Signedness-Agnostic Program Analysis:
Precise Integer Bounds for Low-Level Code

Jorge A. Navas, Peter Schachte, Harald Sgndergaard, and Peter J. Stuckey

Department of Computing and Information Systems,
The University of Melbourne, Victoria 3010, Australia

Abstract. Many compilers target common back-ends, thereby avoid-
ing the need to implement the same analyses for many different source
languages. This has led to interest in static analysis of LLVM code. In
LLVM (and similar languages) most signedness information associated
with variables has been compiled away. Current analyses of LLVM code
tend to assume that either all values are signed or all are unsigned (except
where the code specifies the signedness). We show how program analysis
can simultaneously consider each bit-string to be both signed and un-
signed, thus improving precision, and we implement the idea for the spe-
cific case of integer bounds analysis. Experimental evaluation shows that
this provides higher precision at little extra cost. Our approach turns out
to be beneficial even when all signedness information is available, such
as when analysing C or Java code.

1 Introduction

The “Low Level Virtual Machine” LLVM is rapidly gaining popularity as a
target for compilers for a range of programming languages. As a result, the
literature on static analysis of LLVM code is growing (for example, see [2,7,
9,11,12]). LLVM IR (Intermediate Representation) carefully specifies the bit-
width of all integer values, but in most cases does not specify whether values
are signed or unsigned. This is because, for most operations, two’s complement
arithmetic (treating the inputs as signed numbers) produces the same bit-vectors
as unsigned arithmetic. Only for operations that must behave differently for
signed and unsigned numbers, such as comparison operations, does LLVM code
indicate whether operands are signed or unsigned. In general it is not possible
to determine which LLVM variables are signed and which are unsigned.

Surprisingly, current analyses of LLVM code tend to either assume unlimited
precision of integers, or else not to take the necessarily signedness-agnostic nature
of LLVM analysis into account. An exception is Dietz et al. [1] who are very aware
of the problems that come from the agnosticism but resolve, as a consequence, to
move analysis to the front end of their compiler (Clang). They explain that this
design decision has been made after LLVM IR analysis “proved to be unreliable
and unnecessarily complicated, due to requiring a substantial amount of C-level
information in the IR ... for any IR operation the transformation needs to know
the types involved (including the size and signedness) ...” [1].

In this paper we show how precise static analysis can be performed on the
LLVM IR, even when signedness information would seem essential to the analy-
sis. As a consequence we can make the most of LLVM’s unifying role and avoid
any need to separately implement the same analyses for different source lan-
guages. Key to our solution is a way of allowing abstract operations (in the
sense of abstract interpretation) to superpose the signed and unsigned cases.

At first it may seem surprising that there is any issue at all. On a fixed-
width machine utilising two’s complement, the algorithm for addition is the same
whether the operands are signed or unsigned. The same holds for multiplication.
Why should program analysis then have reason to distinguish the signed and
unsigned cases? The answer is that most numeric-type abstract domains rely on
an integer ordering <. Such an ordering is not available when we do not know
whether a bit-vector such as 101 - - - 100 should be read as a negative or a positive
integer. For example, in performing interval analysis, the rule for [a,b] x [¢,d]
varies with the signs of the integers that are being approximated. Any of [bd, ac],
[ad, be], [be, ad] and [ac, bd] could be the right answer [5]. Note that we cannot
conservatively appeal to the minimum and mazimum of the set {ac, ad, bc, bd},
as these are ill-defined in the absence of signedness information.

We could treat all variables as signed, but this will dramatically lose precision
in some cases. In the case of unsigned 4-bit variables' 2 = 0110 and 3 known to lie
in the interval [0001,0011] clearly x +y must lie in the interval [0111,1001], and
if the variables are treated as unsigned, this is what is determined. However,
if the variables are treated as signed, the addition will be deemed to “wrap
around”, giving 1000 = —8 as the smallest possible sum, and 0111 = 7 as the
largest. Thus no useful information will be derived. A similar situation can arise
if z and y are signed and we treat them as unsigned, such as when z = 1110 and
y lies in the interval [0001, 0011].

Surprisingly, the wrong signedness assumption can also lead to stronger re-
sults than the right assumption. Reflecting on these examples, whether it is
better to treat a value as signed or unsigned is determined solely by the patterns
of bits in each value, not by whether the value is intended to be interpreted as
signed or unsigned. When a computation can wrap around if the operands are
treated as signed, it is better to treat them as unsigned, and vice versa. As long
as the set of bit-vectors specified by an interval is correct, it does not matter
whether we consider the bounds to be signed or unsigned.

This suggests that it is better to treat the bounds of an interval as a superpo-
sition of signed and unsigned values, accommodating both signed and unsigned
wrap-around. That is, we treat each bound as merely a bit pattern, considering
its signedness only when necessary for the operation involved (such as compari-
son). Instead of representing bounds over fixed bit-width integer types as a range
of values on the number line, we handle them as a range of values on a number
circle (see Figure 1), or, in the n-dimensional case, as a (closed convex) region
of an n-dimensional torus. The unsigned numbers begin with 0 near the “South
Pole”, proceeding clockwise to the maximum value back near the South Pole.

