Computational Logic
Automated Deduction Fundamentals
Elements of First-Order Predicate Logic

First Order Language:

- An *alphabet* consists of the following classes of symbols:
 1. *variables* denoted by $X, Y, Z, Boo, ...$, (infinite)
 2. *constants* denoted by $1, a, boo, john, ...$
 3. *functors* denoted by $f, g, +, −, ..$
 4. *predicate symbols* denoted by $p, q, dog, ...$
 5. *connectives*, which are: \neg (negation), \lor (disjunction), \land (conjunction), \rightarrow (implication) and \leftrightarrow (equivalence),
 6. *quantifiers*, which are: \exists (there exists) and \forall (for all),
 7. *parentheses*, which are: (and) and the comma, that is: “,”.

- Each functor and predicate symbol has a fixed *arity*, they are often represented in *Functor/Arity* form, e.g. $f/3$.
- A constant can be seen as a functor of arity 0.
- Propositions are represented by a predicate symbol of arity 0.
Important: Notation Convention Used

(A bit different from standard notational conventions in logic, but good for compatibility with LP systems)

- Variables: start with a capital letter or a “_” (X, Y, _a, _1)
- Atoms, functors, predicate symbols: start with a lower case letter or are enclosed in ’ ’ (f, g, a, 1, x, y, z, ’X’, ’_1’)
Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.

- **The class of terms:**

 ◦ a variable is a term,
 ◦ a constant is a term,
 ◦ if f is an n-ary functor and t_1, \ldots, t_n are terms then $f(t_1, \ldots, t_n)$ is a term.

- **The class of atoms (different from LP!):**

 ◦ a proposition is an atom,
 ◦ if p is an n-ary pred. symbol and t_1, \ldots, t_n are terms then $p(t_1, \ldots, t_n)$ is an atom,
 ◦ true and false are atoms.

- **The class of Well Formed Formulas (WFFs):**

 ◦ an atom is a WFF,
 ◦ if F and G are WFFs then so are $\neg F$, $(F \lor G)$, $(F \land G)$, $(F \rightarrow G)$ and $(F \leftrightarrow G)$,
 ◦ if F is a WFF and X is a variable then $\exists X \, F$ and $\forall X \, F$ are WFF.

- **Literal:** positive or negative (non-negated or negated) atom.
Examples

Examples of Terms

- Given:
 - constants: \(a, b, c, 1, \text{spot, john}...\)
 - functors: \(f/1, g/3, h/2, +/3...\)
 - variables: \(X, L, Y...\)
- Correct: \(\text{spot}, f(\text{john}), f(X), +(1,2,3), +(X,Y,L), f(f(\text{spot})), h(f(h(1,2)),L)\)
- Incorrect: \(\text{spot}(X), +(1,2), g, f(f(h))\)

Examples of Literals

- Given the elements above and:
 - predicate symbols: \(\text{dog/1, p/2, q/0, r/0, barks/1}...\)
- Correct: \(q, r, \text{dog(\text{spot})}, p(\text{X},f(\text{john})))...\)
- Incorrect: \(q(\text{X}), \text{barks(f), dog(barks(X))}\)
Examples of WFFs

- Given the elements above

- Correct: $q, q \rightarrow r, r \leftarrow q, \text{dog}(X) \leftarrow \text{barks}(X), \text{dog}(X), p(X,Y), \exists X (\text{dog}(X) \land \text{barks}(X) \land \neg q), \exists Y (\text{dog}(Y) \rightarrow \text{bark}(Y))$

- Incorrect: $q \lor, \exists p$

Examples (Contd.)
More about WFFs

- Allow us to represent knowledge and reason about it
 - Marcus was a man: \textit{man(marcus)}
 - Marcus was a Pompeian: \textit{pompeian(marcus)}
 - All Pompeians were Romans: \(\forall X \ \text{pompeian}(X) \rightarrow \text{roman}(X) \)
 - Caesar was a ruler: \textit{ruler(caesar)}
 - All Romans were loyal to Caesar or they hated him:
 \(\forall X \ \text{roman}(X) \rightarrow \text{loyalto}(X, \text{caesar}) \lor \text{hate}(X, \text{caesar}) \)
 - Everyone is loyal to someone:
 \(\forall X \ \exists Y \ \text{loyalto}(X, Y) \)

- We can now reason about this knowledge using standard deductive mechanisms.
- But there is in principle no guarantee that we will prove a given theorem.
Towards Efficient Automated Deduction

- *Automated deduction is search.*
- Complexity of search: directly dependent on branching factor at nodes (exponentially!).
- It is vital to cut down the branching factor:
 - Canonical representation of nodes (allows identifying identical nodes).
 - As few inference rules as possible.
Towards Efficient Automated Deduction (Contd.)

