Computational Logic
A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

- **Variables**: start with uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

- **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

- **Structures**: a functor (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

 Arguments can in turn be variables, constants and structures.

 ◦ **Arity**: is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the *data structures* of a logic program.
Syntax: Terms

(using Prolog notation conventions)

- **Examples of terms:**

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as *prefix*, *postfix*, or *infix* [operators] (just syntax!):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Term</th>
<th>Operator</th>
<th>Declared Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>a + b</td>
<td>is the term</td>
<td>’+’(a,b)</td>
<td>if +/-2 declared infix</td>
</tr>
<tr>
<td>- b</td>
<td>is the term</td>
<td>’-’(b)</td>
<td>if -/1 declared prefix</td>
</tr>
<tr>
<td>a < b</td>
<td>is the term</td>
<td>’<’(a,b)</td>
<td>if </2 declared infix</td>
</tr>
<tr>
<td>john father mary</td>
<td>is the term</td>
<td>father(john,mary)</td>
<td>if father/2 declared infix</td>
</tr>
</tbody>
</table>

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule:** an expression of the form:

 \[p_0(t_1, t_2, \ldots, t_n) \leftarrow p_1(t_1^1, t_2^1, \ldots, t_n^1), \]
 \[\quad \ldots \]
 \[p_m(t_1^m, t_2^m, \ldots, t_n^m). \]

 - \(p_0(\ldots) \) to \(p_m(\ldots) \) are *syntactically* like terms.
 - \(p_0(\ldots) \) is called the **head** of the rule.
 - The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.
 - Usually, \(\leftarrow \) is called the **neck** of the rule.

- **Fact:** an expression of the form \(p(t_1, t_2, \ldots, t_n) \) (i.e., a rule with empty body).

Example:

<table>
<thead>
<tr>
<th>Rule</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>meal(soup, beef, coffee).</td>
<td>% \leftarrow A fact.</td>
</tr>
<tr>
<td>meal(First, Second, Third) :-</td>
<td>% \leftarrow A rule.</td>
</tr>
<tr>
<td>appetizer(First),</td>
<td>%</td>
</tr>
<tr>
<td>main_dish(Second),</td>
<td>%</td>
</tr>
<tr>
<td>dessert(Third).</td>
<td>%</td>
</tr>
</tbody>
</table>

- Rules and facts are both called **clauses**.
Syntax: Predicates, Programs, and Queries

- **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

 Examples:

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Clause 1</th>
<th>Clause 2</th>
<th>Clause 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(spot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pet(X) :- animal(X), barks(X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pet(X) :- animal(X), meows(X)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

- **Logic Program**: a set of predicates.

- **Query**: an expression of the form:

 \[\leftarrow p_1(t_1^1, \ldots, t_n^1), \ldots, p_n(t_1^n, \ldots, t_m^n). \]

 (i.e., a clause without a head).

 A query represents a **question to the program**.

 Example: `:- pet(X).`
 In most systems written as: `?- pet(X).`
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “\(p \)” can be seen as the rule “\(p \ :- \ true \).”)

 Example: the fact `animal(spot)` can be read as “spot is an animal”.

- **Rules**:
 - Commas in rule bodies represent conjunction, i.e.,
 \[p \leftarrow p_1, \ldots, p_m \text{ represents } p \leftarrow p_1 \land \cdots \land p_m. \]
 - “\(\leftarrow \)” represents as usual logical implication.

 Thus, a rule \(p \leftarrow p_1, \ldots, p_m \) means “if \(p_1 \) and \(\ldots \) and \(p_m \) are true, then \(p \) is true”

 Example: the rule `pet(X):- animal(X), barks(X)` can be read as “\(X \) is a pet if it is an animal and it barks”.
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 ...

 provide different *alternatives* (for \(p \)).

 Example: the rules

 \[
 \begin{align*}
 \text{pet}(X) & : \text{animal}(X), \text{barks}(X). \\
 \text{pet}(X) & : \text{animal}(X), \text{meows}(X).
 \end{align*}
 \]

 express two ways for \(X \) to be a pet.

- **Note** *(variable *scope*):* the \(X \) vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used –as with vars. local to a procedure in conventional languages).

- **A query** represents a *question to the program*.

 Examples:

 \[
 \begin{align*}
 \text{?- pet(spot).} & \quad \text{?- pet}(X). \\
 \text{asks whether spot is a pet.} & \quad \text{asks: “Is there an X which is a pet?”}
 \end{align*}
 \]
“Execution” and Semantics

- Example of a logic program:

  ```prolog
  pet(X) :- animal(X), barks(X).
  pet(X) :- animal(X), meows(X).
  animal(spot).   barks(spot).
  animal(barry).  meows(barry).
  animal(hobbes). roars(hobbes).
  ```

- **Execution**: given a program and a query, *executing* the logic program is attempting to find an answer to the query.

 Example: given the program above and the query `:- pet(X).` the system will try to find a “substitution” for `X` which makes `pet(X)` true.

 - The **declarative semantics** specifies *what* should be computed (all possible answers).
 - Intuitively, we have two possible answers: `X = spot` and `X = barry`.
 - The **operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
Running Programs in a Logic Programming System

- File `pets.pl` contains (explained later):

  ```prolog
  :- module(_,_,[’bf/bfall’]).
  ```

 + the pet example code as in previous slides.

