
Computational Logic

Automated Deduction Fundamentals

1

Elements of First-Order Predicate Logic

First Order Language:

• An alphabet consists of the following classes of symbols:

1. variables denoted by X, Y, Z,Boo, ..., (infinite)
2. constants denoted by 1, a, boo, john, ...,

3. functors denoted by f, g,+,−, ..,
4. predicate symbols denoted by p, q, dog, ...,
5. connectives, which are: ¬ (negation), ∨ (disjunction), ∧ (conjunction),→

(implication) and↔ (equivalence),
6. quantifiers, which are: ∃ (there exists) and ∀ (for all),
7. parentheses, which are: (and) and the comma, that is: “,”.

• Each functor and predicate symbol has a fixed arity, they are often represented in
Functor/Arity form, e.g. f/3.

• A constant can be seen as a functor of arity 0.

• Propositions are represented by a predicate symbol of arity 0.

2

Important: Notation Convention Used

(A bit different from standard notational conventions in logic, but good for
compatibility with LP systems)

• Variables: start with a capital letter or a “ ” (X, Y, a, 1)

• Atoms, functors, predicate symbols: start with a lower case letter or are enclosed
in ’ ’ (f, g, a, 1, x, y, z, ’X’, ’ 1’)

3

Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.

• The class of terms:

� a variable is a term,
� a constant is a term,
� if f is an n-ary functor and t1, ..., tn are terms then f (t1, ..., tn) is a term.

• The class of atoms (different from LP!):

� a proposition is an atom,
� if p is an n-ary pred. symbol and t1, ..., tn are terms then p(t1, ..., tn) is an atom,
� true and false are atoms.

• The class of Well Formed Formulas (WFFs):

� an atom is a WFF,
� if F and G are WFFs then so are ¬F, (F ∨G), (F ∧G), (F → G) and (F ↔ G),
� if F is a WFF and X is a variable then ∃X F and ∀X F are WFF.

• Literal: positive or negative (non-negated or negated) atom.

4

Examples

Examples of Terms

• Given:

� constants: a, b, c, 1, spot, john...
� functors: f/1, g/3, h/2, +/3...
� variables: X, L, Y ...

• Correct: spot, f(john), f(X), +(1,2,3), +(X,Y,L), f(f(spot)), h(f(h(1,2)),L)

• Incorrect: spot(X), +(1,2), g, f(f(h))

Examples of Literals

• Given the elements above and:

� predicate symbols: dog/1, p/2, q/0, r/0, barks/1...

• Correct: q, r, dog(spot), p(X,f(john))...

• Incorrect: q(X), barks(f), dog(barks(X))

5

Examples (Contd.)

Examples of WFFs

• Given the elements above

• Correct: q, q→ r, r← q, dog(X)← barks(X), dog(X) , p(X,Y), ∃ X (dog(X) ∧
barks(X) ∧ ¬ q), ∃ Y (dog(Y)→ bark(Y))

• Incorrect: q ∨, ∃ p

6

More about WFFs

• Allow us to represent knowledge and reason about it

� Marcus was a man man(marcus)
� Marcus was a pompeian pompeian(marcus)
� All pompeians were romans ∀ X pompeian(X)→ roman(X)
� Caesar was a ruler ruler(caesar)
� All romans were loyal to Caesar or they hated him

∀X roman(X)→ loyalto(X,caesar) ∨ hate(X,caesar)
� Everyone is loyal to someone ∀ X ∃ Y loyalto(X,Y)

• We can now reason about this knowledge using standard deductive mechanisms.

• But there is in principle no guarantee that we will prove a given theorem.

7

Towards Efficient Automated Deduction

• Automated deduction is search.

• Complexity of search: directly dependent on branching factor at nodes
(exponentially!).

• It is vital to cut down the branching factor:

� Canonical representation of nodes (allows identifying identical nodes).
� As few inference rules as possible.

8

Towards Efficient Automated Deduction (Contd.)

Clausal Form

• The complete set of logical operators (←,∧,∨,¬,...) is redundant.

• A minimal (canonical) form would be interesting.

• It would be interesting to separate the quantifiers from the rest of the formula so
that they did not need to be considered.

• It would also be nice if the formula were flat (i.e. no parenthesis).

• Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

• A good example:
Resolution – only two inference rules (Resolution rule and Replacement rule).