1 We use 4-bit examples and binary notation to make examples more manageable.

01---11 |,10---00

The 0-hemisphere The 1-hemisphere

00---00 | 11.--11

S
110. 00 ot '11: : For signed arithmetic—snip at N
IOO. 00 1 '11: : For unsigned arithmetic—snip at S
00-:-00 01-.-11
i i : Agnostically—cut at both N and S
10---00 11---11

Fig. 1. Three different ways to cut the number circle open

The signed numbers begin with the smallest number near the “North Pole”,
moving clockwise through 0 to the largest signed number near the North Pole.

“Wrapped” intervals are permitted to cross either pole, or both. Letting an
interval start and end anywhere allows for a limited type of disjunctive interval
information. For example, an interval x € [0111,1001] means 7 < x < 9 if z is
treated as unsigned, and z =7 v —8 < x < —T if it is treated as signed. This
small broadening of the ordinary interval domain allows precise analysis of code
where signedness information is unavailable. Equally importantly, it can provide
more precise analysis results even where all signedness information is provided.
We observe that this revised interval domain can pay off in the analysis of real-
world programs, without incurring a significant additional cost.

It is important to note that the use of wrapped intervals, combined with
signedness-agnosticism, can be worthwhile even in the presence of signedness
information. Consider [1000,1010] x [1111, 1111] in 4-bit arithmetic. Signed anal-
ysis gives [—8,—6] x [—1,—1] = [6,8] = [0110, 1000], while unsigned analysis
gives [8,10] x [15, 15] = [120, 150]. Here the range exceeds 2%, so any 4-bit string
is deemed possible. So even if the intervals represent unsigned integers, the signed
analysis result is more accurate. Conversely, look at [1000,1011] x [0000,0001].
Here signed analysis gives [—8,—5] x [0,1] = [—8,0], which we may write as
[1000,0000] if we allow the interval to wrap. In this case unsigned analysis is
the less accurate, as we have [8,11] x [0,1] = [0, 11] that is, we get [0000, 1011].
Each analysis provides a correct approximation to the set of five possible values,
but the unsigned analysis finds 12 possible elements, whereas the signed analysis
is tighter, yielding 9 possible values.

Wrapped interval arithmetic better reflects algebraic properties of the under-
lying arithmetic operations than intervals without wrapping, even if signedness
information is available. Consider for example the computation x + y — z. If we
know z,y, and z are all signed 4-bit integers in the interval [0011,0101], then

we determine y — z € [1110,0010], whether using wrapped intervals or not. But
wrapped intervals will also capture that 2 +y € [0110, 1010], while an unwrapped
fixed-width interval analysis would find the sum could be as large as the largest
possible integer and as small as the smallest. Therefore, wrapped intervals derive
the correct bounds [0001,0111] for both (z +y) — z and = + (y — z). Ordinary
intervals, on the other hand, can only derive these bounds for x + (y — 2), finding
no useful information for (z + y) — 2, although wrapping is not necessary to rep-
resent the final result. This ability to allow intermediate results to wrap around
is a powerful advantage of wrapped intervals, even in cases where signedness
information is available and final results do not require wrapping.

Consider the function below and assume it is entered with initial bounds
information x € [0,100] and y € [—10, —10], and that chars are 8 bits wide.

char modulo(char x, char y) {

while (x >= y) { // line 1

X=X -7y; // line 2
} // line 3
return x; // line 4

}

Traditional interval analysis [5] would ignore the fixed-width nature of variables,
in this case leading to the incorrect conclusion that line 4 is unreachable. A
(traditional) width aware interval analysis can do better. During analysis it finds
that, just before line 2, z € [0,120]. Performing line 2’s abstract subtraction
operation, it observes the wrap-around, and finds that x € [—128,127] at line 3,
and that @ € [—128,—11] at line 4, and as the result of the function call.

While this result is correct, it is also disappointingly weak. Inspection of the
code tells us that the result of such a call must always be smaller than —118,
since at each iteration, x increases by 10, and if € [—-118, —11] at line 4, then on
the previous iteration € [—128, —11], so the loop would have terminated. Thus
we would have hoped for the analysis result @ € [—128, —119]. The traditional
bounds analysis misses this result because it considers “wrap around” to be a
leap to the opposite end of the number line, rather than the incremental step that
it is. Using our proposed domain gives the precision we hoped for. Finding again
that = € [0,120] at line 2, we derive the bounds x € [10,127] v z € [—-128, —126]
at line 3. On the next iteration we have z € [0,127] v z € [—128, —126] at line 1,
x € [0,127] at line 2, and z € [10,127] v x € [—128, —119] at line 3. This yields
x € [—128,—119] at line 4, and one more iteration proves this to be a fixed point.

