
Hardness of preorder checking for basic formalisms
Laura Bozzelli

IRISA, Campus de Beaulieu,
35042 Rennes, FRANCE

Sophie Pinchinat
IRISA, Campus de Beaulieu,

35042 Rennes, FRANCE

Axel Legay
IRISA, Campus de Beaulieu,

35042 Rennes, FRANCE

Abstract

We investigate the complexity of preorder checking when the specification is a flat finite-state
system whereas the implementation is either a non-flat finite-state system or a standard timed au-
tomaton. In both cases, we show that simulation checking is EXPTIME-hard, and for the case of
a non-flat implementation, the result holds even if there is no synchronization between the parallel
components and their alphabets of actions are pairwise disjoint. Moreover, we show that the con-
sidered problems become PSPACE-complete when the specification is assumed to be deterministic.
Additionally, we establish that comparing a synchronous non-flat system with no hiding and a flat
system is PSPACE-hard for any relation between trace containment and bisimulation equivalence.

1 Introduction

One popular approach to formal verification of reactive systems is equivalence/preorder checking be-
tween a specification and an implementation which formally describe at a different level of abstraction
a given system. This scenario may arise either because the design is being carried out in an incremental
fashion, or because the system is too complex and an abstraction needs to be used to verify its properties.
In this context, the verification problem is mathematically formulated as a question whether a behav-
ioral equivalence or preorder holds between the labeled state-transition graphs of the specification and
the implementation. Decidability and complexity issues for equivalence/preorder checking have been ad-
dressed for various computational models of reactive systems (see [10] for a survey of the existing results
for infinite-state systems). Moreover, many notions of equivalences or preorders have been investigated,
which turn out to be useful for specific aims. Van Glabbeek [21] classified such equivalences/preorders
in a hierarchy, where bisimulation equivalence is the finest and trace containment is the coarsest.

Non-flat finite-state systems. Finite-state systems are a natural and a primary target in formal verifica-
tion. When the systems are given as explicit (flat) state-transition graphs, then many relevant verification
problems are tractable. For example, simulation-preorder checking and bisimulation-equivalence check-
ing are PTIME-complete [2, 15]. However, in a concurrent setting, the system under consideration is
typically the parallel composition of many components (we call such systems non-flat systems). As a
consequence, the size of the global state-transition graph is usually exponential in the size of the system
presentation. This phenomenon is known as ‘state explosion’, and coping with this problem is one of
the most important issues in computer-aided verification. From a theoretical point of view, the goal is to
understand better which verification problems have to face state explosion in an intrinsic way and which
special manner of combining subsystems could avoid state explosion.

Different models of non-flat systems have been investigated. The simplest one is the fully asyn-
chronous model (synchronization-free non-flat systems), where at each step exactly one component per-
forms a transition [20, 13]. For more complex models, the components can communicate by shared
actions (or by access to shared variables), and, additionally, actions may be ‘hidden’ (i.e., replaced
by some special action) after the parallel composition [7, 12, 14]. For synchronization-free non-flat
systems, some problems in equivalence/preorder checking are still tractable. In particular, Groote and
Moller [5] have shown that if the alphabets of actions of the components are assumed to be pairwise
disjoint, then checking bisimulation equivalence (and other equivalences which satisfy a certain set of
axioms) is PTIME-complete. Moreover, for these systems and also for basic synchronous non-flat sys-
tems with no hiding (where the components are forced to synchronize on shared actions), checking
trace containment/equivalence has the same complexity as for flat systems, i.e. it is PSPACE-complete
[17, 20]. Simulation-preoder checking and bisimulation-equivalence checking for synchronous non-flat

1

systems (with or without hiding) are hard, since they are EXPTIME-complete [9, 4, 11, 16]. Checking
whether a synchronous non-flat system (where the communication is allowed by access to shared vari-
ables) is simulated by a flat system remains EXPTIME-hard [4]. Moreover, Rabinovich [14] has shown
that preorder/equivalence checking between a synchronous non-flat system with hiding and a flat system
is PSPACE-hard for any relation between trace containment and bisimulation. More recently, Muscholl
and Walukiewicz [13] have obtained a surprising result: checking whether a deterministic flat system
is simulated by a synchronization-free non-flat system whose components are deterministic remains
EXPTIME-hard. The exact complexity for the converse direction, i.e., whether a synchronization-free
non-flat system is simulated by a flat system is open.

Timed automata. Timed automata (TA) introduced by Alur and Dill [1] are a widely accepted formal-
ism to model the behavior of real-time systems. Equivalence/preorder checking for this infinite-state
computational model has been addressed in many papers. Timed language containment/equivalence is
undecidable [1]. Timed bisimulation and timed simulation have been shown to be decidable and in EX-
PTIME in [19] and [18], respectively; matching lower bounds have been given in [11]. Time-abstract
simulation and time-abstract bisimulation have been considered in [6] and are in EXPTIME.

Our contribution. We investigate the complexity of preorder checking when the specification is a flat
system and the implementation is either a timed automaton or a non-flat system. Note that the considered
setting is relevant since the specification is more abstract than the implementation, and, thus, it is usually
described by a simple formalism. The results obtained are as follows:

• Checking whether a timed automaton is time-abstract simulated by a flat system is EXPTIME-hard.

• Checking whether a synchronization-free non-flat system is simulated by a flat system is EXPTIME-
hard even if the components of the implementation are assumed to be deterministic and with pair-
wise disjoint alphabets of actions.

• The two problems above are PSPACE-hard if the specification is deterministic.

• Comparing a synchronous non-flat system with no hiding and a flat system is PSPACE-hard for any
relation lying in between trace containment and bisimilarity.

Our first result in a sense improves the EXPTIME-hardness result for timed simulation between timed
automata, by showing that checking timed-abstract simulation remains EXPTIME-hard even if one of
the compared TA is replaced by a flat (finite-state) system. Regarding our second and third results, they
imply that refinement checking of non-flat systems is intractable even for the simplest model (action-
based parallel compositions of deterministic components with pairwise disjoint alphabets) and even if the
specification is flat (note that for deterministic specifications, simulation preorder and trace containment
are equivalent notions). Finally, our fourth result significantly strengthens the PSPACE-hardness result of
Rabinovich [14] in which hiding is involved.

It is interesting to observe that our second result is surprising for the following reasons: if the al-
phabets of the components are assumed to be pairwise disjoint, then bisimulation checking between
non-flat systems is in PTIME [5], and simulation checking between a flat implementation and a non-flat
specification (i.e., whether a flat system is simulated by a non-flat system) is in PTIME as well [13].1

Note that the lower bounds for the first three problems are optimal since they match well-known
upper bounds in the literature (see Section 2). Due to lack of space, for the omitted details we refer the
interested reader to a forthcoming extended version of this paper.

1in [13], membership in PTIME is shown for the case in which the components of the specification and the implementations
are assumed to be deterministic. However, the proof can be easily extended to the case in which this requirement is relaxed.

