Computational Logic

Fundamentals of Definite Programs:

Syntax and Semantics




Towards Logic Programming

e Conclusion: resolution is a complete and effective deduction mechanism using:
Horn clauses (related to “Definite programs”),
Linear, Input strategy
Breadth-first exploration of the tree (or an equivalent approach)
(possibly ordered clauses, but not required — see Selection rule later)

e Very close to what is generally referred to as SLD-resolution (see later)

e This allows to some extent realizing Green’s dream (within the theoretical limits of
the formal method), and efficiently!




Towards Logic Programming (Contd.)

e Given these results, why not use logic as a general purpose programming
language? [Kowalski 74]

e A “logic program” would have two interpretations:

o Declarative (“LOGIC”): the logical reading (facts, statements, knowledge)
o Procedural (“CONTROL’): what resolution does with the program

e ALGORITHM = LOGIC + CONTROL
e Specify these components separately
e Often, worrying about control is not needed at all (thanks to resolution)

e Control can be effectively provided through the ordering of the literals in the
clauses




Towards Logic Programming: Another (more compact) Clausal Form

e All formulas are transformed into a set of Clauses.

< A clause has the form: concy, ..., CONe, < condy, ..., cond,
where concy, ..., CONCy, condy, ..., cond,
“Or” “and”

are literals, and are the conclusions and conditions of a rule:
concy, ..., CONc,, < condy, ..., cond,
“conclusions” “conditions”
o All variables are implicitly universally quantified: (if X, ..., X, are the variables)
VXi,..., X, conci V...V conc, < condy A\ ... \ cond,

e More compact than the traditional clausal form:

© No connectives, just commas
© no need to repeat negations: all negated atoms on one side, non-negated
ones on the other

e A Horn Clause then has the form: concy < condy, ..., cond,
where n can be zero and possibly conc; empty.




Some Logic Programming Terminology — “Syntax” of Logic Programs

e Definite Program: a set of positive Horn clauses head < goaly, ..., goal,
e The single conclusion is called the head.

e The conditions are called “goals” or “procedure calls”.

e goaly,...,goal, (n > 0) is called the “body”.

e if n = 0 the clause is called a “fact” (and the arrow is normally deleted)

e Otherwise it is called a “rule”

e Query (question): a negative Horn clause (a “headless” clause)

e A procedure is a set of rules and facts in which the heads have the same
predicate symbol and arity.

e Terms in a goal are also called “arguments”.




Some Logic Programming Terminology (Contd.)

e Examples:
grandfather(X,Y) «+ father (X,Z), mother(Z,Y).
grandfather(X,Y) «+.
grandfather(X,Y).

< grandfather(X,Y).




LOGIC: Declarative “Reading” (Informal Semantics)

e A rule (has head and body)
head < goaly, ..., goal,.

which contains variables X, ..., X, can be read as
for all X4, ..., X:
“head” is true if “goal,” and ... and “goal,,” are true

e A fact n=0 (has only head)
head.
for all X1, ..., X;: “head” is true (always)
e A query (the headless clause)
< goaly, ..., goal,

can be read as:
for which X, ..., X}, are “goal;,” and ... and “goal,,” true?




LOGIC: Declarative Semantics — Herbrand Base and Universe

e Given a first-order language L, with a non-empty set of variables, constants,
function symbols, relation symbols, connectives, quantifiers, etc. and given a
syntactic object A,

ground(A) = {A0|30 € Subst,var(A0) =0}
i.e. the set of all “ground instances” of A.
e Given L, U;, (Herbrand universe) is the set of all ground terms of L.
e B; (Herbrand Base) is the set of all ground atoms of L.

e Similarly, for the language L p associated with a given program P we define Up,
and Bp.

e Example:




Herbrand Interpretations and Models

e A Herbrand Interpretation is a subset of B;, i.e. the set of all Herbrand
interpretations I, = p(By).