- Interaction with the system query evaluator (the “top level”):

  ```prolog
  ?- Ciao 1.XX ...
  ?- use_module(pets).
  yes
  ?- pet(spot).
  yes
  ?- pet(X).
  X = spot ? ;
  X = barry ? ;
  no
  ?-
  ```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query $\leftarrow p$ is an initial *procedure call*.
- A procedure definition with one *clause* $\quad p \leftarrow p_1, \ldots, p_m$. means:
 “to execute a call to p you have to call p_1 and ... and p_m”
 ◦ In principle, the order in which p_1, \ldots, p_n are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) $\quad p \leftarrow p_1, \ldots, p_n \quad$ means:
 $\quad p \leftarrow q_1, \ldots, q_m$
 “to execute a call to p, call $p_1 \land \ldots \land p_n$, or, alternatively, $q_1 \land \ldots \land q_m$, or ...”
 ◦ Unique to logic programming –it is like having several alternative procedure definitions.
 ◦ Means that several possible paths may exist to a solution and they *should be explored*.
 ◦ System usually stops when the first solution found, user can ask for more.
 ◦ Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - I.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, fail).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X=m(h), M=t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), t(M))$</td>
<td>Impossible (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**. (See, however, *cyclic terms* later.)
Unification

- Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1 \text{ and } B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(a), H=a, M=b, T=b }$</td>
<td>$f(m(a), g(b))$</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>${ X=m(H), M=f(A), T=f(A) }$</td>
<td>$f(m(H), g(f(A)))$</td>
</tr>
</tbody>
</table>

These are correct, but a simpler ("more general") solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1 \text{ and } B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>${ X=m(H), T=M }$</td>
<td>$f(m(H), g(M))$</td>
</tr>
</tbody>
</table>

- Always a unique (modulo variable renaming) most general solution exists (unless unification fails).
- This is the one that we are interested in.
- The unification algorithm finds this solution.
Unification Algorithm

- Let A and B be two terms:

 1. $\theta = \emptyset$, $E = \{A = B\}$
 2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term S → halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different → halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
 3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

- Unify: \(A = p(X, X) \) and \(B = p(f(Z), f(W)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, X) = p(f(Z), f(W)) }</td>
<td>(p(X, X))</td>
<td>(p(f(Z), f(W)))</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = f(Z), X = f(W) }</td>
<td>(X)</td>
<td>(f(Z))</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ f(Z) = f(W) }</td>
<td>(f(Z))</td>
<td>(f(W))</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ Z = W }</td>
<td>(Z)</td>
<td>(W)</td>
</tr>
<tr>
<td>{ X = f(W), Z = W }</td>
<td>{ }</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

- Unify: \(A = p(X, f(Y)) \) and \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(Y)) = p(Z, X) }</td>
<td>(p(X, f(Y)))</td>
<td>(p(Z, X))</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = Z, f(Y) = X }</td>
<td>(X)</td>
<td>(Z)</td>
</tr>
<tr>
<td>{ X = Z }</td>
<td>{ f(Y) = Z }</td>
<td>(f(Y))</td>
<td>(Z)</td>
</tr>
<tr>
<td>{ X = f(Y), Z = f(Y) }</td>
<td>{ }</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

- Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(Y)) = p(a, g(b)) }</td>
<td>p(X, f(Y))</td>
<td>p(a, g(b))</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = a, f(Y) = g(b) }</td>
<td>X</td>
<td>a</td>
</tr>
<tr>
<td>{ X = a }</td>
<td>{ f(Y) = g(b) }</td>
<td>f(Y)</td>
<td>g(b)</td>
</tr>
</tbody>
</table>

fail

- Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(X)) = p(Z, Z) }</td>
<td>p(X, f(X))</td>
<td>p(Z, Z)</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = Z, f(X) = Z }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = Z }</td>
<td>{ f(Z) = Z }</td>
<td>f(Z)</td>
<td>Z</td>
</tr>
</tbody>
</table>

fail
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: $Q\mu$ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be $\{Q\}$
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failed; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
Since step 2.2 is left open, a given logic *programming* system must specify how it deals with this by providing one (or more)

◊ **Search rule(s):** “how are clauses/branches selected in 2.2.”

If the search rule is not specified execution can be *nondeterministic*, since choosing a different clause (in step 2.2) could lead to different solutions (finding solutions in a different order).

Example (two valid executions):

```
?- pet(X).
X = spot ? ;
X = barry ? ;
no
?- 
```

```
?- pet(X).
X = barry ? ;
X = spot ? ;
no
?- 
```

In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

◊ **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

\(C_1 \): \(\text{pet}(X) :- \text{animal}(X), \text{barks}(X). \)
\(C_2 \): \(\text{pet}(X) :- \text{animal}(X), \text{meows}(X). \)
\(C_3 \): \(\text{animal}(\text{spot}). \)
\(C_4 \): \(\text{animal}(\text{barry}). \)
\(C_5 \): \(\text{animal}(\text{hobbes}). \)

\(C_6 \): \(\text{barks}(\text{spot}). \)
\(C_7 \): \(\text{meows}(\text{barry}). \)
\(C_8 \): \(\text{roars}(\text{hobbes}). \)

\(:- \text{pet}(P). \)

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pet}(P))</td>
<td>(\text{pet}(P))</td>
<td>(C_2^*)</td>
<td>({P = X_1})</td>
</tr>
<tr>
<td>(\text{pet}(X_1))</td>
<td>(\text{animal}(X_1), \text{meows}(X_1))</td>
<td>(C_4^*)</td>
<td>({X_1 = \text{barry}})</td>
</tr>
<tr>
<td>(\text{pet}(\text{barry}))</td>
<td>(\text{meows(\text{barry})})</td>
<td>(C_7)</td>
<td>({})</td>
</tr>
<tr>
<td>(\text{pet}(\text{barry}))</td>
<td>(\text{---})</td>
<td>(\text{---})</td>
<td>(\text{---})</td>
</tr>
</tbody>
</table>

* means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: \(P = \text{barry} \) ?

