Computational Logic
A Motivational Introduction
Computational Logic

Logic of Computation
- program verification
- proving properties

Declarative Programming
- direct use of logic as a programming tool

- logic
- algorithms
- lambda calculus
- logic and AI
- knowledge representation
- functional programming
- logic programming
- constraints
- logic of programming
- declarative programming
The Program Correctness Problem

- Conventional models of using computers – not easy to determine correctness!
 - Has become a very important issue, not just in safety-critical apps.
 - Components with assured quality, being able to give a warranty, ...
 - Being able to run untrusted code, certificate carrying code, ...
A Simple Imperative Program

• Example:

```c
#include <stdio.h>
main() {
    int Number, Square;
    Number = 0;
    while(Number <= 5) {
        Square = Number * Number;
        printf("%d\n",Square);
        Number = Number + 1;
    }
}
```

• Is it correct? With respect to what?

• A suitable formalism:
 ◦ to provide *specifications* (describe problems), and
 ◦ to reason about the *correctness of programs* (their *implementation*).

is needed.
Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

Ideal at first sight, but:

- verbose
- vague
- ambiguous
- needs context (assumed information)
- ...

Philosophers and Mathematicians already pointed this out a long time ago...
Logic

- A means of clarifying / formalizing the human thought process

- Logic for example tells us that (classical logic)
 \[\text{Aristotle likes cookies, and}\]
 \[\text{Plato is a friend of anyone who likes cookies}\]
 imply that
 \[\text{Plato is a friend of Aristotle}\]

- Symbolic logic:
 A shorthand for classical logic – plus many useful results:
 \[a_1 : \text{likes(}\text{aristotle} , \text{cookies})\]
 \[a_2 : \forall X \text{ likes}(X, \text{cookies}) \rightarrow \text{friend}(\text{plato}, X)\]
 \[t_1 : \text{friend}(\text{plato}, \text{aristotle})\]
 \[T[a_1, a_2] \vdash t_1\]

- But, can logic be used:
 - To represent the problem (specifications)?
 - \textit{Even perhaps to solve the problem?}
For expressing specifications and reasoning about the correctness of programs we need:

- Specification languages (assertions), modeling, ...
- Program semantics (models, axiomatic, fixpoint, ...).
- Proofs: program *verification* (and debugging, equivalence, ...).
Generating Squares: A Specification (I)

Numbers — we will use “Peano” representation for simplicity:
0 → 0 1 → s(0) 2 → s(s(0)) 3 → s(s(s(0))) . . .

• Defining the natural numbers:
 \(nat(0) \land nat(s(0)) \land nat(s(s(0))) \land \ldots \)

• A better solution:
 \(nat(0) \land \forall X (nat(X) \rightarrow nat(s(X))) \)

• Order on the naturals:
 \(\forall X (nat(X) \rightarrow le(0, X)) \land \)
 \(\forall X \forall Y (le(X, Y) \rightarrow le(s(X), s(Y))) \)

• Addition of naturals:
 \(\forall X (nat(X) \rightarrow add(0, X, X)) \land \)
 \(\forall X \forall Y \forall Z (add(X, Y, Z) \rightarrow add(s(X), Y, s(Z))) \)
Generating Squares: A Specification (II)

- **Multiplication of naturals:**
 \[\forall X \ (\text{nat}(X) \rightarrow \text{mult}(0, X, 0)) \land \forall X \forall Y \forall Z \forall W \ (\text{mult}(X, Y, W) \land \text{add}(W, Y, Z) \rightarrow \text{mult}(\text{s}(X), Y, Z)) \]

- **Squares of the naturals:**
 \[\forall X \forall Y \ (\text{nat}(X) \land \text{nat}(Y) \land \text{mult}(X, X, Y) \rightarrow \text{nat_square}(X, Y)) \]

We can now write a *specification* of the (imperative) program, i.e., conditions that we want the program to meet:

- **Precondition:**
 empty.

- **Postcondition:**
 \[\forall X \ (\text{output}(X) \leftarrow (\exists Y \ \text{nat}(Y) \land \text{le}(Y, \text{s}(\text{s}(\text{s}(\text{s}(0)))))) \land \text{nat_square}(Y, X))) \]
Alternative Use of Logic?

