Journal of Software and System Modeling manuscript No.
(will be inserted by the editor)

Using DAG Transformations to Verify
Euler/Venn Homogeneous and Euler/Venn
FOL Heterogeneous Rules of Inference

Nik Swoboda!?, Gerard Allwein?®

! Departamento de Inteligencia Artificial,

Universidad Politécnica de Madrid, Spain.
e-mail: nswoboda@fi.upm.es

2 ATR Media Information Science Labs
Kyoto, Japan.

3 Naval Research Laboratory, Code 5543
4555 Overlook Avenue SW
Washington DC 20375-5337, USA
e-mail: allwein@itd.nrl.navy.mil

Received: date / Revised version: date

Abstract In this paper we will present a graph-transformation based
method for the verification of heterogeneous first order logic (FOL) and
Euler/Venn proofs. In previous work, it has been shown that a special col-
lection of directed acyclic graphs (DAGs) can be used interchangeably with
Euler/Venn diagrams in reasoning processes. Thus, proofs which include
Euler/Venn diagrams can be thought of as proofs with DAGs where steps
involving only Euler/Venn diagrams can be treated as particular DAG trans-
formations. Here we will show how the characterization of these manipula-
tions can be used to verify Euler/Venn proofs. Also, a method for verifying
the use of heterogeneous Euler/Venn and FOL reasoning rules will be pre-
sented that is also based upon DAG transformations.

Key words Euler and Venn diagrams — diagrammatic reasoning — graph
transformation — proof verification

1 Introduction

The basic goal of this work is to propose techniques for the mechanical
verification of heterogeneous proofs involving formulas of first order logic
(FOL) and Euler/Venn diagrams. These techniques involve translating Eu-
ler/Venn diagrams into a special kind of directed acyclic graph (DAG) and

2 Nik Swoboda, Gerard Allwein

then working with these DAGs in the verification process. After the dia-
grams in a proof have been replaced with DAGs, the changes that occur
to these DAGs in steps of the proof can then be used to verify the rules
of inference used in those steps. It should be noted that, in this project,
DAGs are playing a dual role. They are being used as data-structures in the
implementation, and also as the basis of the theory that will be presented to
demonstrate the validity of the graph-transformation based proof checking
techniques we are proposing.

This is the last in a series of papers describing the design of a hetero-
geneous FOL and Euler/Venn reasoning system from both theoretical and
practical points of view. This project began with the description of a tech-
nique for using DAGs to represent Euler/Venn diagrams [14]. Subsequently,
theoretical issues involved in the design of the FOL and Euler/Venn logical
system have been presented [15,16]. Here we build upon and extend this
work by presenting the use of DAG transformations in the verification of
heterogeneous FOL and Euler/Venn proofs.

2 Background

It has been shown that a special system of DAGs can be used to capture the
essential properties of an extended version of Shin and Hammer’s Venn rea-
soning system consisting of Euler/Venn diagrams [14]. This DAG system
includes a grammar specifying syntactic requirements upon the DAGs as
well as rules of inference, and a semantic interpretation for those DAGs. By
saying that we can capture the essential properties of the Euler/Venn sys-
tem, we mean that it is possible to translate any well-formed Euler/Venn
diagram into a DAG and that there is an Euler/Venn diagram which is
the translation of any DAG in the system. Furthermore, these translations
preserve the semantic and inferential properties of the systems. Thus, any
reasoning that can be conducted using Euler/Venn diagrams can be con-
ducted using DAGs and vice versa.

The use of DAGs in the implementation of Euler/Venn diagram systems
has a number of advantages. First, DAGs provide a discrete symbolic rep-
resentation of an Euler/Venn diagram which abstracts away many of the
details of a particular diagram which do not carry interpretable informa-
tion. Some of these details include the exact size, shape, and placement
of the diagram’s curves. In fact, any two Euler/Venn diagrams having the
same exact information content will have equivalent corresponding DAGs.
Also, each DAG is uniquely characterized by its collection of leaf nodes.
Since many calculations involving the DAGs only require the checking of
the leafs, DAGs can be stored in terms of their leafs and the rest of the
graph generated from these leafs only when necessary. Though theoretically
the size of a DAG’s leaf node set can increase exponentially with the number
of curves in the diagram, we have found that in practice people do not typ-
ically draw diagrams with many curve intersections. Diagrams with many
curves and curve intersections are simply difficult to interpret and use.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 3

3 Related work

This project arose from work being done to extend Barwise and Etchemendy’s
Hyperproof [1] system to include more diagrammatic and sentential systems.
In Hyperproof, users can write and verify proofs involving formulas of FOL
and blocks world diagrams. Currently, development is under way to build a
new system called Openproof in which multiple diagrammatic and senten-
tial systems can be used together in the writing of proofs. One of the core
diagrammatic systems that will be provided in the Openproof framework
is a system of Euler/Venn diagrams based upon Shin and Hammer’s Venn
systems [13,6]. Techniques similar to those discussed here will be used in the
verification of the FOL and Euler/Venn portions of the Openproof system.

It should also be noted that the general goal of this project, the imple-
mentation of a heterogeneous FOL and Euler/Venn reasoning system, is not
the first such attempt. A basic system called JVENN has been presented
in [12]. However that implementation only allows Venn diagrams containing
at most three curves (and no Euler type diagrams in which one curve can
be completely contained in another). Also the system has only a very basic
notion of rules similar to Hyperproof’s Observe and Apply Rules and does
not allow the construction of heterogeneous proofs.

Though one of the most common uses of Venn and Euler diagrams is
in the teaching of basic set theory, more recently diagrammatic systems
inspired by Venn and Euler diagrams have also been developed to assist
in software design. Constraint diagrams [10,4](and then later spider dia-
grams [5,8]) were introduced as a system for visually specifying invariants
in models of object-oriented software. These diagrams were intended to rem-
edy the lack of facilities for specifying FOL formula in the Unified Modeling
Language (UML) [11].} Using constraint diagrams, a UML diagram of an
object-oriented system can be annotated with constraints representing rela-
tions between the objects of the system. One interesting difference between
spider diagrams and the Euler/Venn diagrams discussed here is the addi-
tion of a richer syntax for describing constant sequences that allows the
placing of both upper and lower bounds on the size of sets described in
the diagrams. Though not discussed here, the techniques described in this
paper could be extended to be used as the basis of the verification of proofs
involving those diagrams as well.

4 Overview

In the proofs we will verify, the reasoner will be able to use homoge-
neous FOL, homogeneous Euler/Venn, and the heterogeneous FOL and Eu-
ler/Venn reasoning rules. The heterogeneous rules will allow the extraction
and re-expression of information from Euler/Venn diagrams as formulas of
FOL. They also will allow the construction of Euler/Venn diagrams based

! UML is a diagrammatic system commonly used in software design.

4 Nik Swoboda, Gerard Allwein

upon information contained in formulas of FOL. We generically refer to
these kinds of rules of inference as Recast rules. Here, following in the tradi-
tion of Barwise and Etchemendy in their work on the Hyperproof system [1],
we will focus on a special kind of Recast rule, known as the Observe rule.
Additional background information regarding these rules can be found in
Section 9.

We will begin by reviewing the systems of Euler/Venn diagrams and
DAGs in Section 5 and Section 6. Using these concepts, we can then think
of a proof involving Euler/Venn diagrams as a proof involving DAGs, each
step consisting of a DAG and using a DAG as support can be thought of as
a DAG manipulation. In Section 7 we will define the notion of a DAG delta
which will be used to characterize these manipulations. Then in Section 8 we
will propose algorithms for the analysis of these manipulations to determine
their validity as applications of homogeneous Euler/Venn rules of inference.
Finally, in Section 9 we will show how a heterogeneous rule of inference
involving Euler/Venn diagrams and formulas of FOL can also be verified
using DAGs.

