Computational Logic
Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes
 The murderer knows no detective will ever wear dark clothes

- A solution is an assignment which agrees with the initial constraints:
 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer

 (they represent several ground mappings from elements to variables)

- There may be no solution:

 Natural death
A General View

• Ancestors:
 ◦ SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

• Constraints in logic languages – the origin of “constraint programming”:
 ◦ General theory developed (Jaffar and Lassez ’97).
 ◦ First, standalone systems developed: clpr, CHIP, ...
 ◦ Now included in many Prologs (e.g., clpr/clpq/clpfd packages in Ciao).

• Constraints in imperative languages:
 ◦ Equation solving libraries (ILOG, GECODE, ...)
 ◦ Timestamping of variables: \(x := x + 1 \) \(\leftrightarrow \) \(x_{i+1} := x_i + 1 \)
 (similar to iterative methods in numerical analysis)

• Constraints in functional languages, via extensions:
 ◦ Evaluation of expressions including free variables.
 ◦ *Absolute Set Abstraction.*
A comparison with classic LP (I)

- Example (plain Prolog): `q(X, Y, Z):=Z = f(X, Y).

 `- q(3, 4, Z).
 Z = f(3,4)

 ?- q(X, Y, f(3,4)).
 X = 3, Y = 4

 ?- q(X, Y, Z).
 Z = f(X,Y)

- Example (plain Prolog): `p(X, Y, Z):=Z is X +Y.

 `- p(3, 4, Z).
 Z = 7

 ?- p(X, 4, 7).
 {INSTANTIATION ERROR} ← is/2 not reversible, does not work!
A Comparison with classic LP (II)

- Example (**CLP(ℜ) package**):

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.
```

?- p(3, 4, Z).
Z =. 7

?- p(X, 4, 7).
X =. 3

4 ?- p(X, Y, 7).
X =. 7 - Y ← with clpr arithmetic is reversible!
A Comparison with classic LP (III)

- Features in CLP:
 - Domain(s) of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints (+, *, =, ≤, ≥, <, >)
 - Constraint solving algorithms: simplex, Gauss, propagation/consistency, etc.

- Classical LP can be viewed as constraint logic programming over Herbrand terms with a single constraint predicate symbol: \equiv.

A Comparison with classic LP (IV)

- **Advantages:**
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- **Disadvantages:**
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- **Solutions:**
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Using **plain Prolog** (generate–and–test):

```prolog
% Find three consecutive numbers in the p/1 relation.
solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
```

Query:

```
?- solution(X, Y, Z).
X = 14, Y = 15, Z = 16 ? ;
no
```

458 steps (all solutions: 465 steps).
Example of Search Space Reduction

- Using the **CLP(ℜ) package** (generate–and–test):
 % Find three consecutive numbers in the p/1 relation.
 \[
 \begin{align*}
 \text{:- use_package(clpr).} \\
 \text{solution}(X, Y, Z) :- \\
 &\quad \text{p}(X), \text{p}(Y), \text{p}(Z), \\
 &\quad \text{test}(X, Y, Z).
 \end{align*}
 \]
 \[
 \begin{align*}
 \text{p}(14). &\quad \text{p}(15). &\quad \text{p}(16). \\
 \text{p}(7). &\quad \text{p}(3). &\quad \text{p}(11).
 \end{align*}
 \]
 \[
 \begin{align*}
 \text{test}(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
 \end{align*}
 \]

- Query:
 \[
 \begin{align*}
 \text{?- solution}(X, Y, Z). \\
 X =. 14, Y =. 15, Z =. 16 \ ? ; \\
 \text{no}
 \end{align*}
 \]

- 458 steps (all solutions: 465 steps).
Generate–and–test Search Tree

- A5
 - Y=14
 - A4
 - X=15
 - A3
 - X=16
 - A2
 - X=7
 - A1
 - X=11
 - B5
 - Y=14
 - B4
 - Y=15
 - B3
 - Y=16
 - B2
 - Y=7
 - B1
 - Y=3
 - Z=14
 - Z=15
 - Z=16
 - Z=7
 - Z=3
 - Z=11

- B
 - A
 - B
Example of Search Space Reduction

- **Move** \(\text{test}(X, Y, Z)\) **to the beginning (constrain–and–generate):**

\[
\% \text{Find three consecutive numbers in the p/1 relation.}
\]\\
\[\text{:- use_package(clpr).} \]
\[\text{solution}(X, Y, Z) :- \]
\[\text{test}(X, Y, Z), \]
\[\text{p}(X), \text{p}(Y), \text{p}(Z). \]

- **Using plain Prolog:** \(\text{test}(X, Y, Z) :- Y \text{ is } X + 1, Z \text{ is } Y + 1.\)

\[\text{?- solution}(X, Y, Z). \]
\{INSTANTIATION ERROR\}

- **Using the CLP(\(\mathbb{R}\)) package:** \(\text{test}(X, Y, Z) :- Y \text{ .} = . X + 1, Z \text{ .} = . Y + 1.\)

\[\text{?- solution}(X, Y, Z). \]
\[X \text{ .} = . 14, Y \text{ .} = . 15, Z \text{ .} = . 16 \ ? ; \]
\no

In **6 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree

\[
\begin{align*}
&g \\
&\quad \quad X=14 \quad X=15 \quad X=16 \quad X=7 \quad X=3 \quad X=11 \\
&\quad \quad \quad \quad Y=15 \\
&\quad \quad Z=16
\end{align*}
\]
Constraint Domains

- The semantics is parameterized by the \textit{constraint domain} \(\mathcal{X}\): \text{CLP}(\mathcal{X})\), where \(\mathcal{X} \equiv (\Sigma, D, L, T)\):
 - \(\Sigma\): set of \textit{predicate} and \textit{function symbols}, together with their arity
 - \(L \subseteq \Sigma\)-formulae: constraints
 - \(D\): the set of actual elements in the constraint domain
 - \(D\): meaning of predicate and function symbols (and hence, constraints).
 - \(T\): a first–order theory (axiomatizes some properties of \(D\))

- \((D, L)\) is a \textit{constraint domain}

- Assumptions:
 - \(L\) built upon a first–order language
 - \(= \in \Sigma\); \(=\) is identity in \(D\)
 - There are identically false and identically true constraints in \(L\)
 - \(L\) is closed w.r.t. renaming, conjunction, and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, \ast, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), D interprets Σ as usual, $\mathcal{R} = (D, \mathcal{L})$

 → **Arithmetic over the reals** ("\mathcal{R}" domain).

 ◇ Eg.: $x^2 + 2xy < \frac{y}{x} \land x > 0$ ($\equiv xxx + xxy + xxy < y \land 0 < x$)

 ◇ Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (D', \mathcal{L}')$

 → **Linear arithmetic** ("\mathcal{R}_{Lin}" domain)

 ◇ Eg.: $3x - y < 3$ ($\equiv x + x + x < 1 + 1 + 1 + y$)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (D'', \mathcal{L}'')$

 → **Linear equations** ("\mathcal{R}_{LinEq}" domain)

 ◇ Eg.: $3x + y = 5 \land y = 2x$

- A corresponding set of domains can be defined on the **rationals** ("\mathbb{Q}" domain)
Domains (II)

- A very special domain:
 - $\Sigma = \{ <\text{constant and function symbols}>, = \}$
 - $D = \{ \text{finite trees} \}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, \mathcal{L})$

 → **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)

 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- LP \equiv CLP(\mathcal{FT})
Domains (III)

- $\Sigma = \{\text{<constants>}, \lambda, .. ::, =\}$
- $D = \{\text{finite strings of constants}\}$
- D interprets $.$ as string concatenation, $::$ as string length

\rightarrow **Equations over strings of constants** (D domain)
- Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{\text{true, false}\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$

\rightarrow **Boolean constraints** ($BOOL$ domain)
- Eg.: $\neg(x \land y) = 1$
CLP(\mathcal{X}) Programs

- Recall that:
 - Σ is a set of predicate and function symbols
 - $\mathcal{L} \subseteq \Sigma$–formulae are the constraints

- $\Pi \subseteq \Sigma$: set of predicate symbols definable by a program
 - Atom: $p(t_1, t_2, \ldots, t_n)$, where $p \in \Pi$ and t_1, t_2, \ldots, t_n are terms
 - Primitive constraint: $p(t_1, t_2, \ldots, t_n)$, where t_1, t_2, \ldots, t_n are terms and $p \in \Sigma$ is a predicate symbol
 - Constraint: (first–order) formula built from primitive constraints

- The class of constraints will vary (generally only a subset of formulas are considered constraints)

- A CLP program is a collection of rules of the form $a \leftarrow b_1, \ldots, b_n$ where a is an atom and the b_i’s are atoms or constraints

- A fact is a rule $a \leftarrow c$ where c is a constraint

- A goal (or query) G is a conjunction of constraints and atoms
A case study: CLP(ℜ)

- CLP(ℜ) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (ℜ_Lin)
 - Uses same execution strategy as standard Prolog (depth–first, left–to–right)
 - Is able to solve directly linear (dis)equations over the reals
 - Non–linear equations are delayed, waiting for them to eventually become linear
 - Most relevant feature w.r.t. Prolog (for our purposes): is/2 disappears, and is subsumed by =/2 and (extended) unification
- Note: CLP(ℜ) is really CLP((ℜ, ℱT)) — ℱT is often omitted.

- In modern Prolog systems coexisting with the ISO primitives (is/2, >/2 etc.).
- In Ciao supported in via the clpr package:
 - Uses .=., .>. etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - I.e., X .=. Y + 5, Y >. 1 vs. X is Y +5, Y >1
Linear Equations (CLP(ℜ) package)

- Vector \times vector multiplication (dot product):

 $\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$

 $(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n$

- Vectors represented as lists of numbers

