
ucm-seal upm-seal unm-seal

A Partial Deducer Assisted by Predefined
Assertions and a Backwards Analyzer

Elvira Albert∗, Germán Puebla∗∗ and John Gallagher∗∗∗

(∗)Complutense University of Madrid (Spain)
(∗∗)Technical University of Madrid (Spain)

(∗ ∗ ∗)University of Roskilde (Denmark)

5th International Workshop on the Implementation of
Logics (WIL’04)

Uruguay, March 13, 2005

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 1 / 20

ucm-seal upm-seal unm-seal

Introduction: The Ciao Program Development System

Ciao is a next-generation (C)LP programming environment –
features:

I Public domain (GNU license).
I Pure kernel (no “built-ins”); subsumes ISO-Prolog (transparently) via

library.
I Designed to be extensible and analyzable .
I Support for programming in the large:

F robust module/object system, separate/incremental compilation, ...
F “industry standard” performance.
F (semi-automatic) interfaces to other languages, databases, etc.
F assertion language, automatic static inference and checking, autodoc,

...
I Support for programming in the small:

F scripts, small (static/dynamic/lazy-load) executables, ...
I Support for several paradigms:

F functions, higher-order, objects, constraint domains, ...
F concurrency, parallelism, distributed execution, ...

I Advanced Emacs environment (with e.g., automatic access to
documentation).

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 2 / 20

ucm-seal upm-seal unm-seal

Introduction: The Ciao Program Development System

Components of the environment (independent):

ciaosh : Standard top-level shell.
ciaoc : Standalone compiler.
ciaosi : Script interpreter.
lpdoc : Documentation Generator (info, ps, pdf, html, ...).

ciaopp : Preprocessor.

+ Many libraries:
I Records (argument names).
I Persistent predicates.
I Transparent interface to databases.
I Interfaces to C, Java, tcl-tk, etc.
I Distributed execution.
I Internet (PiLLoW: HTML, VRML, forms, http protocol, etc.), ...

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 3 / 20

ucm-seal upm-seal unm-seal

The Ciao Preprocessor

A standalone preprocessor to the standard clause-level compiler.

Performs source-to-source transformations:
I Input: logic program (optionally w/assertions & syntactic extensions).
I Output: error/warning messages + transformed logic program, with

F Results of analysis (as assertions).
F Results of static checking of assertions.
F Assertion run-time checking code.
F Optimizations (specialization, partial evaluation, etc.)

By design, a generic tool – can be applied to other systems
(e.g., CHIP → CHIPRE).

Underlying technology:
I Modular polyvariant abstract interpretation.
I Modular abstract multiple specialization.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 4 / 20

ucm-seal upm-seal unm-seal

Applications of Abstract Interpretation

A number of applications of Abstract Interpretation of (C)LP:
I Inference of complex properties of programs.
I Program debugging.
I Program validation.
I Program optimization (e.g., partial evaluation , specialization,

parallelization).
I Program documentation.

Some practical issues:
I The assertion language.
I Dealing with built-ins and complex language features.
I Modular analysis (including libraries).
I Efficiency and incremental analysis (only reanalyze what is needed).

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 5 / 20

ucm-seal upm-seal unm-seal

Properties and Assertions
Assertion language suitable for multiple purposes.

Assertions are typically optional.

Properties (include types as a special case):
I Arbitrary predicates, (generally) written in the source language.
I Some predefined in system, some of them “native” to an analyzer.
I Others user-defined.
I Should be “runnable” (but property may be an approximation itself).

:- regtype list/1. |:- typedef list::= [];[_|list].
list([]). |
list([_|Y]) :- list(Y).|__________________________________
_______________________|:- regtype int/1 + impl_defined.
:- prop sorted/1. |__________________________________
sorted([]). |:- regtype peano_int/1.
sorted([_]). |peano_int(0).
sorted([X,Y|Z]) :- X>Y,|peano_int(s(X)):- peano_int(X).

sorted([Y|Z]). |

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 6 / 20

ucm-seal upm-seal unm-seal

Properties and Assertions

Basic assertions:
:- success PredDesc [: PreC] => PostC .
:- calls PredDesc : PreC .
:- comp PredDesc [: PreC] + CompProps .

Examples:

:- success qsort(A,B) : list(A) => ground(B).
:- calls qsort(A,B) : (list(A),var(B)).
:- comp qsort(A,B) : (list(A,int),var(B)) + (det,succeeds).

Compound assertion (syntactic sugar):
:- pred PredDesc [: PreC] [=> PostC] [+ Comp] .