2

2 Preliminaries

Labeled transition systems and simulation preorder. A labeled transition system (LTS) over a (possi-
bly infinite) set of actions Act is a tuple G = 〈Act,S,s0,∆〉, where S is a (possibly infinite) set of states,
s0 ∈ S is a designated initial state, and ∆⊆ S×Act×S is the transition relation. A transition (s,a,s′) ∈ ∆

is denoted by s a−→ s′. We say that G is deterministic if for all s ∈ S and a ∈ Act, there is at most one
transition of the form s a−→ s′ for some state s′. The set of traces of G , Tr(G), is the set of finite words
a1, . . . ,an over Act such that there is a path in G from the initial state of the form s0

a1−→ s1 . . .sn−1
an−→ sn.

An Act-labeled tree is an unordered finite or infinite tree whose edges are labeled by actions in Act.
Note that an Act-labeled tree is a particular LTS over Act whose initial state is the root. For a LTS G over
Act and a state s of G , the unwinding of G from s, written Unw(G ,s), is the Act-labeled tree defined in
the usual way.

Given two LTS G1 = 〈Act1,S1,s0
1,∆1〉 and G2 = 〈Act2,S2,s0

2,∆2〉, a simulation from G1 to G2 is a
relation R ⊆ S1×S2 satisfying the following for all (s1,s2) ∈ R : if s1

a−→ s′1 ∈ ∆1 for some state s′1 ∈ S1

and a ∈ Act1, then there is some state s′2 ∈ S2 so that s2
a−→ s′2 ∈ ∆2 and (s′1,s

′
2) ∈ R . If, additionally,

the inverse of R is a simulation from G2 to G1, then we say that R is a bisimulation from G1 to G2.
Given states s1 ∈ S1 and s2 ∈ S2, we say that s1 is simulated by s2 (resp., s1 and s2 are bisimilar) if there
is a simulation (resp., bisimulation) R from G1 to G2 such that (s1,s2) ∈ R . The simulation preorder
� (resp., the bisimulation equivalence ∼bis) is the binary relation over LTS defined as: G1 � G2 (resp.,
G1 ∼bis G2) iff the initial state s0

1 of G1 is simulated by the initial state s0
2 of G2 (resp., s0

1 and s0
2 are

bisimilar). Moreover, the trace containment preorder vtr is defined as: G1 vtr G2 iff Tr(G1)⊆ Tr(G2).
Note that for each � ∈ {∼bis,�,vtr}, G1 �G2 iff Unw(G1,s0

1)�Unw(G2,s0
2).

Flat and Non-flat systems. A flat system (FS) is an LTS A = 〈Act,Q,q0,∆〉 such that Act and the set
of states Q are both finite. The size of A is |A |= |Q|+ |∆|.

A synchronization-free Non-Flat System (NFS) is a tuple S = 〈A1, . . . ,Ak〉SF such that each compo-
nent Ai = 〈Acti,Qi,q0

i ,∆i〉 is a FS. S induces the FS [[S]] given by

[[S]] = 〈
i=k[
i=1

Acti,Q1× . . .×Qk,(q0
1, . . . ,q

0
k),∆SF〉

where ∆SF is defined as follows: ((q1, . . . ,qk),a,(q′1, . . . ,q
′
k)) ∈ ∆SF iff for some i, (qi,a,q′i) ∈ ∆i and for

all j 6= i, we have q′j = q j.
We also consider synchronous NFS S = 〈A1, . . . ,Ak〉, where the components Ai = 〈Acti,Qi,q0

i ,∆i〉
communicate by synchronization on common actions. Formally, S induces the FS given by

[[S]] = 〈
i=k[
i=1

Acti,Q1× . . .×Qk,(q0
1, . . . ,q

0
k),∆〉

where ∆ is defined as folows: ((q1, . . . ,qk),a,(q′1, . . . ,q
′
k))∈ ∆ iff for each i, (qi,a,q′i)∈ ∆i if a∈ Acti, and

q′i = qi otherwise. Note that all the components Ai such that a ∈ Acti must perform a transition labeled
by a. Moreover, note that if distinct components have no actions in common, then [[〈A1, . . . ,Ak〉]] =
[[〈A1, . . . ,Ak〉SF]]. The size of S is |S |= ∑

i=n
i=1 |Ai|.

Timed automata. Let R≥0 be the set of non-negative reals. Fix a finite set of clock variables X . The
set C(X) of clock constraints (over X) is the set of boolean combinations of formulas of the form x ≤ c
or x < c, where x ∈ X , and c is a natural number. A (clock) valuation (over X) is a function v : X →R≥0

3

that maps every clock to a non-negative real number. Whether a valuation v satisfies a clock constraint
g ∈ C(X), denoted v |= g, is defined in a natural way. For t ∈ R≥0, the valuation v + t is defined as
(v+ t)(x) = v(x)+ t for all x ∈ X . For Y ⊆ X , the valuation v[Y := 0] is defined as (v[Y := 0])(x) = 0 if
x ∈ Y and (v[Y := 0])(x) = v(x) otherwise.

Definition 1. [1] A timed automaton (TA) over a finite set of actions Act is a tuple T = 〈Act,X ,Q,q0,ρ〉,
where Q is a finite set of locations, q0 ∈ Q is the initial location, and ρ⊆ Q×Act×C(X)×2X ×Q is a
finite transition relation.

The TA T induces an infinite-state LTS [[T]] = 〈R≥0×Act,S,s0,∆〉 over R≥0×Act, where S is the
set of pairs (q,v) such that q ∈Q and v is a clock valuation, s0 = (q0,

−→
0) (
−→
0 assigns to each clock value

0), and ∆ is defined as follows: (q,v)
(t,a)−−→ (q′,v′) ∈ ∆ iff there is a transition (q,a,g,Y,q′) ∈ ρ such that

v+ t |= g and v′ = (v+ t)[Y := 0].
The abstract LTS associated with T is [[T]]abs = 〈Act,S,s0,∆abs〉, where (q,v) a−→ (q′,v′) ∈ ∆abs iff

(q,v)
(t,a)−−→ (q′,v′)∈∆ for some t ≥ 0. We say that T is strongly timed-deterministic if [[T]]abs is determin-

istic and for each (q,v) a−→ (q′,v′)∈∆abs, there is exactly one timestamp t such that (q,v)
(t,a)−−→ (q′,v′)∈∆.

Investigated problems. We consider the following decision problems:

Problem 1: given a TA T and a FS B , does [[T]]abs � B hold?
Problem 2: given a synchronization-free NFS S and a FS B , does [[S]]� B hold?
Problem 3(�): given a synchronous NFS S and a FS B , does [[S]]�B hold?
where � is a fixed binary relation on LTS. We also consider the deterministic versions of Problems 1 and
2, where the FS B above is assumed to be deterministic.

Theorem 1. Problems 1 and 2 are in EXPTIME, while their deterministic versions are in PSPACE.

Proof. Membership in EXPTIME for Problems 1 and 2 directly follows from the following:
Fact 1 [2]: given two FS A1 and A2, checking whether A1 � A2 is in PTIME.
Fact 2: for a NFS S , the size of the FS [[S]] is singly exponential in the size of S .
Fact 3 [6]: given two TA T1 and T2, checking whether [[T1]]abs � [[T2]]abs is in EXPTIME.