Clausal Form

- The complete set of logical operators ($\leftarrow, \land, \lor, \neg,...$) is redundant.
- A minimal (canonical) form would be interesting.
- It would be interesting to separate the quantifiers from the rest of the formula so that they did not need to be considered.
- It would also be nice if the formula were flat (i.e. no parenthesis).
- Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

- A good example:
 Resolution – only two inference rules (Resolution rule and Replacement rule).
Classical Clausal Form: Conjunctive Normal Form

- General formulas are converted to:
 - Set of *Clauses*.
 - Clauses are in a logical conjunction.
 - A clause is a disjunction of the form: $\text{literal}_1 \lor \text{literal}_2 \lor \ldots \lor \text{literal}_n$
 - The literal_i are negated or non-negated atoms.
 - All variables are implicitly universally quantified: i.e. if X_1, \ldots, X_k are the variables that appear in a clause it represents the formula:
 $$\forall X_1, \ldots, X_k \text{ literal}_1 \lor \text{literal}_2 \lor \ldots \lor \text{literal}_n$$

- Any formula can be converted to clausal form automatically by:
 1. Converting to Prenex form.
 2. Converting to conjunctive normal form (conjunction of disjunctions).
 3. Converting to Skolem form (eliminating existential quantifiers).
 4. Eliminating universal quantifiers.
 5. Separating conjunctions into clauses.

- The *unsatisfiability* of a system is preserved.
Substitutions

- A substitution is a finite mapping from variables to terms, written as
 \(\theta = \{ X_1/t_1, ..., X_n/t_n \} \) where

 ◦ the variables \(X_1, ..., X_n \) are different,
 ◦ for \(i = 1, ..., n \) \(X_i \not\equiv t_i \).

- A pair \(X_i/t_i \) is called a binding.

- \(\text{domain}(\theta) = \{ X_1, .., X_n \} \) and \(\text{range}(\theta) = \text{vars}(\{t_1, ..., t_n\}) \).

- If \(\text{range}(\theta) = \emptyset \) then \(\theta \) is called ground.

- If \(\theta \) is a bijective mapping from variables to variables then \(\theta \) is called a renaming.

- Examples:

 ◦ \(\theta_1 = \{ X/f(A), Y/X, Z/h(b, Y), W/a \} \)
 ◦ \(\theta_2 = \{ X/a, Y/a, Z/h(b, c), W/f(d) \} \) (ground)
 ◦ \(\theta_3 = \{ X/A, Y/B, Z/C, W/D \} \) (renaming)
Substitutions operate on expressions, i.e. a term, a sequence of literals or a clause, denoted by E.

The application of θ to E (denoted $E\theta$) is obtained by simultaneously replacing each occurrence in E of X_i by t_i, $X_i/t_i \in \theta$.

The resulting expression $E\theta$ is called an instance of E.

If θ is a renaming then $E\theta$ is called a variant of E.

Example:

$$\theta_1 = \{X/f(A), Y/X, Z/h(b, Y), W/a\}$$

$$p(X, Y, X) \theta_1 = p(f(A), X, f(A))$$
Composition of Substitutions

• Given \(\theta = \{ X_1/t_1, ..., X_n/t_n \} \) and \(\eta = \{ Y_1/s_1, ..., Y_m/s_m \} \) their composition \(\theta \eta \) is defined by removing from the set

\[
\{ X_1/t_1 \eta, ..., X_n/t_n \eta, Y_1/s_1, ..., Y_m/s_m \}
\]

those pairs \(X_i/t_i \eta \) for which \(X_i \equiv t_i \eta \), as well as those pairs \(Y_i/s_i \) for which \(Y_i \in \{ X_1, ..., X_n \} \).

• Example: if \(\theta = \{ X/3, Y/f(X, 1) \} \) and \(\eta = \{ X/4 \} \) then \(\theta \eta = \{ X/3, Y/f(4, 1) \} \).

• For all substitutions \(\theta, \eta \) and \(\gamma \) and an expression \(E \)

 i) \((E \theta) \eta \equiv E(\theta \eta) \)

 ii) \((\theta \eta) \gamma = \theta(\eta \gamma) \).

• \(\theta \) is more general than \(\eta \) if for some \(\gamma \) we have \(\eta = \theta \gamma \).