- If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in \(C_2^* \) or \(C_4^* \)).
Running programs (different strategy)

\[C_1: \text{pet}(X) :- \text{animal}(X), \text{barks}(X). \]
\[C_2: \text{pet}(X) :- \text{animal}(X), \text{meows}(X). \]
\[C_3: \text{animal(spot)}. \]
\[C_4: \text{animal(barry)}. \]
\[C_5: \text{animal(hobbes)}. \]
\[C_6: \text{barks(spot)}. \]
\[C_7: \text{meows(barry)}. \]
\[C_8: \text{roars(hobbes)}. \]

\[\boxed{\text{:- pet}(P).} \] (different strategy)

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_5^*)</td>
<td>({ X_1 = \text{hobbes} })</td>
</tr>
<tr>
<td>pet(hobbes)</td>
<td>barks(hobbes)</td>
<td>???</td>
<td>failure</td>
</tr>
</tbody>
</table>

→ explore another branch (different choice in \(C_1^* \) or \(C_5^* \)) to find a solution. We take \(C_3 \) instead of \(C_5^* \):

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_3^*)</td>
<td>({ X_1 = \text{spot} })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(C_6)</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a *search tree*.

 Example: query `:- pet(X)` with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query \rightarrow different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s `bf` package).
Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.

- Files should start with the following line:
 - To execute in \textit{breadth-first} mode:
 \begin{verbatim}
 :- module(_,_,[‘bf/bfall’]).
 \end{verbatim}
 - To execute in \textit{depth-first} mode:
 \begin{verbatim}
 :- module(_,_,[]).
 \end{verbatim}

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).
Role of Unification in Execution

- As mentioned before, unification used to *access data* and *give values to variables*.

 Example: Consider query
 \[- animal(A), \text{named}(A,\text{Name}). \]
 with:
 \[- \text{animal}(\text{dog}(\text{barry})). \quad \text{named}(\text{dog}(\text{Name}),\text{Name}). \]

- Also, unification is used to *pass parameters* in procedure calls and to *return values* upon procedure exit.

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet((P))</td>
<td>pet((P))</td>
<td>(C_1^*)</td>
<td>{ (P=X_1) }</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_3^*)</td>
<td>{ (X_1=\text{spot}) }</td>
</tr>
<tr>
<td>pet((\text{spot}))</td>
<td>barks((\text{spot}))</td>
<td>(C_6)</td>
<td>{ }</td>
</tr>
<tr>
<td>pet((\text{spot}))</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
“Modes”

- In fact, argument positions are not fixed a priori to be input or output.

Example: Consider query

\[-\text{pet}(\text{spot}).\] vs. \[-\text{pet}(X).\]

or \[-\text{plus}(s(0), s(s(0)), Z).\] % Adds

vs. \[-\text{plus}(s(0), Y, s(s(s(0))))].\] % Subtracts

- Thus, procedures can be used in different modes
 s.t. different sets of arguments are input or output in each mode.

- We sometimes use $+$ and $-$ to refer to, respectively, and argument being an input or an output, e.g.:

\[\text{plus}(+X, +Y, -Z)\] means we call \text{plus} with

\[\diamond X \text{ instantiated,}\]
\[\diamond Y \text{ instantiated, and}\]
\[\diamond Z \text{ free.}\]
Database Programming

- A Logic Database is a set of facts and rules (i.e., a logic program):

```
father_of(john,peter).
father_of(john,mary).
father_of(peter,michael).
mother_of(mary,david).
```

- Given such database, a logic programming system can answer questions (queries) such as:

```
?- father_of(john, peter).
yes
?- father_of(john, david).
no
?- father_of(john, X).
X = peter ;
X = mary
```

- Rules for `grandfather_of(X,Y)`?

```
grandfather_of(L,M) :- father_of(L,N),
                  father_of(N,M).

grandfather_of(X,Y) :- father_of(X,Z),
                     mother_of(Z,Y).
```

```
?- grandfather_of(L,M).
L = john
M = peter ;
M = mary

?- grandfather_of(X, michael).
X = john

?- grandfather_of(X, Y).
X = john, Y = michael ;
X = john, Y = david

?- grandfather_of(X, X).
no
```
Another example:

resistor(power, n1).
resistor(power, n2).
transistor(n2, ground, n1).
transistor(n3, n4, n2).
transistor(n5, ground, n4).

inverter(Input, Output) :-
 transistor(Input, ground, Output), resistor(power, Output).

nand_gate(Input1, Input2, Output) :-
 transistor(Input1, X, Output), transistor(Input2, ground, X),
 resistor(power, Output).

and_gate(Input1, Input2, Output) :-
 nand_gate(Input1, Input2, X), inverter(X, Output).