Membership in PSPACE for the deterministic versions of Problems 1 and 2 directly follows from
Fact 2 and the following:
Fact 4: for two LTS G1 and G2 such that G2 is deterministic, G1 � G2 iff G1 vtr G2.
Fact 5 [1]: given a TA T , one can construct a FS AT (region automaton) of size singly exponential in
the size of T such that Tr(AT) = Tr([[T]]abs).
Fact 6: given a deterministic FS A over Act, one can trivially construct in linear-time a standard finite-
state automaton which accepts all and only the words in Act∗ \Tr(A).
Fact 7 [8]: checking emptiness of the intersection of the languages accepted by two (nondeterministic)
finite-state automata is in NLOGSPACE.

In the rest of this paper, we provide lower bounds for Problems 1 and 2 (and their deterministic ver-
sions) which match the upper bounds of Theorem 1. Moreover, we show that Problem 3(�) is PSPACE-
hard for any binary relation � lying in between trace containment and bisimulation equivalence.

3 EXPTIME-hardness of Problems 1 and 2

In this section, we show that Problems 1 and 2 are both EXPTIME-hard by polynomial-time reductions
from the acceptance problem for linearly-bounded alternating Turing Machines (TM) with a binary

4

branching degree, which is EXPTIME-complete [3].
In the rest of this section, we fix such a TM machine M = 〈A,Q = Q∀∪Q∃∪{qacc,qre j},q0,δ,{qacc}〉,

where A is the input alphabet, Q∃ (resp., Q∀) is the set of existential (resp., universal) states, q0 is the
initial state, qacc /∈ Q∀ ∪Q∃ is the (terminal) accepting state, qre j /∈ Q∀ ∪Q∃ is the (terminal) rejecting
state, and δ : (Q∀∪Q∃)×A→ (Q×A×{+1,−1})× (Q×A×{+1,−1}) is the transition function. In
each non-terminal step (i.e., the current state is in Q∀∪Q∃), M overwrites the tape cell being scanned,
and the tape head moves one position to the left (−1) or right (+1). Moreover, we fix an input α ∈ A∗

and consider the parameter n = |α|.
Since M is linearly bounded, w.l.o.g. we assume that M uses exactly n tape cells when started on

the input α. Hence, a TM configuration (of M over α) is a word C = β1,(a,q),β2 ∈ A∗ · (A×Q) ·A∗ of
length exactly n denoting that the tape content is β1,a,β2, the current state is q, and the tape head is at
position |β1|+ 1. The initial configuration Cα is given by (α(1),q0),α(2), . . . ,α(n). Moreover, w.l.o.g.
we assume that when started on Cα, no matter what are the universal and existential choices, M always
halts by reaching a terminal configuration C, i.e. such that the associated state, denoted by q(C), is in
{qacc,qre j} (this assumption is standard, see [3]).

It is convenient to define the notion of acceptance of M as follows. For each q∈Q, define Val(q) = 1
if q = qacc, and Val(q) = 0 otherwise. A (full) pseudo-computation tree T of M from a TM configuration
C is a binary tree whose nodes are labeled by TM configurations and such that the root is labeled by C,
the internal nodes have two children, and the leaves are labeled by terminal configurations. If T is
finite, then its boolean value Val(T) ∈ {0,1} is defined as follows. If T consists just of the root, then
Val(T) = Val(q(C)). Otherwise, let TL and TR be the trees rooted at the children of the root of T .
Then, Val(T) is Val(TL) ∨ Val(TR) if q(C) ∈Q∃, and Val(TL) ∧ Val(TR) otherwise. The tree T leads to
acceptance if Val(T) = 1. A (full) computation tree is a pseudo-computation tree which is faithful to the
evolution of M . M accepts α iff the computation tree of M over Cα, which by our assumption is finite,
leads to acceptance.

In the rest of this section, we show that it is possible to construct in polynomial time (in the sizes of
the fixed TM M and input α) an instance I of Problem 1 (resp., Problem 2) such that M accepts α iff
the instance I has a positive answer.

Preliminary step: encoding of acceptance by simulation. Before illustrating the polynomial reduc-
tions to Problems 1 and 2 (in Subsections 3.1 and 3.2, respectively), we consider a preliminary step in
which we define for a given finite set of actions Act and a given encoding of the TM configurations by
words over Act, two Act-labeled trees ETCα

and V Tq(Cα),1 such that M accepts the fixed input α iff the
root of ETCα

is simulated by the root of V Tq(Cα),1. The tree ETCα
is finite and deterministic, and it is a

natural encoding of the computation tree of M over Cα, while the tree V Tq(Cα),1 is infinite and nondeter-
ministic, and encodes in a suitable way all the possible finite pseudo-computation trees of M which lead
to acceptance. The two encodings ensure that the root of ETCα

is simulated by the root of V Tq(Cα),1 iff
ETCα

is ‘contained’ in V Tq(Cα),1, i.e. the full computation tree of M over α leads to acceptance. Now, we
define these trees.

Assumptions: we assume that Act ⊇ Q∪ (Q×{0,1})∪{L,R} and each TM configuration C is encoded
by a finite word over Act, denoted by code(C). We denote by Codes the finite set of these codes, which
are assumed to have the same length. The precise definition of Act and Codes will depend on the specific
problem we consider (either Problem 1 or Problem 2).

For each code ∈ Codes, let Tcode be the finite Act-labeled tree, which is a chain and whose unique
maximal path from the root is labeled by code. For a non-terminal configuration C = β1,(a,q),β2 (i.e.,
such that q ∈ Q∀∪Q∃), succL(C) (resp., succR(C)) denotes the TM successor of C obtained by choosing
the left (resp., right) triple in δ(q,a). A good configuration is a configuration reachable from Cα.

5

Definition 2. [Emulation trees] For each good TM configuration C, the finite deterministic Act-labeled
emulation tree of M from C, denoted by ETC, is inductively defined as follows. The tree ETC is obtained
from Tcode(C) by adding an edge from the leaf xm of Tcode(C) (main node of level 0) to a new node xc

(choice node of level 0) such that:

• C is terminal: xc is a leaf and the edge from xm to xc is labeled by (q(C),Val(q(C))).

• C is not terminal: let CL = succL(C) and CR = succR(C). Then, xc has two children xL and xR so
that the subtree rooted at xL (resp., xR) is isomorphic to ETCL (resp., ETCR). The edge from the
main node xm to the choice node xc is labeled by q(C), and the edge from xc to xL (resp., to xR) is
labeled by L (resp., R).

The structure of the emulation trees ETC is depicted in Figure 1. The boolean value Val(ETC) of ETC is
the boolean value of the computation tree of M from C.

Remark 1. M accepts α iff Val(ETCα
) = 1.

q
.
.
.q
?q

�
�	
@
@Rq
�
��
A
AA

q
�
��
A
AA

.

.

.

?q
CL = succL(C)
CR = succR(C)

Tree ETC

C is non-terminal Tcode(C)

q(C)

L R

ETCRETCL

xm (main node of level 0)

xc (choice node of level 0)

q
.
.
.q
?q

Tree ETC

C is terminal Tcode(C)

(q(C),Val(q(C)))
xm

xc

Figure 1: Structure of the Act-labeled emulation tree ETC for a good TM configuration C.

