Computational Logic

Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes
 The murderer knows no detective will ever wear dark clothes

- A solution is an assignment which agrees with the initial constraints:

 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer (they represent several ground mappings from elements to variables)

- There may be no solution:

 Natural death
A General View

- Ancestors:
 - SKETCHPAD (1963), Waltz’s algorithm (1965?), THINGLAB (1981), MACSYMA (1983), ...

- Constraints in logic languages – the origin of “constraint programming”:
 - General theory developed (Jaffar and Lassez ’97).
 - First, standalone systems developed: clpr, CHIP, ...
 - Now included in many Prologs (e.g., clpr/clpq/clpfd packages in Ciao).

- Constraints in imperative languages:
 - Equation solving libraries (ILOG, GECODE, ...)
 - Timestamping of variables: \(x := x + 1 \) \(\leftrightarrow x_{i+1} := x_i + 1 \)
 (similar to iterative methods in numerical analysis)

- Constraints in functional languages, via extensions:
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*
A comparison with classic LP (I)

- Example (plain Prolog): \(q(X, Y, Z) : - Z = f(X, Y) \).

\[
\begin{align*}
\text{?- } q(3, 4, Z). \\
Z &= f(3,4) \\
\text{?- } q(X, Y, f(3,4)). \\
X &= 3, Y = 4 \\
\text{?- } q(X, Y, Z). \\
Z &= f(X,Y)
\end{align*}
\]

- Example (plain Prolog): \(p(X, Y, Z) : - Z \text{ is } X +Y \).

\[
\begin{align*}
\text{?- } p(3, 4, Z). \\
Z &= 7 \\
\text{?- } p(X, 4, 7). \\
\{\text{INSTANTIATION ERROR}\} &\leftarrow \text{is/2 not reversible, does not work!}
\end{align*}
\]
A Comparison with classic LP (II)

• Example *(CLP(R) package)*:

```prolog
:- use_package(clpr).
p(X, Y, Z) :- Z =. X + Y.

?- p(3, 4, Z).
   Z =. 7

?- p(X, 4, 7).
   X =. 3

4 ?- p(X, Y, 7).
   X =. 7 - Y ← with clpr arithmetic is reversible!
```
A Comparison with classic LP (III)

- Features in CLP:
 - Domain(s) of computation (reals, integers, booleans, etc). Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints (+, *, =, ≤, ≥, <, >)
 - Constraint solving algorithms: simplex, Gauss, propagation/consistency, etc.

- Classical LP can be viewed as constraint logic programming over *Herbrand terms* with a single *constraint predicate symbol*: \(=\).
A Comparison with classic LP (IV)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than classic LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Solutions:
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

- Using **plain Prolog** (generate–and–test):

  ```prolog
  % Find three consecutive numbers in the p/1 relation.

  solution(X, Y, Z) :-
      p(X), p(Y), p(Z),
      test(X, Y, Z).


  test(X, Y, Z) :- Y is X + 1, Z is Y + 1.
  ```

- Query:

  ```prolog
  ?- solution(X, Y, Z).
  X = 14, Y = 15, Z = 16 ? ;
  no
  ```

- 458 steps (all solutions: 465 steps).
Example of Search Space Reduction

● Using the **CLP(ℜ)** package (generate–and–test):

```
% Find three consecutive numbers in the p/1 relation.
:- use_package(clpr).
solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).


test(X, Y, Z) :- Y =. X + 1, Z =. Y + 1.
```

● Query:

```
?- solution(X, Y, Z).
X =. 14, Y =. 15, Z =. 16 ? ;
no
```

● 458 steps (all solutions: 465 steps).
Generate–and–test Search Tree
Example of Search Space Reduction

- **Move** `test(X, Y, Z)` **to the beginning (constrain–and–generate):**

 % Find three consecutive numbers in the p/1 relation.

  ```prolog
  :- use_package(clpr).
  solution(X, Y, Z) :-
      test(X, Y, Z),
      p(X), p(Y), p(Z).
  ```

- **Using plain Prolog:** `test(X, Y, Z):-Y is X + 1, Z is Y + 1.`

  ```prolog
  ?- solution(X, Y, Z).
  {INSTANTIATION ERROR}
  ```

- **Using the CLP(ℜ) package:** `test(X, Y, Z):-Y =. X + 1, Z =. Y + 1.`

  ```prolog
  ?- solution(X, Y, Z).
  X =. 14, Y =. 15, Z =. 16 ? ;
  no
  ```