```prolog
:- use_package(clpr).
prod([], [], Result) :- Result .==. 0.
prod([X|Xs], [Y|Ys], Result) :-
  Result .==. X * Y + Rest, prod(Xs, Ys, Rest).
```

- Unification becomes constraint solving!

```prolog
?- prod([2, 3], [4, 5], K).
K .==. 23
?- prod([2, 3], [5, X2], 22).
X2 .==. 4
?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
Vx .==. -1.5*Vz - 3.5*Vy
```

- Any computed answer is, in general, an equation over the variables in the query
Systems of Linear Equations (CLP(\(\mathbb{R}\))

- Can we solve systems of equations? E.g.,
 \[
 3x + y = 5 \\
 x + 8y = 3
 \]

- Write them down at the top level prompt:

  ```prolog
  ?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
  X = 1.6087, Y = 0.173913
  ```

- A more general predicate can be built mimicking the mathematical vector notation
 \(A \cdot x = b\):

  ```prolog
  system(_Vars, [], []).
  system(Vars, [Co|Coefs], [Ind|Indeps]) :-
    prod(Vars, Co, Ind),
    system(Vars, Coefs, Indeps).
  ```

- We can now express (and solve) equation systems

  ```prolog
  ?- system([X, Y], [[3, 1], [1, 8]], [5, 3]).
  X = 1.6087, Y = 0.173913
  ```
Non-linear Equations (CLP(\(\mathbb{R}\)))

- Non-linear equations are delayed

\[
\begin{align*}
? & - \sin(X) .\ =\ .\ \cos(X) . \\
\sin(X) & \ =\ \cos(X) \\
\end{align*}
\]

- This is also the case if there exists some procedure to solve them

\[
\begin{align*}
? & - X^2 + 2X + 1 .\ =\ .\ 0 . \\
-2X - 1 & \ =\ X \times X \\
\end{align*}
\]

- Reason: no general solving technique is known. CLP(\(\mathbb{R}\)) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

\[
\begin{align*}
? & - X .\ =\ \cos(\sin(Y)) , \ Y .\ =\ .\ 2+Y\times3 . \\
Y & \ =\ -1 , \ X .\ =\ .\ 0.666367 \\
\end{align*}
\]

- Disequations are solved using a modified, incremental Simplex

\[
\begin{align*}
? & - X + Y \ <=\ .\ 4 , \ Y \ >=\ .\ 4 , \ X \ >=\ .\ 0 . \\
Y & \ =\ 4 , \ X .\ =\ .\ 0 \\
\end{align*}
\]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:

\[
\begin{align*}
F_0 &= 0 \\
F_1 &= 1 \\
F_{n+2} &= F_{n+1} + F_n
\end{align*}
\]

- (The good old) Prolog version:

