
Some Trade-offs in Reducing the Overhead of Assertion
Run-time Checks via Static AnalysisI

Nataliia Stulovaa,b,∗, José F. Moralesa, Manuel V. Hermenegildoa,b

aIMDEA Software Institute, Madrid, Spain
bUniversidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract

A number of approaches have been proposed for helping programmers detect

incorrect program behaviors, which are based on combining language-level con-

structs (such as procedure-level assertions/contracts, program-point assertions,

or gradual types) with a number of associated tools (such as code analyzers and

run-time verification frameworks) that automatically check the validity of such

constructs. However, these constructs and tools are often not used to their full

extent in practice due to a number of limitations which may include excessive

run-time overhead, limited expressiveness, and/or limitations in the effective-

ness of the associated tools. Verification frameworks that combine static and

dynamic verification techniques and are based on abstraction offer the poten-

tial to bridge this gap. In this paper we explore the effectiveness of abstract

interpretation in detecting parts of program specifications that can be statically

simplified to true or false, as well as the impact of such analysis in reduc-

ing the cost of the run-time checks required for the remaining parts of these

specifications. Starting with a semantics for programs with assertion checking,

and for assertion simplification based on static analysis information obtained

I This paper is an extended version of [1], presented at PPDP 2016.
This research has been partially funded by EU FP7 agreement 318337 ENTRA, Span-
ish MINECO project TIN2015-67522-C3-1-R TRACES, and Madrid Region program
M141047003 N-GREENS

∗ Corresponding author.
Email addresses: nataliia.stulova@imdea.org (Nataliia Stulova),

josef.morales@imdea.org (José F. Morales), manuel.hermenegildo@imdea.org (Manuel V.
Hermenegildo), manuel.hermenegildo@upm.es (Manuel V. Hermenegildo)

Preprint submitted to Elsevier July 25, 2017

via abstract interpretation, we propose and study a number of practical as-

sertion checking “modes,” each of which represents a trade-off between code

annotation depth, execution time slowdown, and program safety. We then ex-

plore these modes in two typical, library-oriented scenarios. We also propose

program transformation-based methods for taking advantage of the run-time

checking semantics to improve the precision of the analysis. Finally, we study

experimentally the performance of these techniques. Our experiments illustrate

the benefits and costs of each of the assertion checking modes proposed, as well

as the benefits obtained from analysis and the proposed transformations in these

scenarios.

Keywords: Abstract Interpretation, Assertions, Run-time Checking,

Verification, Logic Programming, Horn Clauses

1. Introduction

Detecting and avoiding incorrect program behaviors is an important part

of the software development life cycle. It is also a complex and tedious one, in

which dynamic languages bring special challenges. A number of techniques have

been proposed to aid in this process, among which we center our attention on5

the use of language-level constructs to describe expected program behavior, and

of associated tools to automatically compare actual program behavior against

expectations, such as static code analyzers/verifiers and run-time verification

frameworks. Approaches that fall into this category are the assertion-based

frameworks used in (Constraint) Logic Programming [2–10], soft/gradual typing10

approaches in functional programming [11–17], and contract-based extensions in

object-oriented programming [18–20]. These tools are aimed at detecting viola-

tions of the expected behavior or certifying the absence of any such violations,

and often involve a certain degree of run-time testing, specially for complex

properties.15

A practical limitation of many of these tools is that they can incur signifi-

cant run-time performance overhead, even in the simple case of performing just

2

type checks between typed and untyped parts of programs [15, 17]. In [10]

overhead reductions were obtained by limiting the points at which the tests are

performed and the instrumentation, as well as by inlining, but some types of20

tests still incurred significant costs. Other approaches opt for limiting the ex-

pressiveness of the assertion language in order to reduce the overhead (see [21]

for some recent case studies). Recently, some proposals have been made for

reducing the run-time overhead of assertion checking based on optimizing the

run-time checking mechanisms themselves, at the expense of increased memory25

consumption [22, 23]: the time overhead of repeated checks on immutable re-

cursive data structures is traded for increased memory use via caching and/or

tabling techniques.

However, despite these advances, run-time overhead often remains imprac-

tically high, for example for properties which require deep data structure tests.30

This reduces the attractiveness of run-time checking to programmers, which

may activate sporadic checking of very simple conditions, but tend to turn off

run-time checking for more complex properties.

Motivated by this problem, assertion-based frameworks have been proposed

where static analysis is used to minimize the number and cost of the run-time35

checks that need to be placed in the program to detect incorrect program be-

haviors. This idea was pioneered by the Ciao system [3, 4, 6, 7, 9, 24, 25] where

a number of (abstract interpretation-based) static analyses are combined in or-

der to verify assertions to the largest extent possible at compile time, and for

simplifying and reducing the number of remaining properties that that need to40

be introduced in the program as run-time checks. Intuitively, this model can

offer a more appealing trade-off of performance vs. safety guarantees. However,

while there has been evidence supporting this hypothesis from the regular use

of the system, there has been little systematic experimental work presented to

date verifying this, i.e., measuring the actual impact of analysis on reducing45

run-time checking overhead. For example, in [10, 26] the overhead of run-time

checking was studied but without taking into account analysis information.

In order to bridge this gap, in this work we explore the effectiveness of ab-

3

stract interpretation-based compile-time analysis in detecting parts of program

specifications that can be simplified before they are turned into run-time checks.50

Again, the objective of such simplification is to achieve a system that can de-

tect the same (or a larger) set of incorrect behaviors in a program, but with a

significant reduction in the impact on the running time of the program.

Starting with a semantics for programs with assertion checking and for asser-

tion simplification based on analysis information obtained via abstract interpre-55

tation, we propose and study a number of practical assertion checking modes,

each of which represents a trade-off between code annotation depth, execution

time slowdown, and program behavior safety guarantees. The proposed modes

are specially tailored to the scenario of annotating and pre-processing libraries

to ensure their correctness prior to their use by client programs. We also de-60

fine a transformation-based approach in order to implement each one of these

modes.

We then concentrate on the reduction of the number of run-time tests via

(abstract interpretation-based) program analysis. To this end we propose a

technique that enhances analysis precision by taking into account that any as-65

sertions that cannot be proved statically will be the subject of run-time testing.

We then report on an implementation of the proposed techniques (within the

CiaoPP system) and study their impact in practice, by measuring the reduction

in run-time checking overhead achieved.

We develop the discussion in the context of (Horn Clause) Logic Programs,70

which allows us to take advantage of the availability of mature program analysis

and transformation tools, and a well developed assertion language and assertion

processing framework (in particular, that of the Ciao system). However, we

argue that the results are applicable to other programming paradigms, either

directly (e.g., to other forms of declarative programming), or to imperative75

programs, via transformation into Horn clauses. The use of Horn clauses in

the Ciao system as an intermediate language to support programs in other

languages was described in [27]. Some concrete examples of the application of

this approach that we have explored within Ciao include cost analysis of Java

4

bytecode programs [28, 29] and energy bound inference in binaries stemming80

from C-style programs [30, 31]. Recently [32] proposed an approach for using

Horn clauses as an intermediate language which is quite similar to Ciao’s [27].

The Horn clause-based transformational approach is currently receiving con-

siderable interest (see, e.g., [33–35]), and is even the subject of the “Horn clause-

based Verification and Synthesis” workshop series [36]. In [37] encouraging re-85

sults are reported for the direct inference of the verification conditions of safety

properties for C programs based on their (C)LP representation. Similar ap-

proaches have been used to translate to other formalisms, such as term rewrite

systems [38].

Regarding the Ciao model of simplifying run-time checks using analysis in-90

formation, that we base our work on, there has been recent work in the context of

run-time monitoring frameworks for imperative programs that uses similar ideas

to exploit static analyses in order to reduce the run-time overhead of the moni-

tors as, e.g., proposed in [39] for Java programs, in addition to the already men-

tioned approaches for reducing run-time checking overhead via caching [22, 23].95

The rest of the paper is structured as follows: Section 2 presents the run-

time checking part of our approach. After introducing some notation and the

basic semantics in Section 2.1, Section 2.2 presents the assertion language and

Section 2.3 the operational semantics with run-time checking of such asser-

tions. Section 3 then presents the run-time assertion checking modes proposed,100

including a discussion of the transformations required to implement the differ-

ent modes. Section 4 then addresses the issue of optimizing run-time checks

via static analysis. Section 4.1 presents the basic abstract interpretation-based

analysis approach used and the representation of the analysis results. Section 4.2

describes how run-time tests are optimized using the information in the analysis105

memo table. Section 5 then presents our transformational approach for taking

advantage of the run-time checking semantics to improve the precision of the

analysis. Section 6 discusses the application of this approach when optimizing

run-time checks for the calls across client-library boundaries. Section 7 describes

our experimental harness and presents our results for the different options (with110

5

and without analysis, as well as with and without improved analysis precision).

Section 8 finally presents some conclusions.

2. Run-Time Checking of Assertions

2.1. Basic notation and standard semantics

We revisit here some basic notation and the standard program semantics,115

where we use the formalization of [7, 23, 40].

An atom has the form p(t1, ..., tn) where p is a predicate symbol of arity

n and t1, ..., tn are terms. A constraint is a conjunction of expressions built

from predefined predicates (such as term equations or inequalities over the re-

als) whose arguments are constructed using predefined functions (such as real120

addition). A literal is either an atom or a constraint. A goal is a finite sequence

of literals. A rule is of the form H:-B where H, the Head, is an atom and

B, the body, is a possibly empty finite sequence of literals. A constraint logic

program, or program, is a finite set of rules.

The definition of an atom A in a program, defn(A), is the set of variable125

renamings of the program rules s.t. each renaming has A as a Head and has

distinct new local variables. We assume that all rule Heads are normalized, i.e.,

H is of the form p(X1, ..., Xn) where the X1, ..., Xn are distinct free variables.

Let ∃Lθ be the constraint θ restricted to the variables of the syntactic object L.

We denote constraint entailment by |=, so that θ1 |= θ2 denotes that θ1 entails130

θ2. Then, we say that θ2 is weaker than θ1.

The operational semantics of a program is given in terms of its derivations,

which are sequences of reductions between states. A state 〈G | θ〉 consists of

a goal G and a constraint store (or store for short) θ. We use :: to denote

concatenation of sequences and we assume for simplicity that the underlying135

constraint solver is complete. A state S = 〈L :: G | θ〉 where L is a literal can

be reduced to a state S′ as follows:

1. 〈L :: G | θ〉 〈G | θ ∧ L〉 if L is a constraint and θ ∧ L is satisfiable.

6

2. 〈L :: G | θ〉 〈B :: G | θ〉 if L is an atom of the form p(t1, . . . , tn),

for some rule (L:-B) ∈ defn(L).140

We use S S′ to indicate that a reduction can be applied to state S to

obtain state S′. Also, S ∗ S′ indicates that there is a sequence of reduction

steps from state S to state S′. We denote by D[i] the i-th state of the derivation.

As a shorthand, given a non-empty derivation D, D[−1] denotes the last state. A

query is a pair (L, θ), where L is a literal and θ a store, for which the constraint145

logic programming system starts a computation from state 〈L | θ〉. The set of

all derivations from the query Q is denoted derivs(Q). A finite derivation from

a query (L, θ) is finished if the last state in the derivation cannot be reduced. A

finished derivation from a query (L, θ) is successful if the last state is of the form

〈� | θ′〉, where � denotes the empty goal sequence. In that case, the constraint150

∃̄Lθ′ is an answer to S. We denote by answers(Q) the set of answers to a query

Q.

2.2. Assertion Language

We assume that program specifications are provided by means of assertions:

linguistic constructions that allow expressing properties of programs. In particu-155

lar, we would like to specify certain conditions on the constraint store that must

hold at certain points of program derivations. For concreteness we will use the

pred assertions of the Ciao assertion language [3, 6, 7, 25, 41]. The main intent

behind the construction of a specification for a predicate using pred assertions

is to define the set of all admissible preconditions for this prediate, and for each160

such precondition in turn specify the respective postcondition. I.e., pred asser-

tions allow stating sets of related preconditions and conditional postconditions

for a given predicate.

These pre- and postconditions are formulas containing literals corresponding

to predicates that are specially labeled as properties. The design of this lan-165

guage is such that properties and the other predicates composing the program

are written in the same language. This approach is motivated by the direct

correspondence between the declarative and operational semantics of constraint

7

logic programs and it provides a direct link between the properties used in as-

sertions and the corresponding run-time tests, which constitute (instrumented)170

calls to the predicates defining the properties. This also allows defining specifi-

cations that are more general than, e.g., classical types.

More formally, the set of assertions for a given predicate represented by

Head is composed of the (possibly empty) set of all statements of the form:1

:- pred Head : Pre1 => Post1.

. . .

:- pred Head : Pren => Postn.

175

where Head is the same normalized atom, that denotes the predicate that the

assertions apply to, and the Prei and Posti are conjunctions2 of prop literals

that refer to the variables of Head.