In this paper we present a novel approach to signedness-agnostic analysis of
programs that manipulate fixed-width integers. The key idea is that correctness
and precision of analysis can be obtained by letting abstract operations deal with
states that are superpositions of signed/unsigned states. This is done without
incurring great running time cost. For a concrete example of the principle, we
define an abstract domain of “wrapped” intervals and associated operations and
algorithms. This domain has features that appear to have been overlooked in
other work. We report on the analysis cost and benefits, compared to ordinary
non-wrapped intervals, as measured on a large set of benchmarks.

2 Related Work

Applications of bounds analysis include array bounds checking, overflow analy-
sis, and bit-width frugal register allocation. However, as we have pointed out, in
the context of C and similar languages using fixed-width integer types, correct
bounds analysis needs to be aware of the limitations on integer precision. Simon
and King [8] show how to make polyhedral analysis wrapping-aware without
incurring a high additional cost. Regehr and Duongsaa [6] perform bounds anal-
ysis in a wrapping-aware manner, dealing also with bit-wise operations, but as
their analysis uses conventional intervals, it is not able to maintain the precision
offered by wrapped intervals.

Sen and Srikant [7] utilise strided wrapped intervals, which they call Circu-
lar Linear Progressions, for the purpose of analysis of binaries. Their abstract
domain is more expressive than what we use, allowing limited relational informa-
tion. They give detailed abstract operations and refer to their abstract domain
as a lattice. Setting the stride in their strided intervals to 1 results in precisely
the concept of wrapped intervals that we use in this paper. Hence, as will be-
come clear, their claim that the domain of (wrapped) strided intervals has lattice
structure is not correct. More importantly, closer reading of their paper makes
it clear that Sen and Srikant assume signed representation. The analysis they
propose is not signedness-agnostic in our sense.

Gotlieb, Leconte and Marre [3] also study wrapped, or “clockwise”, intervals.
Their aim is to provide constraint solvers for modular arithmetic for the purpose
of software verification. They show how to implement abstract addition and
subtraction and also how multiplication by a constant can be handled efficiently.
Again, a claim that clockwise intervals form a lattice cannot be right. Gotlieb,
Leconte and Marre assume unsigned representation, that is, the treatment is not
signedness-agnostic.

Signedness information is critical in the determination of the potential for
under- or over-flow. In that context, the higher precision of bounds analysis that
we offer is a useful additional contribution because, as shown by Dietz et al. [1],
overflow is surprisingly common in real-world C/C++ code. They suggest, based
on scrutiny of many programs, that much use of overflow is intentional and safe
(though not portable), but also that the majority is probably accidental.

3 Wrapped Intervals

To accurately capture the behaviour of fixed bit-width arithmetic, we must limit
the concrete domain to the values representable by the types used in the program,
and correct the implementation of the abstract operations to reflect the actual
behaviour of the concrete operations [8]. As we have seen, a commitment to
ordinary ordered intervals [x,y] (either signed or unsigned), when wrap-around
is possible, can lead to severe loss of precision. Wrapped intervals not only avoid
much loss of precision in the case of such wrap-around, but also provide a natural
setting for signedness-agnostic analysis.

We shall use the usual arithmetic operators with their usual meaning. Op-
erators subscripted by a number suggest modular arithmetic; more precisely,
@+, b =a+bmod 2" (similarly for other operations). We use B for the set of
all bit-vectors of size w. We will use sequence notation to construct bit-vectors:
bk, where b € {0, 1}, represents k copies of bit b in a row, and s1s, represents the
concatenation of bit-vectors s; and ss. For example, 01402 represents 01111000.

We use < for the usual lexicographic ordering of B. For example, 0011 < 1001.
In the context of wrapped intervals, a relative ordering is more useful than an
absolute one. We define

b<,ec iff b—pa<<c—ya

Intuitively, this says that starting from point @ on the number circle and travel-
ling clockwise, b is encountered no later than c. It also means that if the number
circle were rotated to put a at the South Pole (the zero point), then b would be
lexicographically no larger than c¢. Naturally, <, coincides with <, and reflects
the normal behaviour of <= on unsigned w-bit integers. Similarly, <5w—1 reflects
the normal behaviour of <= on signed w-bit integers. When restricted to a single
hemisphere (Figure 1), these orderings coincide, but < and <qw—1 do not agree
across hemispheres.

We view LLVM as a bit-vector machine—this is the key to precise analysis in
the absence of signedness information, and it is what LLVM truly is. However,
for convenience, when operations on bit-vectors will be independent of the inter-
pretation, we may now and then use integers (by default unsigned) to represent
bit-vectors. This is just a matter of convenience: by slight extension it allows us
to use congruence relations and other modular-arithmetic concepts to express
bit-vector relations that are otherwise cumbersome to express. The following
definition is a good example.