5 A brief review of Euler/Venn diagrams

Euler and Venn diagram notions such as region, basic region, etc. will be
used in a manner inspired by Hammer’s definitions [6]. Here we will give
a brief summary of these notions as well as quickly describe the notion of
well-formed diagram used in this paper.

Let £ be some set of predicates, each of which can be thought of as the
label of some curve of an Euler/Venn diagram, and let the set Terms be the
union of a set Cons of constant symbols and a set Var of variable symbols also
occurring in those diagrams. For the purposes of this project, free variables
and constants will be treated almost identically. Thus, free variables will be
replaced by fresh constants at the point of their evaluation. We also define
a collection of special variables SVar which will only be used in DAGs to
denote existentially quantified variables. An Euler/Venn diagram consists
of the following syntactic features: rectangles, a countably infinite set of
closed curves uniquely labeled with predicate symbols from £, shading, a
countably infinite set of individual constant symbols from Terms, and lines
used to connect those constant symbols into constant sequences.

A region of a diagram is any, possibly empty, area of the diagram that
is completely enclosed by lines of that diagram. The collection of regions
is closed under union, intersection, and complement; thus a region may
contain disconnected parts. Any region of the diagram completely enclosed
by a closed curve is referred to as a basic region and a region which is
not represented in the diagram (has no area in the diagram) will be called
a missing region. Each basic region has a unique label. A minimal region
is any non-missing region which is not crossed by any of the lines of that
diagram (i.e., any region that can not be thought of as the union of other

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 5

non-missing regions). Two regions in two different diagrams are said to be
counterparts if they are both interpreted as representing the same set. 2

5.1 Well-formed Euler/Venn Diagrams

Any diagram only consisting of a rectangle is a well-formed Euler/Venn
diagram. If a diagram is well-formed, that diagram with the following mod-
ifications is also well-formed:

1. The addition of any closed curve C with a label L (not already occurring
in the diagram) and not extending outside the rectangle of the diagram
so that all the minimal regions intersected by C are split into at most
two new regions

2. The shading of any minimal region

3. The addition of an individual constant symbol that is not already in the
diagram to any minimal region

4. The addition of a constant symbol that is already in the diagram to
any minimal region not containing that constant symbol along with a
line connecting this new constant symbol to an existing instance of that
symbol

The collection of well-formed Euler/Venn diagrams will be referred to as
EV. Note that for the purposes of this paper we will be somewhat lax about
the constraints placed upon the curves used in the diagram. Though we will
not allow diagrams with two different minimal regions to represent the same
set, we will allow curves partially or totally concurrent to one another and
to the enclosing rectangle as well as points at which any number of curves
can cross. This was done to ensure that every Euler/Venn diagram with no
missing regions and shading could be re-drawn as an Euler/Venn diagram
without shading (and with missing regions). Recently, work has been done
to describe when an Euler/Venn diagram with no missing regions can be re-
drawn as an Euler diagram without shading while not allowing concurrent
curves nor triple cross points [3]. However, the algorithms presented there
are complicated and thus for simplicity they will not be addressed here.

Before proceeding we will take a look at one example Euler/Venn dia-
gram. From the information in Fig. 1 we can see that there are no Sloths
that are both Three-toed and Two-toed due to the location of the shaded
region. We can also see that Maned sloths are either Three-toed and not
Two-toed or both Three-toed and Two-toed from the placement of the
Maned constant symbol links.

2 Later once we have introduced the notion of a tag, we can also give a syntacti-
cally based definition of counterparts for regions with tags saying that counterpart
regions are regions with the same tag. For additional work on syntactically defin-
ing the notion of counterpart regions see [9].

6 Nik Swoboda, Gerard Allwein

Fig. 1 An Euler/Venn diagram

5.2 Notion of a Tag

Given the set {L1,..., Ly} of labels of a diagram V € £V, a tag is a subset
of {L1,L1,..., Ly, Ly} containing at most one of L; and L; for each i. A
tag 7 is said to be complete if for each label L; of V', either L; € T or L; € T.

Thus for each basic region labeled L there will be a tag {L} correspond-
ing to it and tag {L} corresponding to the complement of that region. Then
given two regions tagged with 71 and 7o the tag for the intersection of those
regions will be 7, U 72 (provided that this tag doesn’t contain L, and L
for some L;). We then see that all the complete tags consisting of labels
Lq,...,L, correspond exactly to all of the minimal regions of a Venn dia-
gram (a diagram with no missing regions) having curves with each of those
labels. It should be noted that in diagrams with missing regions, tags can
still be used to refer to the missing regions that could be re-introduced into
the diagram.

5.3 Semantics for Euler/Venn diagrams

The semantics of the system is given by the assignment of a domain to
the rectangle of the diagram, subsets of this domain to basic regions of the
diagram, and members of the domain to each of the diagram’s individual
constants. This assignment of subsets to the basic regions of the diagram
can then be used to uniquely define another assignment of subsets of the
domain to all the minimal regions in a diagram. Shaded and missing regions
are used to denote the fact that the represented subset of the domain is
empty. Constant sequences are used to express the fact that the represented
individual is contained in the subset represented by the region containing
all the links of that constant sequence.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 7

5.4 Euler/Venn rules of inference

Given diagrams V and V'’ of £V, V'’ can be inferred from V if V' is well-
formed and is the result of applying any of the following rules to V:

1. Erasure of part of a constant sequence — V' is obtained by erasing a ¢ of
a constant sequence of V' where that c falls within a shaded region, and
provided that the possibly split ¢ sequence is rejoined if necessary.

2. Extending a constant sequence — V’ is the result of adding a new c link
to a constant sequence of V' in a region not already containing a link of
that sequence.

3. Erasure — V' is obtained from V by erasing: an entire constant sequence,
the shading of a region, or a closed curve (and possibly redrawing the
remaining curves to keep the diagram well-formed) if the curve removal
does not cause any counterpart regions to disagree with regard to shad-
ing (and whether they are missing) as well as the containment of links
of a constant sequence.

4. Introduction of a new curve — V' is the result of adding a new curve to
V' which crosses all of the minimal regions of V' once, and in such a way
that V’ is well-formed, the other labels of V' are left undisturbed, and
all counterparts agree with respect to shading (and whether they are
missing) as well as the containment of links of a constant sequence.

5. Inconsistency — V' of any form can obtained from V if V contains a region
that is both shaded and contains all the links of some constant sequence.

6. Adding shaded regions — V' is the result of adding a new (but not basic)
region which is a counterpart of a missing region in V' provided that this
new region is shaded and is drawn so that the region is contained within
the basic regions to whose intersection it is intended to correspond.

7. Removing shaded regions — V' is the result of removing a shaded (but not
basic) region of V. To emphasize the fact that the region has been re-
moved the lines enclosing the now non-existing region should be smoothed,
and if possible, the remaining curves should be spaced out to remove
points of unintended intersection.

Shin and Hammer also presented a Unification rule which plays an im-
portant role in the soundness of the system. Here, in the interest of space,
this rule will not be discussed. Though the fact that it involves two support
diagrams makes its verification a little more complicated, the verification
of the Unification rule is similar to the verification techniques that will be
presented for the above rules.