```prolog
fib(0, 0).
fib(1, 1).
fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N =. 0.
fib(N,N) :- N =. 1.
fib(N,R) :- N >. 1, F1 >=. 0, F2 >=. 0,
          N1 =. N - 1, N2 =. N - 2,
          fib(N1,F1), fib(N2,F2),
          R =. F1 + F2.
```

- Note all constraints included in program (F1 >=0, F2 >=0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```prolog
?- fib(N, F).
F =. 0, N =. 0 ;
F =. 1, N =. 1 ;
F =. 1, N =. 2 ;
F =. 2, N =. 3 ;
```
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (\(I\)), voltage (\(V\)) and frequency (\(W\)) in steady state
- Entry point: \(\text{circuit}(C, V, I, W)\) states that:
 - across the network \(C\), the voltage is \(V\), the current is \(I\) and the frequency is \(W\)
 - \(V\) and \(I\) must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number $X + Yi$ modeled as $c(X, Y)$

- Basic operations:

 :- use_package(clpr).

 c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
 Re12 =. Re1+Re2,
 Im12 =. Im1+Im2.

 c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
 Re3 =. Re1 * Re2 - Im1 * Im2,
 Im3 =. Re1 * Im2 + Re2 * Im1.

(equality is c_equal(c(R, I), c(R, I)), can be left to [extended] unification)
Analog RLC circuits (CLP(\(\Re\)))

- Circuits in series:

 \[
 \text{circuit}(\text{series}(N1, N2), V, I, W) :-
 \quad \text{c_add}(V1, V2, V),
 \quad \text{circuit}(N1, V1, I, W),
 \quad \text{circuit}(N2, V2, I, W).
 \]

- Circuits in parallel:

 \[
 \text{circuit}(\text{parallel}(N1, N2), V, I, W) :-
 \quad \text{c_add}(I1, I2, I),
 \quad \text{circuit}(N1, V, I1, W),
 \quad \text{circuit}(N2, V, I2, W).
 \]
Analog RLC circuits (CLP(\(\mathbb{R}\)))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i)\)

  ```prolog
  circuit(resistor(R), V, I, _W) :-
    c_mult(I, c(R, 0), V).
  ```

- **Inductor:** \(V = I \times (0 + WLi)\)

  ```prolog
  circuit(inductor(L), V, I, W) :-
    Im .=. W * L,
    c_mult(I, c(0, Im), V).
  ```

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC}i)\)

  ```prolog
  circuit(capacitor(C), V, I, W) :-
    Im .=. -1 / (W * C),
    c_mult(I, c(0, Im), V).
  ```
Analog RLC circuits (CLP(R))

- Example:

\[I = 0.65 \]
\[L = 0.073 \]
\[V = 4.5 \]
\[\omega = 2400 \]
\[C = ? \]
\[R = ? \]

\[\text{?- circuit(parallel(inductor(0.073), series(capacitor(C), resistor(R))},
 \text{c(4.5, 0), c(0.65, 0), 2400)}. \]

\[R = 6.91229, C = 0.00152546 \]

\[\text{?- circuit(C, c(4.5, 0), c(0.65, 0), 2400)}. \]
The N Queens Problem

- Problem:
 place \(N \) chess queens in a \(N \times N \) board such that they do not attack each other

- Data structure: a list holding the column position for each row

- The final solution is a permutation of the list \([1, 2, \ldots, N] \)

- E.g.: the solution is represented as \([2, 4, 1, 3] \)