• Example: \(\theta = \{ X/f(Y) \} \) more general than \(\eta = \{ X/f(h(G)) \} \)
Unifiers

• If $A\theta \equiv B\theta$, then
 ◦ θ is called a unifier of A and B
 ◦ A and B are unifiable

• A unifier θ of A and B is called a most general unifier (mgu) if it is more general than any other unifier of A and B.

• If two atoms are unifiable then they have a most general unifier.

• θ is idempotent if $\theta\theta = \theta$.

• A unifier θ of A and B is relevant if all variables appearing either in $\text{domain}(\theta)$ or in $\text{range}(\theta)$, also appear in A or B.

• If two atoms are unifiable then they have an mgu which is idempotent and relevant.

• An mgu is unique up to renaming.
Unification Algorithm

• Non-deterministically choose from the set of equations an equation of a form below and perform the associated action.

1. \(f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n) \) → replace by \(s_1 = t_1, \ldots, s_n = t_n \)

2. \(f(s_1, \ldots, s_n) = g(t_1, \ldots, t_m) \) where \(f \not\equiv g \) → halt with failure

3. \(X = X \) → delete the equation

4. \(t = X \) where \(t \) is not a variable → replace by the equation \(X = t \)

5. \(X = t \) where \(X \not\equiv t \) and \(X \) has another occurrence in the set of equations →
 5.1 if \(X \) appears in \(t \) then halt with failure
 5.2 otherwise apply \(\{X/t\} \) to every other equation

• Consider the set of equations \(\{f(x) = f(f(z)), g(a, y) = g(a, x)\} \):
 ◊ (1) produces \(\{x = f(z), g(a, y) = g(a, x)\} \)
 ◊ then (1) yields \(\{x = f(z), a = a, y = x\} \)
 ◊ (3) produces \(\{x = f(z), y = x\} \)
 ◊ now only (5) can be applied, giving \(\{x = f(z), y = f(z)\} \)
 ◊ No step can be applied, the algorithm successfully terminates.
Unification Algorithm revisited

- Let A and B be two formulas:
 1. $\theta = \epsilon$
 2. while $A\theta \neq B\theta$:
 2.1 find leftmost symbol in $A\theta$ s.t. the corresponding symbol in $B\theta$ is different
 2.2 let t_A and t_B be the terms in $A\theta$ and $B\theta$ starting with those symbols
 (a) if neither t_A nor t_B are variables or one is a variable occurring in the other \rightarrow halt with failure
 (b) otherwise, let t_A be a variable \rightarrow the new θ is the result of $\theta \{ t_A/t_B \}$
 3. end with θ being an m.g.u. of A and B
Unification Algorithm revisited (Contd.)

- **Example:** \(A = p(X, X) \) \(B = p(f(A), f(B)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(A\theta)</th>
<th>(B\theta)</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>(p(X, X))</td>
<td>(p(f(A), f(B)))</td>
<td>({X/f(A)})</td>
</tr>
<tr>
<td>({X/f(A)})</td>
<td>(p(f(A), f(A)))</td>
<td>(p(f(A), f(B)))</td>
<td>({A/B})</td>
</tr>
<tr>
<td>({X/f(B), A/B})</td>
<td>(p(f(B), f(B)))</td>
<td>(p(f(B), f(B)))</td>
<td></td>
</tr>
</tbody>
</table>

- **Example:** \(A = p(X, f(Y)) \) \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(A\theta)</th>
<th>(B\theta)</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>(p(X, f(Y)))</td>
<td>(p(Z, X))</td>
<td>({X/Z})</td>
</tr>
<tr>
<td>({X/Z})</td>
<td>(p(Z, f(Y)))</td>
<td>(p(Z, Z))</td>
<td>({Z/f(Y)})</td>
</tr>
<tr>
<td>({X/f(Y), Z/f(Y)})</td>
<td>(p(f(Y), f(Y)))</td>
<td>(p(f(Y), f(Y)))</td>
<td></td>
</tr>
</tbody>
</table>
Resolution with Variables

- It is a *formal system* with:
 - A first order language with the following formulas:
 - Clauses: without repetition, and without an order among their literals.
 - The empty clause \square.
 - An empty set of axioms.
 - Two inference rules: *resolution* and *replacement*.
Resolution with Variables (Contd.)