9

Classical Clausal Form: Conjunctive Normal Form

• General formulas are converted to:

� Set of Clauses.
� Clauses are in a logical conjunction.
� A clause is a disjunction of the form. literal1 ∨ literal2 ∨ . . . ∨ literaln
� The literali are negated or non-negated atoms.
� All variables are implicitly universally quantified: i.e. if X1, ..., Xk are the

variables that appear in a clause it represents the formula:
∀X1, ..., Xk literal1 ∨ literal2 ∨ . . . ∨ literaln

• Any formula can be converted to clausal form automatically by:

1. Converting to Prenex form.
2. Converting to conjunctive normal form (conjunction of disjunctions).
3. Converting to Skolem form (eliminating existential quantifiers).
4. Eliminating universal quantifiers.
5. Separating conjunctions into clauses.

• The unsatisfiability of a system is preserved.

10

Substitutions

• A substitution is a finite mapping from variables to terms, written as
θ = {X1/t1, ..., Xn/tn} where

� the variables X1, ..., Xn are different,
� for i = 1, ..., n Xi¬ ≡ ti.

• A pair Xi/ti is called a binding.

• domain(θ) = {X1, .., Xn} and range(θ) = vars({t1, ..., tn}).

• If range(θ) = ∅ then θ is called ground.

• If θ is a bijective mapping from variables to variables then θ is called a renaming.

• Examples:

� θ1 = {X/f (A), Y/X,Z/h(b, Y),W/a}
� θ2 = {X/a, Y/a, Z/h(b, c),W/f (d)} (ground)
� θ3 = {X/A, Y/B,Z/C,W/D} (renaming)

11

Substitutions (Contd.)

• Substitutions operate on expressions, i.e. a term, a sequence of literals or a
clause, denoted by E.

• The application of θ to E (denoted Eθ) is obtained by simultaneously replacing
each occurrence in E of Xi by ti, Xi/ti ∈ θ.

• The resulting expression Eθ is called an instance of E.

• If θ is a renaming then Eθ is called a variant of E.

• Example:
θ1 = {X/f (A), Y/X,Z/h(b, Y),W/a}
p(X, Y,X) θ1 = p(f (A), X, f (A))

12

Composition of Substitutions

• Given θ = {X1/t1, ..., Xn/tn} and η = {Y1/s1, ..., Ym/sm} their composition θη is
defined by removing from the set

{X1/t1η, ..., Xn/tnη, Y1/s1, ..., Ym/sm}

those pairs Xi/tiη for which Xi ≡ tiη, as well as those pairs Yi/si for which
Yi ∈ {X1, ..., Xn}.

• Example: if θ = {X/3, Y/f (X, 1)} and η = {X/4} then θη = {X/3, Y/f (4, 1)}.

• For all substitutions θ, η and γ and an expression E

i) (Eθ)η ≡ E(θη)

ii) (θη)γ = θ(ηγ).

• θ is more general than η if for some γ we have η = θγ.

• Example: θ = {X/f (Y)} more general than η = {X/f (h(G))}

13

Unifiers

• If Aθ ≡ Bθ, then

� θ is called a unifier of A and B
� A and B are unifiable

• A unifier θ of A and B is called a most general unifier (mgu) if it is more general
than any other unifier of A and B.

• If two atoms are unifiable then they have a most general unifier.

• θ is idempotent if θθ = θ.

• A unifier θ of A and B is relevant if all variables appearing either in domain(θ) or
in range(θ), also appear in A or B.

• If two atoms are unifiable then they have an mgu which is idempotent and
relevant.

• An mgu is unique up to renaming.

14

Unification Algorithm

• Non-deterministically choose from the set of equations an equation of a form
below and perform the associated action.

1. f (s1, ..., sn) = f (t1, ..., tn)→ replace by s1 = t1, ..., sn = tn

2. f (s1, ..., sn) = g(t1, ..., tm) where f 6≡ g → halt with failure
3. X = X → delete the equation
4. t = X where t is not a variable→ replace by the equation X = t

5. X = t where X 6≡ t and X has another occurrence in the set of equations→
5.1 if X appears in t then halt with failure
5.2 otherwise apply {X/t} to every other equation

• Consider the set of equations {f (X) = f (f (Z)), g(a, Y) = g(a,X)}:
� (1) produces {X = f (Z), g(a, Y) = g(a,X)}
� then (1) Yields {X = f (Z), a = a, Y = X}
� (3) produces {X = f (Z), Y = X}
� now only (5) can be applied, giving {X = f (Z), Y = f (Z)}
� No step can be applied, the algorithm successfully terminates.