In **6 steps** (and all solutions in **11 steps**)!
Constrain–and–generate Search Tree

\[\begin{align*}
Y &= 15 \\
X &= 14 \quad X &= 15 \quad X &= 16 \quad X &= 7 \quad X &= 3 \quad X &= 11 \\
Z &= 16 \\
g \\
Y &= 16 \\
Z &= 16
\end{align*} \]
Constraint Domains

- The semantics is parameterized by the constraint domain \mathcal{X}: $\text{CLP}(\mathcal{X})$, where $\mathcal{X} \equiv (\Sigma, D, L, T)$:
 - Σ: set of predicate and function symbols, together with their arity
 - $L \subseteq \Sigma$—formulae: constraints
 - D: the set of actual elements in the constraint domain
 - D: meaning of predicate and function symbols (and hence, constraints).
 - T: a first–order theory (axiomatizes some properties of D)
- (D, L) is a constraint domain
- Assumptions:
 - L built upon a first–order language
 - $= \in \Sigma$; $=$ is identity in D
 - There are identically false and identically true constraints in L
 - L is closed w.r.t. renaming, conjunction, and existential quantification
Domains (I)

- $\Sigma = \{0, 1, +, \ast, =, <, \leq\}$, $D = \mathbb{R}$ (the reals), D interprets Σ as usual, $\mathcal{R} = (D, \mathcal{L})$

 \rightarrow **Arithmetic over the reals** ("\mathcal{R}" domain).
 - Eg.: $x^2 + 2xy < \frac{y}{x} \wedge x > 0$ (\equiv xx + xyy + xyy < y \wedge 0 < x)
 - Question: is 0 needed? How can it be represented?

- $\Sigma' = \{0, 1, +, =, <, \leq\}$, $\mathcal{R}_{Lin} = (D', \mathcal{L}')$

 \rightarrow **Linear arithmetic** ("\mathcal{R}_{Lin}" domain)
 - Eg.: $3x - y < 3$ (\equiv x + x + x < 1 + 1 + 1 + y)

- $\Sigma'' = \{0, 1, +, =\}$, $\mathcal{R}_{LinEq} = (D'', \mathcal{L}'')$

 \rightarrow **Linear equations** ("\mathcal{R}_{LinEq}" domain)
 - Eg.: $3x + y = 5 \wedge y = 2x$

- A corresponding set of domains can be defined on the **rationals** ("\mathbb{Q}" domain)
Domains (II)

- A very special domain:
 - $\Sigma = \{<\text{constant and function symbols}>, =\}$
 - $D = \{\text{finite trees}\}$
 - D interprets Σ as tree constructors
 - Each $f \in \Sigma$ with arity n maps n trees to a tree with root labeled f and whose subtrees are the arguments of the mapping
 - Constraints: syntactic tree equality
 - $\mathcal{FT} = (D, L)$

→ **Equality constraints over the Herbrand domain** (\mathcal{FT} domain)
 - Eg.: $g(h(Z), Y) = g(Y, h(a))$

- $LP \equiv CLP(\mathcal{FT})$
Domains (III)

- $\Sigma = \{ \text{<constants>, } \lambda, :, ::, = \}$
- $D = \{ \text{finite strings of constants} \}$
- D interprets $.$ as string concatenation, $::$ as string length

→ **Equations over strings of constants** (D domain)
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{0, 1, \neg, \land, =\}$
- $D = \{true, false\}$
- D interprets symbols in Σ as boolean functions
- $BOOL = (D, L)$
 → **Boolean constraints** ($BOOL$ domain)
 - Eg.: $\neg(x \land y) = 1$
CLP(\(\mathcal{X}\)) Programs

• Recall that:
 ◦ \(\Sigma\) is a set of predicate and function symbols
 ◦ \(\mathcal{L} \subseteq \Sigma\) – formulae are the constraints

• \(\Pi \subseteq \Sigma\): set of predicate symbols definable by a program
 ◦ Atom: \(p(t_1, t_2, \ldots, t_n)\), where \(p \in \Pi\) and \(t_1, t_2, \ldots, t_n\) are terms
 ◦ Primitive constraint: \(p(t_1, t_2, \ldots, t_n)\), where
 \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Sigma\) is a predicate symbol
 ◦ Constraint: (first-order) formula built from primitive constraints

• The class of constraints will vary (generally only a subset of formulas are considered constraints)

• A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n\) where \(a\) is an atom and the \(b_i\)’s are atoms or constraints

