Computational Logic

Automated Deduction Fundamentals




Elements of First-Order Predicate Logic

First Order Language:
e An alphabet consists of the following classes of symbols:

variables denoted by X, Y, Z, Boo, ..., (infinite)
constants denoted by 1, a, boo, john, ...,
functors denoted by f, g, +, —, ..,

. predicate symbols denoted by p, ¢, dog, ...,
connectives, which are: — (negation), Vv (disjunction), A (conjunction), —
(implication) and « (equivalence),

6. quantifiers, which are: 3 (there exists) and V (for all),

7. parentheses, which are: ( and ) and the comma, that is: “,".

I

e Each functor and predicate symbol has a fixed arity, they are often represented in
Functor /Arity form, e.g. /3.

e A constant can be seen as a functor of arity 0.

e Propositions are represented by a predicate symbol of arity 0.




Important: Notation Convention Used

(A bit different from standard notational conventions in logic, but good for
compatibility with LP systems)

e Variables: start with a capital letter ora “.” (X, Y, _a, _1)

e Atoms, functors, predicate symbols: start with a lower case letter or are enclosed
in"’(f,g,a,1,x,y,z,’X,’_1)




Terms and Atoms

We define by induction two classes of strings of symbols over a given alphabet.
e The class of terms:

o avariable is a term,
& a constant is a term,
o if f is an n-ary functor and ¢, ..., t,, are terms then f(t,...,t,) is a term.

e The class of atoms (different from LP!):

© a proposition is an atom,
o if pis an n-ary pred. symbol and ¢, ..., t,, are terms then p(¢4, ..., t,) is an atom,
o true and false are atoms.

e The class of Well Formed Formulas (WFFs):

©~ an atom is a WFF,
o if F and G are WFFs then so are —F, (F'V G),(F ANG),(F — G) and (F < G),
o if F'is a WFF and X is a variable then 3X F and VX F are WFF.

e Literal: positive or negative (non-negated or negated) atom.




Examples

Examples of Terms
e Given:

o constants: a, b, ¢, 1, spot, john...
o functors: /1, g/3, h/2, +/3...
o variables: X, L, Y...

e Correct: spot, f(john), (X), +(1,2,3), +(X,Y,L), f(f(spot)), h(f(h(1,2)),L)
e Incorrect: spot(X), +(1,2), g, f(f(h))

Examples of Literals
e Given the elements above and:
o predicate symbols: dog/1, p/2, g/0, r/0, barks/1...
e Correct: g, r, dog(spot), p(X,f(john))...
e Incorrect: q(X), barks(f), dog(barks(X))




Examples (Contd.)

Examples of WFF's
e Given the elements above

e Correct: q, g — r, r+ q, dog(X) «+ barks(X), dog(X) , p(X,Y), 3 X (dog(X) A
barks(X) A — q), 3 Y (dog(Y) — bark(Y))

e Incorrect: gV, dp




More about WFFs

e Allow us to represent knowledge and reason about it

o Marcus was a man man(marcus)
< Marcus was a pompeian pompeian(marcus)
o All pompeians were romans vV X pompeian(X) — roman(X)
©» Caesar was a ruler ruler(caesar)

o All romans were loyal to Caesar or they hated him
VX roman(X) — loyalto(X,caesar) \V hate(X,caesar)

o Everyone is loyal to someone vV X 3 Y loyalto(X,Y)

e We can now reason about this knowledge using standard deductive mechanisms.

e But there is in principle no guarantee that we will prove a given theorem.




Towards Efficient Automated Deduction

e Automated deduction is search.

e Complexity of search: directly dependent on branching factor at nodes
(exponentially!).

e It is vital to cut down the branching factor:

o Ganonical representation of nodes (allows identifying identical nodes).
o As few inference rules as possible.




Towards Efficient Automated Deduction (Contd.)

Clausal Form

e The complete set of logical operators (+, A, Vv, —,...) is redundant.
e A minimal (canonical) form would be interesting.

e It would be interesting to separate the quantifiers from the rest of the formula so
that they did not need to be considered.

e It would also be nice if the formula were flat (i.e. no parenthesis).
e Conjunctive normal form has these properties [Davis 1960].

