Computational Logic

A “Hands-on” Introduction to Pure Logic Programming
Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

• **Variables**: start with uppercase character (or “_”), may include “_” and digits:

 Examples: X, Im4u, A_little_garden, _, _x, _22

• **Constants**: lowercase first character, may include “_” and digits. Also, numbers and some special characters. Quoted, any character:

 Examples: a, dog, a_big_cat, 23, ’Hungry man’, []

• **Structures**: a **functor** (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

 Example: date(monday, Month, 1994)

Arguments can in turn be variables, constants and structures.

◊ **Arity**: is the number of arguments of a structure. Functors are represented as *name/arity*. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a “first–order language”): the **data structures** of a logic program.
Syntax: Terms

(using Prolog notation conventions)

- **Examples of terms**:

<table>
<thead>
<tr>
<th>Term</th>
<th>Type</th>
<th>Main functor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dad</td>
<td>constant</td>
<td>dad/0</td>
</tr>
<tr>
<td>time(min, sec)</td>
<td>structure</td>
<td>time/2</td>
</tr>
<tr>
<td>pair(Calvin, tiger(Hobbes))</td>
<td>structure</td>
<td>pair/2</td>
</tr>
<tr>
<td>Tee(Alf, rob)</td>
<td>illegal</td>
<td>—</td>
</tr>
<tr>
<td>A_good_time</td>
<td>variable</td>
<td>—</td>
</tr>
</tbody>
</table>

- **Functors** can be defined as **prefix**, **postfix**, or **infix** [operators](#) (just syntax!):

 - $a + b$ is the term $'+'(a,b)$ if $+/2$ declared infix
 - $- b$ is the term $'-'(b)$ if $-/1$ declared prefix
 - $a < b$ is the term $'<'(a,b)$ if $</2$ declared infix

 john father *mary* is the term *father*(john,mary) if father/2 declared infix

We assume that some such operator definitions are always preloaded.
Syntax: Rules and Facts (Clauses)

- **Rule**: an expression of the form:

 \[p_0(t_1, t_2, \ldots, t_{n_0}) \leftarrow \]
 \[p_1(t^1_1, t^1_2, \ldots, t^1_{n_1}), \]

 \[\ldots \]

 \[p_m(t^m_1, t^m_2, \ldots, t^m_{n_m}). \]

 - \(p_0(\ldots) \) to \(p_m(\ldots) \) are *syntactically* like *terms*.
 - \(p_0(\ldots) \) is called the **head** of the rule.
 - The \(p_i \) to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.

- **Fact**: an expression of the form \(p(t_1, t_2, \ldots, t_n) \) (i.e., a rule with empty body).

Example:

- meal(soup, beef, coffee).
- meal(First, Second, Third) :-
 - appetizer(First),
 - main_dish(Second),
 - dessert(Third).

- Rules and facts are both called **clauses**.
• **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

Examples:

\[
\begin{align*}
\text{pet}(\text{spot}). & \quad \text{animal}(\text{spot}). \\
\text{pet}(X) :&= \text{animal}(X), \text{barks}(X). \quad \text{animal}(\text{barry}) . \\
\text{pet}(X) :&= \text{animal}(X), \text{meows}(X). \quad \text{animal}(\text{hobbes}).
\end{align*}
\]

Predicate `pet/1` has three clauses. Of those, one is a fact and two are rules. Predicate `animal/1` has three clauses, all facts.

• **Logic Program**: a set of predicates.

• **Query**: an expression of the form:
 \[
 \leftarrow p_1(t_1^1, \ldots, t_{n_1}^1), \ldots, p_n(t_1^n, \ldots, t_{n_m}^n).
 \]
 (i.e., a clause without a head).

 A query represents a *question to the program*.

Example: \(\text{:- pet}(X). \)
“Declarative” Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

- **Facts**: state things that are true.
 (Note that a fact “p.” can be seen as the rule “p :- true.”)

 Example: the fact `animal(spot)` can be read as “spot is an animal”.

- **Rules**:

 - Commas in rule bodies represent conjunction, i.e.,

 \[p \leftarrow p_1, \cdots, p_m \]

 represents \[p \leftarrow p_1 \land \cdots \land p_m \].

 - “`” represents as usual logical implication.

 Thus, a rule \[p \leftarrow p_1, \cdots, p_m \] means “if \(p_1 \) and \ldots and \(p_m \) are true, then \(p \) is true”

 Example: the rule `pet(X) :- animal(X), barks(X).` can be read as “\(X \) is a pet if \(X \) is an animal and it barks.”
“Declarative” Meaning of Predicates and Queries

- **Predicates**: clauses in the same predicate

 \[p \leftarrow p_1, \ldots, p_n \]

 \[p \leftarrow q_1, \ldots, q_m \]

 ... provide different alternatives (for \(p \)).

 Example: the rules

 \[
 \text{pet}(X) :- \text{animal}(X), \text{barks}(X).
 \]

 \[
 \text{pet}(X) :- \text{animal}(X), \text{meows}(X).
 \]

 express two ways for \(x \) to be a pet.

- **Note** (variable *scope*): the \(x \) vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used—as with vars. local to a procedure in conventional languages).

- A **query** represents a *question to the program*.

 Examples:

 \[
 \text{:- pet(spot).}
 \]

 asks whether \textit{spot} is a pet.

 \[
 \text{:- pet}(X).
 \]

 asks: “Is there an \(X \) which is a pet?”
“Execution” and Semantics

- Example of a logic program:

 \[
 \begin{align*}
 \text{pet}(X) & : - \text{animal}(X), \text{barks}(X). \\
 \text{pet}(X) & : - \text{animal}(X), \text{meows}(X).
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{animal}(\text{spot}). \\
 \text{animal}(\text{barry}). \\
 \text{animal}(\text{hobbes}). \\
 \text{barks}(\text{spot}). \\
 \text{meows}(\text{barry}). \\
 \text{roars}(\text{hobbes}).
 \end{align*}
 \]

- **Execution**: given a program and a query, *executing* the logic program is attempting to find an answer to the query.