Let TCodes be the tree encoding of Codes, i.e. the unique deterministic finite Act-labeled tree such that the
set of sequences of edge-labels associated with all maximal paths from the root is exactly Codes. For all
q ∈ Q and boolean value b ∈ {0,1}, let Choicesq,b be the non-empty finite set of pairs 〈(q1,b1),(q2,b2)〉
such that q1,q2 ∈Q, b1,b2 ∈ {0,1}, and b1 ∨ b2 = b if q is an existential state, and b1 ∧ b2 = b otherwise.

Definition 3. [Valuation trees] For all q ∈ Q and b ∈ {0,1}, the Act-labeled (q,b)-valuation tree of M ,
denoted by V Tq,b, is the Act-labeled infinite tree satisfying the following. V Tq,b is obtained from TCodes
by adding for each leaf ym (main node of level 0) of TCodes exactly |Choicesq,b| edges from ym labeled
by q and one edge from ym to a leaf node labeled by (q,b). Moreover, for each 〈(qL,bL),(qR,bR)〉 ∈
Choicesq,b, one of these new edges labeled by q leads to a node yc (choice node of level 0) so that: (1) yc

has two children yL and yR, (2) the edge from yc to yL (resp., to yR) is labeled by L (resp., R), and (3) the
subtree rooted at yL (resp., yR) is isomorphic to V TqL,bL (resp., V TqR,bR). Note that the subtrees rooted at
the main nodes of level 0 are isomorphic. The structure of V Tq,b is depicted in Figure 2.

Lemma 1. Fix a good TM configuration C, a state q ∈ Q, and b ∈ {0,1}. Then, the root of ETC is
simulated by the root of V Tq,b iff q = q(C) and b = Val(ETC).

Lemma 1 can be easily proved by structural induction over the (finite) tree ETC. By Remark 1 and
Lemma 1, we obtain the following result.

Lemma 2. M accepts α iff the root of ETCα
is simulated by the root of V Tq(Cα),1.

6

q
�
�
��

A
A
AA

TCodes

.q qq.
.
.
.
.
.

.

.

.

.

.

.

A
AU
�
�� zq
.
.

q
�
�	
@
@Rq
�
��
A
AA

q
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

�
��
A
AA

Tree V Tq,b

ymym : main nodes of level 0
(the subtrees rooted at these nodes
are isomorphic)

qq (q,b)
yc

yc : choice nodes of level 0 for all
〈(qL,bL),(qR,bR)〉 ∈ Choicesq,b

L R

V TqR,bRV TqL ,bL

q

Figure 2: Structure of the infinite Act-labeled valuation tree V Tq,b.

3.1 EXPTIME-hardness of Problem 1

In the case of Problem 1, the set Act of actions is given by

Act = Q∪ (Q×{0,1})∪{L,R}∪A∪ (A×Q)∪{λ0,λ1}

The code of each TM configuration C = C(1), . . . ,C(n) is the word over Act of length 3n defined as:

code(C) = λ0,C(1),λ1, . . . ,λ0,C(n),λ1

Note that each symbol u ∈ A∪ (A×Q) is encoded by the word λ0,u,λ1. Let K be the size of A∪ (A×Q).
We fix an ordering {a1, . . . ,aK} of the elements in A∪ (A×Q) and we associate to each ai the timestamp
τ(ai) given by i.

We construct a strongly timed-deterministic TA Tem over Act and a nondeterministic FS Aval over Act
of sizes polynomial in the sizes of the fixed TM M and input α so that: the unwinding of [[Tem]]abs from
its initial state is the emulation tree ETCα

of Definition 2, and the unwinding of Aval from its initial state is
the valuation tree V Tq(Cα),1 of Definition 3. By Lemma 2 it follows that M accepts α iff [[Tem]]abs �Aval .
Hence, EXPTIME-hardness of Problem 1 follows.

Theorem 2. Given a TA T and a nondeterministic FS A , checking whether [[T]]abs � A is EXPTIME-
hard, even if the TA T is assumed to be strongly timed-deterministic.

In the rest of this subsection, we illustrate the construction of Tem (the construction of Aval is an easy
task).

Note that for a TM configuration C =C(1), . . . ,C(n), the ‘value’ ui of the i-th symbol of the left (resp.,
right) successor of C is completely determined by the values C(i−1), C(i) and C(i+1) (taking C(i+1)
for i = n and C(i−1) for i = 1 to be some special symbol, say⊥). We denote by nextL(C(i−1),C(i),C(i+
1) (resp., nextR(C(i− 1),C(i),C(i + 1)) our expectation for ui (these functions can be trivially obtained
from the transition function δ of the fixed TM M).

Tem uses n + 1 clocks x0,x1, . . . ,xn in order to ensure a correct emulation of the evolution of M .
Clock x0 is reset on generating the special action λ1 (and only in this circumstance). On generating the
special action λ0, we require (x0 = 0) to hold, on generating u ∈ A∪ (A×Q), we require (x0 = τ(u))
to hold, and on generating λ1, we require (x0 = K) to hold. This ensures that the durations of the
consecutive three steps at which the code λ0,u,λ1 of u ∈ A∪ (A×Q) is generated are 0, τ(u), and
K−τ(u), respectively. Hence, the overall duration of these steps is exactly K (independent on the specific
action u ∈ A∪ (A×Q)). Moreover, the overall duration of the sequence of steps at which a code code(C)
is generated is exactly nK. Furthermore, whenever an action u∈ A∪(A×Q) is generated from a location
associated with the i-th symbol of a TM configuration C, clock xi is reset (and only in this circumstance).
This ensures that when the special action λ0, associated with the i-th symbol of the next generated TM

7

configuration Cdir with dir ∈ {L,R}, has to be generated, the following holds: the value of clock xi is
exactly nK − τ(C(i)) and (assuming i < n) the value of clock xi+1 is exactly (n− 1)K − τ(C(i + 1)).
Thus, Tem will time-deterministically move (by taking a transition whose action is λ0 and whose clock
constraint is x0 = 0 ∧ xi = nK− τ(C(i)) ∧ xi+1 = (n− 1)K− τ(C(i + 1)) to a location of the form p =
(i,C(i−1),C(i),C(i+1),dir, . . .), where the ‘value’ C(i−1) is ‘transmitted’ from the previous location.
At this point, Tem has all the information (C(i−1),C(i),C(i+1), and dir ∈ {L,R}) to determine the i-th
symbol of Cdir. Thus, there is exactly one transition from location p of the form (p,u,x0 = τ(u),{xi}, p′),
where u = nextdir(C(i−1),C(i),C(i+1)).

3.2 EXPTIME-hardness of Problem 2

In the case of Problem 2, the set Act of actions is given by

Act = Q∪ (Q×{0,1})∪{L,R}∪
(
{1, 1̃, . . . ,n, ñ}× (A∪ (A×Q))

)
where for each i∈ {1, . . . ,n}, ĩ denotes a fresh copy of i. The meaning of these symbols will be explained
later. The code of a TM configuration C = C(1), . . . ,C(n) is now a word of length 2n given by

code(C) = (1̃,C(1)),(1,C(1)), . . . ,(ñ,C(n)),(n,C(n))

We construct a nondeterministic FS Bval over Act and a synchronization-free NFS SSF over Act
(whose components are deterministic and with pairwise disjoint alphabets of actions) of sizes polynomial
in the size of the fixed TM M and input α such that M accepts α iff [[SSF]] � Bval . Hence, EXPTIME-
hardness of Problem 2 follows.