- Resolution:

\[
\begin{align*}
 r_1 &\colon A \lor F_1 \lor \cdots \lor F_n \\
 r_2 &\colon \neg B \lor G_1 \lor \cdots \lor G_m \\
\end{align*}
\]

\[
\frac{((F_1 \lor \cdots \lor F_n)\sigma \lor G_1 \lor \cdots \lor G_m)\theta}{((F_1 \lor \cdots \lor F_n) \lor G_1 \lor \cdots \lor G_m)\theta}
\]

where

- \(A \) and \(B \) are unifiable with substitution \(\theta \)
- \(\sigma \) is a renaming s.t. \((A \lor F_1 \lor \cdots \lor F_n)\sigma \) and \(\neg B \lor G_1 \lor \cdots \lor G_m \) have no variables in common
- \(\theta \) is the m.g.u. of \(A\sigma \) and \(B \)

The resulting clause is called the resolvent of \(r_1 \) and \(r_2 \).

- Replacement: \(A \lor B \lor F_1 \lor \cdots \lor F_n \Rightarrow (A \lor F_1 \lor \cdots \lor F_n)\theta \) where

- \(A \) and \(B \) are unifiable atoms
- \(\theta \) is the m.g.u. of \(A \) and \(B \)
Basic Properties

- Resolution is *correct* – i.e. all conclusions obtained using it are valid.
- There is no guarantee of directly deriving a given theorem.
- However, resolution (under certain assumptions) is refutation complete: if we have a set of clauses $K = [C_0, C_1, \ldots, C_n]$ and it is inconsistent then resolution will arrive at the empty clause \square in a finite number of steps.
- Therefore, a valid theorem (or a question that has an answer) is guaranteed to be provable by refutation. To prove “p” given $K_0 = [C_0, C_1, \ldots, C_n]$:
 1. Negate it ($\neg p$).
 2. Construct $K = [\neg p, C_0, C_1, \ldots, C_n]$.
 3. Apply resolution steps repeatedly to K.
- Furthermore, we can obtain answers by composing the substitutions along a path that leads to \square (very important for realizing Greene’s dream!).
- It is important to use a good method in applying the resolution steps – i.e. in building the resolution tree (or proof tree).
- Again, the main issue is to reduce the branching factor.
Proof Tree

• Given a set of clauses $K = \{C_0, C_1, \cdots, C_n\}$ the proof tree of K is a tree s.t.:
 ◦ the root is C_0
 ◦ the branch from the root starts with the nodes labeled with C_0, C_1, \cdots, C_n
 ◦ the descendent nodes of C_n are labeled by clauses obtained from the parent clauses using resolution
 ◦ a derivation in K is a branch of the proof tree of K

• The derivation $C_0C_1\cdots C_nF_0\cdots F_m$ is denoted as $K, F_0\cdots F_m$
Proof Tree (Contd.)

- Example: part of the proof tree for K, with:

$$K = [p, \neg p \vee q, \neg q]$$

- $p \equiv C_0$
- $\neg p \vee q \equiv C_1$
- $\neg q \equiv C_2$

- $R(C_0, C_1) \equiv q$
- $\neg p \equiv R(C_1, C_2)$

Diagram representation of the proof tree:

- $p \equiv C_0$
- $\neg p \equiv R(C_1, C_2)$
- $\neg q \equiv C_2$
- $R(C_0, C_1) \equiv q$

[Diagram showing the proof tree with nodes and edges labeled accordingly]
Characteristics of the Proof Tree

• It can be infinite:

\[K = [p(e), \neg p(X) \lor p(f(X))] \]

\[\begin{align*}
 p(e) & \quad \equiv \quad C0 \\
 \neg p(X) \lor p(f(X)) & \quad \equiv \quad C1 \\
 p(f(e)) & \\
 p(f(f(e))) & \Theta = \{ X/e \} \\
 \ldots & \Theta = \{ X/f(e) \}
\end{align*} \]

• Even if it is finite, it can be too large to be explored efficiently

• Aim: determine some criteria to limit the number of derivations and the way in which the tree is explored \(\Rightarrow \) strategy

• Any strategy based on this tree is correct: if \(\Box \) appears in a subtree of the proof tree of \(K \), then \(\Box \) can be derived from \(K \) and therefore \(K \) is unsatisfiable
General Strategies

- **Depth-first with backtracking:** First descendant to the left; if failure or □ then backtrack
• **Breadth first**: all sons of all sibling nodes from left to right
• **Iterative deepening**
 ◦ Advance depth-first for a time.
 ◦ After a certain depth, switch to another branch as in breadth-first.