• A fact is a rule \(a \leftarrow c\) where \(c\) is a constraint

• A goal (or query) \(G\) is a conjunction of constraints and atoms
A case study: CLP(\mathbb{R})

- CLP(\mathbb{R}) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (\mathbb{R}_{Lin})
 - Uses same execution strategy as standard Prolog (depth–first, left–to–right)
 - Is able to solve directly linear (dis)equations over the reals
 - Non–linear equations are delayed, waiting for them to eventually become linear
 - Most relevant feature w.r.t. Prolog (for our purposes): $is/2$ disappears, and is subsumed by $=/2$ and (extended) unification
- Note: CLP(\mathbb{R}) is really CLP((\mathbb{R}, \mathcal{FT})) — \mathcal{FT} is often omitted.

- In modern Prolog systems coexisting with the ISO primitives ($is/2$, $>/2$ etc.).
- In Ciao supported in via the clpr package:
 - Uses $.=.$, $>.$, etc. to distinguish the clpr constraints from the ISO-Prolog arithmetic primitives.
 - I.e., $X .=. Y + 5$, $Y >. 1$ vs. $X is Y + 5$, $Y > 1$
Linear Equations (CLP(\(\mathbb{R}\)) package)

- Vector \(\times\) vector multiplication (dot product):
 \[\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \]
 \[(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n \]

- Vectors represented as lists of numbers

```prolog
:- use_package(clpr).
prod([], [], Result) :- Result .=. 0.
prod([X|Xs], [Y|Ys], Result) :-
    Result .=. X * Y + Rest, prod(Xs, Ys, Rest).
```

- Unification becomes constraint solving!

```prolog
?- prod([2, 3], [4, 5], K).
K .=. 23
?- prod([2, 3], [5, X2], 22).
X2 .=. 4
?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
Vx .=. -1.5*Vz - 3.5*Vy
```

- Any computed answer is, in general, an equation over the variables in the query
Can we solve systems of equations? E.g.,

\[3x + y = 5\]
\[x + 8y = 3\]

Write them down at the top level prompt:

?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
X .=. 1.6087, Y .=. 0.173913

A more general predicate can be built mimicking the mathematical vector notation \(A \cdot x = b\):

\[
\text{system}(_\text{Vars}, [], []). \\
\text{system}(\text{Vars}, [\text{Co}|\text{Coefs}], [\text{Ind}|\text{Indeps}]) :- \\
\text{prod}(\text{Vars}, \text{Co}, \text{Ind}), \\
\text{system}(\text{Vars}, \text{Coefs}, \text{Indeps}).
\]

We can now express (and solve) equation systems

?- system([X, Y], [[3, 1], [1, 8]], [5, 3]).
X .=. 1.6087, Y .=. 0.173913
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed

\[
\begin{align*}
?- \sin(X) &= \cos(X), \\
\sin(X) &= \cos(X)
\end{align*}
\]

- This is also the case if there exists some procedure to solve them

\[
\begin{align*}
?- \ X*X + 2*X + 1 &= 0, \\
-2*X - 1 &= X * X
\end{align*}
\]

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:

\[
\begin{align*}
?- \ X &= \cos(\sin(Y)), \ Y &= 2 + Y*3, \\
Y &= -1, \ X &= 0.666367
\end{align*}
\]

- Disequations are solved using a modified, incremental Simplex

\[
\begin{align*}
?- \ X + Y &\leq 4, \ Y \geq 4, \ X \geq 0, \\
Y &= 4, \ X &= 0
\end{align*}
\]
Fibonacci Revisited (Prolog)

- Fibonacci numbers:
 \[
 F_0 = 0 \\
 F_1 = 1 \\
 F_{n+2} = F_{n+1} + F_n
 \]

- (The good old) Prolog version:
  ```prolog
  fib(0, 0).
  fib(1, 1).
  fib(N, F) :-
      N > 1,
      N1 is N - 1,
      N2 is N - 2,
      fib(N1, F1),
      fib(N2, F2),
      F is F1 + F2.
  ```

- Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) package version: syntactically similar to the previous one:

```prolog
:- use_package(clpr).
fib(N,N) :- N = 0.
fib(N,N) :- N = 1.
fib(N,R) :- N > 1, F1 >= 0, F2 >= 0,
          N1 = N - 1, N2 = N - 2,
          fib(N1,F1), fib(N2,F2),
          R = F1 + F2.
```