Definition 1. A wrapped interval, or w-interval, is either an empty interval,
denoted L, a full interval, denoted T, or a delimited interval (z,y), where z,y
are w-width bit-vectors and « + y +,, 1.2

Let W,, be the set of w-intervals over width w bit-vectors. The meaning of a
w-interval is given by the function v : W,, — P(B):

Y(4) =®{ \

Az, oy ifr<y
Y(z, y) = {{Ow’ oyt ud{z,..., 1%} otherwise
1T) =B

For example, v(1111,1001) = {1111,0000,0001,0010, 0011, 0100, 0101, 0110,
0111, 1000, 1001} represents the signed integers [—1, 7Ju{—8, —7} or the unsigned
integers [0, 9] U {15}. The cardinality of a w-interval is therefore:

2 The condition, which is independent of signed /unsigned interpretation, avoids du-
plicate names (such as (0011, 0010) and (1100, 1011)) for the full interval.

#(1) 0
#(z,y) = (Y —wz +uw)
#(T) =2v

In an abuse of notation, we define e € u iff ¢ € y(u). Note that W, is comple-
mented. We define the complement of a w-interval:

3.1 Ordering wrapped intervals

We order W,, by inclusion: t; E to iff y(¢1) € v(t2). It is easy to see that = is a
partial ordering on W,,; the set is a finite partial order with least element | and
greatest element T. While (W,,, E) is partially ordered, it is not a lattice. For
example, consider the w-intervals (0100, 1000) and (1100, 0000). Two minimal
upper bounds are the incomparable (0100,0000) and (1100, 1000), two sets of
the same cardinality. So a join operation is not available. By duality, neither is
a meet operation.

In fact there is no Galois connection (a,~). For example, v(1000,0000) n
~(0000, 1000) = {0000, 1000}, a set which does not correspond to a w-interval.
Furthermore, the two w-intervals (1000, 0000) and (0000, 1000) describe the set
{0000, 1000} equally well.

The obvious solution is a biased pseudo-join operation (i which selects, from
the set of possible resulting w-intervals, the one with smallest cardinality, and
in case of a tie, the one that contains the lexicographically smallest left bound.
First we define membership testing and inclusion. Membership testing is defined:

true ifu=T
eEU = false ifu=_1
e<yy ifu=(z,y)

In guarded definitions like this, the clause that applies is the first (from the top)

whose guard is satisfied; that is, an ‘if’ clause should be read as ‘else if’.
Inclusion is defined in terms of membership: either the intervals are identical

or else both endpoints of s are in ¢ and at least one endpoint of ¢ is outside s.

true ifs=1lvt=T
SEt = false ifs=Tvt=1
aetanbetan(c¢gsvdegs) if s=(a,b),t=(cd)

Consider the cases of possible overlap between two w-intervals shown in Figure 2.
Only case (a) depicts containment, but case (b) shows a situation where each
w-interval has its bounds contained in the other. This explains why the third
case in the definition of = requires that c ¢ s or d ¢ s.

OO0

(a) (b) () (d)

Fig. 2. Four cases of relative position of two w-intervals

Then, a biased pseudo-join operation i is finally defined:

r

t ifsct
s iftcCs
T if s=(a,b) At={(c,d) haetAbetAcESAdES
(a,d) ifs=(a,b) At={(c,d) AbetAncEs
sot= (c,b) ifs={(a,b) At={(c,d) ndesracet
(a,d) ifs=(a,b) At =(c,d)n
(6,) < #d, a) v (#(b,) = #(d,a) A a <))
[(c,b) otherwise

In this definition, the first two cases handle T and L, as well as Figure 2 (a); the
third case handles Figure 2 (b); the fourth and fifth cases handle Figure 2 (c);
and the final two cases handle Figure 2 (d). We can utilise the fact that W, is
complemented to define a pseudo-meet operation:

sttt = st

Unfortunately the biased pseudo-join has certain shortcomings, inherited by the
pseudo-meet. First, 0 and /i are not associative. In fact, (x Jy) GOz and 20 (yJi2)
may have different cardinality. This happens, for example, with 2 = (0010, 0110)),
y = (1000,1010), and z = (1110,0000), since (z O y) 0 z = (1110,1010) has
smaller cardinality than = O (y 0 z) = (0010,0000). Second, & and 1 are not
monotone. For example, we have (1111, 0000) = (1110, 0000) and (0110, 1000) &
(1111,0000) = (1111, 1000). But owing to the lexicographic bias, (0110, 1000) &
(1110,0000) = (0110,0000). As we do not have (1111, 1000) = (0110, 0000), & is
not monotone. We discuss the ramifications of this in Section 4, together with a
work-around. N

The lack of associativity means a generalised | | is not well-defined. Neverthe-

less, the requirement for |:| is clear: Given a set S of w-intervals, we want |:| to
yield a w-interval ¢ of minimal cardinality so that each interval in S is contained
in t. Figure 3 gives an algorithm for computing ¢. Intuitively, the algorithm re-
turns the complement of the largest un-covered gap among intervals from S. It
identifies this gap by passing through S once, picking intervals lexicographically
by their left bounds. However, care must be taken to ensure that any apparent
gaps, which are in fact covered by w-intervals that cross the South Pole and