Deduction Mechanism

e A good example:
Resolution — only two inference rules (Resolution rule and Replacement rule).




Classical Clausal Form: Conjunctive Normal Form

e General formulas are converted to:

o Set of Clauses.

o Clauses are in a logical conjunction.

o A clause is a disjunction of the form. literal, V literaly V ... V literal,
o The literal; are negated or non-negated atoms.

o All variables are implicitly universally quantified: i.e. if X, ..., X, are the
variables that appear in a clause it represents the formula:
VXi,..., X, lteraly Vliteraly V ...V literal,

e Any formula can be converted to clausal form automatically by:
1. Gonverting to Prenex form.
2. Converting to conjunctive normal form (conjunction of disjunctions).
3. Converting to Skolem form (eliminating existential quantifiers).
4. Eliminating universal quantifiers.
5. Separating conjunctions into clauses.

e The unsatisfiability of a system is preserved.

10



Substitutions

e A substitution is a finite mapping from variables to terms, written as
0 = {Xl/tl, e Xn/tn} where

o the variables X, ..., X,, are different,
ofori=1,....,n X;— =t;.
e A pair X;/t; is called a binding.
e domain(0) = { X1, .., X,,} and range(0) = vars({t1, ..., t,}).
o If range(#) = () then 6 is called ground.
e If 0 is a bijective mapping from variables to variables then 6 is called a renaming.
e Examples:
o0 ={X/f(A),Y/X, Z/h(b,Y), W/a}
o by ={X/a,Y/a,Z/h(b,c), W/f(d)} (ground)
o 03={X/AY/B,Z/C,W/D} (renaming)

11




Substitutions (Contd.)

e Substitutions operate on expressions, i.e. a term, a sequence of literals or a
clause, denoted by FE.

e The application of  to £ (denoted E0) is obtained by simultaneously replacing
each occurrence in E of X, by t;, X;/t; € 6.

e The resulting expression E6 is called an instance of E.
e If 0 is a renaming then E¢ is called a variant of E.

e Example:
th = {X/f(A>a Y/X? Z/h(bv Y)) W/a}
p(X, Yv X) th = p(f(A),X, f(A>>

12



Composition of Substitutions

e Given 0 = {X /t1,..., X,,/t,} and n = {Y1/s1, ..., Yo /s } their composition 0n is
defined by removing from the set

(X001 ooy X f 0, Y2 51, s Y 50}

those pairs X, /t;n for which X; = ¢,n, as well as those pairs Y;/s; for which
Y; € {Xl, ,Xn}

e Example: if 0 = {X/3,Y/f(X,1)} and n ={X/4} then On ={X/3,Y/f(4,1)}.
e For all substitutions 6,7 and v and an expression F
i) (E6)n= E(6n)
ii) (6n)y = 0(nv).
e  is more general than n if for some v we have n = 0.
e Example: § = {X/f(Y)} more general than n = { X/ f(h(G))}

13




Unifiers

o If A0 = B6, then

o 0 is called a unifier of A and B
o A and B are unifiable

e A unifier 8 of A and B is called a most general unifier (mgu) if it is more general
than any other unifier of A and B.

e If two atoms are unifiable then they have a most general unifier.
e fis idempotent if 06 = 6.

e A unifier  of A and B is relevant if all variables appearing either in domain(0) or
in range(0), also appear in A or B.

e If two atoms are unifiable then they have an mgu which is idempotent and
relevant.

e An mgu is unique up to renaming.

14




Unification Algorithm

e Non-deterministically choose from the set of equations an equation of a form
below and perform the associated action.

1. f(s1,...,80) = flt1,....t,) — replace by sy =t1,...,s, = t,,

2. f(S1,.s8n) = g(t1, ..., t,,) Where f £ g — halt with failure

3. X = X — delete the equation

4. t = X where t is not a variable — replace by the equation X =t

5. X =twhere X # t and X has another occurrence in the set of equations —
5.1if X appears in t then halt with failure
5.2 otherwise apply { X/t} to every other equation

e Consider the set of equations {f(X) = f(f(Z)),g(a,Y) = g(a, X)}:
o (1) produces {X = f(Z),g(a,Y) = g(a, X)}
othen (1) Yields {X = f(Z),a =a,Y = X}
o (8) produces {X = f(Z),Y = X}
o now only (5) can be applied, giving {X = f(Z),Y = f(Z)}
o No step can be applied, the algorithm successfully terminates.