- Note all constraints included in program (F1 >= 0, F2 >= 0) – good practice!
- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”
- Semantics greatly enhanced! E.g.:

```prolog
?- fib(N, F).
F = 0, N = 0 ;
F = 1, N = 1 ;
F = 1, N = 2 ;
F = 2, N = 3 ;
```
• Analysis and synthesis of analog circuits
• RLC network in steady state
• Each circuit is composed either of:
 ◦ A simple component, or
 ◦ A connection of simpler circuits
• For simplicity, we will suppose subnetworks connected only in parallel and series
 → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
• We want to relate the current (I), voltage (V) and frequency (W) in steady state
• Entry point: \texttt{circuit(C, V, I, W)} states that:
 across the network C, the voltage is V, the current is I and the frequency is W
• V and I \textbf{must} be modeled as complex numbers (the imaginary part takes into account the angular frequency)
• Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(ℜ))

- Complex number $X + Yi$ modeled as $c(X, Y)$
- Basic operations:

```prolog
:- use_package(clpr).

c_add(c(Re1, Im1), c(Re2, Im2), c(Re12, Im12)) :-
    Re12 =. Re1 + Re2,
    Im12 =. Im1 + Im2.

c_mult(c(Re1, Im1), c(Re2, Im2), c(Re3, Im3)) :-
    Re3 =. Re1 * Re2 - Im1 * Im2,
    Im3 =. Re1 * Im2 + Re2 * Im1.
```

(equality is $c_equal(c(R, I), c(R, I))$, can be left to [extended] unification)
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Circuits in series:

\[
\text{circuit(series}(N1, N2), V, I, W) \leftarrow \\
\quad \text{c_add}(V1, V2, V), \\
\quad \text{circuit}(N1, V1, I, W), \\
\quad \text{circuit}(N2, V2, I, W).
\]

- Circuits in parallel:

\[
\text{circuit(parallel}(N1, N2), V, I, W) \leftarrow \\
\quad \text{c_add}(I1, I2, I), \\
\quad \text{circuit}(N1, V, I1, W), \\
\quad \text{circuit}(N2, V, I2, W).
\]
Analog RLC circuits (CLP(R))

Each basic component can be modeled as a separate unit:

- **Resistor:** $V = I \times (R + 0i)$

  ```prolog
circuit(resistor(R), V, I, _W) :-
    c_mult(I, c(R, 0), V).
  ```

- **Inductor:** $V = I \times (0 + WLi)$

  ```prolog
circuit(inductor(L), V, I, W) :-
    Im == W * L,
    c_mult(I, c(0, Im), V).
  ```

- **Capacitor:** $V = I \times (0 - \frac{1}{WCi})$

  ```prolog
circuit(capacitor(C), V, I, W) :-
    Im == -1 / (W * C),
    c_mult(I, c(0, Im), V).
  ```
Example:

\[R = ? \quad C = ? \]

\[V = 4.5 \quad \omega = 2400 \]

\[I = 0.65 \]

\[L = 0.073 \]

?- circuit(parallel(inductor(0.073),
series(capacitor(C), resistor(R))),
c(4.5, 0), c(0.65, 0), 2400).

R .=. 6.91229, C .=. 0.00152546

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

• Problem:
 place N chess queens in a $N \times N$ board such that they do not attack each other

• Data structure: a list holding the column position for each row

• The final solution is a permutation of the list $[1, 2, \ldots, N]$

• E.g.: the solution is represented as $[2, 4, 1, 3]$

• General idea:
 ◦ Start with partial solution
 ◦ Nondeterministically select new queen
 ◦ Check safety of new queen against those already placed
 ◦ Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem in Prolog

queens(N, Qs) :- queens_list(N, Ns), % E.g., Ns=[4,3,2,1]
 queens(Ns, [], Qs).

queens([], Qs, Qs). % All queens placed!
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), % E.g. Q=4, NewU=[3,2,1]
 no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs). % OK->Choose next q

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :-
 N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem in Prolog - search space
The N Queens Problem in CLP(\(\mathbb{R}\))

(in Ciao clpr syntax)

:- use_package(clpr).
queens(N,Qs) :- constrain_values(N,N,Qs), place_queens(N,Qs).

constrain_values(0, _N, []). % Constrain before placing
constrain_values(N, Range, [X|Xs]) :-
 N > 0, X > 0, X <= Range, N1 =. N - 1,
 constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb). % Identical to Prolog version
no_attack([Y|Ys], Queen, Nb) :- % but using constraints
 Queen <> Y + Nb, Queen <> Y - Nb, Nb1 =. Nb + 1,
 no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-
 N > 0,
 member(N, Q),
 N1 =. N - 1,
 place_queens(N1, Q).
The N Queens Problem in CLP(ℜ)

