Computational Logic
A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with uppercase character (or “_”), may include “_” and digits:

 Examples:
 \(X, \text{Im4u}, \text{A_little_garden}, _, _x, _22 \)

- **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples:
 \(a, \text{dog}, \text{a_big_cat}, 23, \text{’Hungry man’}, [] \)

- **Structures**: a **functor** (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example:
 \(\text{date(} \text{monday, Month, 1994) } \)

 Arguments can in turn be variables, constants and structures.

 ◊ **Arity**: is the number of arguments of a structure. Functors are represented as \(\text{name/arity} \). A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the **data structures** of a logic program.
Syntax: Terms

(using Prolog notation conventions)

- **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as prefix, postfix, or **infix operators** (just syntax!):

<table>
<thead>
<tr>
<th>a + b</th>
<th>is the term</th>
<th>’+’(a,b)</th>
<th>if +/2 declared infix</th>
</tr>
</thead>
<tbody>
<tr>
<td>- b</td>
<td>is the term</td>
<td>’-’(b)</td>
<td>if -/1 declared prefix</td>
</tr>
<tr>
<td>a < b</td>
<td>is the term</td>
<td>’<’(a,b)</td>
<td>if </2 declared infix</td>
</tr>
<tr>
<td>john father mary</td>
<td>is the term</td>
<td>father(john,mary)</td>
<td>if father/2 declared infix</td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule**: an expression of the form:

\[
p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_{n_1}^1), \\
\ldots \\
p_m(t_1^m, t_2^m, \ldots, t_{n_m}^m).
\]

- \(p_0(...) \) to \(p_m(...) \) are **syntactically** like terms.
- \(p_0(...) \) is called the **head** of the rule.
- The \(p_i \) to the right of the arrow are called **literals** and form the **body** of the rule. They are also called **procedure calls**.
- Usually, \(\leftarrow \) is called the **neck** of the rule.

- **Fact**: an expression of the form \(p(t_1, t_2, \ldots, t_n) \) (i.e., a rule with empty body).

Example:

| meal(soup, beef, coffee). | % ← A fact. |
| meal(First, Second, Third) :- appetizer(First), main_dish(Second), dessert(Third). | % ← A rule. |

- Rules and facts are both called **clauses**.
Syntax: Predicates, Programs, and Queries

• **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pet(spot)</code></td>
<td><code>animal(spot)</code></td>
</tr>
<tr>
<td><code>pet(X) :- animal(X), barks(X)</code></td>
<td><code>animal(barry)</code></td>
</tr>
<tr>
<td><code>pet(X) :- animal(X), meows(X)</code></td>
<td><code>animal(hobbes)</code></td>
</tr>
</tbody>
</table>

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

• **Logic Program**: a set of predicates.

• **Query**: an expression of the form:

 \[
 \leftarrow p_1(t_1^1, \ldots, t_{n_1}^1), \ldots, p_n(t_1^n, \ldots, t_{n_m}^n).
 \]

 (i.e., a clause without a head).

 A query represents a question to the program.

 Example: `pet(X)`

 In most systems written as: `?- pet(X)`.
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot).` can be read as “spot is an animal”.

- **Rules**:
 - Commas in rule bodies represent conjunction, i.e.,
 \[p \leftarrow p_1, \ldots, p_m. \text{ represents } p \leftarrow p_1 \land \cdots \land p_m. \]
 - “←” represents as usual logical implication.

 Thus, a rule \[p \leftarrow p_1, \ldots, p_m. \text{ means “if } p_1 \text{ and } \cdots \text{ and } p_m \text{ are true, then } p \text{ is true”} \]

 Example: the rule `pet(X):- animal(X), barks(X).` can be read as “X is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]
 \[p \leftarrow q_1, \ldots, q_m \]

 provide different *alternatives* (for \(p \)).

Example: the rules

```prolog
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
```

express two ways for \(X \) to be a pet.

- **Note** (*variable scope*): the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used—as with vars. local to a procedure in conventional languages).

- **A query** represents a *question to the program*.

Examples:

\`
?- pet(spot).
?- pet(X).
\`

asks whether \(\text{spot} \) is a pet. asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- Example of a **logic program**:

  ```
  pet(X) :- animal(X), barks(X).
  pet(X) :- animal(X), meows(X).
  animal(spot).    barks(spot).
  animal(barry).   meows(barry).
  animal(hobbes).  roars(hobbes).
  ```

- **Execution**: given a program and a query, *executing* the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `:- pet(X).` the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 - The **declarative semantics** specifies *what* should be computed (all possible answers).
 - Intuitively, we have two possible answers: `X = spot` and `X = barry`.
 - The **operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
Running Programs in a Logic Programming System

- File `pets.pl` contains (explained later):
  ```prolog
  :- module(_,_,["bf/bfall"]).
  + the pet example code as in previous slides.
  ```