(Note that I;, forms a complete lattice under C — important for fixpoint operations
to be introduced later).

e Example: P ={ p(f(X)) <+ p(X). pla). qla). q(b). }
Up ={a,b, f(a), f(b), f(f(a)), F(f(D)), ..}
Bp = {p(a), p(b), q(a), q(b), p(f(a)), p(f ()) q(f(a)), -}

Ip = all subsets of Bp

e A Herbrand Model is a Herbrand interpretation which contains all logical
consequences of the program.

e The Minimal Herbrand Model Hp is the smallest Herbrand interpretation which
contains all logical consequences of the program. (It is unique.)

e Example:

Hp = {q(a),q(b), p(a),p(f(a),p(f(f(a))),...}




Declarative Semantics, Completeness, Correctness

e Declarative semantics of a logic program P
the set of ground facts which are logical consequences of the program (i.e., Hp).
(Also called the “least model” semantics of P).

e Intended meaning of a logic program P
the set M of ground facts that the user expects to be logical consequences of the
program.

e A logic program is correctif Hp C M.
e A logic program is complete if M C Hp.

e Example:
father(john,peter).
father(john,mary).
mother(mary,mike).
grandfather(X,Y) «+ father(X,Z), father(Z,Y).

with the usual intended meaning is correct but incomplete.

10




CONTROL.: Linear (Input) Resolution in this Clausal Form

We now turn to the operational semantics of logic programs,
given by a concrete operational procedure: Linear (Input) Resolution.

e Complementary literals:

o in two different clauses
o on different sides of «

o unifiable with unifier

father(john,mary)<
grandfather(X,Y) + father(X,Z), mother(Z,Y)

0 = {X/john, Z/mary}

11



CONTROL.: Linear (Input) Resolution in this Clausal Form (Contd.)

e Resolution step (linear, input, ...):

& given a clause and a resolvent, we can build a new resolvent which follows
from them by:

* renaming apart the clause (“standardization apart” step)
* putting all the conclusions to the left of the «

* putting all the conditions to the right of the +

* if there are complementary literals (unifying literals at different sides of the
arrow in the two clauses), eliminating them and applying 6 to the new
resolvent

e LD-Resolution: linear (and input) resolution, applied to definite programs
Note that then all resolvents are negative Horn clauses (like the query).

12




Example

e from
father(john,peter) «
mother(mary,david) +
we can infer
father(john,peter), mother(mary,david) <+

e from
father(john,mary) «
grandfather(X,Y) < father(X,Z), mother(Z,Y)
we can infer
grandfather(john,Y’) «+ mother(mary,Y’)

13



CONTROL.: A proof using LD-Resolution

e Prove “grandfather(john,david) <” using the set of axioms:
1. father(john,peter) «

. father(john,mary) «

. father(peter,mike) <+

mother(mary,david) +

. grandfather(L,M) <« father (L,N), father(N,M)

6. grandfather(X,Y) < father (X,Z), mother(Z,Y)

e We introduce the predicate to prove (negated!)
7. < grandfather(john,david)

oA~ WD

e We start resolution: e.g. 6 and 7
8. « father(john,Z'), mother(Z',david) X!/john, Y!/david

e using 2 and 8
9. + mother(mary,david)

e using 4 and 9
%

Z'/mary

14




CONTROL: Rules and SLD-Resolution

e Two control-related issues are still left open in LD-resolution.
Given a current resolvent R and a set of clauses K:

o given a clause C'in K, several of the literals in R may unify the non-negated a
complementary literal in C

o given a literal L in R, it may unify with complementary literals in several
clauses in K

e A Computation (or Selection rule) is a function which, given a resolvent (and
possibly the proof tree up to that point) returns (selects) a literal from it. This is
the goal that will be used next in the resolution process.

e A Searchrule is a function which, given a literal and a set of clauses (and
possibly the proof tree up to that point), returns a clause from the set. This is the
clause that will be used next in the resolution process.

15




CONTROL: Rules and SLD-Resolution (Contd.)

e SLD-resolution: Linear resolution for Definite programs with Selection rule.

e An SLD-resolution method is given by the combination of a computation (or
selection) rule and a search rule.

e Independence of the computation rule: Completeness does not depend on the
choice of the computation rule.

e Example: a “left-to-right” rule (as in ordered resolution) does not impair
completeness — this coincides with the completeness result for ordered resolution.

e Fundamental result:
“Declarative” semantics (Hp) = “operational” semantics (SLD-resolution)
l.e., all the facts in Hp can be deduced using SLD-resolution.