Examples:

:- pred qsort(A,B) : (list(A,int),var(B)) => sorted(B) + (det,succeeds).
:- pred qsort(A,B) : (var(A),list(B,int)) => ground(A) + succeeds.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 7 / 20

ucm-seal upm-seal unm-seal

Properties and Assertions

Assertion status:
I check (default) – intended semantics, to be checked.
I true , false – actual semantics, output from compiler.
I trust – actual semantics, input from user (guiding compiler).
I checked – validation: a check that has been proved (same as a

true).

% :- trust pred is(X,Y) => (num(X),numexpr(Y)).

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 8 / 20

ucm-seal upm-seal unm-seal

Analysis

ciaopp includes some basic analyzers:
I The PLAI generic, top-down analysis framework.

F Several domains: modes (ground, free), independence, patterns, etc.
F Incremental analysis, analysis of programs with delay, ...

I Gallagher’s backwards analysis.
F Captures dependencies by program transformation.

I Advanced analyzers (GraCos/CASLOG) for complex properties:
non-failure, coverage, determinism, sizes, cost, ...

Issues:
I Reporting the results → “true” assertions.
I Helping the analyzer → “entry/trust” assertions.
I Dealing with builtins → “trust” assertions.
I Incomplete programs → “trust” assertions.
I Modular programs → “trust” assertions, interface (.itf , .asr) files.
I Multivariance, incrementality, ...

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 9 / 20

ucm-seal upm-seal unm-seal

Integrated Validation/Diagnosis in the Ciao Preprocessor

:− false

:− check

:− checked
CiaoPP

output

Program
+

RT tests

Inspection

Syntax
checker

RT tests
Annotator

Assertion
Normalizer
& Lib Itf. Comparator

Static
Analysis

...
Ciao,Program

+ Assrts.
Libs
Builtins/

CHIP,

Interactive
Diagnosissemantic

comp−time
error/warning

warning

syntax
error/

:− true
Anal. Info

V
a

li
d

a
ti

o
n

!

error
run−time

Assrt:
:− entry
:− check
:− trust

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 10 / 20

ucm-seal upm-seal unm-seal

Using Analysis Results in Program Optimization

Eliminating run-time work at compile-time.
I Low-level optimization.
I Partial evaluation

Specialize programs w.r.t. known input data
I Abstract multiple specialization.

Ditto on (possibly) multiple versions of each predicate.

Automatic program parallelization:
strict and non-strict Independent And-Parallelism.

Automatic task granularity control.

Optimization of other control rules / languages (e.g., Andorra).

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 11 / 20

ucm-seal upm-seal unm-seal

Partial Deduction

Partial Deduction (PD) specializes a program w.r.t. part of its known
input data (program specialization)

Given an input program and a set of atoms, PD algorithm applies an
unfolding rule in order to compute finite (possibly incomplete) SLD
trees for atoms.

I computation rule: given a goal ← A1, . . . ,AR , . . . ,Ak determines the
selected atom AR

I profitability test: decides whether unfolding (or evaluation) of AR is
profitable

This process returns a set of resultants (or residual rules), i.e., a
residual program, associated to the root-to-leaf derivations of these
trees.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 12 / 20

ucm-seal upm-seal unm-seal

Non-leftmost Unfolding

Non-leftmost unfolding is essential in partial deduction in some cases
for the satisfactory propagation of static information.

Given a goal ← A1, . . . ,An, it can happen that the profitable criterion
does not hold for the leftmost atom A1.

I A1 is an atom for an internal predicate and, 1) unfolding A1 endangers
termination or 2) the atom A1 unifies with several clause heads

I A1 is an atom for an external predicate, it can happen that A1 is not
sufficiently instantiated so as to be executed at this moment.

Thus, it may be profitable to unfold non-leftmost atoms.

Computation rule which is able to detect the above circumstances
and “jump over” atoms whose profitability criterion is not satisfied.

Proceed with the specialization of another atom in the goal as long as
it is correct.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 13 / 20

ucm-seal upm-seal unm-seal

Impure Predicates

For pure logic programs without builtins, non-leftmost unfolding is
safe thanks to the independence of the computation rule

Non-leftmost unfolding poses problems in the context of full Prolog
programs with impure predicates (independence does not hold).

var/1 is an impure atom (the goal var(X),X=a succeeds with
computed answer X/a whereas X=a,var(X) fails)

Backpropagation of bindings: Given the goal ← var(X),X=a , if we
allow the non-leftmost unfolding step which binds the variable X, the
goal will fail, either at specialization time or at run-time, whereas the
initial goal succeeds in LD resolution.

Solution: represent explicitly the bindings by using unification rather
than backpropagating them (applying them onto leftmost atoms).

This guarantees correctness, but introduces some inaccuracy
(bindings are hidden from atoms to the left of the selected one).