6 Euler/Venn diagrams and DAGs

The DAGs that we will be considering consist of nodes labeled with tags
representing regions of a diagram along with shading and constant sequence
information in the form of node properties. Directed edges connecting the

8 Nik Swoboda, Gerard Allwein

Fig. 2 A sample Euler/Venn diagram and its corresponding DAG

nodes of the DAG will be taken to represent the covers relation between
regions of the diagram.® Each DAG will have one node representing its
domain (the collection of all the objects that the diagram could explicitly
represent), and all the other nodes will uniquely represent each of its cor-
responding diagram’s non-equivalent basic regions, complements of basic
regions, and non-missing regions that are the intersection of some collection
of basic regions and their complements. The label of each node consists of
U, for the root node, or tags constructed from some collection L,..., L,
of curve labels from £. With the exception being the root node, each node
is labeled with the most complete tag which corresponds to the region it
represents. For example, the node labeled AB in Fig. 2 is taken to repre-
sent the intersection of the basic region B and the complement of the basic
region A. Thus the leaf nodes of the DAG represent the minimal regions of
the diagram. Nodes of the DAG are designated as shaded if the region that
node represents is shaded in the diagram. Likewise, a node is designated as
containing a link of a constant sequence if the region that node represents
contains a link of that constant sequence. The DAG containing only one
node labeled U and no edges is a member of DAG. All other DAGs in DAG
have the the following properties:

1. Every node has as its ancestor the root node U.

2. No node has a parent which is also a non-trivial ancestor of another of
its parents.

3. Every leaf node is labeled with a complete tag constructed from some
set of curve labels Ly, ..., Ly.

4. The tag t of any node is unique, contains all of curve labels of each of
its parents tags, and provided that there are no inner nodes with only
one child, has ancestor nodes labeled with every tag ¢’ containing only
curve labels in ¢.

5. A node is shaded iff all its descendants are shaded and contains a con-
stant ¢ (from Terms or SVar) iff it is a leaf node or one of its descendants
which is a leaf node contains that constant.

3 “A covers B” iff B C A and there is no region C such that B C C and C C A.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 9

A sample Euler/Venn diagram and its corresponding DAG can be found
in Fig. 2. In this diagram, the region corresponding to the intersection of
the basic regions A and B is missing, and this can be interpreted to mean
that there are no members of the set denoted by A that are also members
of the set denoted by B. The shading of the basic region A denotes that the
corresponding set is empty. The location of the constant x carries the infor-
mation that the object that it denotes does belong to the set corresponding
to basic region B, and does not belong to the set corresponding to the basic
region A. In the diagram’s DAG, note the shading of the node AB, the lack
of a node labeled AB, and the locations of the x constant symbols.

An example of non-inductively constructing a DAG from an Euler/Venn
diagram is given in Fig. 3. First starting with the diagram in Fig. 3(a),
one leaf node with the appropriate tag is made for each minimal region
of the diagram resulting in the nodes shown in Fig. 3(b). Then working
up the diagram, inner nodes and edges are added. First for each leaf node
whose tag contains n basic curve labels, parent nodes are added for each
of the n choose n — 1 (e.g,. (,",)), tags of length n — 1 which can be

constructed from that tag’s labels. For example, for the leaf node ABC
we add parent nodes AB, AC, and BC. If any of these new nodes has
already been made, an edge is added to the already existing node. After
doing this for the leaf nodes, we proceed up the DAG row by row until
we construct a row of nodes with single label tags. Then we add a root
node labeled U as the parent of each of these single label tag nodes. The
result of this process if shown in Fig. 3(c). Then from the bottom up, we
remove any inner nodes and associated edges having one or no children, and
reconnecting orphaned nodes to their covering parents. Lastly we shade and
add constants to the leaf nodes, and then working up the DAG shade any
node with only shaded descendants and add a constant to a node which
has any node as a descendant with that constant. The resulting diagram is
shown in Fig. 3(d).

All of the Euler/Venn rules of inference described in Section 5.4 can
be re-defined in terms of DAGS. Here we will just briefly summarize a few
of the more interesting of these rules. To add or remove a shaded region
from a DAG the shaded leaf node is either added or removed from the
DAG and the inner nodes are adjusted to preserve the above properties.
Removing an entire curve from a DAG involves removing that curve label
and its complement from all the node tags, merging identically labeled nodes
(empty labels with the node labeled U), and then again adjusting the inner
nodes to preserve the above properties. Adding a curve to the diagram is
done by adding two new nodes (one for the curve label and another for its
complement) as children of the root node and then creating new nodes with
tag labels corresponding to the union of these two curve labels with all the
existing node labels in the diagram along with the appropriate edges while
preserving the above properties.

10 Nik Swoboda, Gerard Allwein

(a) Euler/Venn diagram (b) Start with the leaf
nodes

(c) Add all possible inner nodes (d) Remove redundant nodes,
then shade and add constant
sequences

Fig. 3 A example of non-inductive DAG construction

7 Characterizing DAG manipulations

In the easiest case, the rules of inference that we would like to verify consist
of a supporting Euler/Venn diagram and a resulting Euler/Venn diagram.
To check the application of these rules, one can translate these diagrams
into DAGs and study the differences that exist between them. Thus it is
important for us to be able to characterize and to analyze these DAG trans-
formations. In order to do this more easily we will introduce the notion of
a DAG delta. Fach delta will denote some meaningful transformation to a
DAG. A collection of DAG deltas will be used to describe the changes made
to transform one DAG into another. Once we have the collection of DAG
deltas that exist between two DAGs, we can then see if the specified rule of
inference allows each of those deltas. The following is the list of deltas that
we will use.

Definition 1 Given any curve label I, constant symbol ¢, and complete tag t
all relating to some DAG D € DAG, the following are all valid DAG deltas:

— ADD CURVE:l and REMOVE CURVE:l

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 11

— ADD REGION:t and REMOVE REGION :t
— ADD SHADE :t and REMOVE SHADE:t
— ADD CONSTANT LINK: c;t and REMOVE CONSTANT LINK: c;t

A three step algorithm is used to compute the collection of DAG deltas,
DELTAS, between the support DAG and the resulting DAG. First we deter-
mine which curves need to be added or removed from the supporting DAG
to result in a DAG representing the same collection of basic regions as the
resulting DAG. For each such curve we add the appropriate ADD CURVE or
REMOVE CURVE delta to DELTAS. In the case in which a curve is added we
can use the Introduction of a new curve rule of inference to add the curve
to the support DAG. In the case of removing a curve, we use the Erasure
rule of inference to remove that curve from the support DAG. (Note that
the changed support DAG is then used in the later parts of the algorithm.)
Then, since the entire DAG can be constructed from its leafs, we can con-
sider only the differences between the leafs of the resulting two DAGs. So we
proceed by checking each leaf node one by one and adding any of the appro-
priate deltas to DELTAS as would be expected. A more detailed description
of this algorithm will now be presented.

Algorithm 1 Given D,D’ € DAG, we use the following to compute the
collection of DAG deltas, DELTAS, describing the differences between D and
D’. We start with DELTAS containing no members.

1. Compute curve deltas:

(a) For each curve ! in D’ not in D we add ADD CURVE : [to DELTAS and
we use the Introduction of a new curve rule of inference (using the
inductive DAG construction algorithm) to add the curve I to D.

(b) For each curve [in D not in D’ we add REMOVE CURVE : [to DELTAS
and we use the Erasure rule of inference to remove [from D.

2. Compute region deltas:

(a) For each n’ a leaf node of D’ with tag ¢ such that there is no node n in
D with the tag t we add ADD REGION : ¢ to DELTAS. If the added node
in D’ is shaded we add ADD SHADE : ¢ to DELTAS and if it contains
links of constant sequences we add ADD CONSTANT LINK : c¢;t deltas
to DELTAS for each constant link c.