- So, logic allows us to *represent problems* (program specifications).

 But, it would be interesting to also improve: --

 i.e., the process of implementing solutions to problems.

- The importance of Programming Languages (and tools).

- Interesting question: can logic help here too?
From Representation/Specification to Computation

- Assuming the existence of a *mechanical proof method* (deduction procedure) a new view of problem solving and computing is possible [Greene]:
 - program once and for all the deduction procedure in the computer,
 - find a suitable *representation* for the problem (i.e., the *specification*),
 - then, to obtain solutions, ask questions and let deduction procedure do rest:

- No correctness proofs needed!
Computing With Our Previous Description / Specification

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nat(s(0))) ?</td>
<td>(\text{yes})</td>
</tr>
<tr>
<td>(\exists X \ add(s(0), s(s(0)), X)) ?</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>(\exists X \ add(s(0), X, s(s(s(0))))) ?</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>(\exists X \ nat(X)) ?</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(0)) \lor \ldots)</td>
</tr>
<tr>
<td>(\exists X \exists Y \ add(X, Y, s(0))) ?</td>
<td>((X = 0 \land Y = s(0)) \lor (X = s(0) \land Y = 0))</td>
</tr>
<tr>
<td>(\exists X \ nat_square(s(s(0)), X)) ?</td>
<td>(X = s(s(s(0))))</td>
</tr>
<tr>
<td>(\exists X \ nat_square(X, s(s(s(s(0)))))) ?</td>
<td>(X = s(s(0)))</td>
</tr>
<tr>
<td>(\exists X \exists Y \ nat_square(X, Y)) ?</td>
<td>((X = 0 \land Y = 0) \lor (X = s(0) \land Y = s(0)) \lor (X = s(s(0)) \land Y = s(s(s(s(0)))) \lor \ldots)</td>
</tr>
<tr>
<td>(\exists X \ output(X)) ?</td>
<td>(X = 0 \lor X = s(0) \lor X = s(s(s(s(0)))) \lor X = s^9(0) \lor X = s^{16}(0) \lor X = s^{25}(0))</td>
</tr>
</tbody>
</table>
We have already argued the convenience of representing the problem in logic, but

- which logic?
 - propositional
 - predicate calculus (first order)
 - higher-order logics
 - modal logics
 - λ-calculus, ...

- which reasoning procedure?
 - natural deduction, classical methods
 - resolution
 - Prawitz/Bibel, tableaux
 - bottom-up fixpoint
 - rewriting
 - narrowing, ...
Issues

• We try to maximize expressive power.
• But one of the main issues is whether we have an effective reasoning procedure.
• It is important to understand the underlying properties and the theoretical limits!
• Example: propositions vs. first-order formulas.
 ◇ Propositional logic:

 “spot is a dog” \(p \)
 “dogs have tail” \(q \)

 but how can we conclude that Spot has a tail?

 ◇ Predicate logic extends the expressive power of propositional logic:

 \[\text{dog}(\text{spot}) \]
 \[\forall X \text{dog}(X) \rightarrow \text{has_tail}(X) \]

 now, using deduction we can conclude:

 \[\text{has_tail}(\text{spot}) \]
Comparison of Logics (I)

- Propositional logic:

 “spot is a dog” \(p \)

 + decidability

 - limited expressive power

 + practical deduction mechanism

 \(\rightarrow \) circuit design, “answer set” programming, ...

- Predicate logic: (first order)

 “spot is a dog” \(\text{dog}(\text{spot}) \)

 +/- decidability

 +/- good expressive power

 + practical deduction mechanism (e.g., SLD-resolution)

 \(\rightarrow \) classical logic programming!
Comparison of Logics (II)

- Higher-order predicate logic:

 “There is a relationship for spot” \(X(\text{spot})\)
 - decidability
 + good expressive power
 – practical deduction mechanism

 But interesting subsets \(\rightarrow\) HO logic programming, functional-logic prog., ...