- General idea:
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

```prolog
queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
    queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
    select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
    no_attack(Placed, Q, 1),
    queens(NewUnplaced, [Q|Placed], Qs). % OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
    N > 0, N1 is N - 1, queens_list(N1, Ns).
```

30
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathbb{R}\)) (in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
 N .> 0, X .> 0, X .<=. Range, N1 .=. N - 1,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen .<> Y + Nb, Queen .<> Y - Nb, Nb1 .=. Nb + 1,
 no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N .> 0,
 member(N, Q),
 N1 .=. N - 1,
 place_queens(N1, Q).
The N Queens Problem in CLP(\(\mathcal{R}\))

- This last program can attack the problem in its most general instance:

  ```prolog
  ?- queens(N,L).
  L = [], N =. 0 ;
  L = [1], N =. 1 ;
  L = [2, 4, 1, 3], N =. 4 ;
  L = [3, 1, 4, 2], N =. 4 ;
  L = [5, 2, 4, 1, 3], N =. 5 ;
  L = [5, 3, 1, 4, 2], N =. 5 ;
  L = [3, 5, 2, 4, 1], N =. 5 ;
  L = [2, 5, 3, 1, 4], N =. 5
  ...
  ```

- Remark: Herbrand terms used to build the data structures

- But also used as constraints (e.g., length of already built list \(Xs\) in
  ```prolog
  no_attack(Xs, X, 1)
  ```

- Note that in fact we are using both \(\mathcal{R}\) and \(\mathcal{FT}\)
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(ℜ)

• CLP(ℜ) generates internally a set of equations for each board size

```
?- constrain_values(4, 4, Qs).
Qs = [_A, _B, _C, _D],
  nonzero(_E), _A.=<=.4.0, _E.=.3.0+_A--D,
  nonzero(_F), _A.>.0, _F.=. -3.0+_A--D,
  nonzero(_G), _B.=<=.4.0, _G.=.2.0+_A--C,
  nonzero(_H), _B.>.0, _H.=. -2.0+_A--C,
  nonzero(_I), _C.=<=.4.0, _I.=.1+_A--B,
  nonzero(_J), _C.>.0, _J.=. -1+_A--B,
  nonzero(_K), _D.=<=.4.0, _K.=.2.0+_B--D,
  nonzero(_L), _D.>.0, _L.=. -2.0+_B--D,
  nonzero(_M), _M.=.1+_B--C,
  nonzero(_N), _N.=. -1+_B--C,
  nonzero(_O), _O.=.1+_C--D,
  nonzero(_P), _P.=. -1+_C--D
```

• place_queens(4,[_A, _B, _C, _D]) adds all possible queens in [_A, _B, _C, _D].
The N Queens Problem in CLP(\(\mathcal{R}\))

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-_D,
nonzero(_F), _B.=.1.0, _F.=. -_D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-_C,
nonzero(_H), _C.=>.0, _H.=.1.0-_C,
nonzero(_I), _D.=<.4.0, _I.=.3.0-_D,
nonzero(_J), _D.=>.0, _J.=. -1.0-_D,
nonzero(_K), _K.=.2.0-_C,
nonzero(_L), _L.=. -_C,
nonzero(_M), _M.=.1+_C-_D,
nonzero(_N), _N.=. -1+_C-_D ?
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A *finite domain* constraint solver associates each variable with a finite subset of \(\mathbb{Z} \).

 - I.e., \(E \in \{-123, -10..4, 10\} \)

Can be represented as, e.g.,

\[
E :: [-123, -10..4, 10]
\]

[Eclipse notation]

or as

\[
E \text{ in } -123 \setminus (-10..4) \setminus 10
\]

[Ciao notation]

- We can:
 - Perform arithmetic operations (+, -, *, /) on the variables
 - Establish linear relationships among arithmetic expressions (#=, #<, #=<)

- Those operations / relationships are intended to narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_module(library(clpfd)).
  ```

 directive in the source code.
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- `domain(Variables, Min, Max)`: A shorthand for several in constraints

- `labeling(Options, VarList)`:
 - instantiates variables in `VarList` to values in their domains
 - `Options` dictates the search order