(b) For each n a leaf node of D with tag t such that there is no node n’
in D’ with the tag ¢ we add REMOVE REGION : ¢ to DELTAS. If the re-
moved node in D is shaded we add REMOVE SHADE : ¢ to DELTAS and if
it contains links of constant sequences we add REMOVE CONSTANT LINK :
¢;t deltas to DELTAS for each constant link c.

3. Compute all other deltas:

For each n a leaf node of D and n’ a leaf node of D’ such that n and n’

have the same tag ¢:

(a) if n’ is shaded and n is not then add ADD SHADE : ¢ to DELTAS

(b) if n is shaded and n’ is not then add REMOVE SHADE : ¢ to DELTAS

(¢) if n’ has a constant c that is not in n we add ADD CONSTANT LINK : c;t
to DELTAS.

12 Nik Swoboda, Gerard Allwein

2) ||

>

Fig. 4 An example of computing DAG deltas

(d) if n has a constant ¢ that is not in n’ we add REMOVE CONSTANT LINK :
¢;t t0 DELTAS.

For example, when computing the deltas between the diagrams of Fig. 4,
in Step 1 we need to add a curve to the support diagram resulting in the sit-
uation in Fig. 5. While doing this we also add ADD CURVE:C to DELTAS. Then
in Step 2, we note that there are no region deltas, i.e., that both DAGs have
the same leaf nodes. Lastly in Step 3, we compute the add and remove shad-
ing and constant link deltas. Thus the collection DELTAS for Fig. 4 would
consist of: ADD CURVE:C, REMOVE SHADE:ABC, REMOVE CONSTANT LINK:x;A BC.
Note that in Fig. 4 there is no node labeled B since the basic region labeled
B is the same as the minimal region AB which is represented in the DAG.

Proposition 1 All logically significant differences between any two DAGSs
in DAG can be captured with a set of DAG deltas.

Proof sketches for this and the following results will be given in the
appendix included at the end of the paper.

Proposition 2 Algorithm 1 for computing DAG deltas captures all logically
significant differences between the two DAGS.

8 Verifying the Euler/Venn homogeneous rules of inference using
DAGs

Using these DAG deltas, the checking of the homogeneous Euler/Venn rules
from the collection DELTAS can be done directly. For example, to check the
Erasure of part of a constant sequence rule, we verify that the collection
DELTAS between the support and the result only consists of a single REMOVE

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 13

Fig. 5 The result of adding curve C' to the left diagram and corresponding DAG
of Fig. 4

CONSTANT LINK delta whose node is shaded in the supporting DAG. More
detailed algorithms for the Euler/Venn homogeneous rules of inference pre-
sented in Section 5.4 will now be given.

Algorithm 2 Given D, D’ € DAG, and the set DELTAS resulting from the
application of Algorithm 1 to D and D’, we do the following to check the
application of one of the homogeneous rules of inference presented in Sec-
tion 5.4

— Erasure of part of a constant sequence — We check to see that DELTAS
only contains one delta of the form REMOVE CONSTANT LINK : ¢;t and
that the node tagged by t is shaded in D.

— Extending a constant sequence — We check to see that DELTAS only con-
tains one delta of the form ADD CONSTANT LINK : c¢;t, that the node cor-
responding to t doesn’t already contain the link ¢, and that some other
node n’ in D contains the link ¢ (i.e., that a new constant sequence has
not been introduced).

— Erasure — We check to see that DELTAS only contains:

— REMOVE SHADE or REMOVE CURVE deltas

— REMOVE CONSTANT LINK deltas where for each removed constant link
c there is a REMOVE CONSTANT LINK : c;t delta for every leaf node
with tag ¢ containing ¢ (i.e., that the entire constant sequence is
being removed).

— Introduction of a new curve — We check to see that DELTAS only contains
one ADD CURVE delta.

— Adding shaded regions — We check to see that DELTAS contains only one
delta of the form ADD REGION : ¢ and that the node labeled ¢ in D’ is
shaded.

14 Nik Swoboda, Gerard Allwein

— Removing shaded regions — We check to see that DELTAS only contains
one delta of the form REMOVE REGION : ¢ that the node labeled ¢ in D is
shaded.

— Inconsistency — We check to see that for some constant sequence ¢ in D
that every leaf node in D containing c¢ is shaded.

Proposition 3 Algorithm 2 correctly checks the use of all the Euler/Venn
homogeneous rules of inference presented in Section 5.4.

9 Verifying heterogeneous rules of inference using DAGs

The heterogeneous rule of inference that we will check is the Observe rule.
Though inspired by the work of Barwise and Etchemendy, its use in this
context will be slightly different. Here the rule’s use will be symmetrical, it
can be used to transfer information from Euler/Venn diagrams to FOL and
from FOL to Euler/Venn diagrams. Also, in our case the rule will only be
used to extract explicit information. This notion of being explicit is based
upon Dretske’s notion of secondary seeing that [2]. Dretske attempted to
define a notion of epistemic seeing, or “seeing that”, which has a fundamen-
tal relation to a notion of non-epistemic seeing. He took very seriously the
idea that any genuine instance of “seeing that” should have as its basis a
visual event. This was done to preserve, as he says, the “visual impact” of
“seeing that” and thus to exclude such natural language uses of the phrase
“to see that”, as “Mary could see that the eggs were completely hard boiled
(from the ringing of the timer)”, from his notions of seeing. Part of the
motivation for doing this was to ensure that the “How?” justification of
any information gathered through an act of “seeing that” involves an act of
non-epistemic seeing in an essential way. For our purposes, this locution is
important because it will help us to characterize information which can be
observed, acquired through fundamentally visual means, from a diagram.
These kinds of rules are further discussed in [16], and will be minimally
presented here. An example of a valid use of the Observe rule with Fig. 2 as
support would be the formula =3z (A(z) A B(x)).

9.1 Observing formulas of FOL from Euler/Venn diagrams

Before we define a notion of observation from Euler/Venn diagrams to for-
mulas of FOL we will first introduce the notion of an Euler/Venn observa-
tional formula(EVOF). These formulas have been specially selected so that
each formula of EVOF carries information which corresponds directly to a
syntactic feature of an Euler/Venn diagram. (Please note that where ¢(t)
is written in the following definitions it will mean that all of the predicates
in the formula ¢ contain the term t.)

Definition 2 Euler/Venn Observational Formulas (EVOF)

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 15

1. Basic formulas: For every predicate P in L, and term t in Term, P(t)
is in EVOF.
2. Negations, Conjunctions, and Disjunctions: For every pi1(t),...,on(t)
in EVOF, the following are also in EVOF:
— ()
— (1) A Apn(t))

= (p1(t) V... V()
3. Quantifiers: For every unguantified p(z) in EVOF, the following are

also in EVOF:
— Nz p(z) (read as “There is no x such that p(zx).”)

— 3z o(x)

Definition 3 Given a diagram V' € EV containing curves labeled Py, . .., Py,
the partial region assignment function regiony from EVOF to the regions
of V will be defined as follows:

1. For each basic region r labeled P in'V regiony (P(t)) = r.
2. If regiony (v1(t)) =r1, ..., regiony (on(t)) = ry then:

— regiony (-1 (t)) = 71.