 Example: given the program above and the query \(\text{:- pet}(X). \) the system will try to find a “substitution” for \(X \) which makes \(\text{pet}(X) \) true.

 ◦ The **declarative semantics** specifies *what* should be computed (all possible answers).

 ⇒ Intuitively, we have two possible answers: \(X = \text{spot} \) and \(X = \text{barry} \).

 ◦ The **operational semantics** specifies *how* answers are computed (which allows us to determine *how many steps* it will take).
We will be using *Ciao*, a multiparadigm programming system which includes (as one of its “paradigms”) a *pure logic programming* subsystem:

- A number of *fair* search rules are available (breadth-first, iterative deepening, ...): we will use “all clauses in breadth-first” (*bfall*).
- Also, a module can be set to *pure* mode so that impure built-ins are not accessible to the code in that module.
- This provides a reasonable first approximation of “Greene’s dream” (of course, at a cost in memory and execution time).

Writing programs to execute in *bfall* mode:

- Files should start with the following line:

  ```prolog
  :- module(_,_,[’bf/bfall’]).
  ```

 or, for “user” files, i.e., files that are not modules:

  ```prolog
  :- use_package(’bf/bfall’).
  ```
Ciao Programming Environment: file being edited and top-level

```
:- module(_,_,[functions,clpq]).

% A function
fact(0) := 1.
fact(N) := N * fact(N-1) :- N > 0.

% A predicate
append([],X,X).
append([X|Y],Z,[X|W]) :-
        append(Y,Z,W).

% Using constraints (CLP(Q))
fib(X,Y) :- X =. 0, Y =. 0.
fib(X,Y) :- X =. 1, Y =. 1.
fib(N,F) :- N >. 1,
           N1 =. N - 1,
           N2 =. N - 2,
           fib(N1,F1),
           fib(N2,F2),
           F =. F1+F2.
```

```
Ciao 1.11 #308: Mon Mar 14 15:23:07 CET 2005
?
```
Top Level Interaction Example

- File *pets.pl* contains:

  ```prolog
  :- module(_,_,['bf/bfall']).
  + the pet example code as in previous slides.
  ```

- Interaction with the system query evaluator (the “top level”):

 Ciao 1.13 #0: Mon Nov 7 09:48:51 MST 2005
 ?- use_module(pets).
 yes
 ?- pet(spot).
 yes
 ?- pet(X).
 X = spot ;
 X = barry ;
 no
 ?-
Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of procedure definitions (the predicates).

- A query \(\leftarrow p \) is an initial procedure call.

- A procedure definition with one clause \(p \leftarrow p_1, \ldots, p_m \) means:
 “to execute a call to \(p \) you have to call \(p_1 \) and \(\ldots \) and \(p_m \)”

 - In principle, the order in which \(p_1, \ldots, p_n \) are called does not matter, but, in practical systems it is fixed.

- If several clauses (definitions) \(p \leftarrow p_1, \ldots, p_n \)
 \(p \leftarrow q_1, \ldots, q_m \)

 “to execute a call to \(p \), call \(p_1 \land \ldots \land p_n \), or, alternatively, \(q_1 \land \ldots \land q_n \), or \(\ldots \)”

 - Unique to logic programming—it is like having several alternative procedure definitions.
 - Means that several possible paths may exist to a solution and they should be explored.
 - System usually stops when the first solution found, user can ask for more.
 - Again, in principle, the order in which these paths are explored does not matter (if certain conditions are met), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.
Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - “Return” values.

- It is also used to:
 - Access parts of structures.
 - Give values to variables.

- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.
Unification

- **Unifying two terms (or literals) A and B:** is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - i.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, fail).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ</th>
<th>$A\theta$</th>
<th>$B\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog</td>
<td>dog</td>
<td>\emptyset</td>
<td>dog</td>
<td>dog</td>
</tr>
<tr>
<td>X</td>
<td>a</td>
<td>${X = a}$</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>${X = Y}$</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>$f(X, g(t))$</td>
<td>$f(m(h), g(M))$</td>
<td>${X=m(h), M=t}$</td>
<td>$f(m(h), g(t))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
<tr>
<td>$f(X, X)$</td>
<td>$f(Y, l(Y))$</td>
<td>Impossible (1)</td>
<td>$f(m(h), t(M))$</td>
<td>$f(m(h), g(t))$</td>
</tr>
</tbody>
</table>

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the **occurs check**.
Unification

• Often several solutions exist, e.g.:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>{ $X=m(a), H=a, M=b, T=b$ }</td>
<td>{ $f(m(a), g(b))$ }</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>{ $X=m(H), M=f(A), T=f(A)$ }</td>
<td>{ $f(m(H), g(f(A)))$ }</td>
</tr>
</tbody>
</table>

These are correct, but a simpler (“more general”) solution exists:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>θ_1</th>
<th>$A\theta_1$ and $B\theta_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(X, g(T))$</td>
<td>$f(m(H), g(M))$</td>
<td>{ $X=m(H), T=M$ }</td>
<td>{ $f(m(H), g(M))$ }</td>
</tr>
</tbody>
</table>

• Always a unique (modulo variable renaming) most general solution exists (unless unification fails).

• This is the one that we are interested in.