- Interaction with the system query evaluator (the “top level”):
  ```prolog
  ?- Ciao 1.XX ...
  ?- use_module(pets).
  yes
  ?- pet(spot).
  yes
  ?- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
  ?-
  ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

• A logic program is operationally a set of *procedure definitions* (the predicates).

• A query $\leftarrow p$ is an initial *procedure call*.

• A procedure definition with one *clause* $p \leftarrow p_1, \ldots, p_m$. means:
 “to execute a call to p you have to *call* p_1 and \ldots and p_m”

 ◦ In principle, the order in which p_1, \ldots, p_n are called does not matter, but, in practical systems it is fixed.

• If several clauses (definitions) $p \leftarrow p_1, \ldots, p_n$ means:

 $p \leftarrow q_1, \ldots, q_m$

 “to execute a call to p, call $p_1 \wedge \ldots \wedge p_n$, or, alternatively, $q_1 \wedge \ldots \wedge q_n$, or \ldots”

 ◦ Unique to logic programming – it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) \(A\) and \(B\):** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - I.e., find a variable substitution \(\theta\) such that \([A\theta = B\theta]\) (or, if impossible, \(\text{fail}\)).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(\theta)</th>
<th>(A\theta)</th>
<th>(B\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>(\emptyset)</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>{X = a}</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>{X = Y}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(f(X, g(t)))</td>
<td>(f(m(h), g(M)))</td>
<td>{X = m(h), M = t}</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
<tr>
<td>(f(X, g(t)))</td>
<td>(f(m(h), t(M)))</td>
<td>Impossible (1)</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
<tr>
<td>(f(X, X))</td>
<td>(f(Y, l(Y)))</td>
<td>Impossible (2)</td>
<td>(f(m(h), g(t)))</td>
<td>(f(m(h), g(t)))</td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, cyclic terms later.)
Unification

● Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(X, g(T))</td>
<td>f(m(H), g(M))</td>
<td>${X = m(a), H = a, M = b, T = b}$</td>
<td>f(m(a), g(b))</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>${X = m(H), M = f(A), T = f(A)}$</td>
<td>f(m(H), g(f(A)))</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(X, g(T))</td>
<td>f(m(H), g(M))</td>
<td>${X = m(H), T = M}$</td>
<td>f(m(H), g(M))</td>
</tr>
</tbody>
</table>

● Always a unique (modulo variable renaming) most general solution exists (unless unification fails).

● This is the one that we are interested in.

● The unification algorithm finds this solution.
Unification Algorithm

- Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$
2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term S → halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different → halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- Unify: $A = p(X, X)$ and $B = p(f(Z), f(W))$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${ p(X, X) = p(f(Z), f(W)) }$</td>
<td>$p(X, X)$</td>
<td>$p(f(Z), f(W))$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>${ X = f(Z), X = f(W) }$</td>
<td>X</td>
<td>$f(Z)$</td>
</tr>
<tr>
<td>${ X = f(Z) }$</td>
<td>${ f(Z) = f(W) }$</td>
<td>$f(Z)$</td>
<td>$f(W)$</td>
</tr>
<tr>
<td>${ X = f(Z) }$</td>
<td>${ Z = W }$</td>
<td>Z</td>
<td>W</td>
</tr>
<tr>
<td>${ X = f(W), Z = W }$</td>
<td>${ }$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Unify: $A = p(X, f(Y))$ and $B = p(Z, X)$

<table>
<thead>
<tr>
<th>θ</th>
<th>E</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>${ p(X, f(Y)) = p(Z, X) }$</td>
<td>$p(X, f(Y))$</td>
<td>$p(Z, X)$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>${ X = Z, f(Y) = X }$</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = Z }$</td>
<td>${ f(Y) = Z }$</td>
<td>$f(Y)$</td>
<td>Z</td>
</tr>
<tr>
<td>${ X = f(Y), Z = f(Y) }$</td>
<td>${ }$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(Y)) = p(a, g(b)) }</td>
<td>p(X, f(Y))</td>
<td>p(a, g(b))</td>
</tr>
<tr>
<td>{ X = a, f(Y) = g(b) }</td>
<td>X</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>{ X = a }</td>
<td>{ f(Y) = g(b) }</td>
<td>f(Y)</td>
<td>g(b)</td>
</tr>
<tr>
<td>\textit{fail}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(X)) = p(Z, Z) }</td>
<td>p(X, f(X))</td>
<td>p(Z, Z)</td>
</tr>
<tr>
<td>{ X = Z, f(X) = Z }</td>
<td>X</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>{ X = Z }</td>
<td>{ f(Z) = Z }</td>
<td>f(Z)</td>
<td>Z</td>
</tr>
<tr>
<td>\textit{fail}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_μ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be $\{Q\}$
2. While R is nonempty do:

 2.1. Take the leftmost literal A in R

 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failed; explore another branch)

 2.3. Remove A from R, add B_1, \ldots, B_n to R

 2.4. Apply θ to R and Q

3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
A (Schematic) Interpreter for Logic Programs (Contd.)

- Since step [2.2] is left open, a given logic programming system must specify how it deals with this by providing one (or more)

 ◊ **Search rule(s):** “how are clauses/branches selected in [2.2].”

- If the search rule is not specified execution can be nondeterministic, since choosing a different clause (in step [2.2]) could lead to different solutions (finding solutions in a different order).

 Example (two valid executions):

