
Theory and Practice of Logic Programming
http://journals.cambridge.org/TLP

Additional services for Theory and Practice of Logic
Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Description and Optimization of Abstract Machines in a
Dialect of Prolog

JOSÉ F. MORALES, MANUEL CARRO and MANUEL HERMENEGILDO

Theory and Practice of Logic Programming / FirstView Article / January 2015, pp 1 - 58
DOI: 10.1017/S1471068414000672, Published online: 05 January 2015

Link to this article: http://journals.cambridge.org/abstract_S1471068414000672

How to cite this article:
JOSÉ F. MORALES, MANUEL CARRO and MANUEL HERMENEGILDO Description and
Optimization of Abstract Machines in a Dialect of Prolog. Theory and Practice of Logic
Programming, Available on CJO 2015 doi:10.1017/S1471068414000672

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/TLP, IP address: 95.122.198.227 on 06 Jan 2015

TLP: page 1 of 58 C© Cambridge University Press 2014

doi:10.1017/S1471068414000672

1

Description and Optimization of Abstract
Machines in a Dialect of Prolog�

JOSÉ F. MORALES1, MANUEL CARRO1,2 and MANUEL

HERMENEGILDO1,2

1IMDEA Software Institute, Madrid, Spain

(e-mail: {josef.morales,manuel.carro,manuel.hermenegildo}@imdea.org)
2School of Computer Science, Technical University of Madrid (UPM), Madrid, Spain

(e-mail: {mcarro,herme}@fi.upm.es)

submitted 26 January 2007; revised 8 July 2009, 20 April 2014; accepted 26 June 2014

Abstract

In order to achieve competitive performance, abstract machines for Prolog and related

languages end up being large and intricate, and incorporate sophisticated optimizations, both

at the design and at the implementation levels. At the same time, efficiency considerations make

it necessary to use low-level languages in their implementation. This makes them laborious

to code, optimize, and, especially, maintain and extend. Writing the abstract machine (and

ancillary code) in a higher-level language can help tame this inherent complexity. We show

how the semantics of most basic components of an efficient virtual machine for Prolog can be

described using (a variant of) Prolog. These descriptions are then compiled to C and assembled

to build a complete bytecode emulator. Thanks to the high-level of the language used and

its closeness to Prolog, the abstract machine description can be manipulated using standard

Prolog compilation and optimization techniques with relative ease. We also show how, by

applying program transformations selectively, we obtain abstract machine implementations

whose performance can match and even exceed that of state-of-the-art, highly-tuned, hand-

crafted emulators.

KEYWORDS: Abstract machines, compilation, optimization, program transformation, prolog,

logic languages.

1 Introduction

Abstract machines have proved themselves very useful when defining theoretical

models and implementations of software and hardware systems. In particular,

they have been widely used to define execution models and as implementation

vehicles for many languages, most frequently in functional and logic programming,

and more recently also in object-oriented programming, with the Java abstract

machine (Gosling et al. 2005) being a very popular recent example. There are also

� This is a significantly extended and revised version of the paper “Towards Description and Optimization
of Abstract Machines in an Extension of Prolog” published in the proceedings of the 2006 International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’06) (Morales et al. 2007).

2 J. F. Morales et al.

early examples of the use of abstract machines in traditional procedural languages

(e.g., the P-Code used as a target in early Pascal implementations (Nori et al. 1981))

and in other realms such as, for example, operating systems (e.g., Dis, the virtual

machine for the Inferno operating system (Dorward et al. 1997)).

The practical applications of the indirect execution mechanism that an abstract

machine represents are countless: portability, generally small executables, simpler

security control through sandboxing, increased compilation speed, etc. However,

unless the abstract machine implementation is highly optimized, these benefits can

come at the cost of poor performance. Designing and implementing fast, resource-

friendly, competitive abstract machines is a complex task. This is especially so in the

case of programming languages where there is a wide gap between many of their

basic constructs and features and what is available in the underlying off-the-shelf

hardware: term representation versus memory words, unification versus assignment,

automatic versus manual memory management, destructive versus non-destructive

updates, backtracking and tabling versus Von Neumann-style control flow, etc. In

addition, the extensive code optimizations required to achieve good performance

make development and, especially, maintenance and further modifications non-

trivial. Implementing or testing new optimizations is often involved, as decisions

previously taken need to be revisited, and low-level, tedious recoding is often

necessary to test a new idea.