—regiony (01 () A ... Apa(1)=r1N...01y

—regiony ((p1(t) V... Vo,(t))=mU...Ur,

—regiony (Nz ¢(x)) = regiony (3x ¢(x)) = regiony (p(z))

Definition 4 The relations of strong observation, V=" o(t) and V=" o(t),
will be defined between diagrams of EV and formulas of EVOF by induction
on the complexity of ¢(t) as follows:

— For unquantified formulas:
— VT o(t) if the term symbol t appears in regiony (o(t)).?
— V" (1) if the term symbolt appears in the complement of regiony (¢(t)).
— For quantified formulas:
— VETNz ¢(x) if the region regiony (¢(x)) is shaded or missing.
~ V" Nz ¢(x) if Vit 3z ().
— Vi1 3z (x) if some term symbol t appears in regiony ((z)).
~ V" 3z (x) if Vi N (z).
V|::;?<p will be written if neither V=" nor Vi~ .

To define observation for all formulas in monadic first order logic (MFOL),
we introduce a special normal form called EVCNEF. In this form each of the
formula’s conjuncts carries information regarding some feature of an Eu-
ler/Venn diagram. Sentences of EVCNF have only unary predicates, atomic
negation, minimized quantifier scope, and are in the form of conjuncts of

4 Here 7 will be taken as denoting the region bound by the diagram’s rectangle
with 7 removed.

5 The term symbol ¢ appears in the region if t is not part of a constant sequence
and t appears in r or if t is part of a constant sequence and the entire sequence
appears in 7.

16 Nik Swoboda, Gerard Allwein

disjuncts or quantified expressions (using 3 and N) where every predicate in
the scope of the quantifier contains the quantified variable. In this form each
conjunct is either a quantified formula of EVOF, a disjunction in EVOF or
a mixed term disjunction.

Definition 5 Given a Euler/Venn diagram V € EV and a formula ¢ in
MFOL, we will define the relations of observation as follows:

- Vhﬂp if when @ is transformed into EVCNF every conjunct is in EVOF,
and for each conjunct v it is the case that V):C:ﬂb

— V™ if when @ is transformed into EVCNF every conjunct is in EVOF,
and there is some conjunct ¥ such that V=", and for the rest either

Vi1 or Vit
V}%?go will be written if neither V"¢ nor VR .

9.2 Using DAGs to verify this rule

We begin with a support Euler/Venn diagram and a resulting formula of
FOL. Due to the nature of Euler/Venn diagrams, we begin by assuming
that the formula only contains monadic predicates. First we convert the
formula of FOL into EVCNF and then using this formula we construct a
DAG containing all the information in that formula that could be expressed
in an Euler/Venn diagram. Here we will focus on just the positive part of the
observe relation, Vhﬂp, as the negative part can be addressed analogously.

Algorithm 3 Given a formula ¢ of MFOL, we use the following algorithm
to extract all pertinent Euler/Venn information from the formula and to
produce a DAG. We begin with D as the empty DAG.

1. For each predicate P occurring in ¢ we add to D, using the Introduction
of a new curve rule, a basic curve with the label P.

2. Convert ¢ into ¢’ in EVCNF and group non-quantified conjuncts sharing
the same term. If any of the conjuncts of ¢’ is not in EVOF then the
construction fails.

3. For each group of non-quantified conjuncts all with the term ¢, ¥4 (t), . . . ¥, (t),
in ¢’ we make a new constant sequence in D placing the term ¢ in ev-
ery leaf node of D that represents a subregion of regiony (1 (t) A... A
P (t)). 8 If regiony (Y1 (t) A ... Apy(t)) is empty the construction fails.

4. For all other conjuncts v in ¢’, if 1) is of the form:

—01(t) V...0,(t) - We make a new constant sequence in D placing
the term ¢ in every leaf node of D that represents a subregion of

regiony (61(t) V... 0,(t)).

5 Here and later when using regiony without the explicit mention of which dia-
gram V is intended, we assume that V' will be a Venn diagram with the appropriate
number of curves.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 17

(a) A DAG representing a Venn di- (b) Shading and constant se-
agram with three curves quences added

Fig. 6 An example of constructing a DAG from a sentence of FOL

— Nz 6(z) - We shade every leaf node of D that represents a subregion
of regiony (6(x)).
— Jx 6(xz) - We make a new constant sequence in D placing the fresh
special term xj (from SVar) in every leaf node of D that represents
a subregion of regiony (0(x)).
5. Lastly, working from the leaf nodes row by row up the DAG we shade
any node with only shaded descendants and add a constant to a node
which has any node as a descendant with that constant.

So now to verify the observation of a formula of MFOL from an Eu-
ler/Venn diagram we first use Algorithm 3 to generate a DAG from that
formula. As before we then need to calculate the deltas between the support
and the result. Then the collection of deltas is examined to insure that no
inappropriate changes have occurred. The swapping of shaded regions for
missing regions and constant sequences for special term sequences, as well
as the weakening of information is permitted. However, any changes which
introduce new information are not permitted.

Before proceeding, we will present a simple example of the use of Algo-
rithm 3 to generate a DAG from the sentence Va(A(z) — (B(z) V C(z)) A
C(y). In Steps 1 and 2, we begin by constructing the DAG in Fig. 6(a), and
converting the sentence into EVCNF, Nz (A(z) A =B(x) A =C(z)) A C(y)
Then in step 3, we then place a y constant into every leaf node which rep-
resents a subregion of the basic region C' and shade the leaf node with the
tag ABC. Step 4 does not require any further changes to the DAG.

Algorithm 4 Given a DAG D in DAG and a formula ¢ of MFOL we use
the following procedure to verify the observation of ¢ from D:

1. Using ¢ and Algorithm 3 construct the DAG D’. If the construction fails
then the rule fails.
2. Use Algorithm 1 to compute the set DELTAS between D and D’.
3. We check that for each delta d € DELTAS that d is:
— a REMOVE CURVE, ADD REGION or REMOVE SHADE delta.

18 Nik Swoboda, Gerard Allwein

— a REMOVE CONSTANT LINK delta and that for the removed link ¢ there
is a REMOVE CONSTANT LINK delta for every link of that sequence
and also for some special term xj a ADD CONSTANT LINK : zg;t for
each link in the same leaf nodes. More simply put, that there is a
sequence of deltas which demonstrate the substitution of a possibly
longer special term sequence for some constant sequence.

— a REMOVE CONSTANT LINK delta and that for the removed link ¢ there
is a REMOVE CONSTANT LINK : ¢;t delta for every leaf node in D with
tag ¢ containing c¢ (i.e., that the entire constant sequence is being
removed).

— ADD CONSTANT LINK delta and that there is a leaf node labeled t
containing a ¢ for which there are no ADD CONSTANT LINK : ¢;t deltas
(i.e., that an entire new constant sequence isn’t being added).

— a ADD SHADE delta and d’s node was missing in D.

— otherwise the use of the Observe rule fails. (Note that it is not possi-
ble for a REMOVE REGION delta to occur, since Algorithm 3 does not
produce DAGs with nodes representing missing regions.)

Proposition 4 The verification technique given in Algorithm 4, correctly
verifies the Observe rule presented in Definition 5.

9.3 Observing from formulas of FOL Euler/Venn diagrams

Due to space constraints, we are unable to give a detailed description of
the verification of the observation of formulas of FOL from Euler/Venn
diagrams. However, after providing the appropriate definitions regarding
when a diagram can be observed from a formula, an analogous procedure
can be used to the one given in the last section (switching the roles of the
diagram and the formula).