• Query and_gate(In1, In2, Out) has solution: In1=n3, In2=n5, Out=n1
Structured Data and Data Abstraction (and the ’=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:

  ```prolog
  course(complog,wed,18,30,20,30,'M.','Hermenegildo',new,5102).
  ```

- When is the Computational Logic course?

  ```prolog
  ```

- Structured version:

  ```prolog
  course(complog,Time,Lecturer, Location) :-
  
  Time = t(wed,18:30,20:30),
  Lecturer = lect('M.','Hermenegildo'),
  Location = loc(new,5102).
  ```

 Note: “X=Y” is equivalent to “’=’(X,Y)”

 where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:

  ```prolog
  course(complog, t(wed,18:30,20:30),
  lect('M.','Hermenegildo'), loc(new,5102)).
  ```
Structured Data and Data Abstraction (and The Anonymous Variable)

- Given:

\[
\text{course(complog,Time,Lecturer, Location) :-}
\]
\[
\text{Time = t(wed,18:30,20:30),}
\]
\[
\text{Lecturer = lect('M.','Hermenegildo'),}
\]
\[
\text{Location = loc(new,5102).}
\]

- When is the Computational Logic course?

```prolog
?- course(complog, Time, A, B).
```

has solution:

```prolog
Time=t(wed,18:30,20:30), A=lect('M.','Hermenegildo'), B=loc(new,5102)
```

- Using the *anonymous variable* ("_"):

```prolog
:- course(complog,Time, _, _).
```

has solution:

```prolog
Time=t(wed,18:30,20:30)
```
Terms as Data Structures with Pointers

- **main** below is a procedure, that:
 - creates some data structures, with *pointers* and *aliasing*.
 - *calls* other *procedures*, *passing* to them *pointers* to these structures.

```
main :-
    X = f(K, g(K)),
    Y = a,
    Z = g(L),
    W = h(b, L),
    % Heap memory at this point →
    p(X, Y),
    q(Y, Z),
    r(W).
```

- Terms are data structures with pointers.
- Logical variables are *declarative* pointers.
 - *Declarative*: they can only be assigned once.
The circuit example revisited:

resistor(r1,power,n1).
resistor(r2,power,n2).
transistor(t1,n2,ground,n1).
transistor(t2,n3,n4,n2).
transistor(t3,n5,ground,n4).

inverter(inv(T,R),Input,Output) :-
 transistor(T,Input,ground,Output),
 resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
 transistor(T1,Input1,X,Output),
 transistor(T2,Input2,ground,X),
 resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) :-
 nand_gate(N,Input1,Input2,X),
 inverter(I,X,Output).

The query :- and_gate(G,In1,In2,Out).
has solution: G=and(nand(t2,t3,r2),inv(t1,r1)), In1=n3, In2=n5, Out=n1
Logic Programs and the Relational DB Model

<table>
<thead>
<tr>
<th>Relational Database</th>
<th>Logic Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relation Name</td>
<td>Predicate symbol</td>
</tr>
<tr>
<td>Relation</td>
<td>Procedure consisting of ground facts</td>
</tr>
<tr>
<td></td>
<td>(facts without variables)</td>
</tr>
<tr>
<td>Tuple</td>
<td>Ground fact</td>
</tr>
<tr>
<td>Attribute</td>
<td>Argument of predicate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

“Person”

```
person(brown, 20, male).
person(jones, 21, female).
person(smith, 36, male).
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

“Lived in”