• The unification algorithm finds this solution.
Unification Algorithm

• Let A and B be two terms:

1. $\theta = \emptyset$, $E = \{A = B\}$
2. while not $E = \emptyset$:
 2.1 delete an equation $T = S$ from E
 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 * (occur check) if T occurs in the term $S \rightarrow$ halt with failure
 * substitute variable T by term S in all terms in θ
 * substitute variable T by term S in all terms in E
 * add $T = S$ to θ
 2.3 case T and S are non-variable terms:
 * if their names or arities are different \rightarrow halt with failure
 * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S
 * add $\{T_1 = S_1, \ldots, T_n = S_n\}$ to E
3. halt with θ being the m.g.u of A and B
Unification Algorithm Examples (I)

• Unify: \(A = p(X, X) \) and \(B = p(f(Z), f(W)) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, X) = p(f(Z), f(W)) }</td>
<td>p(X, X)</td>
<td>p(f(Z), f(W))</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = f(Z), X = f(W) }</td>
<td>X</td>
<td>f(Z)</td>
</tr>
<tr>
<td>{ X = f(Z) }</td>
<td>{ f(Z) = f(W) }</td>
<td>f(Z)</td>
<td>f(W)</td>
</tr>
<tr>
<td>{ X = f(W), Z = W }</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Unify: \(A = p(X, f(Y)) \) and \(B = p(Z, X) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(E)</th>
<th>(T)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ }</td>
<td>{ p(X, f(Y)) = p(Z, X) }</td>
<td>p(X, f(Y))</td>
<td>p(Z, X)</td>
</tr>
<tr>
<td>{ }</td>
<td>{ X = Z, f(Y) = X }</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = Z }</td>
<td>{ f(Y) = Z }</td>
<td>f(Y)</td>
<td>Z</td>
</tr>
<tr>
<td>{ X = f(Y), Z = f(Y) }</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unification Algorithm Examples (II)

• Unify: \(A = p(X, f(Y)) \) and \(B = p(a, g(b)) \)

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{} & \{ p(X, f(Y)) = p(a, g(b)) \} & p(X, f(Y)) & p(a, g(b)) \\
\{} & \{ X = a, f(Y) = g(b) \} & X & a \\
\{ X = a \} & \{ f(Y) = g(b) \} & f(Y) & g(b) \\
\end{array}
\]

 fail

• Unify: \(A = p(X, f(X)) \) and \(B = p(Z, Z) \)

\[
\begin{array}{c|c|c|c}
\theta & E & T & S \\
\hline
\{} & \{ p(X, f(X)) = p(Z, Z) \} & p(X, f(X)) & p(Z, Z) \\
\{} & \{ X = Z, f(X) = Z \} & X & Z \\
\{ X = Z \} & \{ f(Z) = Z \} & f(Z) & Z \\
\end{array}
\]

 fail
A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P, a query Q
Output: Q_{μ} (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be \{Q\}
2. While R is nonempty do:
 2.1. Take the leftmost literal A in R
 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from P, such that A and A' unify with unifier θ
 (if no such clause can be found, branch is failure; explore another branch)
 2.3. Remove A from R, add B_1, \ldots, B_n to R
 2.4. Apply θ to R and Q
3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

- Step 2.2 defines alternative paths to be explored to find answer(s); execution explores this tree (for example, breadth-first).
Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)

- **Search rule(s):** “how are clauses/branches selected in 2.2.”

If the search rule is not specified execution is *nondeterministic*, since choosing a different clause (in step 2.2) can lead to different solutions (finding solutions in a different order).

Example (two valid executions):

```prolog
?- pet(X).
X = spot ;
X = barry ;
no
?- pet(X).
X = barry ;
X = spot ;
no
?- 
```

In fact, there is also some freedom in step 2.1, i.e., a system may also specify:

- **Computation rule(s):** “how are literals selected in 2.1.”
Running programs

\[C_1: \text{pet}(X) :- \text{animal}(X), \text{barks}(X). \]
\[C_2: \text{pet}(X) :- \text{animal}(X), \text{meows}(X). \]
\[C_3: \text{animal}(\text{spot}). \]
\[C_4: \text{animal}(\text{barry}). \]
\[C_5: \text{animal}(\text{hobbes}). \]
\[C_6: \text{barks}(\text{spot}). \]
\[C_7: \text{meows}(\text{barry}). \]
\[C_8: \text{roars}(\text{hobbes}). \]

\[:- \text{pet}(P). \]

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_2^*)</td>
<td>({ P = X_1 })</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), meows((X_1))</td>
<td>(C_4^*)</td>
<td>({ X_1 = \text{barry} })</td>
</tr>
<tr>
<td>pet((\text{barry}))</td>
<td>meows((\text{barry}))</td>
<td>(C_7)</td>
<td>{}</td>
</tr>
<tr>
<td>pet((\text{barry}))</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- * means there is a choice-point, i.e., there are other clauses whose head unifies.

- System response: \(P = \text{barry} \)

- If we type “;” after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in \(C_2^* \) or \(C_4^* \)).
Running programs (different strategy)

C₁: pet(X) :- animal(X), barks(X).
C₂: pet(X) :- animal(X), meows(X).
C₃: animal(spot).
C₄: animal(barry).
C₅: animal(hobbes).
C₆: barks(spot).
C₇: meows(barry).
C₈: roars(hobbes).

\[:- \text{pet}(P). \]
\[\text{(different strategy)} \]

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C₁)</td>
<td>({ P = X₁ })</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), barks(X₁)</td>
<td>(C₅)</td>
<td>({ X₁ = \text{hobbes} })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(C₆)</td>
<td>({ })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\[\rightarrow \text{explore another branch (different choice in } C₁ \text{ or } C₅ \text{)} \text{ to find a solution.} \]

We take \(C₃ \) instead of \(C₅ \):

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C₃)</td>
<td>({ P = X₁ })</td>
</tr>
<tr>
<td>pet(X₁)</td>
<td>animal(X₁), barks(X₁)</td>
<td>(C₃)</td>
<td>({ X₁ = \text{spot} })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(C₆)</td>
<td>({ })</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The Search Tree

- A query + a logic program together specify a *search tree*.

 Example: query ← \texttt{pet(X)} with the previous program generates this search tree (the boxes represent the “and” parts [except leaves]):

- Different query → different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?
Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.
Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.
Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao’s `bf` package).
Role of Unification in Execution and Modes

- As mentioned before, unification used to **access data** and **give values to variables**.