\/b—l /\c(
function |:|(S)
fegeL1
for s € S (in order of lex increasing left bound) do '&/
if s=Tv (s=(z,y) Ay <oz) then

a
f < extend(f,s) b c
for s € S (in order of lex increasing left bound) do /—’ /\'
g « bigger(g, gap(f, 5))
a
d

f < extend(f, s)

2

return bigger(fh f)

Fig. 3. Finding the (pseudo) least upper bound of a set of w-intervals

may only be found later in the iteration, are not mistaken for actual gaps. We
define the gap between two w-intervals as empty if they overlap, or otherwise
the clockwise distance from the end of the first to the start of the second.

gan(s,) = {qf—b[) if s = (].a,b[) At=(c,d) AbgtAcEs
otherwise

We also define an operation extend(s, t) to yield the w-interval from the start of
s to the end of ¢, ensuring it includes all of s and t. This operation is identical to
(1, except that the last cases are omitted, and the condition on the penultimate
case is relaxed to apply regardless of cardinalities. Finally, we define bigger(s, t)
to be t if #t > # s, and s otherwise. The two loops in Figure 3 traverse the
set of w-intervals in order of lexicographically increasing left bound; it does not
matter where T and L appear in this sequence. The first loop assigns to f the
least upper bound of all w-intervals that cross the South Pole. The invariant for
the second loop is that g is the largest uncovered gap in f; thus the loop can
be terminated as soon as f = T. When the loop terminates, all w-intervals have
been incorporated in f, so f is an uncovered gap, and g is the largest uncovered
gap in f. Thus the result is the complement of the bigger of g and f.

Consider Figure 3 (upper right) as an example. Here no intervals cross the
South Pole, so at the start of the second loop, f = g = 1, and at the end of
the loop, g is the gap between a and b, and f is the interval clockwise from the
start of a to the end of c. Since the complement of f is larger than g, the result
in this case is f: the interval from the start of a to the end of c.

For the lower right example of Figure 3, interval d does cross the South Pole,
so at the start of the second loop, f = d and ¢ = L. Now in the second loop,
f extends clockwise to encompass b and ¢, and finally also d, at which point
f becomes T. But because the loop starts with f = d, g never holds the gap
between a and b; finally it holds the gap between the end of ¢ and the start of d.
Now the complement of f is smaller than g so the final result is the complement
of g, that is, the interval from the start (right end) of d to the end of c.

The | | operation is useful because it may preserve information that would
be lost by repeated use of the pseudo-join. Thus it should always be used when
multiple w-intervals must be joined together, such as in the implementation of
multiplication below. Furthermore, it will improve precision in other contexts to
delay computation of pseudo-Njoins until all the w-intervals that will be joined
are available, and substitute | | for multiple uses of .

The intersection of two w-intervals returns one or two w-intervals, and gives
the accurate intersection, in the sense that | J{y(u) | v € s nt} = v(s) ny(t).

({} ifs=lort=1

{t} ifs=tvs=T

{s} ift=T

{(a,d), (b,)} if s =(a,b) At=(c,d) haEtAbEtACESAdES
smt={{s} ifs=(a,b) At=(c,d) naetrbet

{t} ifs=(a,b) At={(c,d) ncesndes

{(a,d)} ifs=(a, b)) At=(c,d) hactrdesrnbetncts

{(b,)} ifs=(a,b) At=(c,d) nbEtAcCESAa¢tAdEs

({} otherwise

3.2 Analysing expressions

On w-intervals, addition is defined as follows:

1 fs=lort=1
st+t=X (a4+wc,b+yd) if s=(a,b), t=(cd), and #s+#t 2%
T otherwise

Here, to detect a possible overflow when adding the two cardinalities, standard
addition is used. Note that +,, is signedness-agnostic: treating it as signed or
unsigned makes no difference. The rule for subtraction (s — t) is similar—just
replace the delimited interval on the left by (a —y d,b —4 ¢)). The definition of
abstract unary minus then follows easily, by noting that —s = 0 — s.

Multiplication on w-intervals is more cumbersome, even when we settle for a
less-than-optimal solution. The reason is that even though unsigned and signed
multiplication are the same operation on bit-vectors, signed and unsigned inter-
val multiplication retain different information. The solution requires separating
each interval at the North and South poles, so the segments agree on ordering
for both signed and unsigned interpretations, and then performing both signed
and unsigned multiplication on the fragments.