  ```prolog
  ?- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
  ?-
  ?- pet(X).
  X = barry ? ;
  X = spot ? ;
  no
  ?-
  ```

- In fact, there is also some freedom in step [2.1], i.e., a system may also specify:

 ◊ **Computation rule(s):** “how are literals selected in [2.1].”
Running programs

\[C_1: \text{pet}(X) :- \text{animal}(X), \text{barks}(X). \]
\[C_2: \text{pet}(X) :- \text{animal}(X), \text{meows}(X). \]
\[C_3: \text{animal}(\text{spot}). \]
\[C_4: \text{animal}(\text{barry}). \]
\[C_5: \text{animal}(\text{hobbes}). \]
\[C_6: \text{barks}(\text{spot}). \]
\[C_7: \text{meows}(\text{barry}). \]
\[C_8: \text{roars}(\text{hobbes}). \]

\[:- \text{pet}(P). \]

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{pet}(P)</td>
<td>\text{pet}(P)</td>
<td>(C_2) *</td>
<td>({P = X_1})</td>
</tr>
<tr>
<td>\text{pet}(X_1)</td>
<td>\text{animal}(X_1), \text{meows}(X_1)</td>
<td>(C_4) *</td>
<td>({X_1 = \text{barry}})</td>
</tr>
<tr>
<td>\text{pet(\text{barry})}</td>
<td>\text{meows(\text{barry})}</td>
<td>(C_7)</td>
<td>{}</td>
</tr>
<tr>
<td>\text{pet(\text{barry})}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: \(P = \text{barry} \) ?
- If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in \(C_2 \) * or \(C_4 \) *).
Running programs (different strategy)

\[C_1: \text{pet}(X) :- \text{animal}(X), \text{barks}(X). \]
\[C_2: \text{pet}(X) :- \text{animal}(X), \text{meows}(X). \]
\[C_3: \text{animal}(\text{spot}). \]
\[C_4: \text{animal}(\text{barry}). \]
\[C_5: \text{animal}(\text{hobbes}). \]
\[C_6: \text{barks}(\text{spot}). \]
\[C_7: \text{meows}(\text{barry}). \]
\[C_8: \text{roars}(\text{hobbes}). \]

\[:- \text{pet}(P) \] (different strategy)

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>({P = X_1})</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_5^*)</td>
<td>({X_1 = \text{hobbes}})</td>
</tr>
<tr>
<td>pet((\text{hobbes}))</td>
<td>barks((\text{hobbes}))</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in \(C_1^*\) or \(C_5^*\)) to find a solution. We take \(C_3\) instead of \(C_5\):

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>({P = X_1})</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_3^*)</td>
<td>({X_1 = \text{spot}})</td>
</tr>
<tr>
<td>pet((\text{spot}))</td>
<td>barks((\text{spot}))</td>
<td>(C_6)</td>
<td>({})</td>
</tr>
<tr>
<td>pet((\text{spot}))</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a search tree.

Example: query \(\text{:- pet}(X) \) with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query \(\rightarrow \) different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s bf package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.

- Files should start with the following line:
 - To execute in breadth-first mode:
    ```prolog
    :- module(_,_,[ ’bf/bfall’ ]).
    ```
 - To execute in depth-first mode:
    ```prolog
    :- module(_,_,[]).
    ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution

- As mentioned before, unification used to access data and give values to variables. Example: Consider query `- animal(A), named(A,Name).` with:

 \[
 \text{animal(dog(barry))}, \quad \text{named(dog(Name),Name)}.\]

- Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>Clause</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>C_1^*</td>
<td>{ P=X_1 }</td>
</tr>
<tr>
<td>pet(X_1)</td>
<td>animal(X_1), barks(X_1)</td>
<td>C_3^*</td>
<td>{ X_1=spot }</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>C_6</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
“Modes”

- In fact, argument positions are not fixed a priori to be input or output.

Example: Consider query

```
:- pet(spot).  vs.  :- pet(X).
```

or

```
:- plus( s(0), s(s(0)), Z).  % Adds
vs.  :- plus( s(0), Y, s(s(s(0)))).  % Subtracts
```

- Thus, procedures can be used in different **modes**
 s.t. different sets of arguments are input or output in each mode.

- We sometimes use `+` and `-` to refer to, respectively, and argument being an input or an output, e.g.:

```
plus(+X, +Y, -Z)  means we call `plus` with
```

- X instantiated,
- Y instantiated, and
- Z free.
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

\[
\begin{align*}
\text{father_of(john,peter).} \\
\text{father_of(john,mary).} \\
\text{father_of(peter,michael).} \\
\text{mother_of(mary,david).} \\
\end{align*}
\]

\[
\begin{align*}
\text{grandfather_of}(L,M) :&= \text{father_of}(L,N), \\
&\text{father_of}(N,M). \\
\text{grandfather_of}(X,Y) :&= \text{father_of}(X,Z), \\
&\text{mother_of}(Z,Y). \\
\end{align*}
\]

- Given such database, a logic programming system can answer questions (queries) such as:

\[
\begin{align*}
? - \text{father_of}(\text{john}, \text{peter}). &\quad \text{yes} \\
? - \text{father_of}(\text{john}, \text{david}). &\quad \text{no} \\
? - \text{father_of}(\text{john}, X). &\quad X = \text{peter}; \\
&\quad X = \text{mary} \\
\end{align*}
\]

- Rules for grandmother_of(X,Y)?

\[
\begin{align*}
? - \text{grandfather_of}(X, \text{michael}). &\quad X = \text{john} \\
? - \text{grandfather_of}(X, Y). &\quad X = \text{john}, Y = \text{michael}; \\
&\quad X = \text{john}, Y = \text{david} \\
? - \text{grandfather_of}(X, X). &\quad \text{no} \\
\end{align*}
\]
Another example:

\[
\begin{align*}
\text{resistor}(\text{power}, \text{n1}). \\
\text{resistor}(\text{power}, \text{n2}). \\
\text{transistor}(\text{n2}, \text{ground}, \text{n1}). \\
\text{transistor}(\text{n3}, \text{n4}, \text{n2}). \\
\text{transistor}(\text{n5}, \text{ground}, \text{n4}). \\
\end{align*}
\]

\[
\begin{align*}
\text{inverter}(\text{Input}, \text{Output}) & : - \\
& \text{transistor}(\text{Input}, \text{ground}, \text{Output}), \text{resistor}(\text{power}, \text{Output}). \\
\text{nand_gate}(\text{Input1}, \text{Input2}, \text{Output}) & : - \\
& \text{transistor}(\text{Input1}, X, \text{Output}), \text{transistor}(\text{Input2}, \text{ground}, X), \text{resistor}(\text{power}, \text{Output}). \\
\text{and_gate}(\text{Input1}, \text{Input2}, \text{Output}) & : - \\
& \text{nand_gate}(\text{Input1}, \text{Input2}, X), \text{inverter}(X, \text{Output}). \\
\end{align*}
\]

- Query: \text{and_gate(In1, In2, Out)} has solution: In1 = n3, In2 = n5, Out = n1
Structured Data and Data Abstraction (and the ’=’ Predicate)

- *Data structures* are created using (complex) terms.

- Structuring data is important:

  ```prolog
course(complog,wed,18,30,20,30,'M. ','Hermenegildo',new,5102).
  ```

- When is the Computational Logic course?

  ```prolog
  ```

- Structured version:

  ```prolog
course(complog,Time,Lecturer, Location) :-
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M. ','Hermenegildo'),
  Location = loc(new,5102).
  ```

 Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

  ```prolog
course(complog, t(wed,18:30,20:30),
          lect('M. ','Hermenegildo'), loc(new,5102)).
  ```
• Given:

```prolog
course(complog, Time, Lecturer, Location) :-
    Time = t(wed, 18:30, 20:30),
    Lecturer = lect('M.', 'Hermenegildo'),
    Location = loc(new, 5102).
```

• When is the Computational Logic course?

```prolog
?- course(complog, Time, A, B).
```

has solution:

```prolog
Time = t(wed, 18:30, 20:30), A = lect('M.', 'Hermenegildo'), B = loc(new, 5102)
```

• Using the **anonymous variable** ("_"):

```prolog
:- course(complog, Time, _, _).
```

has solution:

```prolog
Time = t(wed, 18:30, 20:30)
```
Terms as Data Structures with Pointers

- **main** below is a procedure, that:
 - creates some data structures, with *pointers* and *aliasing*.
 - calls other procedures, passing to them *pointers* to these structures.

```prolog
main :-
    X = f(K, g(K)),
    Y = a,
    Z = g(L),
    W = h(b, L),
    % Heap memory at this point →
    p(X, Y),
    q(Y, Z),
    r(W).
```

- Terms are data structures with pointers.
- Logical variables are *declarative* pointers.
 - Declarative: they can only be assigned once.
Structured Data and Data Abstraction (Contd.)

- The circuit example revisited:

```prolog
resistor(r1,power,n1).
resistor(r2,power,n2).
transistor(t1,n2,ground,n1).
transistor(t2,n3,n4,n2).
transistor(t3,n5,ground,n4).

inv(T,R,Input,Output) :-
    transistor(T,Input,ground,Output),
    resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
    transistor(T1,Input1,X,Output),
    transistor(T2,Input2,ground,X),
    resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) :-
    nand_gate(N,Input1,Input2,X),
    inv(T1,R,Output),
    transistor(T1,Input1,Output).
```

- The query

```prolog
:- and_gate(G,In1,In2,Out).
```

has solution:

```prolog
G=and(nand(t2,t3,r2),inv(t1,r1)),In1=n3,In2=n5,Out=n1
```
Logic Programs and the Relational DB Model

<table>
<thead>
<tr>
<th>Relational Database</th>
<th>Logic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation Name</td>
<td>Predicate symbol</td>
</tr>
<tr>
<td>Relation</td>
<td>Procedure consisting of ground facts (facts without variables)</td>
</tr>
<tr>
<td>Tuple</td>
<td>Ground fact</td>
</tr>
<tr>
<td>Attribute</td>
<td>Argument of predicate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

“Person”

```
person(brown,20,male).
person(jones,21,female).
person(smith,36,male).
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

“Lived in”

```
lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels, 15).
lived_in(smith, santander, 5).
```
The operations of the relational model are easily implemented as rules.

- **Union:**
 \[\text{r} \cup \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n). \]
 \[\text{r} \cup \text{s}(X_1, \ldots, X_n) \leftarrow \text{s}(X_1, \ldots, X_n). \]

- **Set Difference:**
 \[\text{r} \setminus \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n), \neg \text{s}(X_1, \ldots, X_n). \]
 \[\text{r} \setminus \text{s}(X_1, \ldots, X_n) \leftarrow \text{s}(X_1, \ldots, X_n), \neg \text{r}(X_1, \ldots, X_n). \]

 (we postpone the discussion on negation until later.)