15

Unification Algorithm revisited

• Let A and B be two formulas:

1. θ = ε

2. while Aθ 6= Bθ:
2.1 find leftmost symbol in Aθ s.t. the corresponding symbol in Bθ is different
2.2 let tA and tB be the terms in Aθ and Bθ starting with those symbols

(a) if neither tA nor tB are variables or one is a variable occurring in the
other→ halt with failure

(b) otherwise, let tA be a variable→ the new θ is the result of θ{tA/tB}
3. end with θ being an m.g.u. of A and B

16

Unification Algorithm revisited (Contd.)

• Example: A = p(X,X) B = p(f (A), f (B))

θ Aθ Bθ Element
ε p(X,X) p(f (A), f (B)) {X/f (A)}
{X/f (A)} p(f (A), f (A)) p(f (A), f (B)) {A/B}
{X/f (B), A/B} p(f (B), f (B)) p(f (B), f (B))

• Example: A = p(X, f (Y)) B = p(Z,X)

θ Aθ Bθ Element
ε p(X, f (Y)) p(Z,X) {X/Z}
{X/Z} p(Z, f (Y)) p(Z,Z) {Z/f (Y)}
{X/f (Y), Z/f (Y)} p(f (Y), f (Y)) p(f (Y), f (Y))

17

Resolution with Variables

• It is a formal system with:

� A first order language with the following formulas:
* Clauses: without repetition, and without an order among their literals.
* The empty clause 2.

� An empty set of axioms.
� Two inference rules: resolution and replacement.

18

Resolution with Variables (Contd.)

• Resolution:

r1: A ∨ F1 ∨ · · · ∨ Fn
r2: ¬B ∨G1 ∨ · · · ∨Gm

((F1 ∨ · · · ∨ Fn)σ ∨G1 ∨ · · · ∨Gm)θ

where

� A and B are unifiable with substitution θ
� σ is a renaming s.t. (A ∨ F1 ∨ · · · ∨ Fn)σ and ¬B ∨G1 ∨ · · · ∨Gm have no

variables in common
� θ is the m.g.u. of Aσ and B

The resulting clause is called the resolvent of r1 and r2.

• Replacement: A ∨B ∨ F1 ∨ · · · ∨ Fn ⇒ (A ∨ F1 ∨ · · · ∨ Fn)θ where

� A and B are unifiable atoms
� θ is the m.g.u. of A and B

19

Basic Properties

• Resolution is correct – i.e. all conclusions obtained using it are valid.

• There is no guarantee of directly deriving a given theorem.

• However, resolution (under certain assumptions) is refutation complete:
if we have a set of clauses K = [C0, C1, . . . , Cn] and it is inconsistent then
resolution will arrive at the empty clause 2 in a finite number of steps.

• Therefore, a valid theorem (or a question that has an answer) is guaranteed to be
provable by refutation. To prove “p” given K0 = [C0, C1, . . . , Cn]:

1. Negate it (¬p).
2. Construct K = [¬p, C0, C1, . . . , Cn].
3. Apply resolution steps repeatedly to K.

• Furthermore, we can obtain answers by composing the substitutions along a path
that leads to 2 (very important for realizing Green’s dream!).

• It is important to use a good method in applying the resolution steps – i.e. in
building the resolution tree (or proof tree).

• Again, the main issue is to reduce the branching factor.

20

Proof Tree

• Given a set of clauses K = {C0, C1, · · · , Cn} the proof tree of K is a tree s.t. :

� the root is C0

� the branch from the root starts with the nodes labeled with C0, C1, · · · , Cn
� the descendent nodes of Cn are labeled by clauses obtained from the parent

clauses using resolution
� a derivation in K is a branch of the proof tree of K

• The derivation C0C1 · · ·CnF0 · · ·Fm is denoted as K,F0 · · ·Fm

21

Proof Tree (Contd.)

• Example: part of the proof tree for K, with:

C2

C1

C0

R(C0,C1) R(C1,C2)

R(C0,C1) R(C1,C2)

p

p v q

q

q

qp

p

K = [p, p v q, q]

(C2)

(C0)

(C0)

(C2)

22

Characteristics of the Proof Tree

• It can be infinite:

= {X/e}Θ

Θ={X/f(e)}

C1

C0p(e)

p(X) v p(f(X))

p(f(e))

p(f(f(e)))

K = [p(e), p(X) v p(f(X))]

• Even if it is finite, it can be too large to be explored efficiently

• Aim: determine some criteria to limit the number of derivations and the way in
which the tree is explored⇒ strategy

• Any strategy based on this tree is correct: if 2 appears in a subtree of the proof
tree of K, then 2 can be derived from K and therefore K is unsatisfiable

23

General Strategies

• Depth-first with backtracking: First descendant to the left; if failure or 2 then
backtrack

1

7

8

2

9

Fail Fail

Fail

3 6

54

24

General Strategies (Contd.)