We note that a synchronization-free NFS of size polynomial in the size of M and α cannot faith-
fully emulate the evolution of M over the input α. In order to cope with this problem, we first define
suitable extensions Ext ETCα

and Ext V Tq(Cα),1 of the emulation tree ETCα
(Definition 2) and valuation

tree V Tq(Cα),1 (Definition 3), respectively, in such a way that the result of Lemma 2 holds even for these
extensions. Then, we show that we can construct Bval and SSF in such a way to ensure that the unwinding
of [[SSF]] from its initial state is the extended emulation tree Ext ETCα

, and the unwinding of Bval from
its initial state is the extended valuation tree Ext V Tq(Cα),1.

Extended emulation trees and Extended valuation trees.

Definition 4. [Extended emulation trees] For each good TM configuration C, an extended emulation tree
of M from C is a (possibly infinite) Act-labeled tree Ext ETC which extends the emulation tree ETC

(Definition 2) in such a way that the following conditions are inductively satisfied. There is exactly one
partial path from the root which is labeled by some code in Codes (note that by Definition 2, this path
coincides with the partial path from the root to the main node of level 0 of ETC). Moreover, each new
edge from the main node of level 0 is labeled by an action in Act \ (Q∪ (Q×{0,1})) and:

• C is terminal: each new edge from the unique leaf of ETC is labeled by an action in Act \{L,R}.

• C is not terminal: each new edge from the choice node xc of level 0 of ETC is labeled by an action
in Act \{L,R}. Moreover, let xL and xR be the children of xc in ETC (recall that the subtrees rooted
at xL and xR in ETC correspond to ETsuccL(C) and ETsuccR(C), respectively). Then, we require that
the subtrees rooted at xL and xR in Ext ETC are extended emulation trees of M from succL(C) and
succR(C), respectively.

8

Note that for a given (good) TM configuration C, there can be many extended emulation trees of M
from C, and the definition above specifies only some properties that must be satisfied by them. We denote
by Ext(ETC) the nonempty set of extended emulation trees of M from C. An extended code is a word
over Act of the form code · u · dir, where code ∈ Codes, u ∈ Q∪ (Q×{0,1}), and dir ∈ {L,R}. Let us
consider the infinite Act-labeled valuation trees V Tq,b of Definition 3. A node y of V Tq,b is called starting
node iff either y is the root or y is the child of some choice node (note that the subtree rooted at a child
of a choice node corresponds to some valuation tree V Tq′,b′). We extend V Tq,b as follows, where Tf ull
denotes the Act-labeled infinite tree obtained as the unwinding of the deterministic FS having a unique
state and for each u ∈ Act, a self-loop labeled by u.

Definition 5. [Extended valuation trees] For all q ∈ Q and b ∈ {0,1}, the infinite Act-labeled extended
valuation tree Ext V Tq,b is obtained from V Tq,b as follows. For each node y of V Tq,b, let y0 be the first
ancestor of y which is a starting node (note that y0 may be y), and let wy0,y be the word over Act labeling
the partial path from y0 to y. Note that wy0,y has length at most 2n + 1 and is the proper prefix of some
extended code. Then, for each u ∈ Act such that the word wy,y0 ·u is not the prefix of any extended code,
we add an edge labeled by u from y to the root of a tree isomorphic to Tf ull .

The following lemma is the variant of Lemma 1 for extended emulation trees and extended valuation
trees.

Lemma 3. Fix a good TM configuration C, a state q ∈ Q, and b ∈ {0,1}. Then, for each extended em-
ulation tree Ext ETC ∈ Ext(ETC), the root of Ext ETC is simulated by the root of the extended valuation
tree Ext V Tq,b iff q = q(C) and b = Val(ETC).

Constructions of the FS Bval and the synchronization-free NFS SSF .

Lemma 4. One can construct a nondeterministic FS Bval of size polynomial in the sizes of M and α

such that the unwinding of Bval from its initial state is Ext V Tq(Cα),1.

Lemma 5. One can construct a synchronization-free NFS SSF (whose components are deterministic and
with pairwise disjoint alphabets of actions) of size polynomial in the sizes of M and α such that the
unwinding of [[SSF]] from its initial state is in Ext(ETCα

).

Below, we prove Lemmata 4 and 5. By Remark 1 and Lemmata 3, 4, and 5, it follows that M accepts
α iff [[SSF]]� Bval , where Bval is the FS of Lemma 4 and SSF is the NFS of Lemma 5. Hence:

Theorem 3. Given a FS A and a synchronization-free non-flat system S , checking whether [[S]] � A
is EXPTIME-hard, even if the components of S are assumed to be deterministic and their alphabets are
assumed to be pairwise disjoint.

Proof of Lemma 4. We need some additional definition. Let 0≤ i < 2n, last⊥ ∈{⊥}∪({1, 1̃, . . . ,n, ñ}×
(A∪(A×Q))) (where⊥ is for undefined), and f ∈ {yes,no} such that last⊥ =⊥ iff i = 0. A (i, last⊥, f)-
word is a proper prefix wp of a code in Codes such that |wp|= i, last⊥ is the last symbol of wp if i > 0,
and f = yes iff wp contains some occurrence of a symbol in {1̃, . . . , ñ}× (A×Q). Moreover, for each
u ∈ Act, we consider the predicate Prefix(i, last⊥, f ,u) which holds iff there exists a (i, last⊥, f)-word wp

such that wp ·u is the prefix of some code in Codes. Note that by definition of Codes, the satisfaction of
Prefix(i, last⊥, f ,u) is independent on what representative is chosen in the set of (i, last⊥, f)-words, i.e.,
for all (i, last⊥, f)-words wp and w′p, it holds that wp ·u is the prefix of some code in Codes iff w′p ·u is
the prefix of some code in Codes.

The FS Bval = 〈Act,Pval, p0
val,∆val〉 satisfying the statement of Lemma 4 is defined as follows. The

set of states is Pval = {p f ull}∪Pcod ∪Pmain∪Pchoice∪{p#}, where:

9

• From state p f ull there are self-loops on all actions from Act. Thus, the unwinding of Bval from
p f ull corresponds to Tf ull (see Definition 5).