```
?- domain([X, Y, Z],1,1000), X*X+Y*Y #= Z*Z, X #>= Y, labeling([], [X,Y,Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- `minimize(G, X)`: solve `G` minimizing the value of variable `X`
- This can be used to minimize (c.f., maximize) a solution
A classic example: SEND MORE MONEY

\[
\begin{array}{l}
\% \quad \text{SEND} \\
\% \quad + \text{MORE} \\
\% \quad \underline{\text{_______}} \\
\% \quad \text{MONEY}
\end{array}
\]

:- use_package(clpfd).

\[
\begin{array}{l}
smm([S,E,N,D,M,O,R,Y]) :- \\
\quad \text{domain}([S,E,N,D,M,O,R,Y], 0, 9), \quad \% \text{All digits 0..9} \\
\quad 0 \#< S, 0 \#< M, \quad \% \text{No leftmost zeros} \\
\quad \text{all_different}([S,E,N,D,M,O,R,Y]), \quad \% \text{All digits different} \\
\quad S*1000 + E*100 + N*10 + D + \% \\
\quad M*1000 + O*100 + R*10 + E \#= \% \text{Arith. constr.} \\
\quad M*10000 + O*1000 + N*100 + E*10 + Y, \quad \% \\
\quad \text{labeling([], [S,E,N,D,M,O,R,Y])}. \quad \% \text{Instantiate variables}
\end{array}
\]
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

\[
\text{pn1}(A,B,C,D,E,F,G) :- \\
\text{domain([A,B,C,D,E,F,G], 0, 10),} \\
A \#>= 0, \ G \#=< 10, \\
B \#>= A, \ C \#>= A, \ D \#>= A, \\
E \#>= B + 1, \ E \#>= C + 2, \\
F \#>= C + 2, \ F \#>= D + 3, \\
G \#>= E + 4, \ G \#>= F + 1.
\]
A Project Management Problem (II)

- **Query:**

  ```prolog
  ?- pn1(A,B,C,D,E,F,G).
  A in 0..4, B in 0..5, C in 0..4, 
  D in 0..6, E in 2..6, F in 3..9, G in 6..10.
  ```

- **Note the slack of the variables**

- **Some additional constraints must be respected as well, but are not shown by default**

- **Minimize the total project time:**

  ```prolog
  ?- minimize(pn1(A,B,C,D,E,F,G), G).
  A = 0, B in 0..1, C = 0, D in 0..2, 
  E = 2, F in 3..5, G = 6
  ```

- **Variables without slack represent critical tasks**
A Project Management Problem (III)

• An alternative setting:

• We can accelerate task \(F \) at some cost

\[
\text{pn2}(A, B, C, D, E, F, G, X) :- \\
\text{domain([A,B,C,D,E,F,G,X], 0, 10)}, \\
A \#>= 0, G \#=< 10, \\
B \#>= A, C \#>= A, D \#>= A, \\
E \#>= B + 1, E \#>= C + 2, \\
F \#>= C + 2, F \#>= D + 3, \\
G \#>= E + 4, G \#>= F + X.
\]

• We do not want to accelerate it more than needed!

\[\rightarrow\] minimize \(G \) and maximize \(X \).

\[
A = 0, B \text{ in } 0..1, C = 0, D = 0, \\
E = 2, F = 3, G = 6, X = 3.
\]
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

- We can finish any of B, D in 2 time units at best.
- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units.
A Project Management Problem (V)

- Constraints describing the net:

\[
\text{pn3}(A, B, C, D, E, F, G, X, Y) :-
\]
\[
\text{domain([A, B, C, D, E, F, G, X, Y], 0, 10)},
A \#>= 0, G \#=< 10,
X \#>= 2, Y \#>= 2, X + Y \#= 6,
B \#>= A, C \#>= A, D \#>= A,
E \#>= B + X, E \#>= C + 2,
F \#>= C + 2, F \#>= D + Y,
G \#>= E + 4, G \#>= F + 1.
\]

