
Programming and Computational Logic
A Motivational Introduction

The following people have contributed to this course material:

Manuel Hermenegildo (editor), Technical University of Madrid, Spain and University of New Mexico, USA; Francisco Bueno, Manuel

Carro, Pedro López, and Daniel Cabeza, Technical University of Madrid, Spain; Marı́a José Garcı́a de la Banda, Monash University,

Australia; David H. D. Warren, University of Bristol, U.K.; Ulrich Neumerkel, Technical University of Vienna, Austria; Michael Codish,

Ben Gurion University, Israel

Course General Topic

Computational Logic

direct use of logic

as a programming tool

program verification

proving properties

declarative programming

logic of programming

logic

verification

constraints

Logic of Computation Declarative Programming

programming

algorithms

functional programming

logic programming knowledge representation

logic and AI

lambda calculus

1

The Program Correctness Problem

?

• Conventional models of using computers – not easy to determine correctness!

� Has become a very important issue, not just in safety-critical apps.
� Components with assured quality, being able to give a warranty, ...
� Being able to run untrusted code, certificate carrying code, ...

2

A Simple Imperative Program

• Example:

#include <stdio.h>

main() {

int Number, Square;

Number = 0;

while(Number <= 5)

{ Square = Number * Number;

printf("%d\n",Square);

Number = Number + 1; } }

• Is it correct? With respect to what?

• A suitable formalism:

� to provide specifications (describe problems), and
� to reason about the correctness of programs (their implementation).

is needed.

3

Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

� verbose
� vague
� ambiguous
� needs context (assumed information)
� ...

Philosophers and Mathematicians already pointed this out a long time ago...

4

Logic

• A means of clarifying / formalizing the human thought process

• Logic for example tells us that (classical logic)
Aristotle likes cookies, and
Plato is a friend of anyone who likes cookies
imply that
Plato is a friend of Aristotle

• Symbolic logic:
A shorthand for classical logic – plus many useful results:
a1 : likes(aristotle, cookies)

a2 : ∀X likes(X, cookies)→ friend(plato,X)

t1 : friend(plato, aristotle)

T [a1, a2] ` t1
• But, can logic be used:

� To represent the problem (specifications)?
� Even perhaps to solve the problem?

5

Using Logic

?

YES / NOProof

(Logic)

Specs

• For expressing specifications and reasoning about the correctness of programs
we need:

� Specification languages (assertions), modeling, ...
� Program semantics (models, axiomatic, denotational, fixpoint, ...).
� Proofs: program verification (and debugging, equivalence, ...).

6

Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0 ≡ 0 1 ≡ s(0) 2 ≡ s(s(0)) 3 ≡ s(s(s(0))) . . .

• Defining the natural numbers:
0 is a natural, 1 is a natural, 2 is a natural, . . .

nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .

� A better solution: nat(0) ∧ ∀X (nat(X)→ nat(s(X)))

7

Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0 ≡ 0 1 ≡ s(0) 2 ≡ s(s(0)) 3 ≡ s(s(s(0))) . . .

• Defining the natural numbers:
0 is a natural, 1 is a natural, 2 is a natural, . . .

nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .

� A better solution: nat(0) ∧ ∀X (nat(X)→ nat(s(X)))

• Order on the naturals (less or equal than):
le(0, 0) le(0, s(0)) le(0, s(s(0))) . . .

le(s(0), s(0)) le(s(0), s(s(0))) le(s(0), s(s(s(0)))) . . .
.

∀X (nat(X)→ le(0, X)) ∧ ∀X∀Y (le(X, Y)→ le(s(X), s(Y)))

7

Generating Squares: A Specification (I)

Numbers —we will use “Peano” representation for simplicity:
0 ≡ 0 1 ≡ s(0) 2 ≡ s(s(0)) 3 ≡ s(s(s(0))) . . .
• Defining the natural numbers:

0 is a natural, 1 is a natural, 2 is a natural, . . .

nat(0) ∧ nat(s(0)) ∧ nat(s(s(0))) ∧ . . .

� A better solution: nat(0) ∧ ∀X (nat(X)→ nat(s(X)))

• Order on the naturals (less or equal than):
le(0, 0) le(0, s(0)) le(0, s(s(0))) . . .

le(s(0), s(0)) le(s(0), s(s(0))) le(s(0), s(s(s(0)))) . . .
.