15



Unification Algorithm revisited

e Let A and B be two formulas:

1.0=c¢
2. while A6 # B@:
2.1 find leftmost symbol in A¢ s.t. the corresponding symbol in Bé is different

2.2lett, and tp be the terms in A6 and B# starting with those symbols

(a) if neither t4 nor ¢ are variables or one is a variable occurring in the
other — halt with failure

(b) otherwise, let ¢t 4 be a variable — the new 6 is the result of 0{t,/tp}
3. end with 6 being an m.g.u. of A and B

16



Unification Algorithm revisited (Contd.)

o Example: A = p(X, X) B = p(f(A), f(B))

0 Ab Bo Element

€ p(X, X) p(f(A), f(B)) {X/f(A)}
{X/f(A)} p(f(A), f(A)) p(f(A), f(B)) {A/B}
{X/f(B),A/B} p(f(B), f(B)) p(f(B), f(B))

e Example: A=p(X, f(Y)) B=p(Z,X)

0 Ab Bo Element
€ p(X, f(Y)) p(Z,X) {X/Z}
{X/Z} p(Z, f(Y)) p(Z, Z) {Z/f(Y)}

fY)
X/F(Y), Z/f(Y)} p(f(Y), fY))  p(f(Y), f(Y))

17




Resolution with Variables

e It is a formal system with:

o A first order language with the following formulas:

* Clauses: without repetition, and without an order among their literals.
* The empty clause O.

o An empty set of axioms.
o Two inference rules: resolution and replacement.

18



Resolution with Variables (Contd.)

e Resolution:
r: AV FV---VE,
T9. _IB\/Gl\/"'\/Gm
(Fi1V---VE)ovVGLV---VGp)o
where

o A and B are unifiable with substitution ¢

ocoisarenamings.t. (AVF,V---V F,)cand =BV G,V ---V G, have no
variables in common

o 6 is the m.g.u. of Ac and B
The resulting clause is called the resolvent of r; and rs.
e Replacement: AVBV FiV---VFE,=(AVF,V---VF,)0 where

o A and B are unifiable atoms
o #isthe m.g.u. of Aand B

19



Basic Properties

e Resolution is correct —i.e. all conclusions obtained using it are valid.
e There is no guarantee of directly deriving a given theorem.

e However, resolution (under certain assumptions) is refutation complete:
if we have a set of clauses K = [C), (1, ..., C,] and it is inconsistent then
resolution will arrive at the empty clause O in a finite number of steps.

e Therefore, a valid theorem (or a question that has an answer) is guaranteed to be
provable by refutation. To prove “p” given Ky = [Cy, C1, ..., Cyl:
1. Negate it (—p).
2. Construct K = [-p, Cy, C1, ..., Cyl.
3. Apply resolution steps repeatedly to K.

e Furthermore, we can obtain answers by composing the substitutions along a path
that leads to O (very important for realizing Green’s dream!).

e It is important to use a good method in applying the resolution steps —i.e. in
building the resolution tree (or proof tree).

e Again, the main issue is to reduce the branching factor.

20




Proof Tree

e Given a set of clauses K = {Cy,C1,---, C,} the proof tree of K is a tree s.t. :

o the root is C
< the branch from the root starts with the nodes labeled with Cy, C5,---, C,

o the descendent nodes of (), are labeled by clauses obtained from the parent
clauses using resolution

¢ a derivation in K is a branch of the proof tree of K
e The derivation C,C,---C,,Fy--- F,, isdenoted as K, Fy--- I,

21




Proof Tree (Contd.)

e Example: part of the proof tree for K, with:

K=[p,pvqg,ql]

R(CO,C1) = q - p = R(C1,C2)
(C2) (C0)

] - p = R(C1,C2) R(CO,C1)
(CO) (C2)

[] []

22



Characteristics of the Proof Tree

e |t can be infinite: K = [ p(e).~p(X) v p(E(X)) |
p(e) = CO
- p(X) v p(f(X)) = Cl

p(f(e)) o= {X/e}

p(f(fe)))  ©={X/f(e)

e Even if it is finite, it can be too large to be explored efficiently

e Aim: determine some criteria to limit the number of derivations and the way in
which the tree is explored = strategy

e Any strategy based on this tree is correct: if O appears in a subtree of the proof
tree of K, then O can be derived from K and therefore K is unsatisfiable

