M), _M.=.1+_C-_D,
nonzero(_N), _N.=.-1+_C-_D ?

• Bad choices are rejected using constraint consistency:

?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
Finite Domains (I)

- A **finite domain** constraint solver associates each variable with a finite subset of \mathbb{Z}
- Example: $E \in \{-123, -10..4, 10\}$

 Can be represented as, e.g.,

 $E :: [-123, -10..4, 10]$ \hspace{1cm} \text{[Eclipse notation]}

 or as

 $E \in -123 \lor (-10..4) \lor 10$ \hspace{1cm} \text{[Ciao notation]}

- We can:
 - Establish the *domain* of a variable (in).
 - Perform arithmetic operations ($+$, $-$, \times, $/$) on the variables
 - Establish linear relationships among arithmetic expressions ($\#=$, $\#<$, $\#<=$)

- These operations / relationships narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_package(clpfd).
  ```

 directive in the source code —or, equivalently, adding in the module declaration:

  ```prolog
  :- module(_, ..., [clpfd]).
  ```
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- **domain(Variables, Min, Max)**: A shorthand for several in constraints
- **labeling(Options, VarList)**:
 - Instantiates variables in VarList to values in their domains
 - Options dictates the search order

```prolog
?- domain([X, Y, Z], 1, 1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- **minimize(G, X)**: solve G minimizing the value of variable X
- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
 domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
 0 #< S, 0 #< M, % No leftmost zeros
 all_different([S,E,N,D,M,O,R,Y]), % All digits different
 S*1000 + E*100 + N*10 + D + %
 M*1000 + O*100 + R*10 + E #= % Arith. constr.
 M*10000 + O*1000 + N*100 + E*10 + Y, %
 labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

```
pn1(A,B,C,D,E,F,G) :-
    domain([A,B,C,D,E,F,G], 0, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + 1.
```
A Project Management Problem (II)

- **Query:**

```
?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10.
```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- **Minimize the total project time:**

```
?- minimize(pn1(A,B,C,D,E,F,G), G).
    A = 0, B in 0..1, C = 0, D in 0..2,
    E = 2, F in 3..5, G = 6
```

- Variables without slack represent critical tasks
A Project Management Problem (III)

- An alternative setting:

- We can accelerate task F at some cost

\[
\text{pn2}(A, B, C, D, E, F, G, X) :- \\
\text{domain}([A,B,C,D,E,F,G,X], 0, 10), \\
A \geq 0, \ G \leq 10, \\
B \geq A, \ C \geq A, \ D \geq A, \\
E \geq B + 1, \ E \geq C + 2, \\
F \geq C + 2, \ F \geq D + 3, \\
G \geq E + 4, \ G \geq F + X.
\]

- We do not want to accelerate it more than needed!

→ minimize G and maximize X.

$A = 0, \ B \text{ in } 0..1, \ C = 0, \ D = 0, \\
E = 2, \ F = 3, \ G = 6, \ X = 3.$
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

We can finish any of B, D in 2 time units at best.

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

```
\text{pn3}(A,B,C,D,E,F,G,X,Y) :-
\text{domain}([A,B,C,D,E,F,G,X,Y], 0, 10),
A \#>= 0, G \#=< 10,
X \#>= 2, Y \#>= 2, X + Y \#= 6,
B \#>= A, C \#>= A, D \#>= A,
E \#>= B + X, E \#>= C + 2,
F \#>= C + 2, F \#>= D + Y,
G \#>= E + 4, G \#>= F + 1.
```

- Query:

```
?- \text{minimize(pn3}(A,B,C,D,E,F,G,X,Y),G).
A = 0, B = 0, C = 0, D in 0..1, E = 2,
F in 4..5, X = 2, Y = 4, G = 6
```

- I.e., we must devote more resources to task B

- All tasks but F and D are critical now

- Sometimes, \text{minimize/2} not enough to provide best solution (pending constr.):

```
?- \text{minimize(pn3(A,B,C,D,E,F,G,X,Y),G)}, \text{labeling}([], [D,F]).
```
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

- By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :-
    % Type is labeling strategy
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type, Qs). % Labeling places the queens
```

```prolog
constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1..Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).
```

```prolog
no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

- Query:

```prolog
?- queens(20, Q, [ff]). % Type is the type of labeling desired.
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
```
CLP(\(\mathcal{FT}\)) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
    iso(I1, D2),
    iso(D1, I2).
```

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
```
CLP(\mathcal{WE})

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

```
?- "123".Z = Z."231", Z::0. no
?- "123".Z = Z."231", Z::3. no
?- "123".Z = Z."231", Z::1. Z = "1"
?- "123".Z = Z."231", Z::4. Z = "1231"
?- "123".Z = Z."231", Z::2. no
```

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over $\mathbb{Q}$ (rational numbers)

Prove that the sequence $x_{i+2} = |x_{i+1}| - x_i$ has a period of length 9 (for any starting $x_0, x_1$)

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>). abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :-
 seq(<Y, X>.U)
 abs(Y, Y1).
```

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

```
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

- **In general:**
  - Data structures (Herbrand terms) for free
  - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
  - Rules represent the problem at a high level
    - Program structure, modularity
    - Recursion used to set up constraints
  - Constraints encode problem conditions
  - Solutions also expressed as constraints

- **Combinatorial search problems:**
  - CLP languages provide backtracking: enumeration is easy
  - Constraints keep the search space manageable