A set of assertions as above states that in any execution state 〈Head ::

G | θ〉 at least one of the Prei conditions should hold, and that, given the180

(Prei, Posti) pair(s) where Prei holds, then, if Head succeeds, the correspond-

ing Posti should hold upon success. More formally, given a predicate repre-

sented by a normalized atom Head, and the corresponding set of assertions is

A(Head) = {A1 . . . An}, with Ai = “:- pred Head : Prei => Posti.”

such assertions are normalized into a set of assertion conditions for that predi-185

cate, denoted as AC(Head) = {C0, C1, . . . , Cn} s.t.:

Ci =

 ci.calls(Head,
∨n
j=1 Prej) i = 0

ci.success(Head, Prei, Posti) i = 1..n

We also assign unique identifiers to each assertion condition, represented by the

ci above. If there are no assertions associated with Head then the corresponding

set of assertion conditions is empty. The set of assertion conditions for a program

1 We follow the more compact formalization of [40], using only pred assertions. See also [7]
for the original presentation using calls and success assertions. We are also not dealing
herein with comp assertions and comp properties.

2 In the general case Pre and Post can be DNF formulas of prop literals but we limit them
to conjunctions herein for simplicity of presentation.

8

is the union of the assertion conditions for each of the predicates in the program.190

The calls(Head, . . .) conditions encode the checks that ensure that the calls

to the predicate represented by the Head literal are within those admissible by

the set of assertions, and we thus call them the calls assertion conditions. The

success(Headi, P rei, Posti) conditions encode the checks for compliance of the

successes for particular sets of calls, and we thus call them the success assertion195

conditions.

2.3. Semantics with assertions

We now recall the operational semantics with assertions, which checks whether

assertion conditions hold or not while computing the derivations from a query.

In order to keep track of any violated assertion conditions, we use the identifiers200

of the assertion conditions. Given the atom Lσ that is a renaming of some nor-

malized atom L s.t. Lσ = σ(L) and the corresponding set of (also renamed apart)

assertion conditions AC(L), the assertion conditions for Lσ are obtained as fol-

lows: if ∃C ∈ AC(L), C = c.calls(L,Pre) (or C = c.success(L,Pre, Post)), then

Cσ = σ(C) = cσ.calls(Lσ, σ(Pre)) (or Cσ = cσ.success(Lσ, σ(Pre), σ(Post))).205

We also introduce an extended program state of the form 〈G | θ | E〉, where

E denotes the set of identifiers for falsified assertion condition instances and

|E| ≤ 1. For the sake of readability, we write labels in negated form when they

appear in the error set. A finished derivation from a query (L, θ) now is suc-

cessful if the last state is of the form 〈� | θ′ | ∅〉 (∅ denotes the empty set), and210

failed if the last state is of the form 〈L′ | θ′ | {c̄}〉. We also extend the set of

literals with syntactic objects of the form acheck(L, c) where L is a literal and

c is an identifier for an assertion condition instance, which we call check liter-

als. Thus, a literal is now a constraint, an atom or a check literal. A literal L

succeeds trivially for θ in program P , denoted θ ⇒P L, iff ∃θ′ ∈ answers((L, θ))215

such that θ |= θ′. We can now recall the notion of Reductions in Programs with

Assertions from [40], which is our starting point: a state S = 〈L :: G | θ | ∅〉,

where L is a literal, can be reduced to a state S′, denoted S A S′, as follows:

9

1. If L is a constraint and θ ∧L is satisfiable then the new state is S′ = 〈G |

θ ∧ L | ∅〉, in the same manner as in 〈L :: G | θ〉 〈G′ | θ′〉220

2. If L is an atom and ∃(L:-B) ∈ defn(L), then the new state S′ is obtained

as

S′ =


〈L | θ | {c̄}〉 if ∃ c.calls(L,Pre) ∈ AC(L)

∧ θ 6⇒P Pre

〈B :: G′ | θ | ∅〉 otherwise

and G′ = acheck(L, c1) :: . . . :: acheck(L, cn) :: G such that

ci.success(L,Prei, Posti) ∈ AC(L) ∧ θ ⇒P Prei.

3. If L is a check literal acheck(L′, c), then S′ is obtained as

S′ =


〈L′ | θ | {c̄}〉 if c.success(L′, , Post) ∈ AC(L′)

∧ θ 6⇒P Post

〈G | θ | ∅〉 otherwise

3. Assertion Checking Modes

When a program is being instrumented with run-time checks, the choice of

instrumentation strategy is determined by several factors and considerations.225

Most of these factors can typically be generalized to a compromise between

thoroughness of the code annotation (complexity of the properties, annotation

depth) and the resulting performance penalties (increases in execution time,

code size, and memory use).

We propose a view on this compromise that differentiates among various230

levels of behavioral safety guarantees embodied in different assertion checking

modes. We consider for concreteness the context of developing a standalone

library that provides an open interface to its clients. By this we mean that at

the time of analyzing and instrumenting the library the clients are not known

and can be expected to call the library in both correct and incorrect ways, i.e.,235

we do not require the clients to verify that the calls to the library adhere to the

interface. Also, we do not expect the library to be recompiled (or reanalyzed)

10

depending on the needs of each client.3 Thus, the library has to be analyzed and

checked independently of the clients. We define three scenarios in this context,

depending on the level of guarantees that the library provides to the clients that240

use it.

Unsafe Checking Mode. This checking mode corresponds to a scenario where no

execution time slowdown is tolerated at run time, even at the cost of providing

no safety guarantees to the clients. I.e., no run-time checks are generated from

the assertions of the library. Formally, this corresponds to using the standard245

semantics of Section 2.1, and thus ignoring all the assertions in the code. This

of course eliminates any overhead but at the cost of not being able to ensure

correctness. However, we still consider it, first because it represents a baseline

to compare to, and also because of the frequent –even if not recommendable–

practice of turning off run-time checks for production code, in order to avoid250

overhead, which is typically done if it is perceived that sufficient testing was

carried on the code out prior to delivery.

Client-safe Checking Mode. In this checking mode the library provides the client

with behavior guarantees on its interface, but does not check any of the asser-

tions for the internal procedures. Run-time checks are thus generated only for255

3 This is all in contrast with the scenario in which the whole set of modules involved is
available and can be processed as a whole, monolithically or modularly [42, 43]. Similarly, we
also do not address directly in this work link-time optimizations.

�
1 :- module(_, [p]). % p is exported
2

3 :- check pred p : Pre => Post .
4

5

6 p :- body . % no calls to p/1
7 % for simplicity
8

9

10 q :- p.

(a) Initial program fragment.

�
1 :- module(_, [p]).
2

3 % c0.calls(p, Pre) ∧ status(c0, check)
4 % c1.success(p, Pre, Post) ∧ status(c1, check)
5

6 p :- p_inner. % (the link clause)
7

8 p_inner :- body .
9

10 q :- p_inner.

(b) The same program fragment after
the transformation.

Figure 1: Client-safe program transformation.

11

the assertion conditions for the exported predicates of the library. More for-

mally, assuming that the set of (atoms of) exported predicates is given by Exp,

the run-time semantics under such mode is:

1. If L is a constraint or L is an atom such that L /∈ Exp, then the new state

S′ = 〈G′ | θ′ | ∅〉 where G′ and θ′ are obtained in the same manner as in260

〈L :: G | θ〉 〈G′ | θ′〉

2. If L is an atom such that L ∈ Exp, and ∃(L:-B) ∈ defn(L), then the new

state S′ is obtained as:

S′ =


〈L | θ | {c̄}〉 if ∃ c.calls(L,Pre) ∈ AC(L)

∧ θ 6⇒P Pre

〈B :: G′ | θ | ∅〉 otherwise

and G′ = acheck(L, c1) :: . . . :: acheck(L, cn) :: G such that

ci.success(L,Prei, Posti) ∈ AC(L) ∧ θ ⇒P Prei.

3. If L is a check literal acheck(L′, c), then S′ is obtained as

S′ =


〈L′ | θ | {c̄}〉 if c.success(L′, , Post) ∈ AC(L′)

∧ θ 6⇒P Post

〈G | θ | ∅〉 otherwise

The modified semantics above ensures that checks are performed only for the

predicates in the library interface. However, all calls within the library to the265

exported predicates, including recursive calls, would also be checked, which is

not required by the definition of the scenario, which only establishes the check-

ing of the calls that cross the interface. In order to avoid this, and to ensure that

the checks are performed only on the external calls, we assume that the program

transformation given in Fig. 1 is applied to all exported predicates. This trans-270

formation introduces intermediate link predicates for the exported predicates

so that the module interface is preserved but all the internal calls are replaced

by calls to the wrapper predicates, for which no checks are performed. This

combination of program transformation and run-time checking policy allows

12

Code

Assertions

Program

Code

Assertion
conditions

Program

Code

Program

Code

Run-time
checks
(exports)

Program

Code

Run-time
checks
(all)

Program

Unsafe Client-safe Safe-RT

Normalizer

RT-checks

Figure 2: Source transformation differences per checking mode.

obtaining safety guarantees at the library boundaries with minimal run-time275

checking execution time overhead.

Safe-RT Execution Mode. In this mode the library provides behavior guarantees

both on its interface and its internals. Run-time checks are thus generated for all

assertions of the library. This corresponds to using the semantics with assertions

of Section 2.3. The performance penalty here is the largest.280

Transformations. The checking modes described above require different source

transformations to be performed on a program during compile time (see Fig. 2).

Before any such transformations take place, the assertions are normalized and

expanded into assertion conditions. This allows ensuring that no syntactic er-

rors are present in the assertion conditions and that no undefined properties285

(i.e., properties that are not defined in the program or imported from libraries)

appear in such conditions.

In the Unsafe mode nothing is done and the assertion conditions are simply

ignored during compilation. In the Safe-RT mode the source transformation

13

is quite straightforward: all the assertion conditions for all assertions in the290

program are turned into run-time checks directly. In the Client-safe mode, as

mentioned before, the program transformation of Figure 1 is first performed for

all the exported predicates, and then run-time checks are generated only for the

assertion conditions of those exported predicates.

4. Optimizing Run-Time Checks via Static Analysis295

We now return to the issue of optimizing run-time checks via (abstract

interpretation-based) static program analysis, in order to reduce the number

of run-time tests and thus the overhead from run-time testing, following the

Ciao model. To this end, we recall the basic abstract interpretation-based anal-

ysis approach used and the memo table representation of the analysis results300

and describe how run-time tests are optimized using the information in the

analysis memo table. Based on this in the following section we will present our

approach for taking advantage of the run-time checking semantics to improve

the precision of the analysis.

Herein we will refer to this combination of static and dynamic checking as305

the Safe-CT-RT Checking Mode , i.e., as a variation on the Safe-RT run-

time checking mode, where static verification is performed in order to eliminate

as many of the properties in the program assertions to be checked at run time as

possible. Run-time checks are still generated for all program assertions but in

contrast to the Safe-RT case the assertions are simplified before the checks are310

generated from them. In this mode the run-time checks for the calls assertion

conditions of the exported predicates are left untouched in any case, in order to

ensure the safety of calls in our open-library context.

4.1. Abstract Interpretation-based Analysis

For analysis we use the technique of abstract interpretation [44], which safely315

approximates the execution of a program on an abstract domain (Dα) which is

14

Code

Assertions

Program

Code

Assertion
conditions

Program

Code

Assertion
conditions
(reduced)

Program

Code

Program

Code

Run-time
checks
(exports)

Program

Code

Run-time
checks
(all)

Program

Code

Run-time
checks
(reduced)

Program

Unsafe Client-safe Safe-RT Safe-CT-RT

Normalizer

RT-checks

Static
Analysis

Figure 3: Source transformation differences per checking mode, including compile-time anal-
ysis.

simpler than the actual, concrete domain4 (D). Abstract values and sets of

concrete values are related via a pair of monotonic mappings 〈α, γ〉: abstraction

α : 2D → Dα, and concretization γ : Dα → 2D.5 The operations of least upper

bound (t) and greatest lower bound (u) over abstract values λ mimic those of320

2D in a precise sense:

∀λ, λ′ ∈ Dα : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)

∀λ1, λ2, λ′ ∈ Dα : λ1 t λ2 = λ′ ⇔ γ(λ1) ∪ γ(λ2) = γ(λ′)

∀λ1, λ2, λ′ ∈ Dα : λ1 u λ2 = λ′ ⇔ γ(λ1) ∩ γ(λ2) = γ(λ′)

As usual in abstract interpretation, ⊥ denotes the abstract constraint such that

γ(⊥) = ∅ (and represents unreachable code), whereas > denotes the most gen-

eral abstract constraint, i.e., γ(>) = D.325

The concrete framework that we will use in the static analysis component

4 In what follows we assume the concrete domains to have a powerset structure, but the
framework is not limited to such domains and can be applied to domains of arbitrary structure.

5 Strictly, only the concretization function is required.

15

is the Ciao PLAI abstract interpretation system [45–47]. Below we adapt some

definitions and notation from [7] to illustrate the analysis process implemented

by PLAI.