It is convenient to have names for the smallest w-intervals that straddle the
poles. Let np = (01¥~1,10*~ %) and sp = (1¥,0%). Define the North Pole split
of a delimited w-interval as follows:

%] ifs=1
nsplit(s) — {(a,b)} if s = (a,b) and np & (a, b)
{(a,01%=1), (10* =1, b)} if s = (a,b) and np = (a, b)

(
{(0w,01%=1), (101, 1%)} ifs=T

and define the South Pole split ssplit similarly (in particular, the last case is
identical). Then let the sphere cut be

cut((z, y)) = U{ssplit(u) | u € nsplit((z, y))}

For example, cut((1111,1001)) = {(1111,1111), (0000, 0111), (1000, 1001)}.
Unsigned and signed multiplication of two delimited w-intervals (a,b) and
(c, d) that do not straddle poles is straightforward:

_flaxwebxyd) ifbxd—axc<2®
(a,b) xu fe,d) = {T otherwise

And, letting msb be the function that extracts the most significant bit:

((a x4 ¢, b x4 d) if msb(a) = msb(b) = msb(c) = msb(d)
Abxd—axc<?2¥

(a x4 d,b x4 ¢)) if msb(a) = msb(b) =1 A msb(c) = msb(d) =0

(a,b)xs(c, d) = < Abxc—axd<2¥

(b X ¢, a X4 d) if msb(a) = msb(b) =0 A msb(c) = msb(d) =1
Aaxd—bxc<2¥

L T otherwise

Now, signed and unsigned bit-vector multiplication agree for segments that do
not straddle a pole. This is an important observation which gives us a handle on
precise multiplication across arbitrary delimited w-intervals:

(la,b) xus (c,d) = ((a,b) x4 (e, d)) N ((a,b) x5 (¢, d))

The use of intersection in this definition is the source of the added precision.
Each of x, and x4 gives a correct over-approximation of multiplication, and
hence the intersection is also a correct over-approximation.

This now allows us to do general signedness-agnostic multiplication by joining
the segments obtained from each piecewise hemisphere multiplication:

~

s ><t=|_| {m | u e cut(s),v € cut(t),m € u x5 v}

Consider the multiplication (1111, 1001) x (0000, 0001)). The

1001
two intervals are shown in the diagram here. The cut of the 00
first w-interval is {(1111,1111), (0000, 0111)), (1000, 1001)},
the cut of the second is {(0000,0001)}. The three separate
segment multiplications give:
0001 ’\, 1111
1. (1111,1111) x, (0000,0001) = T, 0000

(1111,1111) x, (0000,0001) = (1111,0000),

hence (1111,1111) x4 (0000,0001) = {(1111,0000)}.
2. (0000,0111) x,, (0000,0001) = (0000, 0111)

(0000, 0111) x, (0000, 0001) = (0000, 0111)

hence (0000, 0111) x4 (0000,0001) = {(0000,0111)}.

3. (1000, 1001) x,, (0000,0001) = (0000, 1001,
(1000, 1001) x, (0000, 0001) = (1000, 0000),
hence (1000, 1001) x4 (0000, 0001) = (0000, 1001) ~ (1000, 0000)
= {(1000, 1001}, (0000, 0000)}.

Applying |:|, we get the maximally accurate result (1111, 1001). Note the crucial
role played by Xx,s in obtaining this precision. For example, in the first case
above, where we have no information about the result of unsigned multiplication
((1111,1111) %, (0000,0001) = T), we effectively assume that multiplication is
signed, obtaining a much tighter result. The role of x,s is to do signed and
unsigned multiplication simultaneously. This is very different from the obvious
case analysis that considers the unsigned and signed cases separately: For the
example, either yields T.

What is important about our approach is that the signed /unsigned case anal-
ysis happens as late as possible, at the “micro-level”. This is what we have in
mind when we say that the abstract operations deal with superposed signed/un-
signed states. The superposition idea is general and works for other operations.
However, it does not always add precision—for many abstract operations we can
obtain equivalent but simpler definitions.

Unsigned and signed division are different operations, since the definition
depends on the ordering of bit-vectors. Hence we need two abstract operations.
Here, since the interpretation of the bit-vectors is given, the definition is straight-
forward but lengthy and slightly more complicated, owing to the need to carve
out the sub-interval (0%, 0%]). The modulus operation is similar to division.

For the logical operations, it is tempting to simply consider the combinations
of interval endpoints, at least when no interval straddles two hemispheres. But
that does not work. For example, the endpoints of (1010, 1100) are not sufficient
to determine the endpoints of (1010, 1100) | (0110,0110). Namely, 1010 | 0110 =
1100 | 0110 = 1110, but 1011 | 0110 = 1111. Instead we use the unsigned
versions of algorithms provided by Warren [10] (pages 58-62), but adapted to
w-intervals using a South Pole split. We present the method for bitwise-or |;
those for bitwise-and and bitwise-xor are similar.

slt =| | fulyv | u e ssplit(s), v € ssplit(t)}

where |,, is Warren’s unsigned bitwise or operation for intervals [10], an opera-
tion with complexity O(w).

Signed and zero extension are defined as follows. We assume words of width
w are being extended to width w + k, with & > 0.