 Example: Consider query :- animal(A), named(A,Name). with:

 animal(dog(barry)). named(dog(Name),Name).

- Also, unification is used to **pass parameters** in procedure calls and to **return values** upon procedure exit.

<table>
<thead>
<tr>
<th>(Q)</th>
<th>(R)</th>
<th>Clause</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pet(P)</td>
<td>pet(P)</td>
<td>(C_1^*)</td>
<td>{P=X_1}</td>
</tr>
<tr>
<td>pet((X_1))</td>
<td>animal((X_1)), barks((X_1))</td>
<td>(C_3^*)</td>
<td>{(X_1=\text{spot} }}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>barks(spot)</td>
<td>(C_6)</td>
<td>{}</td>
</tr>
<tr>
<td>pet(spot)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- In fact, argument positions are not fixed a priori to be input or output.

 Example: Consider query :- pet(spot). vs. :- pet(X).

or :- add(s(0),s(s(0)),Z). vs. :- add(s(0),Y,s(s(s(0)))).

- Thus, procedures can be used in different **modes** (different sets of arguments are input or output in each mode).
A Logic Database is a set of facts and rules (i.e., a logic program):

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

\[
\text{grandfather_of}(L,M) :\text{ father_of}(L,N), \\
\text{father_of}(N,M).
\]

\[
\text{grandfather_of}(X,Y) :\text{ father_of}(X,Z), \\
\text{mother_of}(Z,Y).
\]

Given such database, a logic programming system can answer questions (queries) such as:

\[\text{father_of}(joh,\text{n, peter}).\]
Answer: Yes
\[\text{father_of}(joh,\text{n, david}).\]
Answer: No
\[\text{father_of}(joh, X).\]
Answer: \(X = \text{peter}\)
Answer: \(X = \text{mary}\)

Rules for \text{grandmother_of}(X, Y)?

\[\text{grandfather_of}(X,\text{ michael}).\]
Answer: \(X = \text{john}\)
\[\text{grandfather_of}(X, Y).\]
Answer: \(X = \text{john}, Y = \text{michael}\)
Answer: \(X = \text{john}, Y = \text{david}\)
\[\text{grandfather_of}(X, X).\]
Answer: No
Another example:

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
 transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
 transistor(Input1,X,Output), transistor(Input2,ground,X),
 resistor(power,Output).

and_gate(Input1,Input2,Output) :-
 nand_gate(Input1,Input2,X), inverter(X, Output).

Query and_gate(In1,In2,Out) has solution: \{In1=n3, In2=n5, Out=n1\}
Structured Data and Data Abstraction (and the ‘=’ Predicate)

- **Data structures** are created using (complex) terms.

- Structuring data is important:
  ```prolog
course(complog,wed,19,00,20,30,’M.’,’Hermenegildo’,new,5102).
```

- When is the Computational Logic course?
  ```prolog
```

- Structured version:
  ```prolog
course(complog,Time,Lecturer, Location) :-
    Time = t(wed,18:30,20:30),
    Lecturer = lect(’M.’,’Hermenegildo’),
    Location = loc(new,5102).
```

Note: “X=Y” is equivalent to “’=’(X,Y)” where the predicate =/2 is defined as the fact “’=’(X,X).” – Plain unification!

- Equivalent to:
  ```prolog
course(complog, t(wed,18:30,20:30),
    lect(’M.’,’Hermenegildo’), loc(new,5102)).
```
Structured Data and Data Abstraction (and The Anonymous Variable)

• Given:

 course(complog,Time,Lecturer, Location) :-

 Time = t(wed,18:30,20:30),
 Lecturer = lect('M.','Hermenegildo'),
 Location = loc(new,5102).

• When is the Computational Logic course?

 :- course(complog,Time, A, B).

 has solution:

 \{Time=t(wed,18:30,20:30), A=lect('M.','Hermenegildo'), B=loc(new,5102)\}

• Using the **anonymous variable** (“_”):

 :- course(complog,Time, _, _).

 has solution:

 \{Time=t(wed,18:30,20:30)\}
Structured Data and Data Abstraction (Contd.)

• The circuit example revisited:

\[
\begin{align*}
\text{resistor}(r1, \text{power}, n1). & \quad \text{transistor}(t1, n2, \text{ground}, n1). \\
\text{resistor}(r2, \text{power}, n2). & \quad \text{transistor}(t2, n3, n4, n2). \\
& \quad \text{transistor}(t3, n5, \text{ground}, n4).
\end{align*}
\]

\[
\text{inverter}(\text{inv}(T,R), \text{Input}, \text{Output}) :\neg \\
\text{transistor}(T, \text{Input}, \text{ground}, \text{Output}), \text{resistor}(R, \text{power}, \text{Output}).
\]

\[
\text{nand_gate}(\text{nand}(T1, T2, R), \text{Input1}, \text{Input2}, \text{Output}) :\neg \\
\text{transistor}(T1, \text{Input1}, X, \text{Output}), \text{transistor}(T2, \text{Input2}, \text{ground}, X), \\
\text{resistor}(R, \text{power}, \text{Output}).
\]

\[
\text{and_gate}(\text{and}(N, I), \text{Input1}, \text{Input2}, \text{Output}) :\neg \\
\text{nand_gate}(N, \text{Input1}, \text{Input2}, X), \text{inverter}(I, X, \text{Output}).
\]

• The query \[\text{:- \ and_gate}(G, \text{In1}, \text{In2}, \text{Out}).\]

has solution: \{
\text{G=and(nand(t2,t3,r2),inv(t1,r1))}, \text{In1=n3, In2=n5, Out=n1}\}
Logic Programs and the Relational DB Model

Traditional → **Codd’s Relational Model**

<table>
<thead>
<tr>
<th>File</th>
<th>Relation</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record</td>
<td>Tuple</td>
<td>Row</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute</td>
<td>Column</td>
</tr>
</tbody>
</table>

- **Example:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>

- The order of the rows is immaterial.
- (Duplicate rows are not allowed)
Logic Programs and the Relational DB Model (Contd.)