- Other logics: decidability? Expressive power? Practical deduction mechanism?
 Often (very useful) variants of previous ones:

 ◇ Predicate logic + constraints (in place of unification)
 \(\rightarrow\) constraint programming!
 ◇ Propositional temporal logic, etc.

- Interesting case: \(\lambda\)-calculus

 + similar to predicate logic in results, allows higher order
 - does not support predicates (relations), only functions

 \(\rightarrow\) functional programming!
We code the problem as definite (Horn) clauses:

- $\text{nat}(0)$
- $\neg \text{nat}(X) \lor \text{nat}(s(X))$
- $\neg \text{nat}(X) \lor \text{add}(0, X, X)$
- $\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z))$
- $\neg \text{nat}(X) \lor \text{mult}(0, X, 0)$
- $\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z)$
- $\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{sqrt}(X, Y)$

Query: $\text{nat}(s(0))$?

In order to refute: $\neg \text{nat}(s(0))$

Resolution:

$\neg \text{nat}(s(0))$ with $\neg \text{nat}(X) \lor \text{nat}(s(X))$ gives $\neg \text{nat}(0)$

$\neg \text{nat}(0)$ with $\text{nat}(0)$ gives □

Answer: (yes)
Generating squares by SLD-Resolution – Logic Programming (II)

\[\text{nat}(0) \]
\[\neg \text{nat}(X) \lor \text{nat}(s(X)) \]
\[\neg \text{nat}(X) \lor \text{add}(0, X, X) \]
\[\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \]
\[\neg \text{nat}(X) \lor \text{mult}(0, X, 0) \]
\[\neg \text{mult}(X, Y, W) \lor \neg \text{add}(W, Y, Z) \lor \text{mult}(s(X), Y, Z) \]
\[\neg \text{nat}(X) \lor \neg \text{nat}(Y) \lor \neg \text{mult}(X, X, Y) \lor \text{nat_square}(X, Y) \]

- **Query:** \(\exists X \exists Y \text{ add}(X, Y, s(0)) \) ?
- **In order to refute:** \(\neg \text{add}(X, Y, s(0)) \)
- **Resolution:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{nat}(X) \lor \text{add}(0, X, X) \) gives \(\neg \text{nat}(s(0)) \)
 \(\neg \text{nat}(s(0)) \) solved as before
- **Answer:** \(X = 0, Y = s(0) \)
- **Alternative:**
 \(\neg \text{add}(X, Y, s(0)) \) with \(\neg \text{add}(X, Y, Z) \lor \text{add}(s(X), Y, s(Z)) \) gives \(\neg \text{add}(X, Y, 0) \)
Generating Squares in a Practical Logic Programming System (I)

:- module(_,_,['bf/bfall']).

nat(0).
nat(s(X)) :- nat(X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).
Generating Squares in a Practical Logic Programming System (II)

<table>
<thead>
<tr>
<th>Query</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>?- nat(s(0)).</td>
<td>yes</td>
</tr>
<tr>
<td>?- add(s(0), s(s(0)), X).</td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td>?- add(s(0), X, s(s(s(0)))).</td>
<td>X = s(s(s(0)))</td>
</tr>
<tr>
<td>?- nat(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(0)) ; ...</td>
</tr>
<tr>
<td>?- add(X, Y, s(0)).</td>
<td>(X = 0 , Y = s(0)) ; (X = s(0) , Y = 0)</td>
</tr>
<tr>
<td>?- nat_square(s(s(0)), X).</td>
<td>X = s(s(s(s(0))))</td>
</tr>
<tr>
<td>?- nat_square(X, s(s(s(s(0))))).</td>
<td>X = s(s(0))</td>
</tr>
<tr>
<td>?- nat_square(X, Y).</td>
<td>(X = 0 , Y = 0) ; (X = s(0) , Y = s(0)) ; (X = s(s(0)) , Y = s(s(s(s(0)))))) ; ...</td>
</tr>
<tr>
<td>?- output(X).</td>
<td>X = 0 ; X = s(0) ; X = s(s(s(s(s(0)))))) ; ...</td>
</tr>
</tbody>
</table>
Introductory example (I) – Family relations

father_of(john, peter)
father_of(john, mary)
father_of(peter, michael)
mother_of(mary, david)

∀X∀Y(∃Z(father_of(X, Z) ∧ father_of(Z, Y)) → grandfather_of(X, Y))
∀X∀Y(∃Z(father_of(X, Z) ∧ mother_of(Z, Y)) → grandfather_of(X, Y))

father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).

grandfather_of(L,M) :- father_of(L,K),
father_of(K,M).

grandfather_of(X,Y) :- father_of(X,Z),
mother_of(Z,Y).