The goal-dependent abstract interpretation performed by PLAI takes as in-330

put a program P , an abstract domain Dα,6 and a description Qα of the pos-

sible initial queries to the program, given as a set of abstract queries. Each

such abstract query is a pair (L, λ), where L is an atom (for one of the ex-

ported predicates) and λ ∈ Dα an abstraction of a set of concrete initial pro-

gram states (e.g., substitutions or constraints). Thus, a set of abstract queries335

Qα represents a set of concrete queries, denoted γ(Qα), which is defined as

γ(Qα) = {(L, θ) | (L, λ) ∈ Qα ∧ θ ∈ γ(λ)}. The PLAI abstract interpre-

tation process computes a set of (connected) triples Analysis(P,Qα, Dα) =

{〈Lp, λc, λs〉 | p is a predicate of P}, where λc and λs are abstract constraints

that describe sets calls (entry) and success (exit) states for p such that λc safely340

approximates a set of call states at p and λs safely approximates the set of

success states at p for all calls contained in λc. In what follows we will refer to

such triplets also as memo table entries.7

The analysis (as the assertion language, to be introduced later) is designed

to discern among the various usages of a predicate. Thus, multiple usages345

(contexts) of a procedure can result in multiple descriptions in the analysis

output, i.e., for a given predicate p multiple 〈Lp, λc, λs〉 triples may be inferred.

More precisely, the analysis is said to be multivariant on calls if more than

one triple 〈Lp, λc1, λs1〉, . . . , 〈Lp, λcn, λsn〉 n ≥ 0 with λci 6= λcj for some i, j may

be computed for the same predicate. Independently of the number of triples350

computed, the set of all λci together (i.e., the union of the concretizations of all

the λci) safely approximate the set of possible concrete calls made to p during

any program execution. In any case, for simplicity of presentation, we assume

6 In fact, the analysis supports analysis using a number of different abstract domains, but,
for simplicity, and without loss of generality –a set of abstract domains can always be encoded
as a single domain– we use only one domain in the presentation.

7 The analysis also provides information at body literals (also referred to as “program
points”), as we will discuss in Section 4.2.

16

Table 1: Assertion status.

Status Source Description
check user The assertion expresses part of the intended semantics.

It may or may not hold in the current version of the
program. It is the default status that is assumed for
assertions written without an explicit status.

checked static
checking

The assertion was a check assertion which has been
proved to actually hold in the current version of the
program for any valid initial call (for the given Qα).

false static
checking

Similarly, a check assertion is rewritten with the sta-
tus false when it is proved not to hold for some valid
initial query (for the given Qα).

true static
analyses

Such an assertion expresses (a part of) the actual se-
mantics of the program, normally automatically in-
ferred by analysis. In particular, each triple (memo
table entry) 〈Lp, λc, λs〉 computed by the analysis is
presented to the user by including a corresponding as-
sertion of the form “:- true pred P : λc => λs.”
in the program.

trust user Provided by the user (or other tools) in order to guide
analysis (increase precision).8

that the analysis computes exactly one tuple 〈Lp, λc, λs〉 for each (reachable)

predicate p.355

4.2. Optimizing Assertions with Analysis Results

The steps of the verification process are represented by associating a notion

of “status” to each assertion:

:- [Status] pred Head : Pre1 => Post1.

. . .

:- [Status] pred Head : Pren => Postn.

This optional Status flag indicates whether the assertion refers to intended or360

actual properties, and possibly some additional information, as shown in the

top part of Table 1 (see also Figure 8).

8 We will use only true assertions in the rest of the paper for simplicity.

17

The reasoning about the statuses of assertion conditions is performed in the

following terms. Given a literal L and a program P , the trivial success set of

L in P is TS(L,P) = {∃̄Lθ |θ ⇒P L}. We also recall here the auxiliary partial

functions prestep and step from [40] which are instrumental in reasoning about

program state reductions:

prestep(La, D) = (θ, σ) ≡ D[−1] = 〈L :: G | θ〉 ∧ ∃σ L = σ(La)

step(La, D) = (θ, σ, θ′) ≡ D[−1] = 〈G | θ′〉 ∧ ∃σ L = σ(La)

∧ ∃i D[i] = 〈L :: G | θ〉

Given a derivation whose current state is a call to La (normalized atom), the

prestep function returns the substitution σ for La, and the constraint store θ at

the predicate call (i.e., just before the literal is reduced). Given a derivation365

whose current state corresponds exactly to the return from a call to La, the

step function returns the substitution σ for La, the constraint store θ at the

call to La, and the constraint store θ′ at La’s success (i.e., just after all literals

introduced from the body of La have been fully reduced).

An abstract constraint λ−TS(L,P) is an abstract trivial success subset of L in370

P iff γ(λ−TS(L,P)) ⊆ TS(L,P). An abstract constraint λ+TS(L,P) is an abstract

trivial success superset of L in P iff γ(λ+TS(L,P)) ⊇ TS(L,P). Given the program

P , the concrete and abstract sets of queries Q and Qα9 respectively, where

γ(Qα) ⊇ Q, and 〈L, λc, λs〉 ∈ Analysis(P,Qα, Dα), the status of an assertion

condition C, associated with it by the mapping status(c, Status) where c is the375

corresponding identifier, is determined as follows:

• C = c.calls(L,Precond) ∧ status(c, checked) if λc v λ−TS(Precond,P).

• C = c.success(L,Pre, Post)∧status(c, checked) if (1) λcuλ+TS(Pre,P) = ⊥

or (2) λs v λ−TS(Post,P);

9 In the implementation of PLAI, Qα is obtained from the calls conditions of the assertions
of exported predicates (or, if no such assertions are present, a “topmost” abstract state is
assumed), or from specific “entry” assertions.

18

• C = c.calls(L,Precond) ∧ status(c, false) if ∃D ∈ derivs(Q) s.t.380

prestep(L,D) = (θ, σ) ∧∃Lθ 6= ∅ and λc u λ+TS(Precond,P) = ⊥.

• C = c.success(L,Pre, Post)∧ status(c, false) if λc uλ−TS(Pre,P) 6= ⊥ and

λs u λ+TS(Post,P) = ⊥ and ∃ θ ∈ γ(λc u λ−TS(Pre,P)) : ∃D ∈ derivs(Q) s.t.

step(L,D) = (θ, σ, θ′) ∧∃Lθ′ 6= ∅.

The compile-time checking process can be seen as a revision of the asser-385

tion statuses where for each predicate literal L its annotation composed from

the respective assertion conditions AusrC (L) = {C | (C = c.calls(L,) ∨ C =

c.success(L, ,)) ∧ C ∈ AC(L) ∧ status(c, S) ∧ S ∈ {check, true}} given the

analysis output of the form AanaC (L) = {C | ∀C s.t. (C = c.calls(L,) ∨ C =

c.success(L, ,))∧status(c, true)} is rewritten into {C | (C = c.calls(L,)∨C =390

c.success(L, ,)) ∧ C ∈ AusrC (L) ∧ status(c, S) ∧ S ∈ {check, checked, false}}.

5. Taking Advantage of the Run-Time Checking Semantics during

Analysis

The standard analysis introduced in Section 4.1 safely approximates the tra-

ditional semantics (i.e., the semantics without assertions or run-time checks).10395

However, if we know that run-time checks will be performed for sure for a certain

set of (check) assertions (as, e.g., for all assertions in the Safe-RT execution

mode, or the ones corresponding to interface predicates in the Client-safe mode),

it is possible to use this information during analysis to improve precision:

• It is possible to assume that the calls assertion conditions hold after the400

predicate has entered the predicate definition (since, according to the se-

mantics of Section 2.3 either the checks for these calls assertion conditions

have already succeeded or the program has exited with error).

10 Assertions with true and trust status (Table 1) are in fact read and applied by the
traditional analysis during its fixpoint calculation. However, in this discussion we refer to
incorporating into the analysis the information present in check assertions, i.e., from the
assertions being checked at compile time or run time. These assertions are not normally taken
into account by the analysis since they may or may not hold and, in general, run-time tests
may or may not be included in the compiled program.

19

• It is also possible to assume the relevant success assertion conditions after

the predicate has exited (since, again, at this point either these success405

assertion conditions have already succeeded or the program has exited

with error).

�
1 :- module(_,[p/2]). % p/2 is exported
2 :- use_module(lib ,[e/2]). % e/2 is imported
3

4 p(X,Y) :- q(X,Y).
5

6

7 :- pred q(X,Y) : (int(X), X>3) => (int(Y), Y>0).
8

9 q(X,Y) :- r(X,Y).
10

11

12 :- pred r(X,Y) : (int(X), X>0) => (int(Y), Y>16).
13

14 r(X,Y) :- e(X,Y).

Figure 4: Example for analysis improvement.

As an example, consider the Ciao Prolog program of Figure 4.11 There, p/2

is an exported predicate, q/2 and r/2 are local predicates, and e/2 is imported.

We allow both p/2 and e/2 to be called without any restriction, and we do410

not specify any constraints either regarding their successes. However, we want

to enforce (through the two assertions) that q/2 and r/2 will always be called

with their first argument X bound to an integer greater than 3, and that their

second argument Y be bound to a positive integer upon success. Since any type

of call is allowed to p/2, without information on the presence of run-time checks415

the analysis cannot infer anything about the calls conditions for q/2 and r/2,

or for the success conditions of these two predicates, and will report warnings

for unchecked conditions for all of them (and the two assertions will remain in

check status).

However, note that, if we know that we will be generating run-time checks420

for those assertion conditions, the call to r/2 in the body of q/2 can only be

11 In the examples we use just simple types (and in some cases constraints) as properties
for simplicity of presentation, but even in this case please note that the use of types is moded,
i.e., the assertions here express states of instantiation.

20

reached if the calls condition for q/2 holds, i.e., if X is bound to an integer,

and greater than 3 (since otherwise execution would have been aborted by the

failing run-time check). Thus, this information can be incorporated into the

analysis and propagated to the call to r/2, and it can be determined that the425

calls condition for r/2 (i.e., that its first argument will be bound to a positive

integer) always holds. Thus, this calls condition for r/2 gets status checked

and no run-time test needs to be generated for it.

Similarly, the run-time test for the success condition for r/2 ensures that if

the call to r/2 in the body of q/2 returns, then its second argument is guaranteed430

to be bound to an integer and greater than 16. Thus, the success condition for

q/2 will also get status checked and no run-time test needs to be generated for

it either.

Transformation. A straightforward method to incorporate the information from

successful checks into the analysis, so that it takes the semantics with run-time435

checking into account, would be to analyze the transformed program (i.e., the

program including the code that performs the run-time tests) instead of the

original one. This is the approach implied by the original transformational def-

initions of the assertion language. On the other hand, programs transformed

for run-time testing contain numerous optimizations and instrumentation that440

make their analysis less efficient and can potentially affect precision. An al-

ternative would be to use a very simple (even if inefficient) run-time checking

transformation just for analysis. Inspired by this idea, we propose herein a dif-

ferent, even more direct approach, based on introducing additional assertions

and link predicates in the program that together capture the run-time checking445

semantics and provide the additional information source for the analysis, in or-

der to increase precision. This is performed as a program transformation T that

precedes the analysis and is applied to every annotated predicate in a program:

T (L) = 〈{L:-Linner} ∪ defn(Linner),AlinkC ∪ AinnerC 〉

21

where L = p(~X), and the literal Linner = pinner(~X) is obtained with a new450

predicate symbol pinner, and:

defn(Linner) = {Linner:-B | L:-B ∈ defn(L)}

C = {c.C ∈ AC(L) | status(c, check)}

AlinkC = {cl.C | c.C ∈ C} and ∀cl.C ∈ AlinkC we extend

the status relation s.t. status(cl, Sl), where:

Sl =

 check if C = calls(,)

true if C = success(, ,)

AinnerC = {ci.C | c.C ∈ C} and ∀ci.C ∈ AinnerC we extend

the status relation s.t. status(ci, Si), where:

Si =

 true if C = calls(,)

check if C = success(, ,)

The objective of the transformation is to improve the precision and reduce

the cost of the analysis, while preserving program behavior when the check

assertion conditions are expanded into run-time checks. The transformation

modifies all predicates with check assertions for which it is known that run-455

time checks will be generated. For each such predicate p, the original predicate

symbol is renamed into pinner and a single-clause wrapper predicate for p (which

we will refer to as a link clause), is introduced which calls the pinner predicate.

The set of assertion conditions for the initial predicate p is duplicated for the

pinner counterpart, including their original statuses. However, the statuses of460

the success assertion conditions for p in the link clause and the calls assertion

conditions of pinner are set to true. As a result, the calls assertion conditions

for p (i.e., cl.calls(L,) with status(cl, check)) will still be checked in the version

with run-time checks, but they will be assumed in pinner (i.e., ci.calls(Linner,)

with status(ci, true)).465

22

�
1 :- check calls q(X,Y) : (int(X), X>3).
2 :- true success q(X,Y) : (int(X), X>3) => (int(Y), Y>0).
3

4 q(X,Y) :- q_inner(X,Y).
5

6

7 :- true calls q_inner(X,Y) : (int(X), X>3).
8 :- check success q_inner(X,Y) : (int(X), X>3) => (int(Y), Y>0).
9

10 q_inner(X,Y) :- r(X,Y).

Figure 5: CTRT program transformation example (output).

For the success part the assertion conditions will still be checked for the inner

predicate (i.e., ci.success(Linner, ,) with status(ci, check)) and the information

will be assumed upon exiting p (i.e., ci.success(L, ,) with status(ci, true)).

The transformation guarantees that the same run-time tests will be performed,

that no duplication of checks will occur (since there are no intermediate states470

between the calls to p and pinner and exits from pinner to p), and that the

analysis will gather the right information.