- **Relational Database** → **Logic Programming**
- Relation Name → Predicate symbol
- Relation → Procedure consisting of ground facts (facts without variables)
- Tuple → Ground fact
- Attribute → Argument of predicate

Example:
- person(brown,20,male).
- person(jones,21,female).
- person(smith,36,male).

Example:
- lived_in(brown,london,15).
- lived_in(brown,york,5).
- lived_in(jones,paris,21).
- lived_in(smith,brussels,15).
- lived_in(smith,santander,5).

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>20</td>
<td>M</td>
</tr>
<tr>
<td>Jones</td>
<td>21</td>
<td>F</td>
</tr>
<tr>
<td>Smith</td>
<td>36</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Town</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>London</td>
<td>15</td>
</tr>
<tr>
<td>Brown</td>
<td>York</td>
<td>5</td>
</tr>
<tr>
<td>Jones</td>
<td>Paris</td>
<td>21</td>
</tr>
<tr>
<td>Smith</td>
<td>Brussels</td>
<td>15</td>
</tr>
<tr>
<td>Smith</td>
<td>Santander</td>
<td>5</td>
</tr>
</tbody>
</table>
• The operations of the relational model are easily implemented as rules.

 ◊ **Union:**

 \[
 \text{r\textunderscore\text{union}\textunderscore s}(X_1,\ldots,X_n) \leftarrow r(X_1,\ldots,X_n).
 \]

 \[
 \text{r\textunderscore\text{union}\textunderscore s}(X_1,\ldots,X_n) \leftarrow s(X_1,\ldots,X_n).
 \]

 ◊ **Set Difference:**

 \[
 \text{r\textunderscore\text{diff}\textunderscore s}(X_1,\ldots,X_n) \leftarrow r(X_1,\ldots,X_n), \neg s(X_1,\ldots,X_n).
 \]

 \[
 \text{r\textunderscore\text{diff}\textunderscore s}(X_1,\ldots,X_n) \leftarrow s(X_1,\ldots,X_n), \neg r(X_1,\ldots,X_n).
 \]

 (we postpone the discussion on *negation* until later.)

 ◊ **Cartesian Product:**

 \[
 \text{r\textunderscore s}(X_1,\ldots,X_m,X_{m+1},\ldots,X_{m+n}) \leftarrow r(X_1,\ldots,X_m), s(X_{m+1},\ldots,X_{m+n}).
 \]

 ◊ **Projection:**

 \[
 \text{r\textunderscore 1\textunderscore 3}(X_1,X_3) \leftarrow r(X_1,X_2,X_3).
 \]

 ◊ **Selection:**

 \[
 \text{r\textunderscore\text{selected}}(X_1,X_2,X_3) \leftarrow r(X_1,X_2,X_3), \leq(X_2,X_3).
 \]

 (see later for definition of \(\leq/2\))
Logic Programs and the Relational DB Model (Contd.)

- Derived operations – some can be expressed more directly in LP:
 - Intersection:
 \[r\text{_meet}_s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n). \]
 - Join:
 \[r\text{_joinX2}_s(X_1, \ldots, X_n) \leftarrow r(X_1, X_2, X_3, \ldots, X_n), s(X_1', X_2, X_3', \ldots, X_n'). \]

- Duplicates an issue: see “setof” later in Prolog.
The subject of “deductive databases” uses these ideas to develop logic-based databases.

- Often syntactic restrictions (a subset of definite programs) used (e.g. “Datalog” – no functors, no existential variables).

- Variations of a “bottom-up” execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
Recursive Programming

- **Example**: ancestors.

 parent(X,Y) :- father(X,Y).
 parent(X,Y) :- mother(X,Y).

 ancestor(X,Y) :- parent(X,Y).
 ancestor(X,Y) :- parent(X,Z), parent(Z,Y).
 ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,Y).
 ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).
 ...

- **Defining ancestor recursively**:

 parent(X,Y) :- father(X,Y).
 parent(X,Y) :- mother(X,Y).

 ancestor(X,Y) :- parent(X,Y).
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

- **Exercise**: define “related”, “cousin”, “same generation”, etc.
Types

- **Type**: a (possibly infinite) set of terms.
- **Type definition**: A program defining a type.
- **Example**: Weekday:
 - Set of terms to represent: Monday, Tuesday, Wednesday, ...
 - Type definition:
    ```prolog
    is_weekday('Monday').
    is_weekday('Tuesday'). ...
    ```
- **Example**: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday', 23), date(Tuesday, 24), ...
 - Type definition:
    ```prolog
    is_date(date(W,D)) :- is_weekday(W), is_day_of_month(D).
    is_day_of_month(1).
    is_day_of_month(2).
    ...
    is_day_of_month(31).
    ```
Recursive Programming: Recursive Types

- **Recursive types**: defined by recursive logic programs.
- **Example**: natural numbers (simplest recursive data type):
 - Set of terms to represent: 0, s(0), s(s(0)), ...
 - Type definition:
 - nat(0).
 - nat(s(X)) :- nat(X).

 A *minimal recursive predicate*: one unit clause and one recursive clause (with a single body literal).
- We can reason about *complexity*, for a given class of queries (“mode”). E.g., for mode \(\text{nat} \left(\text{ground} \right) \) complexity is *linear* in size of number.
- **Example**: integers:
 - Set of terms to represent: 0, s(0), -s(0), ...
 - Type definition:
 - integer(X) :- nat(X).
 - integer(-X) :- nat(X).
Recursive Programming: Arithmetic

- Defining the natural order (\leq) of natural numbers:

 less_or_equal(0,X) :- nat(X).
 less_or_equal(s(X),s(Y)) :- less_or_equal(X,Y).