- This last program can attack the problem in its most general instance:

  ```prolog
  ?- queens(N,L).
  L = [], N == 0 ;
  L = [1], N == 1 ;
  L = [2, 4, 1, 3], N == 4 ;
  L = [3, 4, 2, 1], N == 4 ;
  L = [5, 2, 4, 1, 3], N == 5 ;
  L = [5, 3, 1, 4, 2], N == 5 ;
  L = [3, 5, 2, 4, 1], N == 5 ;
  L = [2, 5, 3, 1, 4], N == 5
  ...
  ```

- Remark: Herbrand terms used to build the data structures
- But also used as constraints (e.g., length of already built list Xs in
  ```prolog
  no_attack(Xs, X, 1)
  ```
)
- Note that in fact we are using both ℜ and ℱ
The N Queens Problem in CLP(ℜ) – search space
The N Queens Problem in CLP(\(\mathbb{R}\))

- CLP(\(\mathbb{R}\)) generates internally a set of equations for each board size

```scala
?- constrain_values(4, 4, Qs).
Qs = [\(_A, _B, _C, _D\)],
nonzero(_E), \(_A\).=<.4.0, \(_E\).=3.0+_A-_D,
nonzero(_F), \(_A\).>0, \(_F\).=-3.0+_A-_D,
nonzero(_G), \(_B\).=<.4.0, \(_G\).=2.0+_A-_C,
nonzero(_H), \(_B\).>0, \(_H\).=-2.0+_A-_C,
nonzero(_I), \(_C\).=<.4.0, \(_I\).=1+_A-_B,
nonzero(_J), \(_C\).>0, \(_J\).=-1+_A-_B,
nonzero(_K), \(_D\).=<.4.0, \(_K\).=2.0+_B-_D,
nonzero(_L), \(_D\).>0, \(_L\).=-2.0+_B-_D,
nonzero(_M), \(_M\).=1+_B-_C,
nonzero(_N), \(_N\).=-1+_B-_C,
nonzero(_O), \(_O\).=1+_C-_D,
nonzero(_P), \(_P\).=-1+_C-_D
```

- `place_queens(4, [\(_A, _B, _C, _D\)])` adds all possible queens in \([\(_A, _B, _C, _D\)]\).
The N Queens Problem in CLP(ℜ)

- Constraints are (incrementally) simplified as new queens are added

```
?- constrain_values(4, 4, Qs), Qs = [3,1|_].
Qs = [_A,_B,_C,_D],
nonzero(_E), _A.=.3.0, _E.=.6.0-__D,
nonzero(_F), _B.=.1.0, _F.=. -__D,
nonzero(_G), _C.=<.4.0, _G.=.5.0-__C,
nonzero(_H), _C.=>.0, _H.=.1.0-__C,
nonzero(_I), _D.=<.4.0, _I.=.3.0-__D,
nonzero(_J), _D.=>.0, _J.=. -1.0-__D,
nonzero(_K), _K.=.2.0-__C,
nonzero(_L), _L.=. -__C,
nonzero(_M), _M.=.1+_C-__D,
nonzero(_N), _N.=. -1+_C-__D ?
```

- Bad choices are rejected using constraint consistency:

```
?- constrain_values(4, 4, Qs), Qs = [3,2|_].
no
```
Finite Domains (I)

- A **finite domain** constraint solver associates each variable with a finite subset of \(\mathbb{Z} \)
- I.e., \(E \in \{-123, -10..4, 10\} \)
 - Can be represented as, e.g., \(E :: [-123, -10..4, 10] \) [Eclipse notation]
 - Or as \(E \text{ in } -123 \lor (-10..4) \lor 10 \) [Ciao notation]

- We can:
 - Perform arithmetic operations (+, -, *, /) on the variables
 - Establish linear relationships among arithmetic expressions (#=, #<, #=<)

- Those operations / relationships are intended to narrow the domains of the variables

- **Note:** In Ciao this functionality is loaded with a

  ```prolog
  :- use_package(clpfd).
  ```

 Directive in the source code –or, equivalently, adding in the module declaration:

  ```prolog
  :- module(_, ..., [clpfd]).
  ```
Finite Domains (II)

Examples:

?- X #= A + B, A in 1..3, B in 3..7.
 X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added
- There is no unique solution

?- X #= A - B, A in 1..3, B in 3..7.
 X in -6..0, A in 1..3, B in 3..7

- The min value of X is the min value of A minus the max value of B
- (Similar for the maximum values)