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 14 / 20

ucm-seal upm-seal unm-seal

Assertions about Purity

Allow unfolding non-leftmost atoms by classifying predicates into pure
and impure (avoiding backpropagation in impure predicates).

Simple reachability analysis: as soon as an impure predicate p can be
reached from a predicate q, also q is considered impure.

Our work improves on existing techniques by providing a more refined
notion of impurity: we define purity at the level of individual atoms.

var(X) is impure (binding s), whereas the atom var(f (X)) is not (it
is no longer binding sensitive). We reduce substantially the situations
in which backpropagation has to be avoided.

Assertions state sufficient conditions under which atoms are pure.
Impurities: binding-sensitive, errors and side effects.

:- trust comp p(X1,...,Xn) : SC + bindins.
:- trust comp p(X1,...,Xn) : SC + error_free.
:- trust comp p(X1,...,Xn) + sideff.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 15 / 20

ucm-seal upm-seal unm-seal

Backwards Analysis

Recent developments in backwards analysis of logic program have
pointed out novel applications in termination analysis and inference of
call patterns which are guaranteed not to produce any runtime error.

We propose a new application of backwards analysis for automatically
inferring binding insensitive, error free and side-effect free annotations
which are useful to this purpose.

Automatically figuring out when a substitution can be safely
backpropagated onto a call whose execution reaches an impure
predicate

The analyzer starts from a program and an initial set of assertions
which state the properties of interest for external predicates.

The analysis algorithm propagates this information backwards in order
to get the appropriate assertions for all predicates.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 16 / 20

ucm-seal upm-seal unm-seal

Automatic Inference of Assertions by Backwards Analysis

Predefined assertions in Ciao for predicate ground/1 :

:- trust comp ground(X) : true + error_free.
:- trust comp ground(X) + sideff_free.
:- trust comp ground(X) : ground(X) + bind_ins.

The Ciao program:

:- module(main_prog,[main/2],[]).
:- use_module(comp,[long_comp/2],[]).
main(X,Y) :- problem(X,Y), q(X).
problem(a,Y):- ground(Y),long_comp(a,Y).
problem(b,Y):- ground(Y),long_comp(b,Y).
q(a).

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 17 / 20

ucm-seal upm-seal unm-seal

Automatic Inference of Assertions by Backwards Analysis

Predicate long comp/2 is externally defined in module comp where
also these predefined assertions for it are:

:- trust comp long_comp(X,Y) : true + error_free.
:- trust comp long_comp(X,Y) + sideff_free.
:- trust comp long_comp(X,Y) : ground(Y) + bind_ins.
From the program and the available assertions (for long comp/2
and ground/1), the backwards analyzer infers the following
assertions for problem/2 :

:- trust comp problem(X,Y) : true + error_free.
:- trust comp problem(X,Y) + sideff_free.
:- trust comp problem(X,Y) : ground(Y) + bind_ins.
The last assertion indicates that calls performed to problem(X,Y)
with the second argument being ground are not binding sensitive.
This will be very useful information for the specializer.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 18 / 20

ucm-seal upm-seal unm-seal

Automatic Inference of Assertions by Backwards Analysis

Consider a deterministic unfolding rule and the entry goal:
“ :- entry main(X,a). ”
The unfolding rule performs an initial step and derives the goal
problem(X,a),q(X) .
Now, it cannot select the atom problem(X,a) because its
execution performs a non deterministic step.
Fortunately, the assertions inferred for problem(X,Y) allow us to
jump over this atom and specialize first q(X) .
Then X gets instantiated to a and the unfolding rule already can
select the deterministic atom problem(a,a) and obtain the
specialized fact “ main(a,a). ”
Otherwise, the specialized program would:

main(X,a):-problem(X,a),q(X).
which is much less efficient than our specialization since the execution
of the call to long comp remains residual

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 19 / 20

ucm-seal upm-seal unm-seal

Conclusions

Motivated by recent developments in the backwards analysis of logic
programs, we propose a partial deduction algorithm which can handle
impure features and non-leftmost unfolding in a more accurate way.

We outline by means of examples some optimizations which are not
feasible using existing partial deduction techniques.

We argue that our proposal goes beyond existing ones and is:
1 accurate, since the classification of pure vs impure is done at the level

of atoms instead of predicates,
2 extensible, as the information about purity can be added to programs

using assertions which can guide the partial deduction process, and
3 automatic, since backwards analysis can be used to automatically infer

the required assertions.

Our approach has been implemented in the context of CiaoPP , the
abstract interpretation-based preprocessor of the Ciao logic
programming system.

Elvira Albert (UCM) Backwards Analysis-based Partial Deducer Uruguay, March 13, 2005 20 / 20