• **Completeness issues / possible types of branches:**
 ◦ Success (always finite)
 ◦ Finite failure
 ◦ Infinite failure (provably infinite branches)
 ◦ Non-provably infinite branches
Linear Strategies

- Those which only explore linear derivations
- A derivation $K, F_0 \cdots F_m$ is linear if
 - F_0 is obtained by resolution or replacement using C_0
 - $F_i, i < 0$ is obtained by resolution or replacement using F_{i-1}
- Examples:

```
\begin{align*}
  p & \equiv C0 \\
  \neg p \lor q & \equiv C1 \\
  \neg q & \equiv C2 \\
  q & \equiv F0 \\
\end{align*}
```

```
\begin{align*}
  \neg p \lor q & \equiv C0 \\
  p & \equiv C1 \\
  \neg q & \equiv C2 \\
  \neg p & \quad q \\
\end{align*}
```
1 If □ can be derived from K by using resolution with variables, it can also be derived by linear resolution.

2 Let K be $K' \cup \{C_0\}$ where K' is a satisfiable set of clauses, i.e. □ cannot be derived from K' by using resolution with variables. If □ can be derived from K by using resolution with variables it can also be derived by linear resolution with root C_0.

- From (1), if the strategy is breadth first, it is complete.
- From (2), if we want to prove that B is derived form K' then we can apply linear resolution to $K = K' \cup \{\neg B\}$.
- Depth first with backtracking is not complete:

\[
K = \{ p(e), \neg p(X) \lor p(f(X)), \neg p(X) \} \\
p(e) \equiv C_0 \\
\neg p(X) \lor p(f(X)) \equiv C_1 \\
\neg p(X) \equiv C_2 \\
F_0 \equiv p(f(e)) \\
F_1 \equiv p(f(f(e))) \\
\square
\]
Input Strategies

- Those which only explore input derivations
- A derivation $K, F_0 \cdots F_m$ is input if
 - F_0 is obtained by resolution or replacement using C_0
 - $F_i, i < 0$ is obtained by resolution or replacement using at least a clause in K

Example:

$K = [\neg p \lor q, p \lor \neg r, r, q \lor \neg s, s \lor q]$

\[
\begin{align*}
\neg p \lor q & \quad \equiv \quad C_0 \\
p \lor \neg r & \quad \equiv \quad C_1 \\
\neg r & \quad \equiv \quad C_2 \\
q \lor \neg s & \quad \equiv \quad C_3 \\
s \lor q & \quad \equiv \quad C_4
\end{align*}
\]

- $\neg q \lor \neg r \quad \equiv \quad C_1 \quad (\& C_0)$

Input + Linear
Input Strategies

• In an input derivation, if F_{i-1} does not appear in any derivation of a successor clause, it can be eliminated from the derivation without changing the result.

• If F_{i-1} appears in the derivation of F_j, $j > 1$, F_{i-1} can be allocated in position $j - 1$.

• As a result, we can limit ourselves to linear input derivations without losing any input derivable clause.

• Let K be $K' \cup \{ C_0 \}$ where \square is derived by using resolution with variables, C_0 is a negative Horn clause and all clauses in K' are positive Horn clauses. There is an input derivation with root C_0 finishing in \square and in which the replacement rule is not used (Hernschen 1974).

• A Horn clause is a clause in which at most one literal is positive:
 ◦ it is positive if precisely one literal is positive
 ◦ it is negative if all literals are negatives

• As a result, in those conditions, a breadth first input strategy is complete, and a depth first input strategy with backtracking is complete if the tree is finite.
Ordered Strategies

• We consider a new formal system in which:
 1. clauses are ordered sets
 2. ordered resolution of two clauses
 \[A = p_1 \lor \cdots \lor p_n \text{ and } B = q_1 \lor \cdots \lor q_m \]
 where \(p_1 \) is a positive literal and \(q_1 \) is a negative literal is possible iff \(\neg p_1 \) and \(\sigma(q_1) \) are unifiable (\(\sigma \) is a renaming, s.t. \(p_1 \) and \(\sigma(q_1) \) have no variables in common)
 3. the resolvent of \(A \) and \(B \) is \(\theta(p_2 \lor \cdots \lor p_n \lor \sigma(q_2 \lor \cdots \lor q_m)) \) where \(\theta \) is an m.g.u of \(\neg p_1 \) and \(\sigma(q_1) \)

• Let \(K = K' \cup \{C_0\} \) be a set of clauses s.t. \(\Box \) is derived by using resolution with variables, \(C_0 \) is a negative Horn clause and all clauses in \(K' \) are positive Horn clauses with the positive literal in the first place. There is a sorted input derivation with root \(C_0 \) arriving at \(\Box \).

• In this context a sorted linear input with:
 ◦ breadth first: is complete
 ◦ depth first with backtracking: is complete if the tree is finite