- Query:

\[\text{?- minimize(pn3(A, B, C, D, E, F, G, X, Y), G).}\]
\[A = 0, B = 0, C = 0, D \text{ in 0..1}, E = 2,\]
\[F \text{ in 4..5}, X = 2, Y = 4, G = 6\]

- I.e., we must devote more resources to task \(B\)
- All tasks but \(F\) and \(D\) are critical now
- Sometimes, \texttt{minimize/2} not enough to provide best solution (pending constr.):

\[\text{?- minimize(pn3(A, B, C, D, E, F, G, X, Y), G), labeling([[]], [D, F]).}\]
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

- By far, the fastest implementation

```prolog
:- use_package(clpfd).
queens(N, Qs, Type) :- % Type is labeling strategy
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type, Qs). % Labeling places the queens

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #!= Y + Nb, Queen #!= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

- Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

```prolog
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
```
CLP(\(\mathcal{FT}\)) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

\[
\text{iso}(\text{Tree}, \text{Tree}).
\]
\[
\text{iso}(\text{t}(\text{R}, \text{I}1, \text{D}1), \text{t}(\text{R}, \text{I}2, \text{D}2)) \leftarrow
\quad \text{iso}(\text{I}1, \text{D}2),
\quad \text{iso}(\text{D}1, \text{I}2).
\]

?- \text{iso}(\text{t}(\text{a}, \text{b}, \text{t}(\text{X}, \text{Y}, \text{Z})), \text{t}(\text{a}, \text{t}(\text{u}, \text{v}, \text{W}), \text{L})).
\]
\[
\text{L}=\text{b}, \quad \text{X}=\text{u}, \quad \text{Y}=\text{v}, \quad \text{Z}=\text{W} \quad ? ;
\]
\[
\text{L}=\text{b}, \quad \text{X}=\text{u}, \quad \text{Y}=\text{W}, \quad \text{Z}=\text{v} \quad ? ;
\]
\[
\text{L}=\text{b}, \quad \text{W}=\text{t}(_\text{C}, _\text{B}, _\text{A}), \quad \text{X}=\text{u}, \quad \text{Y}=\text{t}(_\text{C}, _\text{A}, _\text{B}), \quad \text{Z}=\text{v} \quad ? ;
\]
\[
\text{L}=\text{b}, \quad \text{W}=\text{t}(_\text{E}, \text{t}(_\text{D}, _\text{C}, _\text{B}), _\text{A}), \quad \text{X}=\text{u}, \quad \text{Y}=\text{t}(_\text{E}, _\text{A}, \text{t}(_\text{D}, _\text{B}, _\text{C})), \quad \text{Z}=\text{v} \quad ?
\]
CLP(WE)

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

 \[
 \begin{align*}
 &\text{?- "123".Z = Z."231", Z::0.} \\
 &\text{no}
 \\
 &\text{?- "123".Z = Z."231", Z::1.} \\
 &\text{Z = "1"}
 \\
 &\text{?- "123".Z = Z."231", Z::2.} \\
 &\text{no}
 \\
 &\text{?- "123".Z = Z."231", Z::3.} \\
 &\text{no}
 \\
 &\text{?- "123".Z = Z."231", Z::4.} \\
 &\text{Z = "1231"}
 \end{align*}
 \]

- These constraint solvers are very complex
- Often incomplete algorithms are used
Word equations plus arithmetic over \mathbb{Q} (rational numbers)

Prove that the sequence $x_{i+2} = |x_{i+1}| - x_i$ has a period of length 9 (for any starting x_0, x_1)

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

```
seq(<Y, X>). abs(Y, Y) :- Y >= 0.
seq(<Y1 - X, Y, X>.U) :-
    seq(<Y, X>.U)
    abs(Y, Y1).
    abs(Y, -Y) :- Y < 0.
```

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