```
lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels, 15).
lived_in(smith, santander, 5).
```
The operations of the relational model are easily implemented as rules.

- **Union**: \(r \cup s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n) \).
 \(r \cup s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n) \).

- **Set Difference**: \(r \setminus s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), \neg s(X_1, \ldots, X_n) \).
 \(r \setminus s(X_1, \ldots, X_n) \leftarrow s(X_1, \ldots, X_n), \neg r(X_1, \ldots, X_n) \).

 (we postpone the discussion on negation until later.)

- **Cartesian Product**: \(r \times s(X_1, \ldots, X_m, X_{m+1}, \ldots, X_{m+n}) \leftarrow r(X_1, \ldots, X_m), s(X_{m+1}, \ldots, X_{m+n}) \).

- **Projection**: \(r_{13}(X_1, X_3) \leftarrow r(X_1, X_2, X_3) \).

- **Selection**: \(r_{selected}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq(X_2, X_3) \).
 (see later for definition of \(\leq \))

- **Derived operations** – some can be expressed more directly in LP:

 - **Intersection**: \(r \cap s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n) \).
 - **Join**: \(r_{joinX2}(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X_1', X_2, X_3', \ldots, X_n') \).

- Duplication is an issue: see “setof” later in Prolog.
Deductive Databases

- The subject of “deductive databases” uses these ideas to develop *logic-based databases*.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).
 - Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
 - Powerful notions of negation supported: S-models → **Answer Set Programming** (ASP)
 → powerful knowledge representation and reasoning systems.
Recursive Programming

• Example: ancestors.

\[
\begin{align*}
parent(X, Y) & : \text{ father}(X, Y). \\
parent(X, Y) & : \text{ mother}(X, Y). \\
ancestor(X, Y) & : parent(X, Y). \\
ancestor(X, Y) & : parent(X, Z), parent(Z, Y). \\
ancestor(X, Y) & : parent(X, Z), parent(Z, W), parent(W, Y). \\
ancestor(X, Y) & : parent(X, Z), parent(Z, W), parent(W, K), parent(K, Y). \\
& \ldots
\end{align*}
\]

• Defining ancestor recursively:

\[
\begin{align*}
parent(X, Y) & : \text{ father}(X, Y). \\
parent(X, Y) & : \text{ mother}(X, Y). \\
ancestor(X, Y) & : parent(X, Y). \\
ancestor(X, Y) & : parent(X, Z), ancestor(Z, Y). \\
\end{align*}
\]

• Exercise: define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: 'Monday', 'Tuesday', 'Wednesday', ...
 - Type definition:
 weekday('Monday').
 weekday('Tuesday'). ...
- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday',23), date('Tuesday',24), ...
 - Type definition:
 date(date(W,D)) :- weekday(W), day_of_month(D).
 day_of_month(1).
 day_of_month(2).
 ...
 day_of_month(31).
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.

- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: \(\emptyset, s(\emptyset), s(s(\emptyset)), \ldots \)
 - Type definition:

 \[
 \begin{align*}
 \text{nat}(\emptyset) & : \text{true} \\
 \text{nat}(s(X)) :&= \text{nat}(X).
 \end{align*}
 \]

 A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).

- Types are *runnable* and can be used to check or produce values:
 - \(?- \text{nat}(X) \Rightarrow X=\emptyset; X=s(\emptyset); X=s(s(\emptyset)); \ldots \)

- We can reason about *complexity*, for a given *class of queries* (“mode”). E.g., for mode \text{nat}(ground) complexity is *linear* in size of number.

- **Example**: integers:
 - Set of terms to represent: \(\emptyset, s(\emptyset), -s(\emptyset), \ldots \)
 - Type definition:

 \[
 \begin{align*}
 \text{integer}(\ X) & : = \text{nat}(X) \\
 \text{integer}(-X) & : = \text{nat}(X).
 \end{align*}
 \]
Recursive Programming: Arithmetic

- Defining the natural order (\leq) of natural numbers:

 \[
 \text{less_or_equal}(0,X) :- \text{nat}(X).
 \]

 \[
 \text{less_or_equal}(s(X),s(Y)) :- \text{less_or_equal}(X,Y).
 \]

 ◦ Multiple uses (modes):

 \[
 \text{less_or_equal}(s(0),s(s(0))), \text{less_or_equal}(X,0),\ldots
 \]

 ◦ Multiple solutions:

 \[
 \text{less_or_equal}(X,s(0)), \text{less_or_equal}(s(s(0)),Y), \text{etc.}
 \]

- Addition:

 \[
 \text{plus}(0,X,X) :- \text{nat}(X).
 \]

 \[
 \text{plus}(s(X),Y,s(Z)) :- \text{plus}(X,Y,Z).
 \]

 ◦ Multiple uses (modes):

 \[
 \text{plus}(s(s(0)),s(0),Z), \text{plus}(s(s(0)),Y,s(0))
 \]

 ◦ Multiple solutions:

 \[
 \text{plus}(X,Y,s(s(s(0))))\text{, etc.}
 \]
Recursive Programming: Arithmetic

- Another possible definition of addition:

  ```prolog
  plus(X,0,X) :- nat(X).
  plus(X,s(Y),s(Z)) :- plus(X,Y,Z).
  ```

- The meaning of `plus` is the same if both definitions are combined.

- Not recommended: several proof trees for the same query \rightarrow not efficient, not concise. We look for minimal axiomatizations.

- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: `times(X,Y,Z) (Z = X*Y)`, `exp(N,X,Y) (Y = X^N)`, `factorial(N,F) (F = N!)`, `minimum(N1,N2,Min)`, ...
Recursive Programming: Arithmetic

• Definition of \(\text{mod}(X, Y, Z) \)
 “Z is the remainder from dividing X by Y”

\[\exists Q \text{ s.t. } X = Y \cdot Q + Z \land Z < Y \]

\[\Rightarrow \]

\[\text{mod}(X, Y, Z) :- \ \text{less}(Z, Y), \ \text{times}(Y, Q, W), \ \text{plus}(W, Z, X). \]

\[\text{less}(0, s(X)) :- \ \text{nat}(X). \]

\[\text{less}(s(X), s(Y)) :- \ \text{less}(X, Y). \]

• Another possible definition:

\[\text{mod}(X, Y, X) :- \ \text{less}(X, Y). \]

\[\text{mod}(X, Y, Z) :- \ \text{plus}(X1, Y, X), \ \text{mod}(X1, Y, Z). \]

• The second is much more efficient than the first one (compare the size of the proof trees).
The Ackermann function:

\[
\text{ackermann}(0, N) = N + 1 \\
\text{ackermann}(M, 0) = \text{ackermann}(M - 1, 1) \\
\text{ackermann}(M, N) = \text{ackermann}(M - 1, \text{ackermann}(M, N - 1))
\]

In Peano arithmetic:

\[
\text{ackermann}(0, N) = s(N) \\
\text{ackermann}(s(M1), 0) = \text{ackermann}(M1, s(0)) \\
\text{ackermann}(s(M1), s(N1)) = \text{ackermann}(M1, \text{ackermann}(s(M1), N1))
\]

Can be defined as:

\[
\text{ackermann}(0, N, s(N)). \\
\text{ackermann}(s(M1), 0, Val) :- \text{ackermann}(M1, s(0), Val). \\
\text{ackermann}(s(M1), s(N1), Val) :- \text{ackermann}(s(M1), N1, Val1), \text{ackermann}(M1, Val1, Val).
\]

In general, functions can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).
Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao *fsyntax* and *functional* packages).
- The Ackermann function (Peano) in Ciao’s functional Syntax and defining `s` as a prefix operator:

```prolog
:- use_package(functional).
:- op(500,fy,s).
ackermann( 0, N) := s N.
ackermann(s M, 0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N) ).
```

- Convenient in other cases – e.g. for defining types:

```prolog
nat(0).
nat(s(X) :- nat(X).
```

Using special `:=` notation for the “return” (last) the argument:

```prolog
nat := 0.
nat := s(X) :- nat(X).
```
Moving body call to head using the ~ notation (“evaluate and replace with result”):

\[
\begin{align*}
\text{nat} & := 0. \\
\text{nat} & := s(\sim \text{nat}).
\end{align*}
\]

“~” not needed with functional package if inside its own definition:

\[
\begin{align*}
\text{nat} & := 0. \\
\text{nat} & := s(\text{nat}).
\end{align*}
\]

Using an \texttt{ :- op(500, fy, s) } declaration to define \texttt{s} as a \textit{prefix operator}:

\[
\begin{align*}
\text{nat} & := 0. \\
\text{nat} & := s \text{ nat}.
\end{align*}
\]

Using “|” (disjunction):

\[
\begin{align*}
\text{nat} & := 0 \mid s \text{ nat}.
\end{align*}
\]

Which is exactly equivalent to:

\[
\begin{align*}
\text{nat}(0). \\
\text{nat}(s(X)) & :- \text{nat}(X).
\end{align*}
\]
Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.

- We need:
 - A constant symbol: we use the *constant* \([\]\) (\(\rightarrow\) denotes the empty list).
 - A functor of arity 2: traditionally the dot “.” (which is overloaded).

- Syntactic sugar: the term \((X,Y)\) is denoted by \([X|Y]\) (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>“Cons pair” syntax</th>
<th>“Element” syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>(., (a, []))</td>
<td>([a</td>
<td>])</td>
</tr>
<tr>
<td>(., (a, ,(b, [])))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(., (a, ,(b, ,(c, []))))</td>
<td>([a</td>
<td>[b</td>
</tr>
<tr>
<td>(., (a, X))</td>
<td>([a</td>
<td>X])</td>
</tr>
<tr>
<td>(., (a, ,(b, X)))</td>
<td>([a</td>
<td>[b</td>
</tr>
</tbody>
</table>

- Note that:
 - \([a, b]\) and \([a|X]\) unify with \(\{X = [b]\}\)
 - \([a]\) and \([a|X]\) unify with \(\{X = [\]\}\)
 - \([a]\) and \([a, b|X]\) do not unify
 - \([\]\) and \([X]\) do not unify
Recursive Programming: Lists (Contd.)

- Type definition (no syntactic sugar):

 \[
 \text{list}([]). \\
 \text{list}(.(X,Y)) :- \text{list}(Y).
 \]

- Type definition, with some syntactic sugar ([] notation):

 \[
 \text{list}([]). \\
 \text{list}([X|Y]) :- \text{list}(Y).
 \]

- Type definition, using also functional package:

 \[
 \text{list} := [] | [_|\text{list}].
 \]

- “Exploring” the type:

 \[
 ?- \text{list}(L). \\
 L = [] ? ; \\
 L = [_] ? ; \\
 L = [_,_] ? ; \\
 L = [_,_,_] ? \\
 L = [_,_,_,_] ? \\
 \ldots
 \]
Recursive Programming: Lists (Contd.)

- **X is a member of the list Y:**

 \[\text{member}(a, [a]). \quad \text{member}(b, [b]). \quad \text{etc. } \Rightarrow \text{member}(X, [X]).\]

 \[\text{member}(a, [a,c]). \quad \text{member}(b, [b,d]). \quad \text{etc. } \Rightarrow \text{member}(X, [X,Y]).\]

 \[\text{member}(a, [a,c,d]). \quad \text{member}(b, [b,d,l]). \quad \text{etc. } \Rightarrow \text{member}(X, [X,Y,Z]).\]

 \[\Rightarrow \text{member}(X, [X|Y]) \leftarrow \text{list}(Y).\]

 \[\text{member}(a, [c,a]), \quad \text{member}(b, [d,b]). \quad \text{etc. } \Rightarrow \text{member}(X, [Y,X]).\]

 \[\text{member}(a, [c,d,a]), \quad \text{member}(b, [s,t,b]). \quad \text{etc. } \Rightarrow \text{member}(X, [Y,Z,X]).\]

 \[\Rightarrow \text{member}(X, [Y|Z]) \leftarrow \text{member}(X, Z).\]

- **Resulting definition:**

 \[
 \begin{align*}
 \text{member}(X, [X|Y]) & \leftarrow \text{list}(Y). \\
 \text{member}(X, [_|T]) & \leftarrow \text{member}(X, T).
 \end{align*}
 \]

- **Uses of member(X,Y):**

 - checking whether an element is in a list (\texttt{member(b,[a,b,c])})

 - finding an element in a list (\texttt{member(X,[a,b,c])})

 - finding a list containing an element (\texttt{member(a,Y)})
Combining lists and naturals:

- Computing the length of a list:

\[
\text{len([],0).} \\
\text{len([H|T],s(LT)) :- len(T,LT)}
\]

- Adding all elements of a list:

\[
\text{sumlist([],0).} \\
\text{sumlist([H|T],S) :- sumlist(T,ST), plus(ST,H,S).}
\]

- The type of lists of natural numbers:

\[
\text{natlist([],0).} \\
\text{natlist([H|T]) :- natlist(T,ST), nat(ST,H,S).} \\
\text{or:} \\
\text{natlist := [\neg nat|natlist].}
\]
Exercises:

- Define: \texttt{prefix}(X, Y) (the list \(X\) is a prefix of the list \(Y\)), e.g.
 \texttt{prefix([a, b], [a, b, c, d])}
- Define: \texttt{suffix}(X, Y), \texttt{sublist}(X, Y),...
Recursive Programming: Lists (Contd.)

- Concatenation of lists:
 - Base case:

 \[
 \text{append}([], [a], [a]). \quad \text{append}([], [a,b], [a,b]). \quad \text{etc.}
 \]

 \[\Rightarrow \text{append}([], Ys, Ys) :- \text{list}(Ys).\]

 - Rest of cases (first step):

 \[
 \text{append}([a], [b], [a,b]).
 \text{append}([a], [b,c], [a,b,c]). \quad \text{etc.}
 \]

 \[\Rightarrow \text{append}([X], Ys, [X|Ys]) :- \text{list}(Ys).\]

 \[
 \text{append}([a,b], [c], [a,b,c]).
 \text{append}([a,b], [c,d], [a,b,c,d]). \quad \text{etc.}
 \]

 \[\Rightarrow \text{append}([X,Z], Ys, [X,Z|Ys]) :- \text{list}(Ys).\]

This is still infinite \[\Rightarrow\] we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:

 append([X],Ys,[X|Ys]) :- list(Ys).
 append([X,Z],Ys,[X,Z|Ys]) :- list(Ys).
 append([X,Z,W],Ys,[X,Z,W|Ys]) :- list(Ys).

 $$\Rightarrow$$ append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

- So, we have:

 append([],Ys,Ys) :- list(Ys).
 append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

- Another way of reasoning: thinking inductively.

 ◯ The base case is: append([],Ys,Ys):-list(Ys).
 ◯ If we assume that append(Zs,Ys,Zs) works for some iteration, then, in the next one, the following holds: append(s(Zs),Ys,s(Zs)).
Recursive Programming: Lists (Contd.)

- Uses of append:
 - Concatenate two given lists:

    ```
    \[ \text{?- append([a, b, c], [d, e], L).} \]
    \[ \text{L = [a, b, c, d, e} \text{].} \]
    ```
 - Find differences between lists:

    ```
    \[ \text{?- append(D, [d, e], [a, b, c, d, e]).} \]
    \[ \text{D = [a, b, c].} \]
    ```
 - Split a list:

    ```
    \[ \text{?- append(A,B,[a,b,c,d,e]).} \]
    \[ \text{A = [],} \]
    \[ \text{B = [a,b,c,d,e} \text{].} \]
    \[ \text{A = [a],} \]
    \[ \text{B = [b,c,d,e} \text{].} \]
    \[ \text{A = [a,b],} \]
    \[ \text{B = [c,d,e} \text{].} \]
    \[ \text{A = [a,b,c],} \]
    \[ \text{B = [d,e} \text{].} \]
    ```
Recursive Programming: Lists (Contd.)

• `reverse(Xs, Ys)`: Ys is the list obtained by reversing the elements in the list Xs.
 It is clear that we will need to traverse the list Xs. For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