10 Conclusion and further work

The main goal of this paper was to present methods for the verification of
heterogeneous Euler/Venn and FOL proofs. To accomplish this, we have
considered the steps of a heterogeneous Euler/Venn and FOL proof as con-
taining DAGs. From this point of view, a proof can then be thought of
as a sequence of DAG transformations. We have shown how the charac-
terization of these transformations can be used in the verification of the
proofs. Furthermore, these verification methods were shown to be correct
with respect to a certain mathematical system of Euler/Venn and FOL rea-
soning. Though the details of these techniques are specific to Euler/Venn
diagrams the general technique of thinking of diagrammatic proofs as graph
transformations could be applied to other diagrammatic systems, including
constraint and spider diagrams discussed in Section 3. Other natural appli-
cations could include systems with different kinds of hierarchical diagrams
such as family trees and company hierarchy diagrams.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 19

Acknowledgements The research reported here was supported in part by a con-
tract with the Telecommunications Advancement Organization of Japan entitled,
“A study of innovational interaction media for the development of a highly func-
tional networked society” and a Ramén and Cajal research grant provided by the
Spanish Ministry of Science and Technology.

References

10.

11.

12.

13.

14.

15.

16.

. Barwise, J. and J. Etchemendy, “Hyperproof,” CSLI Publications, Stanford,

1994.

Dretske, F. 1., “Seeing and Knowing,” Chicago University Press, Chicago,
1969.

Flower, J. and J. Howse, Generating euler diagrams, in: Hegarty et al. [7] pp.
61-75.

Gil, J. Y., J. Howse and S. Kent, Constraint diagrams: a step beyond uml, in:
Proceedings TOOLS USA (1999), pp. 453—463.

Gil, J. Y., J. Howse and S. Kent, Formalising spider diagrams, in: Proceedings
IEEE Symposium on Visual Languages (VL99) (1999), pp. 130-137.
Hammer, E. M., “Logic and Visual Information,” CSLI and FOLLI, Stanford,
1995.

Hegarty, M., B. Meyer and N. H. Narayanan, editors, “Diagrammatic Repre-
sentation and Inference,” Number 2317 in Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, Berlin, 2002.

Howse, J., F. Molina, J. Taylor, S. Kent and J. Y. Gil, Spider diagrams: A
diagrammatic reasoning system, Journal of Visual Languages and Computing
12 (2001), pp. 299-324.

Howse, J., G. Stapleton, J. Flower and J. Taylor, Corresponding regions in
euler diagrams, in: Hegarty et al. [7] pp. 76-90.

Kent, S., Constraint diagrams: visualizing invariants in object-oriented mod-
els, in: Proceedings of the 1997 ACM SIGPLAN conference on Object-oriented
programming systems, languages and applications (1997), pp. 327-341.
Rumbaugh, J., I. Jacobson and G. Booch, “Unified Modeling Language Ref-
erence Manual,” Addison Wesley Professional, 1999.

Sawamura, H. and K. Kiyozuka, Jvenn: A visual reasoning system with di-
agrams and sentences, in: M. Anderson, P. Cheng and V. Haarslev, editors,
Theory and Application of Diagrams, number 1889 in Lecture Notes in Arti-
ficial Intelligence (2000), pp. 271-285.

Shin, S.-J., “The Logical Status of Diagrams,” Cambridge University Press,
Cambridge, 1995.

Swoboda, N., Implementing Euler/Venn reasoning systems, in: M. Anderson,
B. Meyer and P. Olivier, editors, Diagrammatic Representation and Reason-
ing, Springer-Verlag, London, 2002 pp. 371-386.

Swoboda, N. and G. Allwein, A case study of the design and implementa-
tion of heterogeneous reasoning systems, in: L. Magnani, N. J. Nersessian and
C. Pizzi, editors, Logical and Computational Aspects of Model-Based Reason-
ing, Kluwer Academic, Dordrecht, 2002 pp. 3—20.

Swoboda, N. and G. Allwein, Modeling heterogeneous systems, in: Hegarty
et al. [7] pp. 131-145.

20 Nik Swoboda, Gerard Allwein
Appendix: Proof sketches for the results reported in this paper

Proposition 5 Any DAG in DAG can be uniquely determined by its col-
lection of leaf nodes and leaf node properties.

Proof sketch of Proposition 5:

In [14], it was shown that the non-inductive construction technique for build-
ing DAGs produces a unique DAG from a collection of DAG leaf nodes.

Proof sketch of Proposition 1:

We begin by observing that diagrams V, V' € £V are syntactic variations of
one another (both having the same information content) if and only if:

— they both contain the same collection of labeled curves

— For each shaded minimal region r with tag ¢ in V or V' there is a region
7’ with the tag ¢ in the other diagram that is also shaded

— For each missing region r with a complete tag ¢t in V or V'’ there is a
region r’ with the tag ¢ in the other diagram that is also missing

— For each constant link ¢ in a minimal region r with tag ¢ in V or V' there
is a region 1’ containing the link ¢ with the tag ¢ in the other diagram

Thus informationally significant differences between two Euler/Venn dia-
grams consist of adding or removing curves, missing regions, shading or
constant links. Since the system of DAGs captures the essential properties
of the Euler/Venn system this same property holds of DAGs. The collection
of DAG deltas has one delta for each of these possible changes.

Proof sketch for Proposition 2:

The algorithm begins by resolving the curve differences, so we know that
all appropriate ADD CURVE and REMOVE CURVE deltas will be included in
DELTAS. While adding curves from the support DAG, the algorithm uses
the Introduction of a new curve rule of inference, which we know does not
add nor remove any information from the DAG. To remove curves from
the diagram the Erasure rule of inference is used, which soundly removes
inappropriate information from the support DAG. Using the Proposition 5
we know that a DAG is uniquely determined by its leaf nodes and thus only
considering all the possible DAG deltas between the leaf nodes captures all
appropriate differences.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 21

Proof sketch for Proposition 3:

We proceed rule by rule checking that the kinds of DAG deltas allowed
by Algorithm 2 are justified by the rules of inference and that any valid
application of a rule of inference is allowed by Algorithm 2. Since the relation
between the rules of inference and the DAG deltas is very close we will show
both directions at the same time. Given D, D’ € DAG and the set DELTAS
resulting from the application of Algorithm 1 to D and D’:

— Erasure of part of a constant sequence — This rule allows the erasure of
a constant link of a constant sequence of D where that link falls within
a shaded node. To verify this rule, we check to see that DELTAS only
contains one delta of the form REMOVE CONSTANT LINK : ¢;¢ and that
the leaf node tagged by ¢ is shaded in D.

— Extending a constant sequence — This rule allows the addition of a new
¢ link to a constant sequence of D in a leaf node of D’ that does not
already contain a link of c¢. To verify this rule, we check to see that
DELTAS only contains one delta of the form ADD CONSTANT LINK : c;t,
that the node corresponding to ¢ doesn’t already contain the link ¢, and
that some other node n’ in D contains the link ¢ (to prevent the possible
introduction of a new constant sequence).

— Erasure — D’ is obtained from D by erasing:

— an entire constant sequence;

— the shading of a node and the shading of all its descendants and
ancestors

— nodes representing a basic region and its complement (along with
the redrawing of the inner nodes of D) if the removal does not cause
any nodes representing counterpart regions to disagree with regard
to shading, whether they are missing or the containment of links of
a constant sequence.

To verify this rule, we check to see that DELTAS only contains:

— REMOVE CONSTANT LINK deltas where for each removed constant link
¢ there is a REMOVE CONSTANT LINK : c;t delta for every leaf node
with tag t containing ¢ (we are sure that the entire constant sequence
is being removed).

— REMOVE SHADE deltas

— REMOVE CURVE deltas. Note that only a REMOVE CURVE delta is in-
cluded in DELTAS when a curve is removed in such a way that all
nodes representing counterpart regions agree with regard to shading,
whether they are missing, or the containment of links of a constant
sequence. If other changes were made while removing the curve then
other deltas would be included in DELTAS.