- **Cartesian Product:**
 \[\text{r} \times \text{s}(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow \text{r}(X_1, \ldots, X_m), \text{s}(X_{m+1}, \ldots, X_{m+n}). \]

- **Projection:**
 \[\text{r}_1 \text{3}(X_1, X_3) \leftarrow \text{r}(X_1, X_2, X_3). \]

- **Selection:**
 \[\text{r}_{\text{selected}}(X_1, X_2, X_3) \leftarrow \text{r}(X_1, X_2, X_3), \leq(X_2, X_3). \]

 (see later for definition of \(\leq /2 \))

- Derived operations – some can be expressed more directly in LP:
 - **Intersection:**
 \[\text{r} \text{meet} \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, \ldots, X_n), \text{s}(X_1, \ldots, X_n). \]
 - **Join:**
 \[\text{r} \text{join} \text{x}2 \text{s}(X_1, \ldots, X_n) \leftarrow \text{r}(X_1, X_2, X_3, \ldots, X_n), \text{s}(X_1', X_2, X_3', \ldots, X_n'). \]

- Duplicates an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop logic-based databases.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
 - Powerful notions of negation supported: S-models
 - Answer Set Programming (ASP)
 - powerful knowledge representation and reasoning systems.
Recursive Programming

- **Example:** ancestors.

```prolog
parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
ancestor(X, Y) :- parent(X, Z), parent(Z, W), ancestor(Z, W, Y).
ancestor(X, Y) :- parent(X, Z), parent(Z, W), parent(W, K), ancestor(Z, W, K, Y).
...
```

- **Defining ancestor recursively:**

```prolog
parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
```

- **Exercise:** define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: 'Monday', 'Tuesday', 'Wednesday', ...
 - Type definition:
 - weekday('Monday').
 - weekday('Tuesday'). ...
- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday', 23), date('Tuesday', 24), ...
 - Type definition:
 - date(date(W,D)) :- weekday(W), day_of_month(D).
 - day_of_month(1).
 - day_of_month(2).
 - ...
 - day_of_month(31).
Recursive Programming: Recursive Types

- *Recursive types*: defined by recursive logic programs.

- *Example*: natural numbers (simplest recursive data type):
 - Set of terms to represent: 0, s(0), s(s(0)), ...
 - Type definition:

```prolog
nat(0).
nat(s(X)) :- nat(X).
```

A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).

- Types are *runnable* and can be used to check or produce values:
 - `?- nat(X)` ⇒ X=0; X=s(0); X=s(s(0)); ...

- We can reason about *complexity*, for a given class of queries (“mode”). E.g., for mode `nat(ground)` complexity is *linear* in size of number.

- *Example*: integers:
 - Set of terms to represent: 0, s(0), -s(0), ...
 - Type definition:

```prolog
integer( X) :- nat(X).
integer(-X) :- nat(X).
```
Recursive Programming: Arithmetic

- Defining the natural order (\leq) of natural numbers:

 less_or_equal(0, X) :- nat(X).
 less_or_equal(s(X), s(Y)) :- less_or_equal(X, Y).

 ◇ Multiple uses (modes):
 less_or_equal(s(0), s(s(0))), less_or_equal(X, 0), ...

 ◇ Multiple solutions:
 less_or_equal(X, s(0)), less_or_equal(s(s(0)), Y), etc.

- Addition:

 plus(0, X, X) :- nat(X).
 plus(s(X), Y, s(Z)) :- plus(X, Y, Z).

 ◇ Multiple uses (modes): plus(s(s(0)), s(0), Z), plus(s(s(0)), Y, s(0))

 ◇ Multiple solutions: plus(X, Y, s(s(s(0)))), etc.
Another possible definition of addition:

\[
\begin{align*}
\text{plus}(X, 0, X) & : \neg \text{nat}(X). \\
\text{plus}(X, s(Y), s(Z)) & : \neg \text{plus}(X, Y, Z).
\end{align*}
\]

The meaning of `plus` is the same if both definitions are combined.

Not recommended: several proof trees for the same query → not efficient, not concise. We look for minimal axiomatizations.

The art of logic programming: finding compact and computationally efficient formulations!

Try to define: `times(X, Y, Z)` \((Z = X \times Y)\), `exp(N, X, Y)` \((Y = X^N)\), `factorial(N, F)` \((F = N!)\), `minimum(N1, N2, Min)`,...
Recursive Programming: Arithmetic

- Definition of \(\text{mod}(X, Y, Z) \)
 “\(Z \) is the remainder from dividing \(X \) by \(Y \)”

\[\exists Q \text{s.t. } X = Y \times Q + Z \land Z < Y \]

\[\Rightarrow \]

\[\text{mod}(X, Y, Z) \leftarrow \text{less}(Z, Y), \text{times}(Y, Q, W), \text{plus}(W, Z, X). \]

\[\text{less}(0, s(X)) \leftarrow \text{nat}(X). \]

\[\text{less}(s(X), s(Y)) \leftarrow \text{less}(X, Y). \]

- Another possible definition:

\[\text{mod}(X, Y, X) \leftarrow \text{less}(X, Y). \]

\[\text{mod}(X, Y, Z) \leftarrow \text{plus}(X_1, Y, X), \text{mod}(X_1, Y, Z). \]

- The second is much more efficient than the first one (compare the size of the proof trees).
The Ackermann function:

\[
\begin{align*}
\text{ackermann}(0, N) &= N + 1 \\
\text{ackermann}(M, 0) &= \text{ackermann}(M - 1, 1) \\
\text{ackermann}(M, N) &= \text{ackermann}(M - 1, \text{ackermann}(M, N - 1))
\end{align*}
\]