?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.
 A = 3, B = 3, X = 0

- Putting more constraints results in a unique solution.
Finite Domains (III)

Some useful primitives in finite domains:

- **domain(Variables, Min, Max):** A shorthand for several in constraints
- **labeling(Options, VarList):**
 - instantiates variables in VarList to values in their domains
 - Options dictates the search order

```prolog
?- domain([X, Y, Z], 1, 1000), X*X + Y*Y #= Z*Z, X #>= Y, labeling([], [X, Y, Z]).
X = 4, Y = 3, Z = 5,
X = 8, Y = 6, Z = 10,
X = 12, Y = 5, Z = 13,
...
```

- **minimize(G, X):** solve G minimizing the value of variable X
- This can be used to minimize (c.f., maximize) a solution
A classic example: \textbf{SEND MORE MONEY}

% S E N D
% + M O R E
% _________
% M O N E Y

:- use_package(clpfd).

smm([S,E,N,D,M,O,R,Y]) :-
 domain([S,E,N,D,M,O,R,Y], 0, 9), % All digits 0..9
 0 #< S, 0 #< M, % No leftmost zeros
 all_different([S,E,N,D,M,O,R,Y]), % All digits different
 S*10000 + E*1000 + N*100 + D + %
 M*10000 + O*1000 + R*100 + E #= % Arith. constr.
 M*100000 + O*10000 + N*1000 + E*100 + Y, %
 labeling([], [S,E,N,D,M,O,R,Y]). % Instantiate variables
A Project Management Problem (I)

- The job whose dependencies and task lengths are given by this graph...

... should be finished in 10 time units or less.

- Constraints:

```
pln(A,B,C,D,E,F,G) :-
    domain([A,B,C,D,E,F,G], 0, 10),
    A #>= 0, G #=< 10,
    B #>= A, C #>= A, D #>= A,
    E #>= B + 1, E #>= C + 2,
    F #>= C + 2, F #>= D + 3,
    G #>= E + 4, G #>= F + 1.
```
A Project Management Problem (II)

- Query:
  ```prolog
  ?- pn1(A,B,C,D,E,F,G).
  A in 0..4, B in 0..5, C in 0..4,
  D in 0..6, E in 2..6, F in 3..9, G in 6..10.
  ```

- Note the slack of the variables

- Some additional constraints must be respected as well, but are not shown by default

- Minimize the total project time:
  ```prolog
  ?- minimize(pn1(A,B,C,D,E,F,G), G).
      A = 0, B in 0..1, C = 0, D in 0..2,
      E = 2, F in 3..5, G = 6
  ```

- Variables without slack represent critical tasks
A Project Management Problem (III)

• An alternative setting:

• We can accelerate task F at some cost

$$\text{pn2}(A, B, C, D, E, F, G, X) :-$$
$$\text{domain}([A,B,C,D,E,F,G,X], 0, 10),$$
$$A \#>= 0, G \#=< 10,$$
$$B \#>= A, C \#>= A, D \#>= A,$$
$$E \#>= B + 1, E \#>= C + 2,$$
$$F \#>= C + 2, F \#>= D + 3,$$
$$G \#>= E + 4, G \#>= F + X.$$

• We do not want to accelerate it more than needed!

→ minimize G and maximize X.

$$A = 0, B \text{ in } 0..1, C = 0, D = 0,$$
$$E = 2, F = 3, G = 6, X = 3.$$
A Project Management Problem (IV)

- We have two independent tasks B and D whose lengths are not fixed:

- We can finish any of B, D in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

- Constraints describing the net:

\[
\text{pn3}(A,B,C,D,E,F,G,X,Y) :- \\
\text{domain([A,B,C,D,E,F,G,X,Y], 0, 10)}, \\
A \#>= 0, G \#=< 10, \\
X \#>= 2, Y \#>= 2, X + Y \#= 6, \\
B \#>= A, C \#>= A, D \#>= A, \\
E \#>= B + X, E \#>= C + 2, \\
F \#>= C + 2, F \#>= D + Y, \\
G \#>= E + 4, G \#>= F + 1.
\]

- Query:

\[- \text{minimize(pn3(A,B,C,D,E,F,G,X,Y),G).} \]
A = 0, B = 0, C = 0, D in 0..1, E = 2,
F in 4..5, X = 2, Y = 4, G = 6