16




CONTROL: Procedural reading of a logic program

e Given arule
head < goaly, ..., goal,.

it can be seen as a description of the goals the solver (resolution method) has to
execute in order to solve “head”

e Possible, given computation and search rules.
e In general, “In order to solve ‘head’, solve ‘goal,” and ... and solve ‘goal,,’ ”

e If ordered resolution is used (left-to-right computation rule), then read “In order to
solve ‘head’, first solve ‘goal,” and then ‘goal,” and then ... and finally solve ‘goal,’

e Thus the “control” part corresponding to the computation rule is often associated
with the order of the goals in the body of a clause

e Another part (corresponding to the search rule) is often associated with the order
of clauses

17




CONTROL.: Procedural reading of a logic program (Contd.)

e Example — read “procedurally”:
father(john,peter).
father(john,mary).
father(peter,mike).
father(X,Y) «+— mother(Z,Y), married(X,Z).

18



Towards a Fixpoint Semantics for LP — Fixpoint Basics

e A fixpoint for an operator 7': X — X is an element of z € X such that x = T'(z).
e If X is aposet, T'is monotonicif Ve, y € X, x <y = T(x) < T(y)

e If X is a complete lattice and 7" is monotonic the set of fixpoints of 7" is also a
complete lattice [Tarski]

e The least element of the lattice is the least fixpoint of T', denoted ifp (T')

e Powers of a monotonic operator (successive applications):
T10(z)==x
T1n(x)=T(T1T (n—1)(x))(nis a successor ordinal)
Tt wx) =TT n(x)n < w}
We abbreviate Tt a(L)as T T «

e Thereissome wsuchthatT tw=1IfpT. The sequence T'1 0,7 1 1,...,Ifp T is the
Kleene sequence for T’

e In a finite lattice the Kleene sequence for a monotonic operator 7' is finite

19




Towards a Fixpoint Semantics for LP — Fixpoint Basics (Contd.)

e A subset Y of a poset X is an (ascending) chain iff Vy, /' e Y,y <¢y' Vi <y

e A complete lattice X is ascending chain finite (or Noetherian) if all ascending
chains are finite

e In an ascending chain finite lattice the Kleene sequence for a monotonic operator
T is finite

20




Lattice Structures

finite

d e
£ % %
~1

NS
finite_depth

T

T S~

n

AN A AN T

o 1

W

B~ W N =

1

ascending chain finite

21



A Fixpoint Semantics for Logic Programs, and Equivalences

e The Immediate consequence operator Tp is a mapping: Tp : Ip — Ip defined by:
Tp(I) ={A € Bp|3C € ground(P),C =A<+ Ly,..,L,and Ly,... L, € I}

(in particular, if (A <) € P, then every element of ground(A) is in Tp(I), V I).
e T’» is monotonic, so it has a least fixpoint 7* so that T»(I*) = I*, which can be

obtained by applying T iteratively starting from the bottom element of the lattice
(the empty interpretation)

e (Characterization Theorem) [Van Emden and Kowalski]
A program P has a Herbrand model Hp such that :
o Hp is the least Herbrand Model of P.
o Hp is the least fixpoint of T (ifp Tp).
<& Hp = Tp T W.
l.e., least model semantics (Hp) = fixpoint semantics (Ifp Tp)
e Because it gives us some intuition on how to build Hp, the least fixpoint

semantics can in some cases (e.g., finite models) also be an operational
semantics (e.g., in deductive databases).

22




A Fixpoint Semantics for Logic Programs: Example

e Example:

UP — {CL, bv f(a)7 f(b>7 f(f(a’))7 f(f(b))v x }
Bp = {p(a),p(b),q(a),qb),p(f(a)), p(f(b)),q(f(a)),...}

Ip = all subsets of B
Hp = {q(a), q(b),p(a),p(f(a)), p(f(f(a))),...}

Tp10={pla)q
Tpt1=A{pla),q
Tpt2={pla),q

TpTw=Hp

23