In Peano arithmetic:

\[
\begin{align*}
\text{ackermann}(0, N) &= s(N) \\
\text{ackermann}(s(M), 0) &= \text{ackermann}(M, s(0)) \\
\text{ackermann}(s(M), s(N)) &= \text{ackermann}(M, \text{ackermann}(s(M), N))
\end{align*}
\]

Can be defined as:

\[
\begin{align*}
\text{ackermann}(0, N, s(N)). \\
\text{ackermann}(s(M), 0, Val) &::= \text{ackermann}(M, s(0), Val). \\
\text{ackermann}(s(M), s(N), Val) &::= \text{ackermann}(s(M), N, Val1), \\
&\quad \text{ackermann}(M, Val1, Val).
\end{align*}
\]

In general, *functions* can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao `fsyntax` and `functional` packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining `s` as a prefix operator:

```prolog
:- use_package(functional).
:- op(500, fy, s).

ackermann( 0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N) ).
```

- Convenient in other cases – e.g. for defining types:

```prolog
nat(0).
nat(s(X)) :- nat(X).
```

Using special := notation for the “return” (last) the argument:

```prolog
nat := 0.
nat := s(X) :- nat(X).
```
Moving body call to head using the ⟷ notation ("evaluate and replace with result"):

\[
\begin{align*}
nat & := 0. \\
nat & := s(\sim \text{nat}).
\end{align*}
\]

"\sim" not needed with functional package if inside its own definition:

\[
\begin{align*}
nat & := 0. \\
nat & := s(\text{nat}).
\end{align*}
\]

Using an `:- op(500, fy, s)` declaration to define \texttt{s} as a \textit{prefix operator}:

\[
\begin{align*}
nat & := 0. \\
nat & := s \text{ nat}.
\end{align*}
\]

Using "|" (disjunction):

\[
\begin{align*}
nat & := 0 \mid s \text{ nat}.
\end{align*}
\]

Which is exactly equivalent to:

\[
\begin{align*}
nat(0). \\
nat(s(X)) & :- \text{nat}(X).
\end{align*}
\]
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
 - A constant symbol: we use the *constant* \([\]\) (\(\rightarrow\) denotes the empty list).
 - A functor of arity 2: traditionally the dot “.” (which is overloaded).

- Syntactic sugar: the term \(.(X,Y)\) is denoted by \([X|Y]\) (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a,[]))</td>
<td>([a</td>
<td>[]])</td>
</tr>
<tr>
<td>((a,. (b,[])))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>((a,. (b, (c,[]))))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>((a,X))</td>
<td>([a</td>
<td>X])</td>
</tr>
<tr>
<td>((a,.(b,X)))</td>
<td>([a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
 - \([a,b]\) and \([a|X]\) unify with \(\{X = [b]\}\)
 - \([a]\) and \([a|X]\) unify with \(\{X = [\]\}\)
 - \([a]\) and \([a,b|X]\) do not unify
 - \([\]\) and \([X]\) do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):

 \[
 \text{list}([],).
 \text{list}.(\langle X,Y \rangle) \leftarrow \text{list}(Y).
 \]

- Type definition, with some syntactic sugar ([] notation):

 \[
 \text{list}([],).
 \text{list}([X|Y]) \leftarrow \text{list}(Y).
 \]

- Type definition, using also functional package:

 \[
 \text{list} := [] | [_|\text{list}].
 \]

- "Exploring" the type:

 \[
 {?- \text{list}(L)}.
 L = [] ? ;
 L = [_] ? ;
 L = [_,_] ? ;
 L = [_,_,_] ?
 ...
 \]
Recursive Programming: Lists (Contd.)

- X is a *member* of the list Y:

 - member(a, [a]). member(b, [b]). etc. ⇒ member(X, [X]).
 - member(a, [a, c]). member(b, [b, d]). etc. ⇒ member(X, [X, Y]).
 - member(a, [a, c, d]). member(b, [b, d, l]). etc. ⇒ member(X, [X, Y, Z]).

 \[⇒ \text{member}(X, [X|Y]) :- \text{list}(Y).\]

 - member(a, [c, a]), member(b, [d, b]). etc. ⇒ member(X, [Y, X]).
 - member(a, [c, d, a]). member(b, [s, t, b]). etc. ⇒ member(X, [Y, Z, X]).

 \[⇒ \text{member}(X, [Y|Z]) :- \text{member}(X, Z).\]

- Resulting definition:

 \[
 \begin{align*}
 \text{member}(X, [X|Y]) & \text{ :- list}(Y). \\
 \text{member}(X, [_|T]) & \text{ :- member}(X, T).
 \end{align*}
 \]

- Uses of member(X,Y):

 ◦ checking whether an element is in a list (member(b, [a, b, c]))
 ◦ finding an element in a list (member(X, [a, b, c]))
 ◦ finding a list containing an element (member(a, Y))
• Combining lists and naturals:

 ◆ Computing the length of a list:

 \[
 \text{len}([], 0).
 \text{len}([\text{H}|\text{T}], s(\text{LT})) \leftarrow \text{len}(\text{T}, \text{LT})
 \]

 ◆ Adding all elements of a list:

 \[
 \text{sumlist}([], 0).
 \text{sumlist}([\text{H}|\text{T}], S) \leftarrow \text{sumlist}(\text{T}, \text{ST}), \text{plus}(\text{ST}, \text{H}, S).
 \]

 ◆ The type of lists of natural numbers:

 \[
 \text{natlist}([]).
 \text{natlist}([\text{H}|\text{T}]) \leftarrow \text{nat}(\text{H}), \text{natlist}(\text{T}).
 \]

 or:

 \[
 \text{natlist} := [] \mid [\sim \text{nat}|\text{natlist}].
 \]
Recursive Programming: Lists (Contd.)