— Introduction of a new curve — D’ is the result of adding a new curve to D
which divides all of the leaf nodes into two new leaf nodes, in such a way
that D’ is well-formed, the other labels of D are left undisturbed, and all
counterparts agree with respect to shading, whether they are missing,
and the containment of links of a constant sequence. To verify this rule,

22 Nik Swoboda, Gerard Allwein

we check to see that DELTAS only contains one ADD CURVE delta. Note
that only a ADD CURVE delta is included in DELTAS when a curve is added
in such a way that all nodes representing counterpart regions agree with
regard to shading, whether they are missing, or the containment of links
of a constant sequence. If other changes were made while adding the
curve then other deltas would be included in DELTAS.

— Inconsistency — This rule requires that there is some collection of nodes in
the support that are all shaded and contain all the links of some constant
sequence. To verify this rule we check to see that for some constant
sequence ¢ in D that every leaf node in D containing c is shaded.

— Adding shaded regions — D’ is the result of adding a new leaf node which
represents the counterpart of a missing leaf node in D provided that this
new node is shaded (and appropriately redrawing the inner nodes of D).
To verify this rule, we check to see that DELTAS only contains two deltas
one each of the form ADD REGION : ¢ and ADD SHADE : ¢ with the same
tag t. Note that if a node representing a basic region were being added
then DELTAS would contain an ADD CURVE delta.

— Removing shaded regions — D’ is the result of removing a shaded leaf node
of D (and appropriately redrawing the inner nodes of D). To verify this
rule, we check to see that DELTAS only contains two deltas one each of
the form REMOVE REGION : ¢ and REMOVE SHADE : ¢ with the same tag
t. As in the last case, if a node representing a basic region was being
removed then DELTAS would contain a REMOVE CURVE delta.

Definition 6 Given a formula ¢ of EVOF, a DAG D of DAG, and the set
DELTAS resulting from the application of Algorithm 1 to the empty DAG and
d, we say that ¢ supports D, ¢ > D, if every collection of ADD CONSTANT
LINK deltas all containing the same constant in DELTAS is supported by ¢,
and each ADD CURVE and ADD SHADE delta in DELTAS is supported by ¢. The
notion of supports is defined as follows.

— We say that the collection of ADD CONSTANT LINK deltas, dy,...d,, are
supported by p, pt>ADD CONSTANT LINK: c;ty,...,ADD CONSTANT LINK:
C;ty, if:

— © 1is unquantified, in the form (c), and all the leaf nodes in D
containing the term c¢ are included in tq,...,t, and regiony (¥(c))
18 a subregion of the union of the regions represented by the nodes
et

— p is of the form Jx ¥ (x), and all the leaf nodes in D containing the
special term xy, are included inty,. .., t, and regiony (¢¥(x)) is a sub-
region of the union of the regions represented by the nodes t1, ..., ty.

— We say that ¢ > ADD CURVE : [if the predicate | appears in .

— We say that ¢ 1> ADD SHADE : t if @ is of the form Nz ¢ (x) and the leaf
node with the tag t represents a subregion of regiony (¥(x)).

Note that no formula of EVOF supports any ADD REGION, REMOVE CURVE,
REMOVE REGION, REMOVE SHADE, or REMOVE CONSTANT LINK deltas.

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 23

Proposition 6 The DAG produced by Algorithm 3 from the formula of
MFOL is supported by that formula.

Proof sketch for Proposition 6:

Given a formula ¢ of MFOL, and the DAG D produced by Algorithm 3,
we assume that D is not supported by the formula to show a contradiction.
We take DELTAS to be the collection of DAG deltas resulting from the ap-
plication of Algorithm 1 to the empty DAG and D. We begin by observing
that DELTAS can not contain any REMOVE CURVE, REMOVE REGION, REMOVE
SHADE, REMOVE CONSTANT LINK, or ADD REGION deltas, since it was applied
to the empty DAG and D. (ADD REGION deltas can only occur when the
initial DAG contains missing leaf nodes.) So there must be one of the fol-
lowing curve deltas in DELTAS which prevents D from being supported by
©:

— ADD CURVE : [and then it must be the case that the predicate [doesn’t
appear in . However, for this delta to be in DELTAS D must contain a
node representing the basic region with the label [, and for this to occur
(must contain [, contradiction.

— ADD SHADE : ¢ and then it must be the case that either ¢ doesn’t have
a conjunct the form Nz ¢(z) or for all its conjuncts of that form the
leaf node with the tag ¢t do not represent a subregion of regiony (¢¥(z)).
However for the node ¢ to be shaded in D ¢ must have a conjunct of
the form Nz 6(z) and the leaf node with the tag ¢ must represent a
subregion of regiony (6(z)), contradiction.

— ADD CONSTANT LINK : c¢;t then it must be the case that either ¢ doesn’t
have a conjunct of the form #(c) or or it does but for all of them the
node ¢ does not represent a subregion of regiony (¢ (c)). But since the
the constant sequence appears in D, ¢ must have a conjunct of the
form 6(c) with the node ¢ representing a subregion of regiony (6(c)),
contradiction.

— ADD CONSTANT LINK : xg;t then it must be the case that either ¢ doesn’t
have a conjunct of the form Jx 6(z) or it does but for all of them the
node ¢ does not represent a subregion of regiony (8(x)). But since the
the special term sequence appears in D, ¢ must have a conjunct of the
form 3z O(x) with the node ¢ representing a subregion of regiony (6(z)),
contradiction.

Proof sketch for Proposition 4:

This proof involves showing that Algorithm 4 only allows valid applications
of the Observe rule and that any valid application of the Observe rule is
allowed by Algorithm 4. We will begin by showing the first part of this
result, that Algorithm 4 only allows valid applications of the Observe rule.

24 Nik Swoboda, Gerard Allwein

Our goal will be to show that if for some diagram V of £V and formula of
MFOL ¢, that if V|=3+<p then Algorithm 4 correctly verifies the application
of the rule. We begin by noting that both the definition of observation
(Definition 5) and Algorithm 4 begin by working with the conjuncts of a
formula of MFOL converted into EVCNF. Also, that in both cases if any of
the conjuncts are not in EVOF, then nothing can be observed to hold or fail
on the basis of the diagram. Furthermore, we know from Proposition 6 that
the DAG D constructed from V in the first stages of Algorithm 4 (using
Algorithm 3) is supported by the formula used to generate it. So we can
proceed by showing the result for all formulas of EVCNF not containing
any quantifiers and with predicates all containing the same term and also
for quantified formulas of EVOF (since we are now only looking at groups
of conjuncts containing the same term in EVCNF we will consider arbitrary
conjunctions separately):

— is an unquantified formula of the form i (¢) A ... A ¢, (t) with each
1 (t) consisting of a possibly negated single predicate or a disjunction
of possibly negated single predicates. Then we know that all of the links
of the ¢ constant sequence appear in subregions of regiony (¥1(t) A... A
n(t)). Algorithm 3 will then produce a DAG D’ with a curve for each
predicate in 1 (t) A ... A, (t) and with constant symbols ¢ in each node
representing subregions of the region regiony (¥1(t) A ... Ay, (t)). We
now consider all the possible DAG deltas resulting from the application
of Algorithm 1 on the DAG generated from D and D’.

— All REMOVE CURVE, ADD REGION, and REMOVE SHADE deltas are per-
mitted in Algorithm 4.

— REMOVE REGION However, as noted, it is not possible for this delta to
occur.