∀X (nat(X)→ le(0, X)) ∧ ∀X∀Y (le(X, Y)→ le(s(X), s(Y)))

• Addition of naturals:
add(0, 0, 0) add(0, s(0), s(0)) add(0, s(s(0)), s(s(0))) . . .

add(s(0), 0, s(0)) add(s(0), s(0), s(s(0))) add(s(0), s(s(0)), s(s(s(0)))) . . .

∀X (nat(X)→ add(0, X,X)) ∧ ∀X∀Y ∀Z (add(X, Y, Z)→ add(s(X), Y, s(Z)))

7

Generating Squares: A Specification (II)

• Multiplication of naturals:
“Multiply X and Y ” is “add Y to itself X times,” e.g.
mult(3, 2, 6) ≡ “three times 2 is 6” (adding 2, 3 times is 6)≡ 2 + 2 + 2 = 6

mult(3, 2, 6) ∧ add(6, 2, 8)→ mult(4, 2, 8) 2 + 2 + 2 + 2 = 8

∀X (nat(X)→ mult(0, X, 0)) ∧
∀X∀Y ∀Z∀W (mult(X, Y,W) ∧ add(W,Y, Z)→ mult(s(X), Y, Z))

• Squares of the naturals:
∀X∀Y (nat(X) ∧ nat(Y) ∧mult(X,X, Y)→ nat square(X, Y))

8

Generating Squares: A Specification (II)

• Multiplication of naturals:
“Multiply X and Y ” is “add Y to itself X times,” e.g.
mult(3, 2, 6) ≡ “three times 2 is 6” (adding 2, 3 times is 6)≡ 2 + 2 + 2 = 6

mult(3, 2, 6) ∧ add(6, 2, 8)→ mult(4, 2, 8) 2 + 2 + 2 + 2 = 8

∀X (nat(X)→ mult(0, X, 0)) ∧
∀X∀Y ∀Z∀W (mult(X, Y,W) ∧ add(W,Y, Z)→ mult(s(X), Y, Z))

• Squares of the naturals:
∀X∀Y (nat(X) ∧ nat(Y) ∧mult(X,X, Y)→ nat square(X, Y))

We can now write a specification of the (imperative) program, i.e., conditions that we
want the program to meet:

• Precondition (empty):
true

• Postcondition:
∀X(output(X)← (∃Y nat(Y) ∧ le(Y, s(s(s(s(s(0)))))) ∧ nat square(Y,X)))

8

Use of Logic

?

YES / NOProof

(Logic)

Specs

Semantics

• For expressing specifications and reasoning about the correctness of programs
we need:

� Specification languages (assertions), modeling, ...
� Program semantics (models, axiomatic, fixpoint, ...).

� Proofs: program verification (and debugging, equivalence, ...).

9

Semantic Tasks

?

YES / NOProof

(Logic)

Specs

Semantics

• Semantics:

� A semantics associates a meaning (a mathematical object) to a program or
program sentence.

• Semantic tasks:

� Verification: proving that a program meets its specification.
� Static debugging: finding where a program does not meet specifications.
� Program equivalence: proving that two programs have the same semantics.
� etc.

10

Styles of Semantics

• Operational:

The meaning of program sentences is defined in terms of the steps
(transformations from state to state) that computations may take during execution
(derivations). Proofs by induction on derivations.

• Axiomatic:

The meaning of program sentences is defined indirectly in terms some axioms
and rules of some logic of program properties.

• Denotational (fixpoint):

The meaning of program sentences is given abstractly as elements of some
suitable mathematical structure (domain).

• Model (declarative) semantics:

The meaning of programs is given as a minimal model (“logical meaning”) of the
logic that the program is written in.

11

Alternative Use of Logic?

• So, logic allows us to represent problems (program specifications).

to also improve:
But, it would be interesting

i.e., the process of implementing solutions to problems.

• The importance of Programming Languages (and tools).

• Interesting question: can logic help here too?