```prolog
reverse([X|Xs], Ys) :-
    reverse(Xs, Zs),
    append(Zs, [X], Ys).
```

How can we stop?

```prolog
reverse([], []).
```

• As defined, `reverse(Xs, Ys)` is very inefficient. Another possible definition: (uses an *accumulating parameter*):

```prolog
reverse(Xs, Ys) :- reverse(Xs, [], Ys).

reverse([], Ys, Ys).
reverse([X|Xs], Acc, Ys) :- reverse(Xs, [X|Acc], Ys).
```

⇒ Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor tree(Element,Left,Right).
- Empty tree represented by void.
- Definition:

 binary_tree(void).
 binary_tree(tree(Element,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).

- Defining tree_member(Element,Tree):

 tree_member(X,tree(X,Left,Right)) :-
 binary_tree(Left),
 binary_tree(Right).
 tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Left).
 tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Right).
Recursive Programming: Binary Trees

- Defining **pre_order**(Tree, Elements): Elements is a list containing the elements of Tree traversed in *preorder*.

```
pre_order(void, []).
pre_order(tree(X, Left, Right), Elements) :-
    pre_order(Left, ElementsLeft),
    pre_order(Right, ElementsRight),
    append([X | ElementsLeft], ElementsRight, Elements).
```

- Exercise – define:
 - **in_order**(Tree, Elements)
 - **post_order**(Tree, Elements)
Polymorphism

- Note that the two definitions of `member/2` can be used *simultaneously*:

```prolog
lt_member(X, [X|Y]) :- list(Y).
ltrasound Member(X, [_|T]) :- lt_member(X,T).
```

```prolog
lt_member(X, tree(X,L,R)) :- binary_tree(L), binary_tree(R).
ltrasound Member(X, tree(Y,L,R)) :- lt_member(X,L).
ltrasound Member(X, tree(Y,L,R)) :- lt_member(X,R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

- `:- lt_member(X, [b,a,c]).`
 `X = b ; X = a ; X = c`

- `:- lt_member(X, tree(b, tree(a, void, void), tree(c, void, void))).`
 `X = b ; X = a ; X = c`