• Breadth first: all sons of all sibling nodes from left to right

1

2

Fail Fail

Fail

3

4 5

8

6

9

7

25

General Strategies (Contd.) (Contd.)

• Iterative deepening

� Advance depth-first for a time.
� After a certain depth, switch to another branch as in breadth-first.

• Completeness issues / possible types of branches:

� Success (always finite)
� Finite failure
� Infinite failure (provably infinite branches)
� Non-provably infinite branches

26

Linear Strategies

• Those which only explore linear derivations

• A derivation K,F0 · · ·Fm is linear if

� F0 is obtained by resolution or replacement using C0

� Fi, i > 0 is obtained by resolution or replacement using Fi−1

• Examples:

C2

C1

C0p

p v q

q

F0q

C2

C1

C0

q

p

p v q

p q

27

Characteristics of these Strategies

1 If 2 can be derived from K by using resolution with variables, it can also be
derived by linear resolution

2 Let K be K‘ ∪ {C0} where K‘ is a satisfiable set of clauses, i.e. 2 cannot be
derived from K‘ by using resolution with variables. If 2 can be derived from K by
using resolution with variables it can also be derived by linear resolution with root
C0.

• From (1), if the strategy is breadth first, it is complete.

• From (2), if we want to prove that B is derived form K‘ then we can apply linear
resolution to K = K‘ ∪ {¬B}.

• Depth first with backtracking is not complete:

p(X) C2

p(f(e))

p(f(f(e)))

C1

C0p(e)

p(X) v p(f(X))

K = [p(e), p(X) v p(f(X)), p(X)]

F0

F1

28

Input Strategies

• Those which only explore input derivations

• A derivation K,F0 · · ·Fm is input if

� F0 is obtained by resolution or
replacement using C0

� Fi, i > 0 is obtained by resolution or
replacement using at least a clause in K

• Example:

C0

q v r

s

p

p v r

r C2

C4

C3

C1

q v s

s v q

K = [p v q, p v r, r, q v s, s v q]

q

r

Input + Linear

C1

C2

C3

C0

C4

C2

p v q

 C1 (&C0)

q

29

Input Strategies

• In an input derivation, if Fi−1 does not appear in any derivation of a successor
clause, it can be eliminated from the derivation without changing the result

• If Fi−1 appears in the derivation of Fj, j > 1, Fi−1 can be allocated in position j − 1

• As a result, we can limit ourselves to linear input derivations without losing any
input derivable clause

• Let K be K‘ ∪ {C0} where 2 is derived by using resolution with variables, C0 is a
negative Horn clause and all clauses in K‘ are positive Horn clauses. There is an
input derivation with root C0 finishing in 2 and in which the replacement rule is not
used (Hernschen 1974)

• A Horn clause is a clause in which at most one literal is positive:

� it is positive if precisely one literal is positive
� it is negative if all literals are negatives

• As a result, in those conditions, a breadth first input strategy is complete, and a
depth first input strategy with backtracking is complete if the tree is finite.

30

Ordered Strategies

• We consider a new formal system in which:
1. clauses are ordered sets
2. ordered resolution of two clauses
A = p1 ∨ · · · ∨ pn and B = q1 ∨ · · · ∨ qm
where p1 is a positive literal and q1 is a negative literal is possible iff ¬p1 and
σ(q1) are unifiable (σ is a renaming, s.t. p1 and σ(q1) have no variables in
common)

3. the resolvent of A and B is θ(p2 ∨ · · · ∨ pn ∨ σ(q2 ∨ · · · ∨ qm)) where θ is an
m.g.u of ¬p1 and σ(q1)

• Let K = K‘ ∪ {C0} be a set of clauses s.t. 2 is derived by using resolution with
variables, C0 is a negative Horn clause and all clauses in K‘ are positive Horn
clauses with the positive literal in the first place. There is a sorted input derivation
with root C0 arriving at 2.

• In this context a sorted linear input with:

� breadth first: is complete
� depth first with backtracking: is complete if the tree is finite

31