12

From Representation/Specification to Computation

• Assuming the existence of a mechanical proof method (deduction procedure)
a new view of problem solving and computing is possible [Green]:

� program once and for all the deduction procedure in the computer,
� find a suitable representation for the problem (i.e., the specification),
� then, to obtain solutions, ask questions and let deduction procedure do rest:

Representation (specification)

Questions Deduction
system

Problem

(Correct) Answers / Results• No correctness proofs needed!

13

Computing With Our Previous Description / Specification

Query Answer

nat(s(0)) ? (yes)

∃X add(s(0), s(s(0)), X) ? X = s(s(s(0)))

∃X add(s(0), X, s(s(s(0)))) ? X = s(s(0))

∃X nat(X) ? X = 0 ∨X = s(0) ∨X = s(s(0)) ∨ . . .

∃X∃Y add(X, Y, s(0)) ? (X = 0 ∧ Y = s(0)) ∨ (X = s(0) ∧ Y = 0)

∃X nat square(s(s(0)), X) ? X = s(s(s(s(0))))

∃X nat square(X, s(s(s(s(0))))) ? X = s(s(0))

∃X∃Y nat square(X, Y) ? (X = 0 ∧ Y = 0) ∨ (X = s(0) ∧ Y = s(0)) ∨ (X =

s(s(0)) ∧ Y = s(s(s(s(0))))) ∨ . . .

∃Xoutput(X) ? X = 0 ∨ X = s(0) ∨ X = s(s(s(s(0)))) ∨ X =

s9(0) ∨ X = s16(0) ∨ X = s25(0)

14

Which Logic?

• We have already argued the convenience of representing the problem in logic, but

� which logic?
* propositional
* predicate calculus (first order)
* higher-order logics
* modal logics
* λ-calculus, ...

� which reasoning procedure?
* natural deduction, classical methods
* resolution
* Prawitz/Bibel, tableaux
* bottom-up fixpoint
* rewriting
* narrowing, ...

15

Issues

• We try to maximize expressive power.

• But one of the main issues is whether we have an effective reasoning procedure.

• It is important to understand the underlying properties and the theoretical limits!

• Example: propositions vs. first-order formulas.

� Propositional logic:

“spot is a dog” p
“dogs have tail” q

but how can we conclude that Spot has a tail?

� Predicate logic extends the expressive power of propositional logic:

dog(spot)

∀Xdog(X)→ has tail(X)

now, using deduction we can conclude:

has tail(spot)

16

Comparison of Logics (I)

• Propositional logic:

“spot is a dog” p
+ decidability/completeness
- limited expressive power
+ practical deduction mechanism

→ circuit design, “answer set” programming, ...

• Predicate logic: (first order)

“spot is a dog” dog(spot)
+/- decidability/completeness
+/- good expressive power
+ practical deduction mechanism (e.g., SLD-resolution)

→ classical logic programming!

17

Comparison of Logics (II)

• Higher-order predicate logic:
“There is a relationship for spot” X(spot)
- decidability/completeness
+ good expressive power
– practical deduction mechanism

But interesting subsets→ HO logic programming, functional-logic programming,
...

• Other logics: decidability? Expressive power? Practical deduction mechanism?
Often (very useful) variants of previous ones:

� Predicate logic + constraints (in place of unification)
→ constraint programming!
� Propositional temporal logic, etc.

• Interesting case: λ-calculus
+ similar to predicate logic in results, allows higher order
- does not support predicates (relations), only functions

→ functional programming!

18

Generating squares by SLD-Resolution – Logic Programming (I)

• We code the problem as definite (Horn) clauses:
nat(0)

¬nat(X) ∨ nat(s(X))

¬nat(X) ∨ add(0, X,X))

¬add(X, Y, Z) ∨ add(s(X), Y, s(Z))

¬nat(X) ∨mult(0, X, 0)
¬mult(X, Y,W) ∨ ¬add(W,Y, Z) ∨mult(s(X), Y, Z)

¬nat(X) ∨ ¬nat(Y) ∨ ¬mult(X,X, Y) ∨ nat square(X, Y)

• Query: nat(s(0)) ?