```
?- seq(U.V.W), U::2, V::7, W::2, U#W.
fail
```
Summarizing

• In general:
 ◦ Data structures (Herbrand terms) for free
 ◦ Each logical variable may have constraints associated with it (and with other variables)

• Problem modeling:
 ◦ Rules represent the problem at a high level
 * Program structure, modularity
 * Recursion used to set up constraints
 ◦ Constraints encode problem conditions
 ◦ Solutions also expressed as constraints

• Combinatorial search problems:
 ◦ CLP languages provide backtracking: enumeration is easy
 ◦ Constraints keep the search space manageable

• Tackling a problem:
 ◦ Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \(\#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \(L \) and \(U \) (which can be variables themselves)
 - If \(L = U = n \), all constraints must hold
 - If \(L = U = 1 \), one and only one constraint must be true
 - Constraining \(U = 0 \), we force the conjunction of the negations to be true
 - Constraining \(L > 0 \), the disjunction of the constraints is specified
- Disjunctive constructive constraint: \(c_1 \lor c_2 \)
 - If properly handled, avoids search and backtracking
 - E.g.:
 \[
 \begin{align*}
 n_z(X) & \leftarrow X > 0. \\
 n_z(X) & \leftarrow X < 0. \\
 n_z(X) & \leftarrow X < 0 \lor X > 0.
 \end{align*}
 \]
Other Primitives

- CLP(\mathcal{L}) systems usually provide additional primitives

- E.g.:
 - `enum(X)` enumerates X inside its current domain
 - `maximize(X)` (c.f. `minimize(X)`) works out maximum (minimum value) for X under the active constraints
 - `delay Goal until Condition` specifies when the variables are instantiated enough so that `Goal` can be effectively executed
 * Its use needs deep knowledge of the constraint system
 * Also widely available in Prolog systems
 * Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X < 9, & \quad Y = 5, \quad Z = 4, \quad W = 1 & \text{trail } W, \text{ timestamp it} \\
X < Y + 4, & \quad Y = 4 + W, \quad Z = 4 & \text{trail } X, \ Y, \ Z, \ \text{timestamp them} \\
X < Y + Z, & \quad Y = Z + W & \text{timestamp } X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel,Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHRs):
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- **Primitives:**
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- **Example: Freeze**

```prolog
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
 - Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 - Specially useful if *infer* is weak
 - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) *very sparingly and carefully*

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

 | max(X,Y,X) :- X >. Y. | ?- max(X, Y, Z). |
 | max(X,Y,Y) :- X <=. Y. | Z ==. X, Y <. X |

with

 | max(X,Y,X) :- X >. Y, !. | ?- max(X, Y, Z). |
 | max(X,Y,Y) :- X <=. Y. | Z ==. X, Y <. X |
Some “Classic” CLP Systems (I)

- CLP defines a class of languages obtained by
 - Specifying the particular constraint system(s)
 - Specifying the *Computation* and *Selection* rules

- Most systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms

- Most use the *Computation* and *Selection* rules of Prolog

- CLP(ℜ):
 - Linear arithmetic over reals (\(=, \leq, >\))
 - Gaussian elimination and an adaptation of Simplex

- PrologIII:
 - Linear arithmetic over rationals (\(=, \leq, >, \neq\)), Simplex
 - Boolean (\(=\)), 2-valued Boolean Algebra
 - Infinite (rational) trees (\(=, \neq\))
 - Equations over finite strings
Some “Classic” CLP Systems (II)

- **CHIP** (and its successor: the **ILOG** library):
 - CLP(FD), CLP(B), CLP(Q).
 - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
 - Arithmetic over reals (closed intervals),
 - CLP(FD), CLP(B).

- **RISC–CLP:**
 - Arithmetic constraints over reals, also non-linear

- **clp(FD)/gprolog:**
 - CLP(FD).
Some “Classic” CLP Systems (III)

- **SICStus 3:**
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for adding domains.

- **ECL²PS**:
 - CLP(R), CLP(Q), CLP(FD).

- **SWI**:
 - CLP(R), CLP(Q), CLP(FD), CLP(B).
 - Attributed variables and CHR for additional domains.

- **Ciao**:
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for additional domains.
 - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!