An example of the CTRT transformation for the q/2 predicate from the

program in Fig. 4 is shown in Fig. 5. The true assertions here correspond to

the additional information that can be safely used in the analysis. Since all475

predicates with assertions undergo this transformation, a number of inner calls

coming from the link clauses are added to the program. Yet such calls are

relatively inexpensive and the resulting runtime overhead is negligible. Even

more, should the analysis verify the calls assertion condition of the link clause or

the success assertion condition of the inner clause, the link clause then becomes480

unnecessary and can be completely removed.

Lemma 1 (Correctness of the CTRT Transformation) Let P be a program

and Q = (L, θ) a query to P . Then ∀ D ∈ derivs(Q) the final state D[−1] is the

same in the versions of P with and without the CTRT transformation.
485

The proof of the lemma can be found in Appendix A.

23

6. Optimizing Checks at the Client-Library Boundaries

We now consider another aspect of our library scenario: optimizing the

checks at the client-library boundaries. We will remain within the case in which

the library provides an open interface to its clients, i.e., the clients are not known490

when analyzing and compiling the library, these clients can be expected to call

the library in arbitrary ways, and we do not want the library to be reanalyzed

or recompiled for each particular client. As seen in Section 3, in this scenario

the reusability of the library forces us at least in principle to keep the run-time

checks for the assertions at the library interface to ensure correctness. However,495

on the client side it may be possible to detect places where there is a call in the

client module to a library predicate, such that the checks or analysis performed

in the client module guarantee that the calls conditions of the library predicate

will be satisfied. Detecting this could allow us to optimize away the checks at

the client-library boundaries, and thus reduce run-time checking overhead.500

Again, while inter-modular analysis could be used to this end, the advantage

of fixing the library boundaries is that the library modules, once analyzed and

compiled, can be reused without repeating the analysis or re-analyzing for new

abstract call states. This reanalysis may not be really practical in the case

of pre-compiled libraries, and also implies in any case additional cost, which505

may be prohibitive for some applications. Also, in inter-modular analysis and

optimization the module boundaries change dynamically during analysis and

this can happen after a change in any module. Another advantage of fixing

the library boundaries is thus that it avoids having to recompile the client if

there are changes in the library source code (and vice-versa), provided that the510

interface of the library itself is not changed. I.e., there are advantages to being

able to fix the interface at certain boundaries.

The alternative that we propose is to provide a fixed interface, but one

that provides two entry points for each predicate exported by the library: the

standard one, that performs the run-time checks for the assertions in the li-515

brary interface, and another one that provides direct access to the exported

24

�
1 :- module(mod ,[p/2]).
2 :- use_module(lib ,[e/2]).
3

4 :- pred p(X,Y) : int(X) => int(Y).
5 p(X,Y) :- e(X,Y).
6

7 :- pred q(X,Y) => int(Y).
8 q(X,Y) :- e(X,Y).
9 �
1 :- module(lib ,[e/2]).
2

3 :- pred e(X,Y) : int(X) => int(Y).
4

5 e(X,Y) :- ...
6

Figure 6: A client-library program.

predicates bypassing the boundary assertion checks (in particular, the inner

versions produced by the CTRT transformation). We also propose a matching

transformation for the client module that allows selecting, for each literal in the

client that calls a library predicate, which of the two versions of that predicate520

exported by the library interface can safely be used.12

On the client side, we assume that the source code of the library predicates

that are being imported by the client module is in general not accessible from the

client during the analysis in the client. However, we assume that the interface

of the library includes also the assertions of its exported predicates (as is the525

case in Ciao/CiaoPP). Thus, analysis on the client side has to rely solely on

the information available in the interface of the library. This is not an issue

however, if the library is compiled with the CTRT transformation, as in this

case the transformation includes the assertions for the exported predicates (more

specifically, the link clause assertions) in the library interface.530

As an example, consider the client-library program in Figure 6 (using just

moded types for brevity). There, in the client module, mod, p/2 is an exported

predicate and q/2 is a local predicate, and e/2 is imported from the library lib.

We want to enforce through the assertions that p/2 always be called with its

12 This can obviously be generalized to providing several entry points under several condi-
tions, but we will keep the discussion limited to two entry points per predicate for simplicity).

25

first argument X bound to an integer, and that its second argument Y be bound535

to an integer upon success (i.e., returning a free variable is not allowed). At

the same time, we do not enforce any call-specific way to invoke q/2, and we

enforce that its second argument Y should be bound to an integer upon success.

Both p/2 and q/2 call predicate e/2, imported from the library. Since e/2 is

an exported predicate in the lib module, the check for its calls condition (that540

its first argument X is bound to an integer) will always be performed. But notice

that at the point where e/2 is called from p/2 the check for its first argument

being an integer at run time has already taken place, as the same check was

required by the calls conditions for the p/2 predicate. This check duplication

can be avoided if we replace at compile-time the call to e/2 in the body of p/2545

with a call to e inner/2, which is visible from mod during the pre-compilation

analysis time. In principle this inner predicate would have to be exported but

in practice it is done through the internal visibility mechanism in the compiler,

which the user cannot bypass. At the same time we would like to keep the check

for the calls condition of e/2 when it is called from the body of q/2, as in that550

case nothing ensures that its first argument will be bound to an integer.

The optimization that we seek requires us to be able to reason about individ-

ual call sites in the bodies of the clauses in the program predicates, also referred

to as “program points”. For this, we need the analysis information (abstract

states) to be available not just at the whole predicate level (call and success)555

but also at the level of the clause literals. This information is indeed provided

by the PLAI analysis that we are using as reference (Section 4.1). We also need

the interface of the transformed library to be extended by making accessible

the link predicates generated for all its annotated exported predicates, together

with their respective assertions. As mentioned before, such interface extension560

will provide us with (at least) two different versions of the library exported

predicates, that can be called at different program points in the client. For this

kind of reasoning we also require the static analysis performed to be in effect

multivariant on calls.

Let ppt denote a program point identifier, which refers to a particular literal565

26

�
1 :- module(mod ,[p/2, q/2]).
2 :- use_module(lib ,[e/2,e_inner /2]).
3

4 :- check calls p(X,Y) : int(X).
5 :- true success p(X,Y) : int(X) => int(Y).
6

7 p(X,Y) :- p_inner(X,Y).
8

9 :- true calls p_inner(X,Y) : int(X).
10 :- check success p_inner(X,Y) : int(X) => int(Y).
11

12 p_inner(X,Y) :- e_inner(X,Y).
13

14 :- check calls q(X,Y) : term(X).
15 :- true success q(X,Y) : term(X) => num(Y).
16

17 q(X,Y) :- q_inner(X,Y).
18

19 :- true calls q_inner(X,Y) : term(X).
20 :- check success q_inner(X,Y) : term(X) => num(Y).
21

22 q_inner(X,Y) :- e(X,Y).
23 �
1 :- module(lib ,[e/2, e_inner /2]).
2

3 :- check calls e(X,Y) : int(X).
4 :- true success e(X,Y) : int(X) => int(Y).
5

6 e(X,Y) :- e_inner(X,Y).
7

8 :- true calls e_inner(X,Y) : int(X).
9 :- check success e_inner(X,Y) : int(X) => int(Y).

10

11 e_inner(X,Y) :- ...
12

Figure 7: A two-module program after the transformations.

position in the body of a particular clause in the program. Let Lppt denote the

literal L that is located at program point ppt. We assume thus that the analysis

provides the following information:

• The 〈Lp, λci , λsi 〉 triples for the predicates in the program, as before.

• In addition, triples 〈Lppt
p , λc, λs〉 that provide, for each literal Lp, the ab-570

stract state before and after the calls to such literal at each program point

ppt in which Lp occurs in the body of a clause.

We further adapt our notation to program point-level reasoning as follows:

• Let statusppt(c, S) denote the status of some assertion condition c.calls(L,)

or c.success(L, ,) for the literal L at program point ppt.575

27

Now with the information from the multivariant analysis and the statuses

of assertions after the checking phase it is straightforward to apply a program-

point literal substitution. Since we are considering programs that undergo the

CTRT transformation by the time the static analysis and assertion checking are

performed, Lppt should be either L or Linner, depending on the abstract state580

at the program point and the result of the program point assertion checks:

Lppt =


Linner if ∀c.C ∈ AC(L) s.t. C = c.calls(L,)

statusppt(c, checked) holds

L otherwise

A result of such program transformation can be seen in Figure 7 for the

program in Figure 6.

7. Experiments

As stated throughout the paper, our objective is to explore the effective-585

ness of abstract interpretation in detecting parts of program specifications that

can be statically simplified to true or false, and to quantify the impact of this

application of analysis towards reducing the cost of the run-time checks. In par-

ticular, we have studied these issues for the different assertion checking modes

that we have defined and for the two scenarios.590

7.1. Experimental Setup

We have built an experimental harness by extending the Ciao preprocessor,

CiaoPP, which implements our baseline assertion verification framework. The

architecture of this framework is shown in Figure 8. In that figure, hexagons

represent system tools and components and arrows indicate the communication595

paths among them. Most of this communication is performed also in terms of

assertions.

The input to the verification process is the user program, optionally including

a set of assertions; this set always includes any assertions present for predicates

28

Assertions
(in user code,
builtins,
libraries)

:- check
:- trust

Code
(user code,
builtins,
libraries)

Assertion
Transfor-
mation

Code Trans-
formation

Assertion
Normalizer
& Library
Interface

Static
Analysis

(Fixpoint)
Analysis Info

:- true

Static
Comparator

Run-time
Check

Annotator

:- check

:- false

:- checked

Compile-time
error

Verification
warning(s)

Verified asser-
tion(s)

Code with
(Optimized)
Run-time Tests

Run-time error

Preprocessor

Transformations

Program

Figure 8: Adding the transformations to the Ciao Preprocessor.

exported by any libraries used. Any check, trust, or true assertions are nor-600

malized and the program is expanded to kernel form (simple Horn clauses), and

the result is given as input to the static analysis.

We have introduced new front-end passes implementing the new transfor-

mations (marked in Figure 8) which thus support the defined scenarios, as well

as some other minor adaptations and extensions to the interface to select these605

different scenarios.

The results of analysis over the different abstract domains selected are pro-

vided in the form of true assertions, as mentioned in Section 4. Then, for every

predicate p in the program the framework performs compile-time checking of

assertions by comparing the check assertions in the program (their assertion610

conditions) with the analysis results.

As a possible result of the comparison, assertions may be proved to hold,

in which case they get checked status. As another possible result, assertions

can be proved not to hold, in which case they get false status and a compile-

time error is issued. Finally, if it is not possible to prove nor to disprove (part615

of) an assertion, then such assertion (or the relevant subset) is left as a check

assertion, and the run-time check annotator introduces run-time checking code

in the program for the assertion conditions as required by the scenario. In

29

particular, the program transformations used in our experiments for introducing

the run-time checks are those of [23], with no caching.620

7.2. Properties and Analysis Domains

In our experiments we consider several classes of properties, that are typically

of interest to describe the intended semantics of (logic) programs:

• The first one is the state of variable instantiation, i.e., which variables are

bound to ground terms, or unbound, and, if they are unbound, the sharing625

(“pointer aliasing”) patterns in order to be able to determine independence

and transfer accurately grounding information (“strong update”). These

properties are approximated safely and quite accurately using the CiaoPP

sharing and freeness abstract domain [48].

• The second class of properties we will be using refers to the shapes of the630

data structures constructed by the program in memory. To this end we use

the CiaoPP eterms [49] abstract domain which infers safe approximations

of these shapes as regular trees.

• The third class of properties that we consider refers to the numerical

relations among program variables (constraints), in particular linear in-635

equalities over real (floating point) numbers, which are useful to describe

properties of numerical parts of programs. To this end we apply CiaoPP’s

polyhedra abstract domain, using the Parma Polyhedra Library (PPL) [50]

as back-end solver.

Note that both the Ciao language of assertions and the analyzers in the640

system support a wide class of additional properties, including sized types, de-

terminacy, non-failure, cardinality, constraints, size relations between variables,

consumption of a variety of resources, etc. [9, 51]. However, we consider the

three classes above a suitable study set for our experiments.13

13 Clearly, these properties are more general and powerful than the traditional notions of
types, modes, etc. Also, comparing to the traditional notion of type inference in statically-

30

7.3. Benchmarks645

To study the differences in the run-time overhead levels observed in differ-

ent assertion checking modes we have selected a set of benchmarks, listed in

Table 2.14

Given a concrete program, the CiaoPP assertion checking system checks

the properties appearing in the assertions in the program and automatically650

chooses the appropriate abstract domains that have to be used during analysis

on order to prove those properties [9]. In our experiments, however, in order

to be able to study separately the impact on our proposals for different kinds

of properties/domains, we have done the domain selection manually for each

benchmark, as follows.655

The benchmarks above the horizontal line in the table are symbolic and the

properties of their predicates are more naturally expressed using the eterms

and sharing and freeness abstract domains, The benchmarks in the second set

are classical numerical benchmarks and their properties are more naturally ex-

pressed using the polyhedra abstract domain (as well as sharing and freeness for660

describing inputs/outputs and absence of sharing/pointer aliasing).