- Also, try (somewhat surprising): `:- lt_member(M,T).`
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing (and generating!) polynomials in some term X:
 - X is a polynomial in X
 - a constant is a polynomial in X
 - sums, differences and products of polynomials in X are polynomials
 - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

\[
\begin{align*}
\text{polynomial}(X, X). \\
\text{polynomial}(\text{Term}, X) & \quad : \quad \text{pconstant(Term)}. \\
\text{polynomial}(\text{Term}_1 + \text{Term}_2, X) & \quad : \quad \text{polynomial}(% X, X). \\
\text{polynomial}(\text{Term}_1 - \text{Term}_2, X) & \quad : \quad \text{polynomial}(% X, X). \\
\text{polynomial}(\text{Term}_1 \ast \text{Term}_2, X) & \quad : \quad \text{polynomial}(% X, X). \\
\text{polynomial}(\text{Term}_1 / \text{Term}_2, X) & \quad : \quad \text{polynomial}(% X, X), \ \text{pconstant(Term}_2). \\
\text{polynomial}(\text{Term}_1 \wedge \text{N}, X) & \quad : \quad \text{polynomial}(% X, X), \ \text{nat(N)}.
\end{align*}
\]
Symbolic differentiation: deriv(Expression, X, DifferentiatedExpression)

- deriv(X, X, s(0)).
- deriv(C, X, 0) :- pconstant(C).
- deriv(U + V, X, DU + DV) :- deriv(U, X, DU), deriv(V, X, DV).
- deriv(U - V, X, DU - DV) :- deriv(U, X, DU), deriv(V, X, DV).
- deriv(U * V, X, DU * V + U * DV) :- deriv(U, X, DU), deriv(V, X, DV).
- deriv(U / V, X, (DU * V - U * DV) / V^s(s(0))) :- deriv(U, X, DU), deriv(V, X, DV).
- deriv(U^s(N), X, s(N) * U^N * DU) :- deriv(U, X, DU), nat(N).
- deriv(log(U), X, DU / U) :- deriv(U, X, DU).

?- deriv(s(s(s(0))) * x + s(s(0)), x, Y).

A simplification step can be added.
Recursive Programming: Automata (Graphs)

- Recognizing the sequence of characters accepted by the following *non-deterministic, finite automaton* (NDFA):

 ![Automaton Diagram]

 where \(q_0 \) is both the *initial* and the *final* state.

- Strings are represented as lists of constants (e.g., \([a, b, b]\)).

- Program:

  ```prolog
  initial(q0). delta(q0,a,q1).
  delta(q1,b,q0).
  final(q0). delta(q1,b,q1).

  accept(S) :- initial(Q), accept_from(S,Q).

  accept_from([],Q) :- final(Q).
  accept_from([X|Xs],Q) :- delta(Q,X,NewQ), accept_from(Xs,NewQ).
  ```
A nondeterministic, stack, finite automaton (NDSFA):

```prolog
accept(S) :- initial(Q), accept_from(S,Q,[]).

accept_from([],Q,[]) :- final(Q).
accept_from([X|Xs],Q,S) :- delta(Q,X,S,NewQ,NewS),
    accept_from(Xs,NewQ,NewS).

initial(q0).
final(q1).

delta(q0,X,Xs,q0,[X|Xs]).
delta(q0,X,Xs,q1,[X|Xs]).
delta(q0,X,Xs,q1,Xs).
delta(q1,X,[X|Xs],q1,Xs).
```

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.

Diagram:

- **N = 1**
 - Peg a
 - Peg b
 - Peg c

- **N = 2**
 - Move one disk from peg a to peg b.
 - Move one disk from peg c to peg a.
 - Move one disk from peg b to peg c.

- **N = 3**
 - Move one disk from peg a to peg c.
 - Move one disk from peg b to peg a.
 - Move one disk from peg c to peg b.
 - Move one disk from peg a to peg b.
 - Move one disk from peg c to peg a.
 - Move one disk from peg b to peg c.
 - Move one disk from peg a to peg c.

- **End State**
 - Peg a
 - Peg b
 - Peg c
We will call the main predicate `hanoi_moves(N,Moves)`

- **N** is the number of disks and **Moves** the corresponding list of “moves”.
- Each move `move(A, B)` represents that the top disk in A should be moved to B.
- **Example:**

```
hanoi_moves( s(s(s(0))),
             [ move(a,b), move(a,c), move(b,c), move(a,b),
               move(c,a), move(c,b), move(a,b) ])
```
Recursive Programming: Towers of Hanoi (Contd.)

- A general rule:

- We capture this in a predicate $\text{hanoi}(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves})$ where “Moves contains the moves needed to move a tower of N disks from peg Orig to peg Dest, with the help of peg Help.”

$$\text{hanoi}(s(0), \text{Orig}, \text{Dest}, {_\text{Help}}, [\text{move}(\text{Orig}, \text{ Dest})]).$$
$$\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) :-$$
$$\text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}),$$
$$\text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}),$$
$$\text{append}(\text{Moves1}, [\text{move}(\text{Orig}, \text{ Dest})|\text{Moves2}], \text{Moves}).$$

- And we simply call this predicate:

$$\text{hanoi_moves}(N, \text{Moves}) :-$$
$$\text{hanoi}(N, a, b, c, \text{Moves}).$$
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult? (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., "forwards execution"), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same "schemas."
- Using a global top-down design approach can help (in general, not just for recursive programs):
 - State the general problem.
 - Break it down into subproblems.
 - Solve the pieces.
- Again, the best approach: practice, practice, practice.