- **Tackling a problem:**
  - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \( \#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \( L \) and \( U \) (which can be variables themselves)
  - If \( L = U = n \), all constraints must hold
  - If \( L = U = 1 \), one and only one constraint must be true
  - Constraining \( U = 0 \), we force the conjunction of the negations to be true
  - Constraining \( L > 0 \), the disjunction of the constraints is specified
- Disjunctive constructive constraint: \( c_1 \lor c_2 \)
  - If properly handled, avoids search and backtracking

  - E.g.:  
    \[
    \begin{align*}
    nz(X) &\leftarrow X > 0. \\
    nz(X) &\leftarrow X < 0.
    \end{align*}
    \quad
    nz(X) \leftarrow X < 0 \lor X > 0.
    \]
Other Primitives

- CLP(\(\mathcal{X}\)) systems usually provide additional primitives

- E.g.:
  - **\texttt{enum(X)}** enumerates X inside its current domain
  - **\texttt{maximize(X)}** (c.f. **\texttt{minimize(X)}**) works out maximum (minimum value) for X under the active constraints
  - **\texttt{delay Goal until Condition}** specifies when the variables are instantiated enough so that Goal can be effectively executed
    - * Its use needs deep knowledge of the constraint system
    - * Also widely available in Prolog systems
    - * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in $\mathcal{FT}$ constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
  - each $t_i(\tilde{y})$ denotes a term structure containing variables from $\tilde{y}$
  - no variable $x_i$ appears in $\tilde{y}$
  (i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP($\mathcal{X}$)

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< Y + Z, \\
X &< Y + 4, \ Y = 4 + W, \ Z = 4 \\
X &< 9, \ Y = 5, \ Z = 4, \ W = 1 & \text{trail } W, \ \text{timestamp it} \\
X &< Y + Z, \ Y = Z + W & \text{timestamp } X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
  
  ◊ Attributed variables [Neumerkel, Holzbaur]:
  
  * Provide a hook into unification.
  * Allow attaching an attribute to a variable.
  * When unification with that variable occurs, user-defined code is called.
  * Used to implement constraint solvers (and other applications, e.g., distributed execution).

  ◊ Constraint handling rules (CHRs):
  
  * Higher-level abstraction.
  * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
  * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
  - `attach_attribute(X,C)`
  - `get_attribute(X,C)`
  - `detach_attribute(X)`
  - `update_attribute(X,C)`
  - `verify_attribute(C,T)`
  - `combine_attributes(C1,C2)`

- **Example: Freeze**

```
freeze(X, Goal) :-
 attach_attribute(V, frozen(V,Goal)),
 X = V.

verify_attribute(frozen(Var,Goal), Value) :-
 detach_attribute(Var),
 Var = Value,
 call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-
 detach_attribute(V1),
 detach_attribute(V2),
 V1 = V2,
 attach_attribute(V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
  - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
  - Specially useful if infer is weak
  - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

  \[
  \begin{align*}
  \text{max}(X,Y,X) & : - X >. Y. & \quad \text{?- max}(X,Y,Z). \\
  \text{max}(X,Y,Y) & : - X <=. Y. & \quad Z =. X, Y <. X; \\
  \end{align*}
  \]

  with

  \[
  \begin{align*}
  \text{max}(X,Y,X) & : - X >. Y, !. & \quad \text{?- max}(X,Y,Z). \\
  \text{max}(X,Y,Y) & : - X <=. Y. & \quad Z =. X, Y <. X. \\
  \end{align*}
  \]
CLP Systems

• As mentioned before, CLP defines a class of languages obtained by
  ◦ Specifying the particular constraint system(s)
  ◦ Specifying the *Computation* and *Selection* rules

• Most practical systems include also the Herbrand domain with “=”, but then add
different domains and/or solver algorithms

• Most use the *Computation* and *Selection* rules of Prolog
Some Classic CLP Systems

- **CLP(R):**
  - Linear arithmetic over reals \((=, \leq, >)\) – CLP(R)
    - Incremental Gaussian elimination and incremental Simplex

- **PrologIII:**
  - CLP(R)
  - Boolean \((=)\), 2-valued Boolean Algebra – CLP(B)
  - Infinite (rational) trees \((=, \neq)\)
  - Equations over finite strings – CLP(WE)

- **CHIP** (and its successor: the **ILOG** library):
  - CLP(FD), CLP(B), CLP(Q)
  - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
  - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

- **RISC–CLP:**
  - Arithmetic constraints over reals, also non-linear (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
  - CLP(FD).

- **SICStus:**
  - CLP(R), CLP(Q), CLP(FD)
  - Attributed variables and CHR for adding domains.

- **ECLiPS:**
  - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
  - CLP(R), CLP(Q), CLP(FD), CLP(B).
  - Attributed variables and CHR for additional domains.

- **Ciao:**
  - CLP(R), CLP(Q), CLP(FD).
  - Attributed variables and CHR for additional domains.
  - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!
Some origins and other instances

- Ancestors:
  - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- Constraints in logic languages: – the origin of “constraint programming”:
  - General theory developed (Jaffar and Lassez ’97).
  - First, standalone systems developed: clpr, CHIP, ...
  - Later, included in mainstream Prolog implementations.
  - Has given to a whole

- Constraints in imperative languages:
  - Equation solving libraries (ILOG, GECODE, ...)
  - Timestamping of variables: \( x := x + 1 \iff x_{i+1} := x_i + 1 \) (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
  - Evaluation of expressions including free variables.
  - *Absolute Set Abstraction.*