- Multiple uses: less_or_equal(s(0),s(s(0))), less_or_equal(X,0), ...

- Multiple solutions: less_or_equal(X,s(0)), less_or_equal(s(s(0)),Y), etc.

- Addition:

 plus(0,X,X) :- nat(X).
 plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

- Multiple uses: plus(s(s(0)),s(0),Z), plus(s(s(0)),Y,s(0))

- Multiple solutions: plus(X,Y,s(s(s(0)))), etc.
Recursive Programming: Arithmetic

- Another possible definition of addition:

 \[\text{plus}(X,0,X) :- \text{nat}(X).\]
 \[\text{plus}(X,s(Y),s(Z)) :- \text{plus}(X,Y,Z).\]

- The meaning of \texttt{plus} is the same if both definitions are combined.

- Not recommended: several proof trees for the same query \(\rightarrow\) not efficient, not concise. We look for minimal axiomatizations.

- The art of logic programming: finding compact and computationally efficient formulations!

- Try to define: \texttt{times}(X,Y,Z) (\(Z = X \times Y\)), \texttt{exp}(N,X,Y) (\(Y = X^N\)), \texttt{factorial}(N,F) (\(F = N!\)), \texttt{minimum}(N1,N2,Min),...
Definition of \(\text{mod}(X, Y, Z) \)

“\(Z \) is the remainder from dividing \(X \) by \(Y \)”

\[(\exists Q \text{ s.t. } X = Y \cdot Q + Z \text{ and } Z < Y) \]

\[\text{mod}(X, Y, Z) \leftarrow \text{less}(Z, Y), \text{times}(Y, Q, W), \text{plus}(W, Z, X). \]

\[\text{less}(0, s(X)) \leftarrow \text{nat}(X). \]

\[\text{less}(s(X), s(Y)) \leftarrow \text{less}(X, Y). \]

Another possible definition:

\[\text{mod}(X, Y, X) \leftarrow \text{less}(X, Y). \]

\[\text{mod}(X, Y, Z) \leftarrow \text{plus}(X_1, Y, X), \text{mod}(X_1, Y, Z). \]

The second is much more efficient than the first one (compare the size of the proof trees).
Recursive Programming: Arithmetic/Functions

- The Ackermann function:

 \[
 \begin{align*}
 \text{ackermann}(0,N) &= N+1 \\
 \text{ackermann}(M,0) &= \text{ackermann}(M-1,1) \\
 \text{ackermann}(M,N) &= \text{ackermann}(M-1,\text{ackermann}(M,N-1))
 \end{align*}
 \]

- In Peano arithmetic:

 \[
 \begin{align*}
 \text{ackermann}(0,N) &= s(N) \\
 \text{ackermann}(s(M),0) &= \text{ackermann}(M,s(0)) \\
 \text{ackermann}(s(M),s(N)) &= \text{ackermann}(M,\text{ackermann}(s(M),N))
 \end{align*}
 \]

- Can be defined as:

 \[
 \begin{align*}
 \text{ackermann}(0,N,s(N)) &. \\
 \text{ackermann}(s(M),0,Val) &:- \text{ackermann}(M,s(0),Val). \\
 \text{ackermann}(s(M),s(N),Val) &:- \text{ackermann}(s(M),N,Val1), \\
 &\quad \text{ackermann}(M,Val1,Val).
 \end{align*}
 \]

- In general, \textit{functions} can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).

- Syntactic support available (see, e.g., the Ciao \textit{functions} package).
Recursive Programming: Lists

• Binary structure: first argument is *element*, second argument is *rest* of the list.

• We need:
 ◦ a constant symbol: the empty list denoted by the *constant* \[\]
 ◦ a functor of arity 2: traditionally the dot “.” (which is overloaded).

• Syntactic sugar: the term \(.(X,Y)\) is denoted by \[X|Y\] (\(X\) is the *head*, \(Y\) is the *tail*).

<table>
<thead>
<tr>
<th>Formal object</th>
<th>Cons pair syntax</th>
<th>Element syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>.(a,[])</td>
<td>[a</td>
<td>[]]</td>
</tr>
<tr>
<td>.(a,.(b,[]))</td>
<td>[a</td>
<td>[b</td>
</tr>
<tr>
<td>.(a,.(b,.(c,[])))</td>
<td>[a</td>
<td>[b</td>
</tr>
<tr>
<td>.(a,X)</td>
<td>[a</td>
<td>X]</td>
</tr>
<tr>
<td>.(a,.(b,X))</td>
<td>[a</td>
<td>[b</td>
</tr>
</tbody>
</table>

• Note that:
 \[a, b\] and \[a|X\] unify with \(\{X = [b]\}\)
 \[a\] and \[a|X\] unify with \(\{X = []\}\)
 \[\]\ and \[X\] do not unify

\[a\] and \[a,b|X]\] do not unify
Recursive Programming: Lists

- Type definition (no syntactic sugar):

  ```prolog
  list([]).
  list([X|Y]) :- list(Y).
  ```

- Type definition (with syntactic sugar):

  ```prolog
  list([]).
  list([X|Y]) :- list(Y).
  ```
• X is a *member* of the list Y:

member(a,[a]). member(b,[b]). *etc.* \(\Rightarrow\) member(X,[X]).
member(a,[a,c]). member(b,[b,d]). *etc.* \(\Rightarrow\) member(X,[X,Y]).
member(a,[a,c,d]). member(b,[b,d,l]). *etc.* \(\Rightarrow\) member(X,[X,Y,Z]).

\[\Rightarrow \text{member}(X,[X|Y]) : - \text{list}(Y).\]

member(a,[c,a]), member(b,[d,b]). *etc.* \(\Rightarrow\) member(X,[Y,X]).
member(a,[c,d,a]). member(b,[s,t,b]). *etc.* \(\Rightarrow\) member(X,[Y,Z,X]).

\[\Rightarrow \text{member}(X,[Y|Z]) : - \text{member}(X,Z).\]

• Resulting definition:

member(X,[X|Y]) : - list(Y).

member(X,[_|T]) : - member(X,T).
Recursive Programming: Lists (Contd.)