• In order to refute: ¬nat(s(0))

• Resolution:
¬nat(s(0)) with ¬nat(X) ∨ nat(s(X)) gives ¬nat(0)
¬nat(0) with nat(0) gives 2

• Answer: (yes)

19

Generating squares by SLD-Resolution – Logic Programming (II)

nat(0)

¬nat(X) ∨ nat(s(X))

¬nat(X) ∨ add(0, X,X))

¬add(X, Y, Z) ∨ add(s(X), Y, s(Z))

¬nat(X) ∨mult(0, X, 0)
¬mult(X, Y,W) ∨ ¬add(W,Y, Z) ∨mult(s(X), Y, Z)

¬nat(X) ∨ ¬nat(Y) ∨ ¬mult(X,X, Y) ∨ nat square(X, Y)

• Query: ∃X∃Y add(X, Y, s(0)) ?

• In order to refute: ¬add(X, Y, s(0))

• Resolution:
¬add(X, Y, s(0)) with ¬nat(X) ∨ add(0, X,X)) gives ¬nat(s(0))
¬nat(s(0)) solved as before

• Answer: X = 0, Y = s(0)

• Alternative:
¬add(X, Y, s(0)) with ¬add(X, Y, Z) ∨ add(s(X), Y, s(Z)) gives ¬add(X, Y, 0)

20

Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,[’bf/af’]).

nat(0) <- .

nat(s(X)) <- nat(X).

le(0,_X) <- .

le(s(X),s(Y)) <- le(X,Y).

add(0,Y,Y) <- nat(Y).

add(s(X),Y,s(Z)) <- add(X,Y,Z).

mult(0,Y,0) <- nat(Y).

mult(s(X),Y,Z) <- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) <- nat(X), nat(Y), mult(X,X,Y).

output(X) <- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

21

Generating Squares in a Practical Logic Programming System (II)

Query Answer

?- nat(s(0)). yes

?- add(s(0),s(s(0)),X). X = s(s(s(0)))

?- add(s(0),X,s(s(s(0)))). X = s(s(0))

?- nat(X). X = 0 ; X = s(0) ; X = s(s(0)) ; ...

?- add(X,Y,s(0)). (X = 0 , Y=s(0)) ; (X = s(0) , Y = 0)

?- nat square(s(s(0)), X). X = s(s(s(s(0))))

?- nat square(X,s(s(s(s(0))))). X = s(s(0))

?- nat square(X,Y). (X = 0 , Y=0) ; (X = s(0) , Y=s(0)) ;

(X = s(s(0)) , Y=s(s(s(s(0))))) ; ...

?- output(X). X = 0 ; X = s(0) ; X =

s(s(s(s(0)))) ; ...

22

Applications (I)

• Many applications:

� Natural language processing
� Scheduling/Optimization problems
� Many AI-related problems, (Multi) agent programming
� Heterogeneous data integration
� Program analyzers and verifiers
� ...

Many in combination with other languages.

• Some examples:

� The IBM Watson System (2011) has important parts written in Prolog.
� Clarissa, a voice user interface by NASA for browsing ISS procedures.
� The first Erlang interpreter was developed in Prolog by Joe Armstrong.
� The Microsoft Windows NT Networking Installation and Configuration system.
� The Ericsson Network Resource Manager (NRM).

23

https://en.wikipedia.org/wiki/Watson_(computer)
https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
https://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/

� “A flight booking system handling nearly a third of all airline tickets in the
world” (SICStus).
� The java abstract machine specification is written in Prolog.
� ...

24

Applications (II)

The IBM Watson system (from WikipediA):

“Watson is a question-answering computer system capable of answering
questions posed in natural language, developed in IBM’s DeepQA project... it
competed on Jeopardy! against champions Brad Rutter and Ken Jennings,
winning the first place prize of $1 million.”

Adam Lally, John M. Prager, Michael C. McCord, Branimir Boguraev, Siddharth Patwardhan, James Fan, Paul Fodor, Jennifer

Chu-Carroll: Question analysis: How Watson reads a clue. IBM J. Res. Dev. 56(3): 2:

“Prior to our decision to use Prolog for this task, we had implemented custom
pattern-matching frameworks over parses. These frameworks ended up
replicating some of the features of Prolog but lacked the full feature set of
Prolog or the efficiency of a good Prolog implementation. Using Prolog for this
task has significantly improved our productivity in developing new
pattern-matching rules and has delivered the execution efficiency necessary
to be competitive in a Jeopardy! game.”

25