These benchmarks are relatively simple yet diverse programs that repre-

sent frequently-occurring programming patterns such as performing symbolic or

arithmetic computations, problem solving in fixed domains, processing stream

data, etc. In general, they include recursion, search, irregular/dynamic data665

typed languages, not only the notion of type is generalized to any property supported by an
abstract domain, but also the overall approach is quite different: there all the type definitions
must be present in the program, and the inference problem just amounts to assigning one of
these types to each program element in a single pass. If this assignment is not possible the
program is rejected. In the Ciao approach, no type definitions are required. The purpose of
analysis is precisely to infer, in a closed form (e.g., regular types) the shapes of the data struc-
tures that are built in memory for the whole program, which is done via a fixpoint calculation
and widening. Also, note that the regular types inferred and checked allow sub-typing. The
situation is similar for the sharing+freeness domain versus, for example, traditional modes.
This is also a strong difference with other approaches within logic programming, such as Mer-
cury or Gödel, which also require the type definitions to be provided and that the program
be typeable. And of course, other properties like sized types, size relations between variables,
or cost depart even further. See [52] for a further discussion of the very interesting topic of
how to best straddle the dynamic vs. static language boundaries.

14 Source available at https://cliplab.org/papers/optchk-scp2017/

31

https://cliplab.org/papers/optchk-scp2017/

Table 2: Benchmarks

boyer a theorem prover implementation based on Lisp by R. Boyer

(nqthm system), performs symbolic evaluation of a given for-

mula;
boyerx a variant of boyer (using generic term manipulation predicates

for formula rewrites);
crypt cryptomultiplication puzzles solver;
deriv a program that performs symbolic differentiation of a given for-

mula;
exp exponential calculation;

factorial recursive factorial calculation;
fft fast Fourier transformation calculation;
fib a program that finds N -th Fibonacci number;

guardians prison guards game;
hamming a program that generates the sequence of Hamming numbers;
hanoi hanoi towers puzzle solver for N disks that are moved over three

rods;
jugs the water jugs problem;

knights N knights chess problem;
mmatrix matrix multiplication for two matrices with dimensions n× n;
nreverse naive list reversal;

poly a program that raises a polynomial (1 + x + y + z) to the 10th

power symbolically;
primes a program that computes N first prime numbers;

progeom a program that constructs a perfect difference set of order N ;
queens the N queens program, the number of the queens being the input;
qsort the quicksort program;

serialize a palindrome program;
tak a program that computes the tak function;

witt the WITT clustering system implementation;
ackerman Ackerman function computation;

array a generic array API implementation;
factA factorial with multiplication as addition in a loop;
factM factorial with direct multiplication;
incr variable increment;
mc MacCarthy91 program;

symstairs synchronous increment/decrement for two variables;

structures, etc. The relative internal complexity despite their generally small

size make them good candidates to answer our main questions, allowing us to

concentrate on the properties of interest in each case.

All the benchmarks have been carefully annotated with reasonable program

assertions that describe the expected behavior. E.g., Figure 9 shows a frag-670

ment of the fft code. Table 3 presents some quantitative characteristics of

32

�
1 :- regtype complex /1. % A complex number
2 complex ((A,B)) :- num(A), num(B).
3

4 :- pred complex_mul(A, B, C) % Multiplication
5 : complex * complex * term
6 => complex * complex * complex.
7 complex_mul ((Ra,Ia), (Rb,Ib), (Rs ,Is)) :-
8 Rs is Ra*Rb-Ia*Ib ,
9 Is is Ra*Ib+Rb*Ia.

Figure 9: Complex number operations (fragment).

the benchmarks, such as lines of code (LOC), excluding empty and commented

lines, size metrics of the benchmark object file after the compilation, and also the

total number of program pred assertions. Regarding the sizes after the trans-

formations, note that these transformations only add binary wrapper predicates675

that incur very little run-time overhead (since arguments do not change order

the wrapper predicates translate to a single call instruction, with no argument

overhead), so they do not significantly alter the benchmark metrics.

In order to measure the run-time overhead reduction in the client-library

interaction scenario (i.e., measuring the gains from eliminating the redundant680

run-time checks on calls to the library predicates for the Safe-CTRT assertion–

Section 6) we have adapted several of our benchmarks, splitting them into client

and library parts. We have selected primarily those benchmarks where such

separation is meaningful, i.e., where it is straightforward to identify a part of

the benchmark module with a library-like structure that can be placed naturally685

in a separate module. As an example, we separated the fft benchmark into a

library for arithmetic operations on complex numbers and the FFT calculations

themselves as the client. We have also concentrated on benchmarks in which

there are different call sites to the (now) library predicates, and where some of

them required keeping the checks on the calls in the imported predicates and690

others did not, presenting thus good opportunity for study. Table 4 lists these

benchmarks and the boundary at which the client-library split of each individual

benchmark was performed.

Note that the lists library is listed as used in every benchmark of this client-

33

Table 3: Benchmark metrics.

Code Assertions
Name LOC Size (KB) total
boyer 853 70 13
boyerx 853 50 12
crypt 76 10 8
deriv 29 9 2
exp 28 6 3

factorial 13 4 2
fft 104 13 10
fib 11 5 3

guardians 78 9 7
hamming 71 9 10
hanoi 44 6 3
jugs 132 10 5

knights 49 9 7
mmatrix 48 6 4
nreverse 14 5 3

poly 81 12 7
primes 33 6 5

progeom 71 8 9
qsort 46 6 6
queens 47 6 7

serialize 81 10 6
tak 18 5 2

witt 651 50 43
ackerman 16 4 1

array 24 6 1
factA 15 4 1
factM 9 4 1
incr 9 4 2
mc 8 4 1

symstairs 15 4 1

Table 4: Benchmarks used for the client-library interaction use case.

fft fast Fourier transformation calculation lists, complex numbers
hamming Hamming numbers calculation lists, queues
hanoi hanoi towers puzzle encoding lists

nreverse naive list reversal lists
qsort the quicksort algorithm lists
witt the WITT clustering algorithm lists, sets

library interaction study subset. This is because this library provides some695

of the regular types that are used in the assertions of the client parts of the

benchmarks.

34

7.4. Experimental Results (base scenario)

Tables 5 and 6 show the compilation time for the benchmarks under the

different assertion checking modes that we have defined.15 Note that the com-700

pilation time for the benchmarks under the Safe-CT-RT mode includes the total

static analysis and assertion checking times. In all cases the compilation times

include the cost of the proposed transformations, except in the unsafe mode, in

which no transformations are performed and thus serves also as baseline. The

experiments were run on a MacBook Pro with 2.6 GHz Intel Core i5 processor,705

8GB RAM, and under the Mac OS X 10.12.5 operating system.

Tables 7 and 8 show more detail on the analysis and assertion checking

times for the Safe-CT-RT mode for the different benchmarks. The load and

prep columns indicate the time needed to load the source files and prepare

the analyses, and the shfr, eterms, and polyhedra columns the time to perform710

sharing+freeness, shape (regular types), and numerical analyses, respectively.

The analyses are actually relatively inexpensive compared to the rest of the

compilation passes for most of the benchmarks. The regular type analysis is

expensive in boyer and boyerx. The analysis of the formula rewrite predicates

generates many large types whose manipulation is expensive. The witt bench-715

mark, despite having more regular data structures (tables of sets and matrices),

is also expensive to analyze due to a large number of operations. Note that

the eterms abstract domain can be controlled in several ways within CiaoPP

but we left the analyzer use the automatic, default settings for these experi-

ments. Also note that more efficient –but less precise– domains are available to720

control analysis cost, many within CiaoPP, such as, for example, several widen-

ings for sharing [53, 54], pair sharing domains [55, 56], or other type inference

15 Times for compilation and analysis assume that the compiler and analyzer are already
loaded in memory and ready to execute. Thus, we removed the compiler and CiaoPP start-up
time. In the current implementation, the engine needs around 1.4 seconds to load all the
necessary bytecode but can then process different programs (e.g., interactively, from within
the development environment) without having to be restarted. There exist in any case many
solutions to significantly reduce this startup time time (keeping code in memory, optimizing
the bytecode reader, reduced versions of CiaoPP that contain only the necessary domains,
lazy load, etc.).

35

Table 5: Benchmarks: full compilation time (including eterms and sharing and freeness
analysis, assertion checking, and transformations).

Compilation time, ms
Benchmark

Unsafe
Safe

Client RT CT+RT
boyer 242 1,271 1,444 469,807

boyerx 221 1,070 1,244 31,426
crypt 174 638 629 2,286
deriv 193 797 765 1,031
exp 167 741 734 1,075

factorial 148 686 1,006 865
fft 181 901 808 3,429
fib 157 608 722 933

guardians 169 673 736 1,580
hamming 187 852 1,085 1,987
hanoi 164 638 635 1,142
jugs 179 827 855 1,590

knights 162 852 974 1,751
mmatrix 174 825 722 1,085
nreverse 163 799 690 989

poly 181 941 909 2,156
primes 173 676 651 1,536
progeom 173 934 845 1,974
qsort 167 770 909 1,341

queens 169 821 1,037 1,405
serialize 167 849 822 1,636

tak 161 959 686 1,035
witt 281 1,866 1,938 180,353

Table 6: Benchmarks: full compilation time (including polyhedra analysis, assertion checking,
and transformations).

Compilation time, ms
Benchmark

Unsafe
Safe

Client RT CT+RT
ackerman 183 651 460 523

array 159 580 568 730
factA 146 518 448 649
factM 162 505 525 601
incr 152 485 480 617

mc 149 505 643 632
symstairs 153 583 481 661

domains [57, 58].

Tables 9, 10, and 11 report on the actual execution times for each bench-

mark using the different assertion checking modes, together with data on the725

results of assertion checking. For some of the benchmarks, measurements were

taken for calls with several input values and this is expressed using the notation

Name(Input). The ‘Checked Assertion Conditions’ column reports the ratios

36

Table 7: Static analysis time for benchmarks using the Safe-CT-RT checking mode with
eterms and sharing and freeness analyses (part of total compilation time).

Benchmark load
Analysis time, ms Assertion

checkingprep shfr prep eterms
boyer 757.43 9.21 62.59 9.36 737.73 614.33

boyerx 686.38 6.40 53.63 6.68 556.77 408.75
crypt 528.04 1.43 8.46 1.41 39.37 138.05
deriv 478.51 1.04 4.32 1.46 17.36 32.74
exp 460.00 0.49 2.12 0.45 15.17 54.11

factorial 493.96 0.29 1.61 0.25 11.21 16.75
fft 515.95 1.84 9.54 1.91 43.05 162.43
fib 477.50 0.41 2.71 0.90 13.06 17.47

guardians 481.39 1.08 9.24 1.22 28.86 63.74
hamming 536.77 1.22 9.10 1.22 27.85 81.34
hanoi 477.13 0.59 2.91 0.47 15.65 21.79
jugs 494.40 1.02 5.08 1.19 26.75 126.10

knights 527.57 0.90 4.19 1.37 32.31 58.59
mmatrix 482.28 1.28 3.85 0.80 15.12 27.86
nreverse 524.33 0.50 3.23 0.30 3.50 9.01

poly 494.44 1.67 50.94 1.49 52.26 103.17
primes 527.36 0.80 2.64 0.55 17.34 33.09
progeom 481.82 1.30 7.18 1.00 27.66 59.31
qsort 496.13 1.00 5.77 0.64 8.23 22.18

queens 512.68 0.71 4.77 1.32 22.13 48.62
serialize 496.34 1.33 15.28 1.41 24.30 52.89

tak 519.57 0.44 1.75 0.43 13.76 26.67
witt 580.95 15.52 124,284.60 15.88 847.20 1,250.04

Table 8: Static analysis time for benchmarks using the Safe-CT-RT checking mode with
polyhedra numerical analysis (part of total compilation time).

Benchmark load
Analysis time, ms Assertion

checkingprep polyhedra
ackerman 476.19 1.02 11.99 13.21

array 460.07 0.86 38.55 21.37
factA 451.58 1.01 33.67 13.43
factM 459.06 0.72 4.01 9.07
incr 448.13 0.79 5.19 6.96
mc 493.90 0.70 5.41 6.75

symstairs 460.86 0.79 7.34 10.12

of statically checked calls and success assertion conditions in the Safe-CT-RT

checking mode to the total number of respective assertion conditions in the730

Safe-RT checking mode for each benchmark (i.e., N/M means that N out of

the M assertion conditions are checked).

In the worst case the overhead in the Safe-RT checking mode is three orders

of magnitude higher than in Client-safe, but Safe-CT-RT removes one order

of magnitude (boyerx, fft, knights, witt). This is expected since run-time735

37

Table 9: Benchmark execution times under the different modes and checked vs. total assertions
(all benchmarks).