((msb(a))*a, (msb())*b) | (a,b) € nsplit(s)}

sext(s, {
{(0*a, 0%b) | (a,b) € ssplit(s)}

)
)

Truncation to k < w bits (integer downcasting) keeps the lower k bits of a bit-
vector of length w. Accordingly, trunc(s, k) is a w width w-interval s truncated

k
k

J
i

zext(s,

to a k width w-interval. Truncation is defined as:

1 ifs=1
(trunc(a, k), trunc(b, k)) if s = (a,b) A a>>.k = b>>,k
trunc(s, k) — A trunc(a, k) < trunc(b, k)
’ (trunc(a, k), trunc(b, k) if s = (a,b) A (a>>.k) + 1 =gw b>>,k
A trunc(a, k) £ trunc(b, k)
T otherwise

where >>, is arithmetic right shift. Once truncation is defined, we can easily
define left shift:

1 ifs=1
s << k =< (a<<k,b<<k)) if trunc(s,w — k) = (a,d)
(0¥, 1*~*0%) otherwise

Logical right shifting (>>;) requires testing if the South Pole is covered:

1 ifs=1
s>> k=14 (0v,051v"k) ifspEs
(a>>1k, b>> k) if s = (a,b)

and arithmetic right shifting (>>,) requires testing if the North Pole is covered:

L ifs=1
s>>, k=13 (1Fov—* 0k1v~k) ifnpCEs
(a>>ok, b>>4k) if s = (a,b)

Shifting with variable shift, for example, s << ¢, can be defined by calculating
the (fixed) shift for each k € (0, w—1)) which is an element of ¢, and pseudo-joining
the resulting w-intervals.

3.3 Dealing with control flow

In LLVM, comparison operations are explicitly signed or unsigned. Taking the
‘then’ branch of a conditional with condition s <g ¢ can be thought of as prefixing
the branch with ‘assume s <y t’, and this assume statement can narrow the
bounds for s and t. We update the information for s as follows:

1 ift=1
§=4S5 if1¥ et
s/ (0w, b) if t = (a,b)

Signed comparison (<yw-1) is similar, but replaces 1% by 01%¥~! and (0%, b) by
(10¥~1,8). Updating the second argument ¢ in a context s <ouw—1 t is defined
analogously. Finally, @—ngdes in the LLVM control-flow graph are handled as
usual, in our case using | |.

4 Non-Termination and Widening

As shown in Section 3, 0 lacks desirable algebraic properties and fails to be
monotone. Although W, is finite, the fact that (I is not monotone raises a major
problem: a least fized point may not exist because multiple fixed points could
be equally precise, and even worse, the analysis may not terminate. Fortunately,
in practice, there is an easy solution to this problem. While W,, is finite, it
does contain chains of length O(2%). Hence, for efficient analysis, fixed point
acceleration is needed in any case. Judicious use of widening ensures termination
of our analysis, side-stepping the non-monotonicity problem. We define an upper
bound operator V, based on the idea of widening by (roughly) doubling the size
of a w-interval. First, sVL = 1 Vs =s, and sVT = TVs = T. Additionally,

(u, v) if (x,y) & (u,v)

T if # (u,v) =2v1

(u, y) O (u, 20 = u 44 1) if (u,v) G (z,y) = (u,y)
lu,)V (2, y) = (z,v) T (2u — v — 1,0) if (u,v) & (z,y) = (z,v)

(z,y) O (2,2 +w 20 —p 2u +4 1) if u,v € (z,9)

T otherwise

Then V is an upper bound operator [5] and we have the property
sVt=s v sVt=T v #sVt=2+4#s
Given f : W,y — W,,, we define the accelerated sequence {f&}, as follows:

1 ifn=20

fo =4 fot ifn>0nf(fet) cfot
fEIVE(fEY) otherwise

Since {f&}, is increasing (whether f is monotone or not) and W, has finite
height, the accelerated sequence eventually stabilises. In our implementation we
perform a widening step after every fifth iterative step.

5 Experimental Evaluation

We implemented wrapped interval analysis for LLVM 3.0 and ran experiments
on an Intel Core with a 2.70Gz clock and 7.8Gb of memory. For comparison
we also implemented an unwrapped fixed-width interval analysis using the same
fixed point algorithm. Since we analyse LLVM IR, signedness information is in
general not available. Therefore, to compare the precision of “unwrapped” and
“wrapped” analysis, we ran the unwrapped analysis assuming all integers are
signed, similarly to [9]. We used the Spec CPU 2000 benchmark suite widely
used by LLVM testers. The code for the analyses and the fixed point engine is
publicly available at http://code.google.com/p/wrapped-intervals/.