- Resulting definition:

 \[
 \text{member}(X,[X|Y]) \leftarrow \text{list}(Y).
 \]
 \[
 \text{member}(X,[_|T]) \leftarrow \text{member}(X,T).
 \]

- Uses of member(X,Y):

 ◦ checking whether an element is in a list (\text{member}(b, [a,b,c]))
 ◦ finding an element in a list (\text{member}(X, [a,b,c]))
 ◦ finding a list containing an element (\text{member}(a,Y))

- Define: \text{prefix}(X,Y) (the list \(X\) is a prefix of the list \(Y\)), e.g.

 \text{prefix}([a, b], [a, b, c, d])

- Define: \text{suffix}(X,Y), \text{sublist}(X,Y), ...

- Define \text{length}(Xs,N) (\(N\) is the length of the list \(Xs\))
Recursive Programming: Lists (Contd.)

• Concatenation of lists:

 ◦ Base case:

 append([], [a], [a]). append([], [a,b], [a,b]). etc.

 ⇒ append([], Ys, Ys) :- list(Ys).

 ◦ Rest of cases (first step):

 append([a], [b], [a,b]).
 append([a], [b,c], [a,b,c]). etc.

 ⇒ append([X], Ys, [X|Ys]) :- list(Ys).

 append([a,b], [c], [a,b,c]).
 append([a,b], [c,d], [a,b,c,d]). etc.

 ⇒ append([X,Z], Ys, [X,Z|Ys]) :- list(Ys).

 This is still infinite → we need to generalize more.
Recursive Programming: Lists (Contd.)

- Second generalization:
 \[
 \begin{align*}
 \text{append}([X], Ys, [X|Ys]) & : \text{list}(Ys).
 \\
 \text{append}([X,Z], Ys, [X,Z|Ys]) & : \text{list}(Ys).
 \\
 \text{append}([X,Z,W], Ys, [X,Z,W|Ys]) & : \text{list}(Ys).
 \\
 \Rightarrow \quad \text{append}([X|Xs], Ys, [X|Zs]) & : \text{append}(Xs, Ys, Zs).
 \end{align*}
 \]

- So, we have:
 \[
 \begin{align*}
 \text{append}([], Ys, Ys) & : \text{list}(Ys).
 \\
 \text{append}([X|Xs], Ys, [X|Zs]) & : \text{append}(Xs, Ys, Zs).
 \end{align*}
 \]

- Uses of append:
 \[
 \begin{align*}
 \diamond \text{concatenate two given lists: } & : \text{append}([a, b], [c], Z)
 \\
 \diamond \text{find differences between lists: } & : \text{append}(X, [c], [a, b, c])
 \\
 \diamond \text{split a list: } & : \text{append}(X, Y, [a, b, c])
 \end{align*}
 \]
• \texttt{reverse(Xs,Ys)}: Ys is the list obtained by reversing the elements in the list Xs

It is clear that we will need to traverse the list Xs

For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

\[
\text{reverse}([X|Xs],Ys) :- \\
\quad \text{reverse}(Xs,Zs), \\
\quad \text{append}(Zs,[X],Ys). \\
\]

How can we stop?

\[
\text{reverse}([],[]). \\
\]

• As defined, \texttt{reverse(Xs,Ys)} is very inefficient. Another possible definition:

\[
\text{reverse}(Xs,Ys) :- \text{reverse}(Xs,[],Ys). \\
\]

\[
\text{reverse}([],Ys,Ys). \\
\text{reverse}([X|Xs],Acc,Ys) :- \text{reverse}(Xs,[X|Acc],Ys). \\
\]

• Find the differences in terms of efficiency between the two definitions.
Recursive Programming: Binary Trees

- Represented by a ternary functor `tree(Element,Left,Right)`.
- Empty tree represented by `void`.
- Definition:

```
binary_tree(void).
binary_tree(tree(Element,Left,Right)) :-
    binary_tree(Left),
binary_tree(Right).
```

- Defining `tree_member(Element,Tree)`:

```
tree_member(X,tree(X,Left,Right)) :-
    binary_tree(Left),
binary_tree(Right).
tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Left).
tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Right).
```
• **Defining** `pre_order(Tree,Order)`:

```prolog
pre_order(void,[]).
pre_order(tree(X,Left,Right),Order) :-
    pre_order(Left,OrderLeft),
    pre_order(Right,OrderRight),
    append([X|OrderLeft],OrderRight,Order).
```

• **Define** `in_order(Tree,Order)`, `post_order(Tree,Order)`.
Polymorphism

- Note that the two definitions of member/2 can be used *simultaneously*:

\[
\begin{align*}
\text{lt}_\text{member}(X, [X\mid Y]) & \leftarrow \text{list}(Y). \\
\text{lt}_\text{member}(X, [_\mid T]) & \leftarrow \text{lt}_\text{member}(X, T).
\end{align*}
\]

\[
\begin{align*}
\text{lt}_\text{member}(X, \text{tree}(X,L,R)) & \leftarrow \text{binary}_\text{tree}(L), \text{binary}_\text{tree}(R). \\
\text{lt}_\text{member}(X, \text{tree}(Y,L,R)) & \leftarrow \text{lt}_\text{member}(X, L). \\
\text{lt}_\text{member}(X, \text{tree}(Y,L,R)) & \leftarrow \text{lt}_\text{member}(X, R).
\end{align*}
\]

Lists only unify with the first two clauses, trees with clauses 3–5!