Execution time, ms Checked Assertion
Benchmark

Unsafe
Safe Conditions

Client RT CT+RT calls success

boyer 11.665 11.350 3,215.894 14.010 13/13 12/12
boyerx 17.541 17.755 2,621.203 1,254.041 11/12 10/11
crypt 0.106 0.118 6.601 0.114 7/8 8/8
deriv 0.013 0.062 4.629 0.071 1/2 1/1
exp 4.359 4.363 73.321 4.427 2/3 2/2

factorial 0.008 0.014 0.803 0.015 1/2 1/1
fft 28.419 32.702 32,112.845 254.773 9/10 8/9
fib 0.080 0.086 16.052 0.094 2/3 2/2

guardians 3.637 3.255 6,521.171 3.866 6/7 6/6
hamming 17.793 18.288 9,860.070 20.197 9/10 9/9

hanoi (8) 0.057 0.070 122.730 0.086 1/2 2/2
jugs 0.017 0.026 1.529 0.026 4/5 4/4

knights 232.922 232.940 18,842.485 250.993 6/7 6/6
mmatrix (4) 0.005 0.016 0.742 0.017 2/3 3/3

nreverse 2.438 2.699 10,596.668 3.640 2/3 2/2
poly 1.172 1.371 428.480 1.404 6/7 7/7

primes 0.033 0.044 11.066 0.040 3/4 4/4
progeom (8) 5.702 5.694 2,222.974 6.378 7/8 8/8
qsort (32) 0.022 0.030 7.382 0.035 4/5 3/3
queens (8) 2.522 2.527 545.413 2.846 5/6 4/4

serialize (25) 0.012 0.025 4.998 0.029 4/5 4/4
tak 2.980 2.991 980.910 3.457 1/2 1/1

witt 24.027 17.488 1,853.552 389.750 31/43 38/40

checks of complex properties like data shapes cannot be performed in constant

time. The run-time checking process changes the complexity of the programs

and the overhead increases as the size of the input grows. Note that the Client-

safe mode also represents the theoretically lowest overhead that we could obtain

(assuming a fixed implementation of the instrumentation), by removing all the740

internal checks, but keeping the library interface checks.

We can observe performance variations due to secondary effects (code layout,

cache alignment), due to which sometimes the time in Safe-CT-RT mode can be

slightly smaller than in Client-safe mode (crypt). To reduce the measurement

noise (also influenced by the computations performed by other processes) we745

execute each benchmark several times and report the minimal time.16

16 The current measurements depend on the C getrusage() function, that on Mac OS has

38

Table 10: Benchmark execution times under the different modes and checked vs. total asser-
tions (benchmarks subset, varied output).

Execution time, ms Checked Assertion
Benchmark

Unsafe
Safe Conditions

Client RT CT+RT calls success

hanoi (2) 0.000 0.012 0.161 0.013
hanoi (4) 0.002 0.014 1.517 0.015 1/2 2/2
hanoi (8) 0.057 0.070 122.730 0.086

mmatrix (2) 0.001 0.010 0.148 0.010
mmatrix (3) 0.002 0.011 0.358 0.013 2/3 3/3
mmatrix (4) 0.005 0.016 0.742 0.017
progeom (2) 0.002 0.005 0.615 0.005
progeom (4) 0.096 0.098 28.118 0.111 7/8 8/8
progeom (8) 5.702 5.694 2,222.974 6.378
qsort (8) 0.002 0.008 0.839 0.008
qsort (16) 0.008 0.014 2.664 0.016 4/5 3/3
qsort (32) 0.022 0.030 7.382 0.035
queens (4) 0.007 0.009 1.248 0.011
queens (6) 0.133 0.136 29.527 0.153 5/6 4/4
queens (8) 2.522 2.527 545.413 2.846

serialize (9) 0.004 0.008 0.881 0.011
serialize (16) 0.006 0.013 2.343 0.014 4/5 4/4
serialize (25) 0.012 0.025 4.998 0.029

In practice, in many programs Safe-CT-RT is able to remove most of the

checks, except of course those corresponding to the external predicates. We

included in the benchmarks two versions of boyer. The original translation

(which we call here boyerx) uses functor/3 and arg/3 to implement rewrites of750

arbitrary terms representing formulas. This makes the domains lose precision.

The boyer version uses instead a larger predicate that explicitly enumerates

possible formula terms.

The benefits of applying the CTRT transformation are not so prominent in

the case of numerical analysis, mainly due to the fact that the numerical checks755

are usually much less costly than the data shape checks. However, in programs

that include arithmetic operations that are not captured well by the polyhedra

abstract domain the overhead reduction is still noticeable (e.g., compare the

running times of the factA and factM benchmarks, which differ only in the way

they perform multiplication). Another challenge for the domain are complex760

microsecond resolution.

39

Table 11: Benchmark (polyhedra) execution times under the different modes and checked vs.
total assertions.

Execution time, ms Checked Assertion
Benchmark

Unsafe
Safe Conditions

Client RT CT+RT calls success

ackerman 0.042 0.043 4.049 0.045 1/1 1/1
array 0.004 0.003 0.043 0.003 1/1 1/1
factA 0.002 0.008 0.032 0.018 0/1 1/1
factM 0.001 0.008 0.031 0.043 0/1 0/1
incr 0.001 0.007 0.128 0.032 1/2 2/2
mc 0.007 0.015 0.737 0.312 0/1 1/1

symstairs 0.006 0.012 0.601 0.309 0/1 1/1

Table 12: Benchmarks: full compilation time (client-library scenario).

Benchmark
Compilation time, ms

Client
LibraryUnoptimized Optimized

fft 3,253 3,385 1,674
hamming 1,565 1,542 1,463
hanoi 1,219 1,297 1,035

nreverse 1,040 1,203 1,089
qsort 1,377 1,223 1,105
witt 169,944 164,121 2,617

benchmarks like ackerman (double recursion) and mc.

7.5. Experimental Results (client-library scenario)

Table 12 shows the compilation time for the client-library scenario bench-

marks from Table 4. As mentioned before, each of the benchmarks was split into

client and library modules, and then two versions were generated of the client765

module: one without any optimization of the calls to the library and the other

applying the program-point calls optimization (‘Unoptimized’ and ‘Optimized’

columns, respectively). All files were compiled in the Safe-CT-RT checking

mode. One can notice that sum of the compilation times of client and libraries

is proportional to the compilation time of the ‘monolithic’ version.770

Table 13 provides the details for the analysis times of the client-library

scenario benchmarks. The ‘Part=C-u’ rows report the analysis times for the

client modules without optimizations of the calls to the library modules and the

‘Part=C-o’ ones report the times for the client modules with the optimized calls.

40

Table 13: Static analysis time for benchmarks (client-library scenario, part of total compilation
time).

Benchmark Part load
Analysis time, ms Assertion

checkingprep shfr prep eterms

fft
C-u 486.76 1.39 8.38 1.49 40.45 125.55
C-o 518.09 1.33 8.24 1.31 38.07 121.75
L 484.69 0.75 5.45 0.64 25.72 82.77

hamming
C-u 483.03 0.92 4.50 0.87 19.09 87.67
C-o 512.81 1.08 5.11 0.89 19.86 53.74
L 451.23 0.61 7.28 0.64 8.68 22.41

hanoi
C-u 470.81 0.45 2.36 0.34 11.66 23.17
C-o 509.23 0.42 2.39 0.32 12.10 15.29
L 454.93 0.37 2.00 0.31 3.30 11.86

nreverse
C-u 456.46 0.33 2.04 0.26 2.23 10.32
C-o 492.82 0.50 2.88 0.32 3.25 7.27
L 447.63 0.26 2.03 0.21 1.87 5.33

qsort
C-u 480.46 0.73 3.87 0.68 7.33 21.92
C-o 498.62 0.52 3.61 0.51 7.11 16.74
L 485.56 0.61 3.40 0.39 3.48 8.06

witt
C-u 505.32 12.32 118,807.15 14.41 722.83 1,491.66
C-o 605.32 14.77 117,395.04 12.43 663.12 1,128.95
L 488.70 2.08 64.39 2.21 41.74 88.74

The ‘Part=L’ rows provide the analysis times for the library modules. The sum775

of the analysis times of this client-library separated benchmark versions is com-

parable to the analysis time of the ‘monolithic’ benchmark versions reported

above. The slight increase in the analysis time is expected, since processing a

module and the modules at its interface takes some time.

The fact that the analysis times in the two-module scenario do not differ780

much from the analysis times of the ’monolithic’ version of our benchmarks

provides evidence supporting the scalability of the transformations that we have

proposed, in the sense that, since changes in the client code do not affect the

library part any more, only that part of the program will have to be recompiled

should some changes be made. Even if the largest part of the cost is in the785

client (e.g., witt), note that the observation before is also true with respect to

changes in the library, i.e., the client will not have to be reanalyzed for changes

in the library.

The actual execution times for the benchmarks in the client-server scenario

are given in Table 14. Here we are of course interested in the effect of the790

optimization of the checks at the module boundaries, i.e., in comparing the

41

Table 14: Benchmark execution times in the client-library scenario.

Benchmark
Execution time, ms

Unoptimized Optimized
fft 2,199.29 271.78

hamming 146.85 60.47
hanoi (2) 0.03 0.01
hanoi (4) 0.16 0.02
hanoi (8) 3.21 0.10
nreverse 22.13 3.39
qsort (8) 0.08 0.01
qsort (16) 0.16 0.02
qsort (32) 0.32 0.04

witt 466.34 426.21

’Unoptimized’ and ’Optimized’ results. The results show that in the optimized

case the execution times are reduced and comparable to those in the previous

’monolithic’ setup (i.e., to the times in Tables 9, 10). The minor deviations

from that case are due to the noise in the measurements and the use of addi-795

tional predicate wrappers in the interface of the library (that was not present

in the ‘monolithic’ versions). These wrappers are necessary to distinguish in-

ternal from external calls within the library. This effect can be observed in

the execution times of the hamming benchmark: the current compilation mech-

anism introduces these wrapper predicates that add some overhead, and since800

in hamming the operations are very simple this overhead becomes noticeable.

However, this overhead does not have a big impact in other benchmarks. In the

case where we have not optimized the checks at the boundaries of the module

(the ‘Unoptimized’ column) execution times are higher than in the ‘monolithic’

setup and are only superseded by the times with all run-time checks enabled805

(the Safe-CT-RT mode). These experiments clearly demonstrate the positive

effect of eliminating run-time checks at module boundaries. It is quite interest-

ing that we are able to achieve these performance gains without generating more

versions or specializing the program (which is important in some contexts).

42

8. Conclusions810

Our overall objective is to construct automatic verification and debugging

systems for non-trivial properties, that can be used routinely as part of the

development process for both prototyping and production code. Our concrete

approach is the use of frameworks that combine static and dynamic verification,

i.e., systems that combine compile-time and run-time checking of user-provided815

assertions. In this paper we have addressed the study of how run-time overhead

can be reduced in different scenarios and, specially, via static analysis.

We have defined four practical assertion checking modes, and studied the

corresponding trade-offs between the level of guarantees provided by each one

and the corresponding execution time slowdown. For these checking modes we820

have explored the effectiveness of abstract interpretation in detecting the parts

of the program’s (partial) specifications that can be statically simplified to true

or false, concentrating on the practical impact of such analysis in reducing the

cost of the run-time checks required for the remaining parts of the specifications.

We have also addressed the application of our approach when optimizing run-825

time checks for the calls across client-library boundaries. We have described

a typical client-library use case and discussed the possibilities for optimizing

the run-time checks in this context using an illustrative example. Also, we have

proposes a new program point source transformation for avoiding the duplication

of run-time checks.830

We have also proposed program transformations that allow incorporating

the run-time checking semantics into the analysis phase and demonstrated that

this approach can increase analysis precision and allow for better and more

fine-grained (program-point) check elimination.

Our experiments have shown that there is indeed a significant advantage in835

using analysis to reduce the overhead implied by the run-time tests. We argue

that the results are encouraging, supporting the hypothesis that the combination

of run-time checking with analysis can reduce checking overhead sufficiently to

allow providing full safety in production code, for non-trivial properties.

43

While evaluating the effectiveness of our assertion-based approach in finding840

errors in programs was not directly the objective of this paper (we concentrated

here on measuring the reduction in run-time overhead due to analysis and the

enhancements proposed), during our experiments a good number of program

errors were flagged by the system. In particular, it is worth mentioning that the

analysis of one of the more complex programs, boyer, allowed us to spot bugs845

in the original translation from LISP that had been around for 30 years.

We have presented for concreteness our approach in the context of Horn

clauses, and in particular of the Ciao language, but the Ciao approach to com-

bining static and dynamic analysis is general and system-independent, as well as

the techniques used herein, so we expect the results should carry over to other850

(dynamic) declarative or imperative languages.

References

[1] N. Stulova, J. F. Morales, M. V. Hermenegildo, Reducing the Overhead of

Assertion Run-time Checks via static analysis, in: 18th Int’l. ACM SIG-

PLAN Symposium on Principles and Practice of Declarative Programming855

(PPDP’16), ACM Press, 2016, pp. 90–103.

[2] W. Drabent, S. Nadjm-Tehrani, J. Ma luszyński, The Use of Assertions

in Algorithmic Debugging, in: Intl. Conf. on Fifth Generation Computer

Systems, 1988, pp. 573–581.

[3] G. Puebla, F. Bueno, M. Hermenegildo, An Assertion Language for860

Debugging of Constraint Logic Programs, in: ILPS’97 WS on Tools

and Environments for (C)LP, 1997, ftp://cliplab.org/pub/papers-

/assert lang tr discipldeliv.ps.gz.