• Pcod consists of states of the form pcod = (q,b, i, last⊥, f), where (q,b) ∈ Q×{0,1}, 1 ≤ i ≤ 2n,
last⊥ ∈ {⊥}∪ ({1, 1̃, . . . ,n, ñ}× (A∪ (A×Q))), and f ∈ {yes,no}, where last⊥ = ⊥ iff i = 1.
The states in Pcod are used to generate all the codes in Codes. Intuitively, (q,b) is the currently
processed pair TM state/ boolean value, i is the currently processed position of a code. Moreover,
last⊥ keeps track of the last generated symbol if i > 1, and the flag f is used to keep track whether
a symbol of the form (j̃,u) with u ∈ A×Q has already been generated in the previous i−1 steps.
From state pcod , Bval generates all the actions u ∈ Act in such a way that the following holds. If
Prefix(i−1, last⊥, f ,u) holds (this means that the word wp ·u is the prefix of some code in Codes,
where wp is the (i, last⊥, f)-word generated in the previous i− 1 steps), then Cval generates the
letter u and moves to a state in Pcod of the form (q,b, i+1,u, f ′) if i < n and to the main state (q,b)
(see below) otherwise. If instead Prefix(i−1, last⊥, f) does not hold, then Bval generates the action
u and moves to the state p f ull .

• Pmain = Q×{0,1}. States in Pmain are associated with the main nodes of Ext V Tq(Cα),1 (corre-
sponding to the main nodes of V Tq(Cα),1).

• Pchoice = (Q×{0,1})× (Q×{0,1}). States in Pchoice are associated with the choice nodes of
Ext V Tq(Cα),1 (corresponding to the choice nodes of V Tq(Cα),1).

• State p# is associated with the nodes of Ext V Tq(Cα),1 corresponding to the leaf nodes of V Tq(Cα),1.

The initial state p0
val is (q(Cα),1,1,⊥,no) and the transition relation ∆val is defined as follows:

1. Transitions from p f ull: for each u ∈ Act, we have the transition p f ull
u−→ p f ull

2. Transitions to generate the codes in Codes: from each state (q,b, i, last⊥, f) ∈ Pcod and for each
u ∈ Act, we have the following transition:

• Prefix(i−1, last⊥, f ,u) does not hold: (q,b, i, last⊥, f) u−→ p f ull

• Prefix(i−1, last⊥, f ,u) holds and i < 2n: (q,b, i, last⊥, f) u−→ (q,b, i+1,u, f ′)
where f ′ = yes if u ∈ {1̃, . . . , ñ}× (A×Q), and f ′ = f otherwise.

• Prefix(i−1, last⊥, f ,u) holds and i = 2n: (q,b, i, last⊥, f) u−→ (q,b)

3. Transitions from main states (q,b) ∈ Q×{0,1}:

• (q,b)
q−→ ((q1,b1),(q2,b2)) for each 〈(q1,b1),(q2,b2)〉 ∈ Choicesq,b.

• (q,b)
(q,b)−−→ p#

• (q,b) u−→ p f ull for all u ∈ Act \ (Q∪ (Q×{0,1})).

4. Transitions from choice states ((q1,b1),(q2,b2)) ∈ (Q×{0,1})× (Q×{0,1}):

• ((q1,b1),(q2,b2))
L−→ (q1,b1,1,⊥,no)

• ((q1,b1),(q2,b2))
R−→ (q2,b2,1,⊥,no)

• ((q1,b1),(q2,b2))
u−→ p f ull for each u ∈ Act \{L,R}.

5. Transitions from state p#: p#
u−→ p f ull for each u ∈ Act \{L,R}.

Correctness of construction easily follows.

10

Proof of Lemma 5. The synchronization-free NFS SSF satisfying the statement of Lemma 5 is given
by SSF = 〈Cell1, . . . ,Celln,Control〉SF . Intuitively, Cell j (1 ≤ j ≤ n) keeps track by its finite control of
the j-th symbol of a TM configuration, and it can generate only the actions of the form (j,u) (where
u ∈ A∪ (A×Q)). Note that the action (j,u) corresponds to the 2nd symbol in the j-th pair (j̃,u),(j,u)
of the code of some TM configuration. Control is instead used to model the control unit of M , and it
can generate only the actions in Act \({1, . . . ,n}×(A∪(A×Q))). After having ‘correctly’ generated the
code of a TM configuration C, Cell j is in state C(j) and Control is in a state which keeps track of the
position i of the tape head of C together with the i-th symbol of C. Assume that C is not terminal. In order
to generate for each dir ∈ {L,R}, the j-th pair (j̃,u),(j,u) (1 ≤ j ≤ n) of the code of the dir-successor
succdir(C) of C, the SSF -components behave as follows. Assume that j 6= i and j is not the position of the
tape head in succdir(C) (the other cases are similar). Since Control keeps track of the pair (i,C(i)) and the
current position j, it can check (by using the transition function δ of the TM M) whether this condition
is satisfied or not. Note that in this case, the j-th symbol of succdir(C) coincides with the j-th symbol of
C, i.e. u = C(j), and, additionally u ∈ A. Then, Control guesses a pair (j̃,u′) with u′ ∈ A and generates
it. Component Cell j, which is in state C(j), will be able to generate in the next step the matching pair
(j,u′) iff u′ = C(j). In this way, the SSF -components ensure that for each choice dir ∈ {L,R}, exactly
one code in Codes will be generated, and this code is precisely the encoding of succdir(C). The crucial
point is that even if other words of length 2n will be generated (due to all the possible interleaving of the
individual and asynchronous computational steps of the single components), exactly one of these words
of length 2n will be a code in Codes. The SSF -components are formally defined below.
Cell j = 〈{ j}× (A∪ (A×Q)),{p0

j}∪A∪ (A×Q), p0
j ,∆ j〉, where ∆ j is defined as:

1. p0
j

(j,Cα(j))−−−−−→Cα(j)

2. a
(j,a)−−→ a and a

(j,a,q)−−−→ (a,q) for all a ∈ A and q ∈ Q

3. (a,q)
(j,a′)−−−→ a′ for all a,a′ ∈ A and q ∈ Q

The first transition is used to generate the 2nd symbol of the j-th pair of the code of the initial TM
configuration Cα. Transitions of type 2 (resp., 3) are used to generate the 2nd symbol of the j-th pair of
the code of the next TM configuration when the tape head is at position i 6= j (resp., i = j). Note that the
source state of transitions of type 2–3 represents the j-th symbol of the current TM configuration.
Control = 〈Act \ ({1, . . . ,n}× (A∪ (A×Q))),P,1,∆〉 is defined as follows. The set of states is given by
P = {p f in}∪Pinit ∪Pcon f ∪Pmain∪Pchoice, where:

• p f in is a state with no outgoing transitions.

• Pinit = {1, . . . ,n}. States in Pinit are used to generate the code of Cα, and 1 is the initial state.

• Pcon f consists of states of the form pcon f = (j,(i,a,q),a⊥,dir), where 1 ≤ j, i ≤ n, a ∈ A, q ∈
Q\{qacc,qre j}, a⊥ ∈ A∪{⊥} (⊥ is for undefined), and dir ∈ {L,R}. Intuitively, i is the position
of the tape head for the current non-terminal TM configuration C and (a,q) = C(i). Let δ(q,a) =
〈(qL,aL,θL),(qR,aR,θR)〉. Then, from state pcon f , Control guesses and generates an action of the
form (j̃,u) with the constraint that u = adir if j = i, u = (a′,qdir) for some a′ ∈ A if j = i+θdir, and
u ∈ A if j /∈ {i, i+θdir} (note that adir is the i-th symbol of succdir(C) and i+θdir is the position of
the tape head in succdir(C)). If the guess is correct (i.e., u is the j-th symbol of succdir(C)), then
Cell j is able to generate the matching action (j,u) in the next step. In this case, a⊥ is the content
of the succdir(C)-cell pointed by the tape head if the position of this cell is smaller than j, and
a⊥ =⊥ otherwise.

