Computational Logic

Efficiency Issues in Prolog
Efficiency

• In general, efficiency \equiv savings:
 ◦ Not only time
 (number of unifications, reduction steps, LIPS, etc.)
 ◦ Also memory

• General advice:
 ◦ Use the best algorithms
 ◦ Use the appropriate data structures

• Each programming paradigm has its specific techniques, try not to adopt them blindly.

Note: The timings in the following examples were taken a long time ago, so computers and Prolog are much faster now, but the comparisons are always valid!
Data structures

- D.H.D. Warren: “Prolog means *easy* pointers”
- Do not make *excessive* use of lists:
 - In general, only when the number of elements is unknown
 - It is convenient to keep them ordered sometimes (e.g., set equality)
 - Otherwise, use structures (functors):
 - Less memory
 - Direct access to each argument (*arg/3*) (like arrays!)

```
[a, b, c]  \rightarrow  LST a  \rightarrow  LST b  \rightarrow  LST c  \rightarrow  []
```

```
f(a, b, c)  \rightarrow  STR f/3  \rightarrow  a  \rightarrow  b  \rightarrow  c
```
Data structures (Contd.)

- Use advanced data structures:
 - Sorted trees
 - Incomplete structures
 - Nested structures
 - ...
Let Unification Do the Work

- Unification is very powerful. Use it!
- Example: Swapping two elements of a structure:
 \[f(X, Y) \sim f(Y, X) \]
 - Slow, difficult to understand, long version (exaggerated):

 \[
 \text{swap}(S1, S2):- \\
 \quad \text{functor}(S1, f, 2), \quad \text{functor}(S2, f, 2), \\
 \quad \text{arg}(1, S1, X1), \quad \text{arg}(2, S1, Y1), \\
 \quad \text{arg}(1, S2, X2), \quad \text{arg}(2, S2, Y2), \\
 \quad X1 = Y2, \quad X2 = Y1.
 \]
 - Fast, intuitive, shorter version:

 \[
 \text{swap}(f(X, Y), f(Y, X)).
 \]
Example: check that a list has exactly three elements.

- Weak answer:

  ```prolog
  three_elements(L):-
    length(L, N), N = 3. 
  ```

 (always traverses the list and computes its length)

- Better:

  ```prolog
  three_elements([_,_,_]).
  ```
• Avoid using it for simulating global variables

Example (real executions):

\[
\text{bad_count}(N) :- \\
\hspace{1cm} \text{assert}(\text{counting}(N)), \\
\hspace{1cm} \text{even_worse}. \\
\text{even_worse} :- \\
\hspace{1cm} \text{retract}(\text{counting}(0)). \\
\text{even_worse} :- \\
\hspace{1cm} \text{retract}(\text{counting}(N)), \\
\hspace{1cm} N > 0, \ N1 \ is \ N - 1, \\
\hspace{1cm} \text{assert}(\text{counting}(N1)), \\
\hspace{1cm} \text{even_worse}. \\
\]

\[
\text{good_count}(0). \\
\text{good_count}(N) :- \\
\hspace{1cm} N > 0, \ N1 \ is \ N - 1, \\
\hspace{1cm} \text{good_count}(N1). \\
\]

\[
\text{bad_count}(10000) : 165,000 \ \text{bytes}, 7.2 \ \text{sec}. \\
\text{good_count}(10000) : 1,500 \ \text{bytes}, 0.01 \ \text{sec}. \\
\]
• Asserting results which have been found true (lemmas).

Example (real executions):

\[
\begin{align*}
\text{fib}(0, 0). \\
\text{fib}(1, 1). \\
\text{fib}(N, F) :&- \\
& \quad N > 1, \\
& \quad N1 \text{ is } N - 1, \\
& \quad N2 \text{ is } N1 - 1, \\
& \quad \text{fib}(N1, F1), \\
& \quad \text{fib}(N2, F2), \\
& \quad F \text{ is } F1 + F2.
\end{align*}
\]

\[
\begin{align*}
\text{lfib}(N, F) :&- \quad \text{lemma_fib}(N, F), \ !. \\
\text{lfib}(N, F) :&- \\
& \quad N > 1, \\
& \quad N1 \text{ is } N - 1, \\
& \quad N2 \text{ is } N1 - 1, \\
& \quad \text{lfib}(N1, F1), \\
& \quad \text{lfib}(N2, F2), \\
& \quad F \text{ is } F1 + F2, \\
& \quad \text{assert}(\text{lemma_fib}(N, F)).
\end{align*}
\]

\[
\begin{align*}
\text{fib}(24, F) :& 4,800,000 \text{ bytes, } 0.72 \text{ sec.} \\
\text{lfib}(24, F) :& 3,900 \text{ bytes, } 0.02 \text{ sec. (and zero if called again)}
\end{align*}
\]

Warning: only useful when intermediate results are reused.
Determinism (I)

- Many problems are deterministic.
- Non-determinism is
 - Useful (automatic search).
 - But expensive.
- Suggestions:
 - Do not keep alternatives if they are not needed.
    ```prolog
    member_check([X|_],X) :- !.
    member_check([_|Xs],X) :- member_check(Xs,X).
    ```
 - Program deterministic problems in a deterministic way:
 Simplistic:
    ```prolog
    decomp(N, S1, S2):-
    between(0, N, S1),
    between(0, N, S2),
    N =:= S1 + S2.
    ```
 Better:
    ```prolog
    decomp(N, S1, S2):-
    between(0, N, S1),
    S2 is N - S1.
    ```
Determinism (II)

- Checking that two (ground) lists contain the same elements

- Naive:

```prolog
same_elements(L1, L2):-
  \+ (member(X, L1), \+ member(X, L2)),
  \+ (member(X, L2), \+ member(X, L1)).
```

- 1000 elements: 7.1 secs.