[4] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,

J. Maluszynski, G. Puebla, On the Role of Semantic Approximations in865

Validation and Diagnosis of Constraint Logic Programs, in: Proc. of the

44

ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz
ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz
ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz

3rd. Int’l WS on Automated Debugging–AADEBUG, U. Linköping Press,

1997, pp. 155–170.

[5] J. Boye, W. Drabent, J. Ma luszyński, Declarative Diagnosis of Constraint

Programs: an assertion-based approach, in: Proc. of the 3rd. Int’l Work-870

shop on Automated Debugging–AADEBUG’97, U. of Linköping Press,

Linköping, Sweden, 1997, pp. 123–141.

[6] M. Hermenegildo, G. Puebla, F. Bueno, Using Global Analysis, Partial

Specifications, and an Extensible Assertion Language for Program Vali-

dation and Debugging, in: K. R. Apt, V. Marek, M. Truszczynski, D. S.875

Warren (Eds.), The Logic Programming Paradigm: a 25–Year Perspective,

Springer-Verlag, 1999, pp. 161–192.

[7] G. Puebla, F. Bueno, M. Hermenegildo, Combined Static and Dynamic

Assertion-Based Debugging of Constraint Logic Programs, in: Logic-based

Program Synthesis and Transformation (LOPSTR’99), no. 1817 in LNCS,880

Springer-Verlag, 2000, pp. 273–292.

[8] C. Läı, Assertions with Constraints for CLP Debugging, in: P. Deransart,

M. V. Hermenegildo, J. Maluszynski (Eds.), Analysis and Visualization

Tools for Constraint Programming, Vol. 1870 of Lecture Notes in Computer

Science, Springer, 2000, pp. 109–120.885

[9] M. Hermenegildo, G. Puebla, F. Bueno, P. L. Garćıa, Integrated Program

Debugging, Verification, and Optimization Using Abstract Interpretation

(and The Ciao System Preprocessor), Science of Computer Programming

58 (1–2) (2005) 115–140.

[10] E. Mera, P. López-Garćıa, M. Hermenegildo, Integrating Software Testing890

and Run-Time Checking in an Assertion Verification Framework, in: 25th

Int’l. Conference on Logic Programming (ICLP’09), Vol. 5649 of LNCS,

Springer-Verlag, 2009, pp. 281–295.

45

[11] R. Cartwright, M. Fagan, Soft Typing, in: PLDI’91, SIGPLAN, ACM,

1991, pp. 278–292.895

[12] R. B. Findler, M. Felleisen, Contracts for higher-order functions, in:

M. Wand, S. L. P. Jones (Eds.), ICFP, ACM, 2002, pp. 48–59.

[13] S. Tobin-Hochstadt, M. Felleisen, The Design and Implementation of

Typed Scheme, in: POPL, ACM, 2008, pp. 395–406.

[14] C. Dimoulas, M. Felleisen, On contract satisfaction in a higher-order world,900

ACM Trans. Program. Lang. Syst. 33 (5) (2011) 16.

[15] A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, P. Vekris, Safe & effi-

cient gradual typing for typescript, in: S. K. Rajamani, D. Walker (Eds.),

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2015, Mumbai, India,905

January 15-17, 2015, ACM, 2015, pp. 167–180. doi:10.1145/2676726.

2676971.

URL http://doi.acm.org/10.1145/2676726.2676971

[16] A. Takikawa, D. Feltey, E. Dean, M. Flatt, R. B. Findler, S. Tobin-

Hochstadt, M. Felleisen, Towards practical gradual typing, in: J. T.910

Boyland (Ed.), 29th European Conference on Object-Oriented Program-

ming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, Vol. 37 of

LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 4–

27. doi:10.4230/LIPIcs.ECOOP.2015.4.

URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4915

[17] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, M. Felleisen, Is

sound gradual typing dead?, in: R. Bod́ık, R. Majumdar (Eds.), Proceed-

ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

January 20 - 22, 2016, ACM, 2016, pp. 456–468. doi:10.1145/2837614.920

2837630.

URL http://doi.acm.org/10.1145/2837614.2837630

46

http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://dx.doi.org/10.1145/2676726.2676971
http://dx.doi.org/10.1145/2676726.2676971
http://dx.doi.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630
http://dx.doi.org/10.1145/2837614.2837630
http://dx.doi.org/10.1145/2837614.2837630
http://dx.doi.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630

[18] L. Lamport, L. C. Paulson, Should your specification language be typed?,

ACM Transactions on Programming Languages and Systems 21 (3) (1999)

502–526.925

[19] G. T. Leavens, K. R. M. Leino, P. Müller, Specification and verification

challenges for sequential object-oriented programs, Formal Asp. Comput.

19 (2) (2007) 159–189.

[20] M. Fähndrich, F. Logozzo, Static contract checking with abstract inter-

pretation, in: Proceedings of the 2010 International Conference on For-930

mal Verification of Object-oriented Software, Vol. 6528 of FoVeOOS’10,

Springer-Verlag, Berlin, Heidelberg, 2011, pp. 10–30.

URL http://dl.acm.org/citation.cfm?id=1949303.1949305

[21] T. W. Schiller, K. Donohue, F. Coward, M. D. Ernst, Case studies and

tools for contract specifications, in: Proceedings of the 36th International935

Conference on Software Engineering, ICSE 2014, ACM, New York, NY,

USA, 2014, pp. 596–607. doi:10.1145/2568225.2568285.

URL http://doi.acm.org/10.1145/2568225.2568285

[22] E. Koukoutos, V. Kuncak, Checking Data Structure Properties Orders of

Magnitude Faster, in: B. Bonakdarpour, S. A. Smolka (Eds.), Runtime Ver-940

ification, Vol. 8734 of Lecture Notes in Computer Science, Springer Interna-

tional Publishing, 2014, pp. 263–268. doi:10.1007/978-3-319-11164-3_

22.

URL http://dx.doi.org/10.1007/978-3-319-11164-3_22

[23] N. Stulova, J. F. Morales, M. V. Hermenegildo, Practical Run-time Check-945

ing via Unobtrusive Property Caching, Theory and Practice of Logic Pro-

gramming, 31st Int’l. Conference on Logic Programming (ICLP’15) Special

Issue 15 (04-05) (2015) 726–741.

URL http://arxiv.org/abs/1507.05986

[24] P. Pietrzak, J. Correas, G. Puebla, M. Hermenegildo, Context-Sensitive950

47

http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://doi.acm.org/10.1145/2568225.2568285
http://doi.acm.org/10.1145/2568225.2568285
http://doi.acm.org/10.1145/2568225.2568285
http://dx.doi.org/10.1145/2568225.2568285
http://doi.acm.org/10.1145/2568225.2568285
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://arxiv.org/abs/1507.05986
http://arxiv.org/abs/1507.05986
http://arxiv.org/abs/1507.05986
http://arxiv.org/abs/1507.05986

Multivariant Assertion Checking in Modular Programs, in: 13th Interna-

tional Conference on Logic for Programming Artificial Intelligence and Rea-

soning (LPAR’06), no. 4246 in LNCS, Springer-Verlag, 2006, pp. 392–406.

[25] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. Morales,

G. Puebla, An Overview of Ciao and its Design Philosophy, The-955

ory and Practice of Logic Programming 12 (1–2) (2012) 219–252,

http://arxiv.org/abs/1102.5497. doi:doi:10.1017/S1471068411000457.

[26] E. Mera, T. Trigo, P. López-Garćıa, M. Hermenegildo, Profiling for Run-

Time Checking of Computational Properties and Performance Debugging,

in: Practical Aspects of Declarative Languages (PADL’11), Vol. 6539 of960

Lecture Notes in Computer Science, Springer-Verlag, 2011, pp. 38–53.

[27] M. Méndez-Lojo, J. Navas, M. Hermenegildo, A Flexible (C)LP-Based Ap-

proach to the Analysis of Object-Oriented Programs, in: 17th Interna-

tional Symposium on Logic-based Program Synthesis and Transformation

(LOPSTR 2007), no. 4915 in Lecture Notes in Computer Science, Springer-965

Verlag, 2007, pp. 154–168.

[28] J. Navas, M. Méndez-Lojo, M. Hermenegildo, Safe Upper-bounds Inference

of Energy Consumption for Java Bytecode Applications, in: The Sixth

NASA Langley Formal Methods Workshop (LFM 08), 2008, pp. 29–32,

extended Abstract.970

[29] J. Navas, M. Méndez-Lojo, M. Hermenegildo, User-Definable Resource Us-

age Bounds Analysis for Java Bytecode, in: Proceedings of the Workshop

on Bytecode Semantics, Verification, Analysis and Transformation (BYTE-

CODE’09), Vol. 253 of Electronic Notes in Theoretical Computer Science,

Elsevier - North Holland, 2009, pp. 65–82.975

[30] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech,

M. Hermenegildo, K. Eder, Energy Consumption Analysis of Programs

48

http://dx.doi.org/doi:10.1017/S1471068411000457
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5

based on XMOS ISA-level Models, in: G. Gupta, R. Peña (Eds.), Logic-

Based Program Synthesis and Transformation, 23rd International Sym-

posium, LOPSTR 2013, Revised Selected Papers, Vol. 8901 of Lecture980

Notes in Computer Science, Springer, 2014, pp. 72–90. doi:10.1007/

978-3-319-14125-1_5.

URL http://dx.doi.org/10.1007/978-3-319-14125-1_5

[31] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo,

J. P. Gallagher, K. Eder, Inferring Parametric Energy Consumption Func-985

tions at Different Software Levels: ISA vs. LLVM IR, in: M. V. Eeke-

len, U. D. Lago (Eds.), Foundational and Practical Aspects of Resource

Analysis: 4th International Workshop, FOPARA 2015, London, UK, April

11, 2015. Revised Selected Papers, Vol. 9964 of Lecture Notes in Com-

puter Science, Springer, 2016, pp. 81–100. arXiv:1511.01413, doi:990

10.1007/978-3-319-46559-3_5.

URL http://dx.doi.org/10.1007/978-3-319-46559-3_5

[32] G. Gange, J. A. Navas, P. Schachte, H. S, P. J. Stuckey, Horn Clauses as

an Intermediate Representation for Program Analysis and Transformation,

TPLP 15 (2015) 526–542.995

[33] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, A. Rybalchenko,

HSF(C): A Software Verifier Based on Horn Clauses - (Competition Con-

tribution), in: C. Flanagan, B. König (Eds.), TACAS, Vol. 7214 of LNCS,

Springer, 2012, pp. 549–551.

[34] A. Gurfinkel, T. Kahsai, A. Komuravelli, J. A. Navas, The SeaHorn Ver-1000

ification Framework, in: D. Kroening, C. S. Pasareanu (Eds.), Com-

puter Aided Verification - 27th International Conference, CAV 2015, San

Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, Vol. 9206 of

Lecture Notes in Computer Science, Springer, 2015, pp. 343–361. doi:

10.1007/978-3-319-21690-4_20.1005

URL http://dx.doi.org/10.1007/978-3-319-21690-4_20

49

http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://arxiv.org/abs/1511.01413
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://dx.doi.org/10.1007/978-3-319-46559-3_5
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-21690-4_20

[35] M. Madsen, M. Yee, O. Lhoták, From Datalog to FLIX: a declarative lan-

guage for fixed points on lattices, in: C. Krintz, E. Berger (Eds.), Proceed-

ings of the 37th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June1010

13-17, 2016, ACM, 2016, pp. 194–208. doi:10.1145/2908080.2908096.

URL http://doi.acm.org/10.1145/2908080.2908096

[36] N. Bjørner, F. Fioravanti, A. Rybalchenko, V. Senni (Eds.), Workshop on

Horn Clauses for Verification and Synthesis, 2014, to appear in Electronic

Proceedings in Theoretical Computer Science.1015

URL http://vsl2014.at/meetings/HCVS-index.html

[37] E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti, Semantics-based

Generation of Verification Conditions via Program Specialization, Science

of Computer Programmingdoi:http://dx.doi.org/10.1016/j.scico.

2016.11.002.1020

URL http://www.sciencedirect.com/science/article/pii/

S016764231630199X

[38] J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke, Automated termina-

tion proofs with aprove, in: Proc. International Conference on Rewriting

Techniques and Applications (RTA), Aachen, Germany, 2004, pp. 210–220.1025

[39] E. Bodden, P. Lam, L. Hendren, Partially Evaluating Finite-state Runtime

Monitors Ahead of Time, ACM Transactions on Programming Languages

and Systems (TOPLAS) 34 (2) (2012) 7:1–7:52. doi:10.1145/2220365.

2220366.

URL http://www.bodden.de/pubs/blh12partially.pdf1030

[40] N. Stulova, J. F. Morales, M. V. Hermenegildo, Assertion-based Debugging

of Higher-Order (C)LP Programs, in: 16th Int’l. ACM SIGPLAN Sympo-

sium on Principles and Practice of Declarative Programming (PPDP’14),

ACM Press, 2014.