— ADD CURVE Since D}'z+<p we know that there aren’t any predicates
in ¢ which do not correspond to curves in D, and thus that it is not
possible for this delta to occur.

— ADD CONSTANT LINK : ¢;t However, since in D’ there is the constant
sequence, ¢, any ADD CONSTANT LINK : c¢;t deltas are permitted.

— ADD SHADE : t But, since D’ does not contain any shading this can
not occur.

— REMOVE CONSTANT LINK : ¢;t Here there are two cases, either a link is
being removed or an entire chain is being removed. We will consider
the removal of a chain first. Since there is the constant sequence,
¢, in D', this delta would cause the rule to fail. The existence of
this delta means that there is some region in D which has a link
of the constant sequence which does not contain a link in D’. This
means that information was added to D’ which is not supported by
the information carried by D, namely that there is less uncertainty
regarding the location of the constant. Doing this is analogous to
removing a disjunct of a disjunction. But if this delta was detected,
it would also mean that D}tﬁgp would not be the case, thus this can
not be possible. In the second case (removing an entire sequence),

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 25

there will be a REMOVE CONSTANT LINK for each of those constant
links and then these deltas are permitted.

— ¢ is of the form Nz ¢ (z). Then we know that regiony (¢(z)) is shaded
or missing in D. Algorithm 3 will then produce a DAG D’ with a curve
for each predicate in ¥ (x) and with each of the nodes representing sub-
regions of regiony (¢ (x)) shaded. We now consider all the possible DAG
deltas resulting from the application of Algorithm 1 on the DAG gener-
ated from D and D’ (ignoring any deltas covered by the same argument
as in the last case).

— ADD CONSTANT LINK : c¢;t But, since D’ does not contain any con-
stant sequences this delta can not occur.

— ADD SHADE : t. Here there are two possibilities, first that the shaded
region was missing in D and in this case the delta is permitted.
However if the region was not missing in D then this delta would
cause the rule to fail. But this would mean that information (that
certain subregions are shaded), which was not contained in D, was
added to D’. But if this delta was detected, it would also mean that
D|¢w+g0 would not be the case, thus this can not be possible.

— REMOVE CONSTANT LINK : ¢;t However, since D’ does not contain any
constant sequences, this is not possible.

— ¢ is of the form 3z ¥(z). The argument for this case is analogous to
that used for the first case except we allow for the swapping of constant
symbols for special terms in the DAG.

Now we need to consider arbitrary conjunctions, in other words when a
conjunct (1 (t1) A... Ay (tm)) in EVCNF is observable from D that Algo-
rithm 4 approves of the observation of each of those conjuncts on the basis
of D. In the previous cases we considered very simple DAGS consisting of
a number of curves with either shaded regions or one constant sequence.
When considering formulas with various conjuncts, the DAG generated by
Algorithm 3 will contain more shading and constant sequence information.
Thus the main question that needs to be resolved is whether this additional
information changes the outcome of Algorithm 4 when applied to each of
these conjuncts alone. As established above, we only need to worry about
ADD CONSTANT LINK, ADD SHADE, and REMOVE CONSTANT LINK deltas. Us-
ing the same argument for ADD CONSTANT LINK, REMOVE CONSTANT LINK as
in the first case above and the argument for ADD SHADE as in the second
case above this can be established.

We will now show that any valid application of the Observe rule is allowed
by Algorithm 4. We assume that there is a valid application of the rule
which isn’t allowed by Algorithm 4 to show a contradiction. In other words,
that there is some MFOL formula ¢ and Euler/Venn diagram V such that
V|:x+<p but that failure is returned by Algorithm 4 when run using V' and
. Here we will take the DAG D to be the translation of V. We recall that
Algorithm 4 begins by generating a DAG D’ which is supported by ¢ using
Algorithm 3. It then uses Algorithm 1 to compute the set DELTAS between
D and D’. For the algorithm to fail, one of the following must be the case:

26

Nik Swoboda, Gerard Allwein

— ADD CURVE : [is in DELTAS, but in this case there is a curve in D’ which

isn’t in D, which means that a predicate appears in ¢ which doesn’t
appear in V. However if this were the case then ¢ couldn’t be observed,
contradiction.

ADD CONSTANT LINK : ¢;¢ (or ADD CONSTANT LINK : zg;t) is in DELTAS
and there is no node t containing a ¢ (or xy) for which there are no
ADD CONSTANT LINK : ¢;t (or ADD CONSTANT LINK : x;t) deltas (ie.,
an entire new constant sequence has been added). For this to occur
there must be a conjunct in the EVCNF version of ¢ which consists
of either 1(c) (or 3z ¢(x)). However recall that the constant ¢ (or zy)
doesn’t appear in V. Since the constant ¢ (or xj) doesn’t appear in V/
then no formula in EVCNF containing a conjunct of the form #(c) (or
Jz ¢(x)) can be observed from it, contradiction.

ADD SHADE : t is in DELTAS and the node with the tag ¢ is not missing in
D. Then there must be a conjunct in the EVCNF version of ¢ which is
in the form Nz (z) with the node ¢ a subregion of regiony (¢ (z)). But
for this to be observed from V' that region must be shaded or missing in
V', contradiction.

REMOVE CONSTANT LINK : ¢;t (or REMOVE CONSTANT LINK : x;t) is in
DELTAS but there is some leaf node ¢’ containing ¢ (or z) for which there
is no REMOVE CONSTANT LINK : ¢;t’ (or REMOVE CONSTANT LINK : x;t')
delta(i.e., that the entire constant sequence was not removed). For this
to occur there must be a conjunct in the EVCNF version of ¢ which
consists of either 1 (c) (or 3z ¢(x)) but that the constant appears in a
leaf node which represents a region whose counterpart representing node
in D’ doesn’t have that constant. However, if this is the case than the
formula couldn’t be observed from V', contradiction.

REMOVE REGION : ¢ is in DELTAS. This is not possible as the canonical
DAG D’ generated from ¢ does not have any missing leaf nodes.

Note that it is not possible for a REMOVE CURVE, ADD REGION, or REMOVE
SHADE delta to cause the algorithm to fail.

Biographies

Dr. Nik Swoboda recently began a position as a Ramén y
Cajal Research Professor at the Universidad Politécnica
de Madrid after spending a year as an invited researcher
in the Media Integration Science Laboratories of the ATR
research institute in Kyoto, Japan. He received his under-
graduate degree from Haverford College, and then com-
pleted a MS and Ph.D. in Computer Science at Indiana
University. His main research interest is in diagrammatic

reasoning and the nature of non-sentential representation systems. He also
collaborates in cognitive science research studying the use of graphical rep-
resentations in communication. In his spare time he enjoys visiting beautiful

Using DAG Transformations to Verify Euler/Venn and FOL Proofs 27

gardens and temples, taking day hikes, traveling, and eating tasty Japanese
and Spanish food. He dreams of the day when he can forsake computers
and spend his days sailing and fishing, but in the meantime, he utilizes his
imagination to enjoy the world of sailing in sea adventure novels.

-—==Dr. Gerard Allwein is currently at the Naval Research
’ Laboratory in Washingon, D.C.,; USA. His undergradu-
ate is from Purdue University and holds graduate degrees
from Indiana University. Upon graduation, he served as
the Visual Inference Laboratory’s Assistant Director un-
der Jon Barwise. Dr. Allwein works primarily in mathe-
matical aspects of logic and information. His current in-
terests are diagrammatic reasoning, algebraic logic, and
information hiding. Ariel and Tinkerbell, two Siamese house weasels, would
like to add that Dr. Allwein is one of the world’s biggest gits.