- I.e., we must devote more resources to task B
- All tasks but F and D are critical now
- Sometimes, \text{minimize/2} not enough to provide best solution (pending constr.):

\[- \text{minimize(pn3(A,B,C,D,E,F,G,X,Y),G), labeling([], [D,F]).} \]
The N-Queens Problem Using Finite Domains (in Ciao clpfd syntax)

• By far, the fastest implementation

```
:- use_package(clpfd).
queens(N, Qs, Type) :-
    constrain_values(N, N, Qs), % Constrain before placing
    all_different(Qs), % Using built-in constraint
    labeling(Type,Qs). % Labeling places the queens
```

```
constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range, % Limits X values
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).
```

```
no_attack([], _Queen, _Nb). % Same as CLP(R) version
no_attack([Y|Ys], Queen, Nb) :- % but using clpfd primitives
    Queen #= Y + Nb, Queen #= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).
```

• Query: `?- queens(20, Q, [ff]).` (Type is the type of labeling desired.)

```
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
```
CLP(\(\mathcal{F}\mathcal{T}\)) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

\[
\text{iso(Tree, Tree).} \\
\text{iso(t(R, I1, D1), t(R, I2, D2)) :-} \\
\hspace{1cm} \text{iso(I1, D2),} \\
\hspace{1cm} \text{iso(D1, I2).}
\]

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
CLP(\text{WE})

- Equations over finite strings
- Primitive constraints: concatenation (.), string length (::)
- Find strings meeting some property:

\[
\begin{align*}
?-& \quad "123".Z = Z."231", \ Z::0. & ?-& \quad "123".Z = Z."231", \ Z::3. \\
& \text{no} & & \text{no}
\end{align*}
\]

\[
\begin{align*}
?-& \quad "123".Z = Z."231", \ Z::1. & ?-& \quad "123".Z = Z."231", \ Z::4. \\
& Z = "1" & & Z = "1231"
\end{align*}
\]

\[
\begin{align*}
?-& \quad "123".Z = Z."231", \ Z::2. & \\
& \text{no}
\end{align*}
\]

- These constraint solvers are very complex
- Often incomplete algorithms are used
• Word equations plus arithmetic over \(\mathbb{Q} \) (rational numbers)

• Prove that the sequence \(x_{i+2} = |x_{i+1}| - x_i \) has a period of length 9 (for any starting \(x_0, x_1 \))

• Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

• Sequence description (syntax is Prolog III slightly modified):

\[
\text{seq}(<Y, X>). \\
\text{abs}(Y, Y) :- Y \geq 0. \\
\text{seq}(<Y1 - X, Y, X>.U) :- \\
\quad \text{abs}(Y, -Y) :- Y < 0. \\
\quad \text{seq}(<Y, X>.U) \\
\quad \text{abs}(Y, Y1).
\]

• Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

\[
?- \text{seq(U.V.W)}, \ U::2, \ V::7, \ W::2, \ U\#W. \\
\text{fail}
\]
Summarizing

- **In general:**
 - Data structures (Herbrand terms) for free
 - Each logical variable may have constraints associated with it (and with other variables)

- **Problem modeling:**
 - Rules represent the problem at a high level
 - Program structure, modularity
 - Recursion used to set up constraints
 - Constraints encode problem conditions
 - Solutions also expressed as constraints

- **Combinatorial search problems:**
 - CLP languages provide backtracking: enumeration is easy
 - Constraints keep the search space manageable

- **Tackling a problem:**
 - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator $\#(L, [c_1, \ldots, c_n], U)$ meaning that the number of true constraints lies between L and U (which can be variables themselves)
 - If $L = U = n$, all constraints must hold
 - If $L = U = 1$, one and only one constraint must be true
 - Constraining $U = 0$, we force the conjunction of the negations to be true
 - Constraining $L > 0$, the disjunction of the constraints is specified
- Disjunctive constructive constraint: $c_1 \lor c_2$
 - If properly handled, avoids search and backtracking
 - E.g.: $nz(X) \leftarrow X > 0.$
 $nz(X) \leftarrow X < 0.$
 $nz(X) \leftarrow X < 0 \lor X > 0.$
Other Primitives

- CLP(\mathcal{X}) systems usually provide additional primitives

- E.g.:

 - `\texttt{enum(X)}` enumerates \texttt{X} inside its current domain
 - `\texttt{maximize(X)}` (c.f. `\texttt{minimize(X)}`) works out maximum (minimum value) for \texttt{X} under the active constraints
 - `\texttt{delay Goal until Condition}` specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed

* Its use needs deep knowledge of the constraint system
* Also widely available in Prolog systems
* Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in \mathcal{FT} constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
 - each $t_i(\tilde{y})$ denotes a term structure containing variables from \tilde{y}
 - no variable x_i appears in \tilde{y}

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP(\(\mathcal{X}\))

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use *time stamps* to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< Y + Z, \ Y = Z + W \\
X &< Y + 4, \ Y = 4 + W, \ Z = 4 \\
X &< 9, \ Y = 5, \ Z = 4, \ W = 1 \\
&\text{trail } W, \ \text{timestamp it} \\
&\text{trail } X, \ Y, \ Z, \ \text{timestamp them} \\
&\text{timestamp } X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
 - Attributed variables [Neumerkel, Holzbaur]:
 * Provide a hook into unification.
 * Allow attaching an attribute to a variable.
 * When unification with that variable occurs, user-defined code is called.
 * Used to implement constraint solvers (and other applications, e.g., distributed execution).
 - Constraint handling rules (CHR):
 * Higher-level abstraction.
 * Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
 * Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

- Primitives:
 - `attach_attribute(X,C)`
 - `get_attribute(X,C)`
 - `detach_attribute(X)`
 - `update_attribute(X,C)`
 - `verify_attribute(C,T)`
 - `combine_attributes(C1,C2)`

- Example: Freeze

```
freeze( X, Goal) :-
    attach_attribute( V, frozen(V,Goal)),
    X = V.

verify_attribute( frozen(Var,Goal), Value) :-
    detach_attribute( Var),
    Var = Value,
    call(Goal).

combine_attributes( frozen(V1,G1), frozen(V2,G2)) :-
    detach_attribute( V1),
    detach_attribute( V2),
    V1 = V2,
    attach_attribute( V1, frozen(V1,(G1,G2))).
```
Programming Tips

• Over-constraining:
 ◦ Seems to be against general advice “do not perform extra work”, but can actually cut more search space
 ◦ Specially useful if \textit{infer} is weak
 ◦ Or else, if constraints outside the domain are being used

• Use control primitives (e.g., \texttt{cut}) \textbf{very sparingly and carefully}

• Determinacy is more subtle, (partially due to constraints in non–solved form)

• Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

• Compare:

\begin{verbatim}
max(X,Y,X) :- X >. Y. $?- max(X, Y, Z).
max(X,Y,Y) :- X <=. Y. Z =. X, Y <. X ;
\end{verbatim}

with

\begin{verbatim}
max(X,Y,X) :- X >. Y, !. $?- max(X, Y, Z).
max(X,Y,Y) :- X <=. Y. Z =. X, Y <. X
\end{verbatim}
As mentioned before, CLP defines a class of languages obtained by:
 ◦ Specifying the particular constraint system(s)
 ◦ Specifying the *Computation* and *Selection* rules

Most practical systems include also the Herbrand domain with “=”, but then add different domains and/or solver algorithms.

Most use the *Computation* and *Selection* rules of Prolog.
Some Classic CLP Systems

- **CLP(R):**
 - Linear arithmetic over reals (\(=, \leq, >\)) – CLP(R)
 - Incremental Gaussian elimination and incremental Simplex

- **PrologIII:**
 - CLP(R)
 - Boolean (\(=\)), 2-valued Boolean Algebra – CLP(B)
 - Infinite (rational) trees (\(=, \neq\))
 - Equations over finite strings – CLP(WE)

- **CHIP** (and its successor: the ILOG library):
 - CLP(FD), CLP(B), CLP(Q)
 - User–defined constraints and solver algorithms

- **BNR-Prolog / CLP(BNR):**
 - Arithmetic over reals (closed intervals); CLP(FD), CLP(B).

- **RISC–CLP:**
 - Arithmetic constraints over reals, also non-linear
 (using Presburger arithmetic)
Some Current CLP Systems

- **clp(FD)/gprolog:**
 - CLP(FD).

- **SICStus:**
 - CLP(R), CLP(Q), CLP(FD)
 - Attributed variables and CHR for adding domains.

- **ECLiPS:**
 - CLP(R), CLP(Q), CLP(FD).

- **SWI:**
 - CLP(R), CLP(Q), CLP(FD), CLP(B).
 - Attributed variables and CHR for additional domains.

- **Ciao:**
 - CLP(R), CLP(Q), CLP(FD).
 - Attributed variables and CHR for additional domains.
 - Different domains can be activated on a per-module basis (packages).

→ Most Prolog systems now support constraints!