- Exercises:
 - Define: prefix(X, Y) (the list X is a prefix of the list Y), e.g. prefix([a, b], [a, b, c, d])
 - Define: suffix(X, Y), sublist(X, Y), …
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - Base case:
 - `append([], [a], [a]). append([], [a, b], [a, b]).` etc.
 \[\Rightarrow \text{append([], Ys, Ys) :- list(Ys)}. \]
 - Rest of cases (first step):
 - `append([a], [b], [a, b]).`
 - `append([a], [b, c], [a, b, c]).` etc.
 \[\Rightarrow \text{append([X], Ys, [X|Ys]) :- list(Ys)}. \]
 - `append([a, b], [c], [a, b, c]).`
 - `append([a, b], [c, d], [a, b, c, d]).` etc.
 \[\Rightarrow \text{append([X, Z], Ys, [X, Z|Ys]) :- list(Ys)}. \]

This is still infinite → we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:
 append([X],Ys,[X|Ys]) :- list(Ys).
 append([X,Z],Ys,[X,Z|Ys]) :- list(Ys).
 append([X,Z,W],Ys,[X,Z,W|Ys]) :- list(Ys).

 ⇒ append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

- So, we have:

 \[
 \text{append}([],Ys,Ys) :- \text{list}(Ys).
 \text{append}([X|Xs],Ys,[X|Zs]) :- \text{append}(Xs,Ys,Zs).
 \]

- Another way of reasoning: thinking inductively.

 ◦ The base case is: \text{append}([],Ys,Ys):-\text{list}(Ys).
 ◦ If we assume that \text{append}(Xs,Ys,Zs) works for some iteration, then, in the next one, the following holds: \text{append}([X|Xs],Ys,[X|Zs]).
Recursive Programming: Lists (Contd.)

- Uses of append:
 - Concatenate two given lists:

    ```prolog
    ?- append([a, b, c], [d, e], L).
    L = [a, b, c, d, e] ?
    ```

 - Find differences between lists:

    ```prolog
    ?- append(D, [d, e], [a, b, c, d, e]).
    D = [a, b, c] ?
    ```

 - Split a list:

    ```prolog
    ?- append(A, B, [a, b, c, d, e]).
    A = [],
    B = [a, b, c, d, e] ? ;
    A = [a],
    B = [b, c, d, e] ? ;
    A = [a, b],
    B = [c, d, e] ? ;
    A = [a, b, c],
    B = [d, e] ?
    ...```
Recursive Programming: Lists (Contd.)

- `reverse(Xs, Ys)`: Ys is the list obtained by reversing the elements in the list Xs
  
  It is clear that we will need to traverse the list Xs
  
  For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

  ```prolog
 reverse([X|Xs], Ys) :-
 reverse(Xs, Zs),
 append(Zs, [X], Ys).
  ```

  How can we stop?

  ```prolog
 reverse([], []).
  ```

- As defined, `reverse(Xs, Ys)` is very inefficient. Another possible definition:
  
  (uses an *accumulating parameter*)

  ```prolog
 reverse(Xs, Ys) :- reverse(Xs, [], Ys).
  ```

  ```prolog
 reverse([], Ys, Ys).
  ```

  ```prolog
 reverse([X|Xs], Acc, Ys) :- reverse(Xs, [X|Acc], Ys).
  ```

  ⇒ Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor `tree(Element,Left,Right)`.
- Empty tree represented by `void`.
- Definition:

```prolog
binary_tree(void).
binary_tree(tree(Element,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
```

- Defining `tree_member(Element,Tree)`:

```prolog
tree_member(X,tree(X,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Left).
tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Right).
```
Recursive Programming: Binary Trees

- **Defining pre_order(Tree,Elements):**
  Elements is a list containing the elements of Tree traversed in *preorder*.

  ```
 pre_order(void,[]).
 pre_order(tree(X,Left,Right),Elements) :-
 pre_order(Left,ElementsLeft),
 pre_order(Right,ElementsRight),
 append([X|ElementsLeft],ElementsRight,Elements).
  ```

- **Exercise – define:**
  - `in_order(Tree,Elements)`
  - `post_order(Tree,Elements)`
Polymorphism