- \(\text{lt}_\text{member}(X, [b,a,c]) \).
 \(X = b \); \(X = a \); \(X = c \)

- \(\text{lt}_\text{member}(X, \text{tree}(b,\text{tree}(a,\text{void},\text{void}),\text{tree}(c,\text{void},\text{void}))) \).
 \(X = b \); \(X = a \); \(X = c \)

- Also, try (somewhat surprising): \(\text{lt}_\text{member}(M, T) \).
Recursive Programming: Manipulating Symbolic Expressions

- Recognizing polynomials in some term X:
 - X is a polynomial in X
 - A constant is a polynomial in X
 - Sums, differences and products of polynomials in X are polynomials
 - Also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```prolog
polynomial(X,X).  
polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).  
polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).  
polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).  
polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).  
polynomial(Term1^N,X) :- polynomial(Term1,X), nat(N).
```
Recursive Programming: Manipulating Symb. Expressions (Contd.)

- **Symbolic differentiation**: \(\text{deriv} \) \(\text{Expression} \), \(X \), \(\text{DifferentiatedExpression} \)

\[
\begin{align*}
\text{deriv}(X, X, s(0)). \\
\text{deriv}(C, X, 0) & : \ pconstant(C). \\
\text{deriv}(U+V, X, DU+DV) & : \ \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV). \\
\text{deriv}(U-V, X, DU-DV) & : \ \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV). \\
\text{deriv}(U*V, X, DU*V+U*DV) & : \ \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV). \\
\text{deriv}(U/V, X, (DU*V-U*DV)/V^s(s(0))) & : \ \text{deriv}(U, X, DU), \ \text{deriv}(V, X, DV). \\
\text{deriv}(U^s(N), X, s(N)*U^N*DU) & : \ \text{deriv}(U, X, DU), \ \text{nat}(N). \\
\text{deriv}(\log(U), X, DU/U) & : \ \text{deriv}(U, X, DU).
\end{align*}
\]

- \(\text{:- deriv}(s(s(s(0)))*x+s(s(0)), x, Y) \).

- A simplification step can be added.
Recursive Programming: Automata (Graphs)

- Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

 where \(q_0 \) is both the initial and the final state.

- Strings are represented as lists of constants (e.g., \([a, b, b]\)).

- Program:

  ```prolog
  initial(q0). delta(q0,a,q1).
  delta(q1,b,q0).
  final(q0). delta(q1,b,q1).
  
  accept(S) :- initial(Q), accept_from(S,Q).
  accept_from([],Q) :- final(Q).
  accept_from([X|Xs],Q) :- delta(Q,X,NewQ), accept_from(Xs,NewQ).
  ```
A nondeterministic, stack, finite automaton (NDSFA):

```prolog
accept(S) :- initial(Q), accept_from(S,Q,[]).
accept_from([],Q,[]) :- final(Q).
accept_from([X|Xs],Q,S) :- delta(Q,X,S,NewQ,NewS),
                     accept_from(Xs,NewQ,NewS).

initial(q0).
final(q1).

delta(q0,X,Xs,q0,[X|Xs]).
delta(q0,X,Xs,q1,[X|Xs]).
delta(q0,X,Xs,q1,Xs).
delta(q1,X,[X|Xs],q1,Xs).
```

What sequence does it recognize?
Recursive Programming: Towers of Hanoi

- **Objective:**
 - Move tower of N disks from peg a to peg b, with the help of peg c.

- **Rules:**
 - Only one disk can be moved at a time.
 - A larger disk can never be placed on top of a smaller disk.
Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate \[\text{hanoi} \text{moves}(N,\text{Moves}) \]
- \(N \) is the number of disks and \(\text{Moves} \) the corresponding list of “moves”.
- Each move \(\text{move}(A, B) \) represents that the top disk in \(A \) should be moved to \(B \).

Example:

![Diagram of Towers of Hanoi](image)

is represented by:

\[
\text{hanoi}_\text{moves}(\text{s(s(0))),} \\
[\text{move(a,b), move(a,c), move(b,c), move(a,b),} \\
\text{move(c,a), move(c,b), move(a,b))}]
\]
Recursive Programming: Towers of Hanoi (Contd.)

- A general rule:

 We capture this in a predicate \(\text{hanoi}(N, \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) \) where “\(\text{Moves} \) contains the moves needed to move a tower of \(N \) disks from peg \(\text{Orig} \) to peg \(\text{Dest} \), with the help of peg \(\text{Help} \).”

\[
\begin{align*}
\text{hanoi}(s(0), \text{Orig}, \text{Dest}, _, \text{Moves}) & :\text{= hanoi}(s(0), \text{Orig}, \text{Dest}, [\text{move}(\text{Orig}, \text{Dest})]).} \\
\text{hanoi}(s(N), \text{Orig}, \text{Dest}, \text{Help}, \text{Moves}) & :\text{=} \\
& \quad \text{hanoi}(N, \text{Orig}, \text{Help}, \text{Dest}, \text{Moves1}), \\
& \quad \text{hanoi}(N, \text{Help}, \text{Dest}, \text{Orig}, \text{Moves2}), \\
& \quad \text{append} (\text{Moves1}, [\text{move}(\text{Orig}, \text{Dest}) | \text{Moves2}], \text{Moves}).
\end{align*}
\]

- And we simply call this predicate:

\[
\text{hanoi_moves}(N, \text{Moves}) :\text{= hanoi}(N, \text{a}, \text{b}, \text{c}, \text{Moves}).
\]
Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.

- By induction (as in the previous examples): elegant, but generally difficult – not the way most people do it.

- State first the base case(s), and then think about the general recursive case(s).

- Sometimes it may help to compose programs with a given use in mind (e.g., “forwards execution”), making sure it is declaratively correct. Consider also if alternative uses make declarative sense.

- Sometimes it helps to look at well-written examples and use the same “schemas”.

- Global top-down design approach:
 - state the general problem
 - break it down into subproblems
 - solve the pieces

- Again, best approach: practice.