- Sort and unify:

```prolog
same_elements(L1, L2):-
  sort(L1, Sorted),
  sort(L2, Sorted).
```

(sorting can be done in $O(N \log N)$)

- 1000 elements: 0 secs.
Search order

- Golden rule: fail as early as possible (prunes branches)
- How: reorder goals in the body (perhaps even dynamically)
- Example: generate and test

```prolog
generate_z(Z) :-
generate_x(X),
generate_y(X, Y),
test_x(X),
test_y(Y),
combine(X, Y, Z).
```

- Perform tests as soon as possible:

```prolog
generate_z(Z) :-
generate_x(X),
test_x(X),
generate_y(X, Y),
test_y(Y),
combine(X, Y, Z).
```

- Even better: test as deeply as possible within the generator

```prolog
generate_z(Z) :-
generate_x_test(X),
generate_y_test(X, Y),
test_y(Y),
combine(X, Y, Z).
```

→ c.f. Constraint Logic Programming!
Indexing

- Indexing on the first argument:
 - At compile time an indexing table is built for each predicate based on the principal functor of the first argument of the clause heads
 - At run-time only the clauses with a compatible functor in the first argument are considered

- Result: appropriate clauses are reached faster and choice-points are not created if there are no “eligible” clauses left

- Improves the ability to detect determinacy, important for preserving working storage
Example: value greater than all elements in list

```
bad_greater(_X, []).  
bad_greater(X, [Y | Ys]) :- X > Y, bad_greater(X, Ys).
```

600,000 elements: 2.3 sec.

```
good_greater([], _X).  
good_greater([Y | Ys], X) :- X > Y, good_greater(Ys, X).
```

600,000 elements: 0.67 sec

- Can be used with structures other than lists
- Available in most Prolog systems
Iteration vs. Recursion

- When the recursive call is the last subgoal in the clause and there are no alternatives left in the execution of the predicate, we have an **iteration**
- Much more efficient
- Example:

```
sum([], 0).
sum([N|Ns], Sum):-
    sum(Ns, Inter),
    Sum is Inter + N.
```

```
sum_iter(L, Res):-
    sum(L, 0, Res).
sum([N|Ns], In, Out):-
    Inter is In + N,
    sum(Ns, Inter, Out).
```

```
sum/2 100000 elements: 0.45 sec.
sum_iter/2 100000 elements: 0.12 sec.
```
The basic skeleton is:

\[
\text{<head>:-}
\]
\[
\quad \text{<deterministic computation>}
\]
\[
\quad \text{<recursive_call>}.
\]

- Known as *tail recursion*
- Particular case of *last call optimization*
- It also consumes less memory
Cuts

- Cuts eliminate choice-points, so they “create” determinism

- Example:

 a :-
 test_1, !, ...
 ...
 a :-
 test_2, !, ...
 ...
 ...
 a :-
 test_n, !, ...

- If $test_1 \ldots test_n$ mutually exclusive, declarative meaning of program not affected.

- Otherwise, be careful: Declarativeness, Readability.
Delaying Work

- Do not perform useless operations

- In general:
 - Do not do anything until necessary
 - Put the tests as soon as possible

- Example:

  ```prolog
  x2x3([], []).
  x2x3([X|Xs], [NX|NXs]) :-
      NX is -X * 2,
      X < 0,
      x2x3(Xs, NXs).
  x2x3([X|Xs], [NX|NXs]) :-
      NX is X * 3,
      X >= 0,
      x2x3(Xs, NXs).
  ```

- Delaying the arithmetic operations

  ```prolog
  x2x3_1([], []).
  x2x3_1([X|Xs], [NX|NXs]) :-
      X < 0,
      NX is -X * 2,
      x2x3_1(Xs, NXs).
  x2x3_1([X|Xs], [NX|NXs]) :-
      X >= 0,
      NX is X * 3,
      x2x3_1(Xs, NXs).
  ```

100,000 elements: 1.05 sec.

100,000 elements: 0.9 sec.
• Delaying head unification + determinism:

```
x2x3_2([], []).
x2x3_2([X|Xs], Out):-
    X < 0, !,
    NX is -X * 2,
    Out = [NX|NXs],
    x2x3_2(Xs, NXs).
x2x3_2([X|Xs], Out):-
    X >= 0, !,
    NX is X * 3,
    Out = [NX|NXs],
    x2x3_2(Xs, NXs).
```

100000 elements: 0.68 sec. (and half the memory consumption)

• Some (personal) advice: use these techniques only when performance is essential. They might make programs:

 ◦ Harder to understand
 ◦ Harder to debug
 ◦ Harder to maintain
Conclusions

- Avoid inheriting programming styles from other languages
- Program in a declarative way:
 - Improves readability
 - Allows compiler optimizations
- Avoid using the dynamic database when possible
- Look for deterministic computations when programming deterministic problems
- Put tests as soon as possible in the program (early pruning of the tree)
- Delay computations until needed

- Final thought: learning Prolog implementation techniques (e.g., the Warren Abstract Machine) is very instructive and useful. See the available slides and book on the topic.