- Note that the two definitions of member/2 can be used *simultaneously*:

```prolog
lt_member(X,[X|Y]) :- list(Y).
lt_member(X,[_|T]) :- lt_member(X,T).

lt_member(X,tree(X,L,R)) :- binary_tree(L), binary_tree(R).
lt_member(X,tree(Y,L,R)) :- lt_member(X,L).
lt_member(X,tree(Y,L,R)) :- lt_member(X,R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

- :- lt_member(X,[b,a,c]).
  X = b ; X = a ; X = c

- :- lt_member(X,tree(b,tree(a,void,void),tree(c,void,void))).
  X = b ; X = a ; X = c

- Also, try (somewhat surprising): :- lt_member(M,T).
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing (and generating!) polynomials in some term X:
  - X is a polynomial in X
  - a constant is a polynomial in X
  - sums, differences and products of polynomials in X are polynomials
  - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

<table>
<thead>
<tr>
<th>polynomial(X,X).</th>
</tr>
</thead>
<tbody>
<tr>
<td>polynomial(Term,X) :- pconstant(Term).</td>
</tr>
<tr>
<td>polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).</td>
</tr>
<tr>
<td>polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).</td>
</tr>
<tr>
<td>polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).</td>
</tr>
<tr>
<td>polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).</td>
</tr>
<tr>
<td>polynomial(Term1`N,X) :- polynomial(Term1,X), nat(N).</td>
</tr>
</tbody>
</table>
Symbolic differentiation: \( \text{deriv} (\text{Expression}, X, \text{Derivative}) \)

\[
\begin{align*}
\text{deriv}(X,X,s(0)) & \hspace{1cm} \\
\text{deriv}(\text{C},X,0) & \hspace{1cm} :\text{- pconstant(C)}. \\
\text{deriv}(U+V,X,DU+DV) & \hspace{1cm} :\text{- deriv(U,X,DU), deriv(V,X,DV)}. \\
\text{deriv}(U-V,X,DU-DV) & \hspace{1cm} :\text{- deriv(U,X,DU), deriv(V,X,DV)}. \\
\text{deriv}(U*V,X,DU*V+U*DV) & \hspace{1cm} :\text{- deriv(U,X,DU), deriv(V,X,DV)}. \\
\text{deriv}(U/V,X,(DU*V-U*DV)/V^s(s(0))) & \hspace{1cm} :\text{- deriv(U,X,DU), deriv(V,X,DV)}. \\
\text{deriv}(U^s(N),X,s(N)*U^N*DU) & \hspace{1cm} :\text{- deriv(U,X,DU), nat(N)}. \\
\text{deriv}(\log(U),X,DU/U) & \hspace{1cm} :\text{- deriv(U,X,DU)}. \\
\end{align*}
\]

?- deriv(s(s(s(0))))*x+s(s(0)),x,Y).

A simplification step can be added.
Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

\[ q_0 \rightarrow a \rightarrow q_1 \rightarrow b \rightarrow q_0 \]

where \( q_0 \) is both the initial and the final state.

- Strings are represented as lists of constants (e.g., [a, b, b]).

- Program:

```prolog
initial(q0).
delta(q0,a,q1).
delta(q1,b,q0).
final(q0).
delta(q1,b,q1).
accept(S) :- initial(Q), accept_from(S,Q).
accept_from([],Q) :- final(Q).
accept_from([X|Xs],Q) :- delta(Q,X,NewQ), accept_from(Xs,NewQ).
```
A nondeterministic, stack, finite automaton (NDSFA):

```
accept(S) :- initial(Q), accept_from(S,Q,[]).
accept_from([],Q,[]) :- final(Q).
accept_from([X|Xs],Q,S) :- delta(Q,X,S,NewQ,NewS),
 accept_from(Xs,NewQ,NewS).
initial(q0).
final(q1).
```

delta(q0,X,Xs,q0,[X|Xs]).
delta(q0,X,Xs,q1,[X|Xs]).
delta(q0,X,Xs,q1,Xs).
delta(q1,X,[X|Xs],q1,Xs).

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
  ◦ Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
  ◦ Only one disk can be moved at a time.
  ◦ A larger disk can never be placed on top of a smaller disk.

![Diagram of the Towers of Hanoi problem for N = 1, 2, and 3](image-url)
• We will call the main predicate `hanoi_moves(N,Moves)`

• \( N \) is the number of disks and \( \text{Moves} \) the corresponding list of “moves”.

• Each move `move(A, B)` represents that the top disk in A should be moved to B.

• *Example:*

![Diagram of the hanoi moves](attachment:image)

is represented by:

```prolog
hanoi_moves(s(s(s(0))),
 [move(a,b), move(a,c), move(b,c), move(a,b),
 move(c,a), move(c,b), move(a,b)])
```
A general rule:

We capture this in a predicate \(hanoi(N,Orig,Dest,Help,Moves)\) where “Moves contains the moves needed to move a tower of \(N\) disks from peg \(Orig\) to peg \(Dest\), with the help of peg \(Help\).”

\[
\begin{align*}
hanoi(s(0),Orig,Dest,_Help,\text{[move(Orig, Dest)]}). \\
hanoi(s(N),Orig,Dest,Help,Moves) & : - \\
& \quad hanoi(N,Orig,Help,Dest,Moves1), \\
& \quad hanoi(N,Help,Dest,Orig,Moves2), \\
& \quad \text{append}(Moves1,\text{[move(Orig, Dest)]|Moves2},Moves).
\end{align*}
\]

And we simply call this predicate:

\[
\begin{align*}
hanoi\_moves(N,Moves) & : - \\
& \quad hanoi(N,a,b,c,Moves).
\end{align*}
\]
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same “schemas.”
- Using a global top-down design approach can help (in general, not just for recursive programs):
  - State the general problem.
  - Break it down into subproblems.
  - Solve the pieces.
- Again, the best approach: practice, practice, practice.