23




General Strategies

e Depth-first with backtracking: First descendant to the left; if failure or O then
backtrack

2 7
3 6 8 9
/ \ Fail [ ] [ ]

Fail Fail

24



General Strategies (Contd.)

e Breadth first: all sons of all sibling nodes from left to right

D\]

25



General Strategies (Contd.) (Contd.)

e Iterative deepening

o Advance depth-first for a time.
o After a certain depth, switch to another branch as in breadth-first.

e Completeness issues / possible types of branches:

o Success (always finite)

o Finite failure

o Infinite failure (provably infinite branches)
o Non-provably infinite branches

26



Linear Strategies

e Those which only explore linear derivations
e A derivation K, Fj- - - F,, is linear if

o Fj is obtained by resolution or replacement using C
o Fj;,1 > 0 is obtained by resolution or replacement using F;_;

e Examples: p = CO “pvq = CO
-q=C2 ﬁ/:&
d = Fo ﬁf" ‘q
[] [] []




Characteristics of these Strategies

1 If O can be derived from K by using resolution with variables, it can also be
derived by linear resolution

2 Let K be KU {C\} where K is a satisfiable set of clauses, i.e. O cannot be
derived from K* by using resolution with variables. If O can be derived from K by
using resolution with variables it can also be derived by linear resolution with root
Co.

e From (1), if the strategy is breadth first, it is complete.

e From (2), if we want to prove that B is derived form K* then we can apply linear
resolution to K = K' U {—-B}. K = [ p(e).~p(X) v p(E(X)). ~p(X)]

pe) = CO

e Depth first with backtracking is not complete:

7 pX) vp(f(X)) =Cl

-pX) = C2

Fo=ple) ~_ U

‘ O

FI=p(@»._
O

28




Input Strategies

e Those which only explore input derivations
e A derivation K, Fy - - - F},, is input if

o Fy is obtained by resolution or
replacement using Cj

o F;,i > 0 is obtained by resolution or
replacement using at least a clause in K

e Example:

=[-pv-q,pVv-r,1,qV-8,svq]

-pv-q = CO
pv-r = ClI
I =C2
qv-s = C3
y C4
L qvar Cl(&CO0)
| C2 Input + Linear
TI%C3
S
\ -4
| —CO0
| —Cl

£%

29



Input Strategies

e In an input derivation, if £;_; does not appear in any derivation of a successor
clause, it can be eliminated from the derivation without changing the result

e If ;_, appears in the derivation of F;, 5 > 1, F;_; can be allocated in position j — 1

e As a result, we can limit ourselves to linear input derivations without losing any
input derivable clause

e Let K be K*U{C,} where O is derived by using resolution with variables, C; is a
negative Horn clause and all clauses in K* are positive Horn clauses. There is an
input derivation with root Cj finishing in O and in which the replacement rule is not
used (Hernschen 1974)

e A Horn clause is a clause in which at most one literal is positive:

o it is positive if precisely one literal is positive
o it is negative if all literals are negatives

e As a result, in those conditions, a breadth first input strategy is complete, and a
depth first input strategy with backtracking is complete if the tree is finite.

30




Ordered Strategies

e We consider a new formal system in which:
1. clauses are ordered sets
2. ordered resolution of two clauses
A=pV---Vp,and B=qV---Vqp,
where p; is a positive literal and ¢; is a negative literal is possible iff —p; and
o(q1) are unifiable (o is a renaming, s.t. p; and o(q;) have no variables in
common)

3. the resolventof Aand BisO(p,V---Vp,Vao(gpV---Vqy,) where dis an
m.g.u of —p; and o(q1)

e Let K = K*U{C,} be a set of clauses s.t. O is derived by using resolution with
variables, C is a negative Horn clause and all clauses in K are positive Horn
clauses with the positive literal in the first place. There is a sorted input derivation
with root Cj arriving at O.

e In this context a sorted linear input with:

o breadth first: is complete
< depth first with backtracking: is complete if the tree is finite

31