11

• Pmain consists of states of the form pmain = (main,(i,a,q)), where 1 ≤ i ≤ n, a ∈ A, and q ∈ Q.
Intuitively, i represents the position of the tape head for the new generated TM configuration C and
(a,q) = C(i). From state pmain, Control moves to the choice state (choice,(i,a,q)) (see below) by
generating the action q if q /∈ {qacc,qre j}, and to the state p f in by generating the action (q,Val(q))
otherwise.

• Pchoice consists of states of the form (choice,(i,a,q)), where (i,a,q) has the same meaning as
above. From these states, Control generates the two actions L and R.

The transition relation ∆ of Control is defined as follows.

1. Initialization (transitions to generate the code of Cα):

• 1
(1̃,Cα(1))−−−−−→ 2, . . . ,n

(ñ,Cα(n))−−−−−→ (main,(1,α(0),q0))

2. Transitions to generate the next TM configuration: from each state (j,(i,a,q),a⊥,dir) ∈Pcon f with
δ(q,a)= 〈(qL,aL,θL),(qR,aR,θR)〉 and 1≤ i+θdir≤ n, and for each a′ ∈A such that a′ = adir if j = i,
we have the following transitions:

• j 6= i+θdir, j < n: (j,(i,a,q),a⊥,dir)
(j̃,a′)−−−→ (j +1,(i,a,q),a⊥,dir)

• j 6= i+θdir, j = n, a⊥ 6=⊥: (n,(i,a,q),a⊥,dir)
(ñ,a′)−−−→ (main,(i+θdir,a⊥,qdir))

• j = i+θdir, j < n: (j,(i,a,q),a⊥,dir)
(j̃,a′,qdir)−−−−−→ (j +1,(i,a,q),a′,dir)

• j = i+θdir = n: (n,(i,a,q),a⊥,dir)
(ñ,a′,qdir)−−−−−→ (main,(n,a′,qdir))

3. Transitions from main states (main,(i,a,q)) ∈ Pmain:

• q /∈ {qacc,qre j}: (main,(i,a,q))
q−→ (choice,(i,a,q))

• q ∈ {qacc,qre j}: (main,(i,a,q))
(q,Val(q))−−−−−→ p f in

4. Transitions from choice states (choice,(i,a,q)) ∈ Pchoice:

• (choice,(i,a,q)) L−→ (1,(i,a,q),⊥,L) and (choice,(i,a,q)) R−→ (1,(i,a,q),⊥,R)

Now, we prove that the construction is correct. Let C be a non-terminal good TM configuration and
dir ∈ {L,R}. The starting (C,dir)-state is the state of SSF in which component Cell j is in state C(j)
and Control is in the state (1,(i,a,q),⊥,dir) ∈ Pcon f , where i is the position of the tape head in C and
(a,q) = C(i). Moreover, for each dir ∈ {L,R}, the starting (⊥,dir)-state is the initial state of SSF . By
construction, the following result easily follows.

Lemma 6. Fix a starting (C⊥,dir)-state pstart , and let C =Cα if C⊥=⊥, and C = succdir(C⊥) otherwise.
Then, there is a unique path π of SSF starting from pstart labeled by a code ∈ Codes. Moreover, code =
code(C) and there is exactly one transition p u−→ p′ from the last state p of π labeled by an action
u ∈ Q∪ (Q×{0,1}). Furthermore, the action u and state p′ satisfies the following:

• C is terminal: u = (q(C),Val(q(C))) and there is no transition outgoing from p′ labeled by an
action in {L,R}.

• C is not terminal: u = q(C) and there are exactly two transitions from state p′ labeled by actions in
{L,R}. Moreover, one, labeled by L, leads to the starting (C,L)-state, and the other one, labeled
by R, leads to the starting (C,R)-state.

12

By Definition 4 and Lemma 6, we obtain the desired result.

Corollary 1 (Correctness). The unwinding of SSF from its initial state is in Ext(ETCα
).

Note that the components of SSF are deterministic and with pairwise disjoint alphabets of actions.
Moreover, the size of SSF is polynomial in the sizes of the TM M and input α. Thus, by the above
corollary, Lemma 5 follows.

4 Additional hardness results

We can show that the deterministic versions of Problems 1 and 2 are PSPACE-hard by polynomial-time
reductions from the word problem for linearly-bounded deterministic Turing Machines. The proposed
constructions can be seen as a simplification of those illustrated in the previous section.

Theorem 4. The deterministic versions of Problems 1 and 2 are PSPACE-hard, and for Problems 2,
PSPACE-hardness holds even if the components of the synchronization-free non-flat system are assumed
to be deterministic and with pairwise disjoint alphabets.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5. For any relation � on LTS lying between trace containment and bisimulation equivalence,
checking whether [[S]]�A for a given synchronous NFS S and a FS A is PSPACE-hard even if A and the
S -components are assumed to be deterministic.

Proof of Theorem 5. By a polynomial-time reduction from the acceptance problem for non-halting
linearly-bounded deterministic Turing Machines (TM). Fix such a TM machine M = 〈A,Q,q0,δ,{qacc}〉,
where A, Q, q0, qacc (with q0 6= qacc) are as for alternating Turing Machines, and δ : Q×A→ (Q×A×
{+1,−1}) is the transition function, where +1 (resp., −1) denotes a right (resp., left) tape head move.
Fix an input α∈ A∗ and let n = |α|. Since M is linearly bounded, we can assume that a TM configuration
(of M over α) is a word C = β1,(a,q),β2 ∈ A∗ · (A×Q) ·A∗ of length exactly n. M accepts α iff the
unique (infinite) computation of M over α visits an accepting configuration. W.l.o.g. we assume that the
alphabet A contains a special symbol, say #, such that if the computation of M over α visits an accepting
configuration Cacc, then Cacc is #-homogeneous, i.e. the content of each cell of Cacc is the special symbol #.

Preliminary step: encoding of acceptance. Let Act = ({1, . . . ,n} × (A ∪ (A×Q))) ∪ {[}, where
[is a special action. For each TM configuration C, code(C) is the word over Act \ {[} given by
(1,C(1)), . . . ,(n,C(n)). Let Codes be the finite set of these codes and TCodes be the deterministic tree
encoding of Codes (as defined in Section 3).

Definition 6 (Valuation tree). The valuation tree Tval is the infinite Act \{[}-labeled tree obtained as the
limit of the sequence of finite trees (T k

Codes)k∈N, where: T 0
Codes = TCodes and T k+1

Codes results from rooting a
fresh copy of TCodes at each leaf of T k

Codes.

Note that Tval is a deterministic and all its maximal paths from the root are infinite and labeled by
concatenations of codes of TM configurations. The special path of Tval is the unique maximal path from
the root whose sequence of labels code(C1) ·code(C2) . . . is such that Cα,C1,C2, . . . is the computation of
M over α.