50

http://doi.acm.org/10.1145/2908080.2908096
http://doi.acm.org/10.1145/2908080.2908096
http://doi.acm.org/10.1145/2908080.2908096
http://dx.doi.org/10.1145/2908080.2908096
http://doi.acm.org/10.1145/2908080.2908096
http://vsl2014.at/meetings/HCVS-index.html
http://vsl2014.at/meetings/HCVS-index.html
http://vsl2014.at/meetings/HCVS-index.html
http://vsl2014.at/meetings/HCVS-index.html
http://www.sciencedirect.com/science/article/pii/S016764231630199X
http://www.sciencedirect.com/science/article/pii/S016764231630199X
http://www.sciencedirect.com/science/article/pii/S016764231630199X
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2016.11.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2016.11.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2016.11.002
http://www.sciencedirect.com/science/article/pii/S016764231630199X
http://www.sciencedirect.com/science/article/pii/S016764231630199X
http://www.sciencedirect.com/science/article/pii/S016764231630199X
http://www.bodden.de/pubs/blh12partially.pdf
http://www.bodden.de/pubs/blh12partially.pdf
http://www.bodden.de/pubs/blh12partially.pdf
http://dx.doi.org/10.1145/2220365.2220366
http://dx.doi.org/10.1145/2220365.2220366
http://dx.doi.org/10.1145/2220365.2220366
http://www.bodden.de/pubs/blh12partially.pdf

[41] G. Puebla, F. Bueno, M. Hermenegildo, An Assertion Language for Con-1035

straint Logic Programs, in: P. Deransart, M. Hermenegildo, J. Maluszynski

(Eds.), Analysis and Visualization Tools for Constraint Programming, no.

1870 in LNCS, Springer-Verlag, 2000, pp. 23–61.

[42] G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. Garćıa de la Banda,

K. Marriott, P. J. Stuckey, A Generic Framework for Context-Sensitive1040

Analysis of Modular Programs, in: M. Bruynooghe, K. Lau (Eds.), Pro-

gram Development in Computational Logic, A Decade of Research Ad-

vances in Logic-Based Program Development, no. 3049 in LNCS, Springer-

Verlag, Heidelberg, Germany, 2004, pp. 234–261.

[43] J. Correas, G. Puebla, M. Hermenegildo, F. Bueno, Experiments in1045

Context-Sensitive Analysis of Modular Programs, in: 15th International

Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’05), no. 3901 in LNCS, Springer-Verlag, 2006, pp. 163–178.

[44] P. Cousot, R. Cousot, Abstract Interpretation: a Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fix-1050

points, in: ACM Symposium on Principles of Programming Languages

(POPL’77), ACM Press, 1977.

[45] K. Muthukumar, M. Hermenegildo, Determination of Variable Dependence

Information at Compile-Time Through Abstract Interpretation, in: 1989

North American Conference on Logic Programming, MIT Press, 1989, pp.1055

166–189.

[46] K. Muthukumar, M. Hermenegildo, Deriving A Fixpoint Computation Al-

gorithm for Top-down Abstract Interpretation of Logic Programs, Tech-

nical Report ACT-DC-153-90, Microelectronics and Computer Technology

Corporation (MCC), Austin, TX 78759 (April 1990).1060

URL ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z

[47] K. Muthukumar, M. Hermenegildo, Compile-time Derivation of Variable

51

ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z
ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z
ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z
ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z

Dependency Using Abstract Interpretation, Journal of Logic Programming

13 (2/3) (1992) 315–347.

[48] K. Muthukumar, M. Hermenegildo, Combined Determination of Sharing1065

and Freeness of Program Variables Through Abstract Interpretation, in:

International Conference on Logic Programming (ICLP 1991), MIT Press,

1991, pp. 49–63.

[49] C. Vaucheret, F. Bueno, More Precise yet Efficient Type Inference for Logic

Programs, in: International Static Analysis Symposium, Vol. 2477 of Lec-1070

ture Notes in Computer Science, Springer-Verlag, 2002, pp. 102–116.

[50] R. Bagnara, P. M. Hill, E. Zaffanella, The Parma Polyhedra Library: To-

ward a Complete Set of Numerical Abstractions for the Analysis and Veri-

fication of Hardware and Software Systems, Science of Computer Program-

ming 72 (1–2).1075

URL http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.

pdf

[51] A. Serrano, P. Lopez-Garcia, F. Bueno, M. Hermenegildo, Sized Type Anal-

ysis for Logic Programs (technical communication), in: T. Swift, E. Lamma

(Eds.), Theory and Practice of Logic Programming, 29th Int’l. Confer-1080

ence on Logic Programming (ICLP’13) Special Issue, On-line Supplement,

Vol. 13, Cambridge U. Press, 2013, pp. 1–14.

[52] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. Morales,

G. Puebla, The Ciao Approach to the Dynamic vs. Static Language

Dilemma, in: Proceedings for the International Workshop on Scripts to1085

Programs, STOP’11, ACM, New York, NY, USA, 2011.

[53] J. Navas, F. Bueno, M. Hermenegildo, Efficient top-down set-sharing anal-

ysis using cliques, in: Eight International Symposium on Practical Aspects

of Declarative Languages, no. 2819 in LNCS, Springer-Verlag, 2006, pp.

183–198.1090

52

http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf
http://www.cs.unipr.it/ppl/Documentation/BagnaraHZ08SCP.pdf

[54] M. Méndez-Lojo, O. Lhoták, M. Hermenegildo, Efficient Set Sharing us-

ing ZBDDs, in: 21st Int’l. WS on Languages and Compilers for Parallel

Computing (LCPC’08), LNCS, Springer-Verlag, 2008.

[55] H. Søndergaard, An application of abstract interpretation of logic pro-

grams: occur check reduction, in: European Symposium on Programming,1095

LNCS 123, Springer-Verlag, 1986, pp. 327–338.

[56] S. Secci, F. Spoto, Pair-Sharing Analysis of Object-Oriented Programs, in:

12th International Symposium Static Analysis Symposium (SAS’05), Vol.

3672 of Lecture Notes in Computer Science, Springer, 2005.

[57] J. Gallagher, D. de Waal, Fast and precise regular approximations of logic1100

programs, in: P. Van Hentenryck (Ed.), Proc. of the 11th International

Conference on Logic Programming, MIT Press, 1994, pp. 599–613.

[58] M. Bruynooghe, J. Gallagher, Inferring Polymorphic Types from Logic

Programs, in: International Symposium on Logic-based Program Synthesis

and Transformation (LOPST R’04), Preproceedings, 2004.1105

53

Appendix A. Proof of Lemma 5

Proof. First, let us prove the correctness of the transformation for the calls

assertion conditions.

LetAC(L) = {C} where C = c.calls(L,Pre) s.t. status(c, check) and ∃(L:-B) ∈

defn(L). The possible reduction sequences from the S0 = 〈L :: G | θ | ∅〉 state:1110

S0 A 〈B :: G | θ | ∅〉 = Ssucc if θ ⇒P Pre

S0 A 〈L | θ | {c̄}〉 = Serr if θ 6⇒P Pre

Now let us add the link clause for L and rename its other clauses s.t.

defn(L) = {L:-Linner} and ∃Linner:-B ∈ defn(Linner), and let’s add an asser-

tion condition for Linner: C
inner = ci.calls(Linner, P re) with status(ci, check).

The possible reduction sequences from the S0 state now are:1115

S0 A 〈Linner :: G | θ | ∅〉 A Ssucc if θ ⇒P Pre

S0 A Serr if θ 6⇒P Pre

The S0 A 〈Linner :: G | θ | ∅〉 A 〈Linner | θ | {c̄i}〉 reduction sequence is

impossible since it would require θ ⇒P Pre to hold in the first reduction step

and θ 6⇒P Pre to hold in the second reduction step.

This way in both assertion checking modes D[−1] ∈ {Ssucc, Serr} and run-1120

time checks for the calls assertion condition Cinner (namely, checks for θ ⇒P

Pre after the checks for θ ⇒P Pre) could be safely removed by setting status(ci, true).

Next, let’s consider the case of success assertion conditions.

Let AC(L) = {C} where C = c.success(L,Pre, Post) s.t. status(c, check)

and ∃(L:-B) ∈ defn(L). The possible reduction sequences from the S0 = 〈L ::1125

G | θ | ∅〉 state are:

S0 A 〈B :: acheck(L, c) :: G | θ | ∅〉 ∗A 〈G | θ | ∅〉 = Ssucc

if θ ⇒P Post

S0 A 〈B :: acheck(L, c) :: G | θ | ∅〉 ∗A 〈acheck(L, c) | θ | {c̄}〉 = Serr

if θ 6⇒P Post

Now let us add the link clause for L and rename its other clauses s.t.

defn(L) = {L:-Linner} and ∃Linner:-B ∈ defn(Linner), and let’s add an asser-

tion condition for Linner: C
inner = ci.success(Linner, P re, Post) with status(ci, check).1130

We also now consider C as Clink with its identifier cl. The possible reduction

54

sequences from the S0 state now are:

S0 A 〈B :: acheck(L, ci) :: acheck(L, cl) :: G | θ | ∅〉 ∗A 〈G | θ | ∅〉 = Ssucc

if θ ⇒P Post

S0 A 〈B :: acheck(L, ci) :: acheck(L, cl) :: G | θ | ∅〉 ∗A 〈acheck(L, cl) | θ | {c̄l}〉 = Serr

if θ 6⇒P Post

Although the assertion condition identifiers for the two Serr are different,

the checks performed in these states are equal (θ 6⇒P Post).1135

This way the run-time checks for the cl assertion condition are duplicating

the checks for ci and could be safely removed by setting status(cl, true).

55

List of Updates with respect to the First Revision

Following the recommendations of the reviewers and the editor we have

improved the experimental evaluation and the comparison to related work, as1140

well as addressing the other comments and suggestions for improvement of the

reviewers.

More concretely, we have included the following new material w.r.t. the first

(journal) version of the paper:

• Regarding the improvement of the experimental evaluation:1145

– (page 30) We have added a third analysis domain, polyhedra (in ad-

dition to eterms and sharing+freenes), and studied it experimen-

tally alongside the other two domains w.r.t. the proposed compila-

tion modes. This provides additional experimental data and also

illustrates further that the Ciao assertion model and its implemen-1150

tation in CiaoPP is far more general than traditional modes+types,

following the suggestions of the reviewers.

– (page 32) We have also added new benchmarks, mostly of numeric na-

ture and stemming from imperative programs. Apart from extending

the benchmark set, the intention is to illustrate the wider applica-1155

bility of the method and also to include programs where the new

polyhedra domain is essential. The sources of the new benchmarks

have been made available on-line alongside the previous ones.

– (page 32) A better justification of the choices made in benchmark

selection has also been provided.1160

– (page 33) We have revised the metrics used for describing the bench-

marks characteristics and code (the tables describing size, number

of assertions and percentage checked, etc.) to make them easier to

understand and reproduce, following the reviewer suggestions.

– (page 39) We have also improved the explanations of the measure-1165

ments and timing techniques used to produce the results in the tables.

56

– The tables with the experimental results have been reorganized and

moved to the respective subsections, following the reviewer sugges-

tions.

• Regarding the improvement of the discussion of related work on combining1170

analysis and assertion checking we have added all the additional references

suggested by the reviewers and compared our work to them (pages 4, 5),

as suggested by the reviewers.

• Finally, (page 54) the proof of lemma 5 has been moved to an appendix,

as suggested by reviewers.1175

57

Original List of Updates with respect to the Conference Version

Already in the first round we included the following new material w.r.t the

conference proceedings version of this paper:

• We have added a new section (Section 6) discussing the application of

our approach when optimizing run-time checks for the calls across client-1180

library boundaries. We describe a typical client-library use case and dis-

cuss the possibilities for optimizing the run-time checks in this context

using an illustrative example.

• Also, we propose there a new program point source transformation for

avoiding the duplication of run-time checks. The approach proposed uses1185

a different level of granularity in the analysis information (information at

program points).

• In line with this, in the experimental section we have added a new set of

benchmarks for evaluating the impact of optimizing run-time checks for

the calls across client-library boundaries (see Table 4). We have evaluated1190

experimentally the new transformation for these benchmarks (Section 7.5)

and provided the results for the compilation (see Table 12), analysis (see

Table 13), and running times (see Table 14). We have also added a dis-

cussion of these results.

Other changes:1195

• We have clarified better the different scenarios and the relation with other

possible approaches (such as all-out inter-modular analysis).

• We have improved the discussion of the experimental results.

• We have clarified further the status of assertions, specially the relation

between true assertions and the analysis memo tables.1200

• We have updated the abstract and conclusions to reflect the new contri-

butions.

58

• We have added more references, including to work in supporting analysis

and verification of imperative programs via translation to Horn clauses.

• We have introduced many minor clarifications, improvements in wording,1205

and fixes.

59

	Introduction
	Run-Time Checking of Assertions
	Basic notation and standard semantics
	Assertion Language
	Semantics with assertions

	Assertion Checking Modes
	Optimizing Run-Time Checks via Static Analysis
	Abstract Interpretation-based Analysis
	Optimizing Assertions with Analysis Results

	Taking Advantage of the Run-Time Checking Semantics during Analysis
	Optimizing Checks at the Client-Library Boundaries
	Experiments
	Experimental Setup
	Properties and Analysis Domains
	Benchmarks
	Experimental Results (base scenario)
	Experimental Results (client-library scenario)

	Conclusions
	Proof of Lemma 5