Fig. 4 shows evaluation results. Columns Ty and Ty show analysis times
(average of 5 runs) for the unwrapped and wrapped interval analysis, respec-
tively. Column | shows the total number of integer intervals considered by the

Program Tu Tw I Pu Pw Gw

164.gzip 0.30s 0.35s 1511 152 264 115
175.vpr 1.02s 1.83s 4143 316 339 26
176.gcc 12.73s | 15.27s 16711 | 2840 | 5251 | 2489

186.crafty 2.36s 3.20s 17679 | 1761 | 3825 | 2235
197.parser 1.40s 2.46s 4736 283 411 140
255.vortex 4.88s 6.40s 22813 812 1005 207
256.bzip2 0.45s 0.83s 2529 247 433 209
300.twolf 1.08s 1.20s 730 16 20 4

Fig. 4. Comparison between unwrapped and wrapped interval analyses

analyses, Column Py shows the number of cases where the unwrapped analysis
infers a proper (delimited) interval, and Py, does the same for wrapped intervals.
Finally, column Gy shows the number of variables for which the wrapped anal-
ysis gave a more precise result. In some cases, both analysis produces delimited
intervals, but the wrapped interval is more precise. For instance, for 164.gzip,
there are 3 such cases. Therefore, in general, Gy # Py — Py.

We note that both analyses are fast, and the added cost of wrapped analysis
is reasonable. Regarding precision, the numbers of proper intervals (Py and
Pw) are remarkably low compared with the total number of tracked intervals (I).
There three main reasons for this. First, our analysis is intra-procedural. Second,
it does not track global variables or pointers. Third, numerous instructions that
cast non-trackable types (e.g., ptrtoint, fptosi) are not supported. In spite
of these limitations, the numbers in column Gy show that wrapped interval
analysis does infer significantly better bounds.

6 Conclusion

Analysis of programs written in LLVM IR and similar low-level languages is
hampered by the fact that, for many variables, signedness information has been
stripped away. While it is possible to analyse programs correctly under the as-
sumption that such variables are unsigned (or signed, depending on taste), such
an assumption leads to a serious loss of precision.

It is better for analysis to be signedness-agnostic. We have shown that, if im-
plemented carefully, signedness-agnosticism amounts to more than simply “hav-
ing a bet each way”. Our key observation is that one can achieve higher accuracy
of analysis by making each individual abstract operation signedness-agnostic,
whenever its concrete counterpart is. This applies to important operations like
addition, subtraction and multiplication.

Signedness-agnostic bounds analysis naturally leads to wrapped intervals,
since signed and unsigned representation correspond to two different ways of
ordering bit-vectors. In this paper we have detailed the first signedness-agnostic
bounds analysis, based on wrapped intervals. The resulting analysis is efficient

and accurate, and is beneficial even for programs where all signedness informa-
tion is present. Future work involves removing the limitations of our implemen-
tation discussed above. More importantly, there is a need to better assess the
practical benefits of our analysis, for example, in the context of software veri-
fication. Another line of research is to generalise wrapped interval analysis to
relational domains, such as those based on difference logic (constraints x —y < k)
or octagons [4].

Acknowledgments

This work was supported through ARC grant DP110102579. We thank Fernando
Pereira, Victor Campos, Douglas do Couto, and Igor Rafael for fruitful discus-
sions and for making their LLVM SSI construction pass available.

References

1. W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer overflow in
C/C++. In Proc. 84th Int. Conf. Software Eng., pages 760-770. IEEE, 2012.

2. S. Falke, D. Kapur, and C. Sinz. Termination analysis of imperative programs
using bitvector arithmetic. In R. Joshi, P. Miiller, and A. Podelski, editors, Verified
Software: Theories, Tools, and Experiments, volume 7152 of LNCS, pages 261-277.
Springer, 2012.

3. A. Gotlieb, M. Leconte, and B. Marre. Constraint solving on modular integers. In
Proc. Ninth Int. Workshop Constraint Modelling and Reformulation, 2010.

4. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31-100, 2006.

5. F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

6. J. Regehr and U. Duongsaa. Deriving abstract transfer functions for analyzing
embedded software. In LCTES’06: Proc. Conf. Language, Compilers, and Tool
Support for Embedded Systems, pages 34-43. ACM Press, 2006.

7. R. Sen and Y. N. Srikant. Executable analysis using abstract interpretation with
circular linear progressions. In Proc. Fifth IEEE/ACM Int. Conf. Formal Methods
and Models for Codesign, pages 39-48. IEEE, 2007.

8. A. Simon and A. King. Taming the wrapping of integer arithmetic. In H. Riis
Nielson and G. Filé, editors, Static Analysis, volume 4634 of LNCS, pages 121—
136. Springer, 2007.

9. D. d. C. Teixera and F. M. Q. Pereira. The design and implementation of a
non-iterative range analysis algorithms on a production compiler. In Proc. 2011
Brasilian Symp. Programming Languages, 2011.

10. H. S. Warren Jr. Hacker’s Delight. Addison Wesley, 2003.

11. C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. IntPatch: Automatically fix
integer-overflow-to-buffer-overflow vulnerability at compile-time. In D. Gritzalis,
B. Preneel, and M. Theoharidou, editors, Proc. ESORICS 2010, volume 6345 of
LNCS, pages 71-86. Springer, 2010.

12. C. Zhang, W. Zou, T. Wang, Y. Chen, and T. Wei. Using type analysis in com-
piler to mitigate integer-overflow-to-buffer-overflow threat. Journal of Computer
Security, 19(6):1083-1107, 2011.