- How can grandmother_of/2 be represented?

- What does grandfather_of(X,david) mean? And grandfather_of(john,X)?
Introductory example (II) - Testing membership in lists

- Declarative view:
 - Suppose there is a functor $f/2$ such that $f(H, T)$ represents a list with head H and tail T.
 - Membership definition: $X \in L \iff \begin{cases} \text{X is the head of } L \\ \text{or X is member of the tail of } L \end{cases}$
 - Using logic:
 \[
 \forall X \forall L (\exists T (L = f(X, T) \rightarrow \text{member}(X, L))) \\
 \forall X \forall L (\exists Z \exists T (L = f(Z, T) \land \text{member}(X, T) \rightarrow \text{member}(X, L)))
 \]
 - Using Prolog:
 \[
 \text{member}(X, f(X, T)). \\
 \text{member}(X, f(Z, T)) : - \text{member}(X, T).
 \]

- Procedural view (but for checking membership only!):
 - Traverse the list comparing each element until X is found or list is finished

 /* Testing array membership in C */
 int member(int x, int list[LISTSIZE]) {
 for (int i = 0; i < LISTSIZE; i++)
 if (x == list[i]) return TRUE;
 return FALSE;
 }
A (very brief) History of Logic Programming (I)

- **60’s**
 - Greene: programming as problem solving.
 - Robinson: (linear) resolution.

- **70’s**
 - Kowalski: procedural interpretation of Horn clause logic. Read:
 \[A \text{ if } B_1 \text{ and } B_2 \text{ and } \cdots \text{ and } B_n \text{ as:} \]

 to solve (execute) \(A \), solve (execute) \(B_1 \) and \(B_2 \) and, ..., \(B_n \)

 \[\text{Algorithm} = \text{logic} + \text{control}. \]

 - Colmerauer: specialized theorem prover (Fortran) embedding the procedural interpretation: Prolog (Programmation et Logique).
 - In the U.S.: “next-generation AI languages” of the time (i.e. planner) seen as inefficient and difficult to control.
A (very brief) History of Logic Programming (II)

- **Late 80’s, 90’s**
 - Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth Generation Project), US (MCC), Europe (ECRC, ESPRIT projects, leading to the “framework programs”).
 - Numerous commercial Prolog implementations, programming books, and a *de facto* standard, the Edinburgh Prolog family.
 - Leading in 1995 to The ISO Prolog standard.
 - Parallel and concurrent logic programming systems.
 - **CLP** – Constraint Logic Programming: Major extension – opened many new applications areas.
 * Commercial CLP systems with fielded applications.
 * Concurrent constraint programming systems.

- **2000-...**
 - Many other extensions: full higher order, inclusion of functional programming, types, verification, partial evaluation, concurrency, distribution, objects, ...
 - Highly optimizing compilers, environments, automatic parallelism, automatic debugging.
 - Datalog, Answer Set Programming (ASP) – support for negation through stable models. Many applications.
A (very brief) History of Logic Programming (III)

- Many applications:
 - Natural language processing
 - Scheduling/Optimization problems
 - AI related problems
 - (Multi) agent systems programming
 - Program analyzers
 - ...

- Some examples:
 - The first C++ compiler was written in Prolog.
 - The java abstract machine is specified in Prolog.
 - The IBM Watson System (2011) has important parts written in Prolog.

 ![First C++ Compiler was written in Prolog](https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-withprolog-in-the-ibm-watson-system/)
 ![Java Abstract Machine is Specified in Prolog](https://www.youtube.com/watch?v=P18EdAKuC1U)
 - ...
 - ...