Definition 7 (Emulation tree). The deterministic Act-labeled emulation tree Tem is defined as follows.
Let π be the special path of Tval and let code(C1) · code(C2) . . . be its sequence of labels. For each i≥ 1

13

such that Ci is an accepting #-homogeneous configuration, let xi
ui−→ yi be the edge along π associated

with the last symbol of code(Ci). Then, Tem is obtained from Tval by adding for each of these edges
xi

ui−→ yi (if any), a new edge labeled by the special action [from yi to a new leaf node.

Fact: if M does not accept α, then Tem = Tval . Otherwise, Tr(Tem) 6⊆ Tr(Tval).

Final step. Theorem 5 directly follows from the fact above and the following two Lemmata. The proof
of Lemma 7 is trivial and we omit it.

Lemma 7. One can construct a deterministic FS Dval over Act of size polynomial in the sizes of M and
α such that the unwinding of Dval from its initial state is Tval .

Lemma 8. One can construct a synchronous NFS Sem over Act (whose components are deterministic)
of size polynomial in the sizes of M and α such that the unwinding of [[Sem]] from its initial state is Tem.

Sketched proof. Sem is a synchronous composition of n + 1 components Cell1, . . . ,Celln, and Control.
Intuitively, Cell j (1 ≤ j ≤ n) keeps track by its finite control of the j-th symbol of a TM configuration,
and its alphabet is {[}∪ ({ j}× (A∪ (A×Q))). Control is instead used to model the control unit of M ,
and its alphabet is Act (hence, Control participates in each transition of Sem). After having ‘correctly’
generated a TM configuration C (this, intuitively, means that Ssem is emulating the computation of M
over α, i.e., the computational path from the initial state to the current state of Sem corresponds to a prefix
of the special path of Tval), Sem is in a starting good state sgood such that component Cell j is in state C(j)
and Control is in a good local state which keeps track of the position k of the tape head of C together with
the k-th symbol of C.2 From state sgood , Sem generates in n steps by ‘computational nondeterminism’ all
the possible codes in Codes as follows. At the j-th step, Control guesses an action of the form (j,u)
and generates it by binary synchronization with Cell j. Note that since Cell j is in state C(j) and Control
keeps track of k and C(k), either Cell j or Control is able to detect whether for the communication action
(j,u), u is not the j-th symbol of the successor succ(C) of C. If it is the case, and Cell j (resp., Control)
has detected it, then Cell j (resp., Control) will move to the local bad state bad (resp., to a local bad
state pbad, j′ associated with the step j′ = (j + 1) mod n). From state bad, Cell j remaining in bad may
generate all the actions of its alphabet except [. From the bad state pbad, j′ , Control can generate only
the actions of the form (j′,u) and move to a local bad state associated with the step (j′+ 1) mod n. If
instead for the generated action (j,u), u is the j-th symbol of succ(C), then Control will move to a
good local state associated with the step j′ = (j + 1) mod n and Cell j will move to the good local state
[succ(C)](j). Thus, after having generated the code of succ(C), Sem will be in the starting good state
s′good associated with succ(C). From s′good , Sem can generate the special action [(by synchronization
among all its components)3 iff succ(C) is an accepting #-homogeneous configuration. If the action [is
generated, then the target state has no outgoing transition.

5 Conclusions

As future research, there is an interesting question left open: the exact complexity of bisimulation check-
ing between a flat system and a non-flat system. Our contribution (Theorem 5) shows that the prob-
lem is PSPACE-hard even for synchronous composition without hiding. Note that the problem is in
EXPTIME. We believe that filling this gap is a very difficult question. Simple settings are however
tractable: Muscholl and Walukiewicz [13] have recently shown that bisimulation checking can be solved

2Initially, Sem is in the starting good state associated with the initial TM configuration
3note that [is in the alphabet of each component

14

in NLOGSPACE when there is no synchronization and both the flat system and the non-flat system com-
ponents are deterministic. It would be interesting to investigate the nondeterministic framework.

References
[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.
[2] J.L. Balcázar, J. Gabarró, and M. Santha. Deciding bisimilarity is p-complete. Formal Asp. Comput.,

4(6A):638–648, 1992.
[3] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133, 1981.
[4] O. Kupferman D. Harel and M.Y. Vardi. On the complexity of verifying concurrent transition systems. In

Proc. 8th CONCUR, LNCS 1243, pages 258–272. Springer-Verlag, 1997.
[5] J.F. Groote and F. Moller. Verification of parallel systems via decomposition. In Proc. 3rd CONCUR, LNCS

630, pages 62–76. Springer-Verlag, 1992.
[6] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite and infinite graphs. In

Proc. 36th FOCS, pages 453–462. IEEE Computer Society, 1995.
[7] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1984.
[8] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-

Wesley, 1979.
[9] L. Jategaonkar and A.R. Meyer. Deciding true concurrency equivalences on safe, finite nets. Theoretical

Computer Science, 154(1):107–143, 1996.
[10] A. Kučera and P. Jančar. Equivalence-checking on infinite-state systems: Techniques and results. Theory and

Practice of Logic Programming, 6(3):227–264, 2006.
[11] F. Laroussinie and Ph. Schnoebelen. The state explosion problem from trace to bisimulation equivalence. In

Proc. 3rd FOSSACS, LNCS 1784, pages 192–207. Springer, 2000.
[12] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[13] A. Muscholl and I. Walukiewicz. A lower bound on web services composition. In Proc. 10th FOSSACS,

LNCS 4423, pages 274–286. Springer, 2007.
[14] A.M. Rabinovich. Complexity of equivalence problems for concurrent systems of finite agents. Information

and Computation, 139(2):111–129, 1997.
[15] Z. Sawa and P. Jančar. Behavioural equivalences on finite-state systems are PTIME-hard. Computing and

Informatics, 24(5), 2005.
[16] Z. Sawa and P. Jančar. Hardness of equivalence checking for composed finite-state systems. Acta Informatica,

46(3):169–191, 2009.
[17] S.K. Shukla, H.B. Hunt III, D.J. Rosenkrantz, and R.E. Stearns. On the complexity of relational problems

for finite state processes. In Proc. 23rd ICALP, LNCS 1099, pages 466–477. Springer-Verlag, 1996.
[18] S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions of timed systems. In Proc. 7th

CONCUR, LNCS 1119, pages 546–562. Springer, 1996.
[19] K. C̆erāns. Decidability of bisimulation equivalences for parallel timer processes. In Proc. 4th CAV, LNCS

663, pages 302–315. Springer, 1992.
[20] A. Valmari and A. Kervinen. Alphabet-based synchronisation is exponentially cheaper. In Proc. 13th CON-

CUR, LNCS 2421, pages 161–176. Springer-Verlag, 2002.
[21] R.J. van Glabbeek. The linear time-branching time spectrum. In Proc. 1st CONCUR, LNCS 458, pages

278–297. Springer, 1990.

15

	Introduction
	Preliminaries
	Exptime-hardness of Problems 1 and 2
	Exptime-hardness of Problem 1
	Exptime-hardness of Problem 2

	Additional hardness results
	Conclusions