Improved performance has been achieved by post-processing the input program

(often called bytecode) of the abstract machine (emulator) and generating efficient

native code — sometimes achieving performance that is very close to that of an

implementation of the source program directly written in C. This is technically

challenging and the overall picture is even more complex when bytecode and native

code are mixed, usually by dynamic recompilation. This in principle combines

the best of both worlds by deciding when and how native code (which may

be large and/or costly to obtain) is generated based on runtime analysis of the

program execution, while leaving the rest as bytecode. Some examples are the Java

HotSpot VM (Paleczny et al. 2001), the Psyco (Rigo 2004) extension for Python, or

for logic programming, all-argument predicate indexing in recent versions of Yap

Prolog (Santos-Costa et al. 2007), the dynamic recompilation of asserted predicates

in BinProlog (Tarau 2006), etc. Note, however, that the initial complexity of the

virtual machine and all of its associated maintenance issues have not disappeared,

and emulator designers and maintainers still have to struggle with thousands of lines

of low-level code.

In this paper, we explore the possibility of rewriting most of the runtime and

virtual machine in the high-level source language (or a close dialect of it), and then

use all the available compilation machinery to obtain native code from it. Ideally, this

native code should provide comparable performance to that of hand-crafted code,

while keeping the size of low-level coded parts in the system to a minimum. This is

the approach taken herein, where we explore writing Prolog emulators in a Prolog

dialect. As we will see later, the approach is interesting not only for simplifying the

task of developers but also for widening the application domain of the language to

other kinds of problems which extend beyond just emulators, such as reusing analysis

Description and Optimization of A.M. in Prolog 3

and transformation passes, and making it easier to automate tedious optimization

techniques for emulators, such as specializing emulator instructions. The advantages

of using a higher-level language are rooted on one hand in the capability of hiding

implementation details that a higher-level language provides, and on the other hand

in its amenability to transformation and manipulation. These, as we will see, are key

for our goals, as they reduce error-prone, tedious programming work, while making

it possible to describe at the same time complex abstract machines in a concise and

correct way.

A similar objective has been pursued elsewhere. For example, the JavaInJava

(Taivalsaari 1998) and PyPy (Rigo and Pedroni 2006) projects have similar goals.

The initial performance figures reported for these implementations highlight how

challenging it is to make them competitive with existing hand-tuned abstract

machines: JavaInJava started with an initial slowdown of approximately 700 times

w.r.t. then-current implementations, and PyPy started at the 2,000 times slowdown

level. Competitive execution times were only possible after changes in the source

language and compilation tool chain, by restricting it or adding annotations. For

example, the slowdown of PyPy was reduced to 3.5–11.0 times w.r.t. CPython (Rigo

and Pedroni 2006). These results can be partially traced back to the attempt to

reimplement the whole machinery at once, which has the disadvantage of making

such a slowdown almost inevitable. This makes it difficult to use the generated virtual

machines as “production” software (which would therefore be routinely tested) and,

especially, it makes it difficult to study how a certain, non-local optimization will

carry over to a complete, optimized abstract machine.

Therefore, we chose an alternative approach: gradually porting selected key

components (such as, e.g., instruction definitions) and combining this port with

other emulator generation techniques (Morales et al. 2005). At every step we made

sure experimentally1 that the performance of the original emulator was maintained

throughout the process. The final result is an emulator that is completely written

in a high-level language and which, when compiled to native code, does not lose

any performance w.r.t. a manually written emulator. Also, and as a very relevant

byproduct, we develop a language (and a compiler for it) which is high-level enough

to make several program transformation and analysis techniques applicable, while

offering the possibility of being compiled into efficient native code. While this

language is general-purpose and can be used to implement arbitrary programs,

throughout this paper, we will focus on its use in writing abstract machines and to

easily generate variations of such machines.

The rest of the paper proceeds as follows: Section 2 gives an overview of the

different parts of our compilation architecture and information flow and compares

it with a more traditional setup. Section 3 presents the source language with which

our abstract machine is written, and justifies the design decisions (e.g., typing,

destructive updates, etc.) based on the needs of applications which demand high

1 And also with stronger means: for some core components we checked that the binary code produced
from the high-level definition of the abstract machine and that coming from the hand-written one were
identical.

4 J. F. Morales et al.

performance. Section 3.4 summarizes how compilation to efficient native code

is done through C. Section 4 describes language extensions which were devised

specifically to write abstract machines (in particular, the Warren’s Abstract Machine

(WAM)) and Section 5 explores how the added flexibility of the high-level language

approach can be taken advantage of in order to easily generate variants of abstract

machines with different core characteristics. This section also studies experimentally

the performance that can be attained with these variants. Finally, Section 6 presents

our conclusions.

2 Overview of our compilation architecture

The compilation architecture we present here uses several languages, language

translators, and program representations which must be defined and placed in

the “big picture.” For generality, and since those elements are common to most

bytecode-based systems, we will refer to them by more abstract names when possible

or convenient, although in our initial discussion we will equate them with the actual

languages in our production environment.

The starting point in this work is the Ciao system (Hermenegildo et al. 2012),

which includes an efficient, WAM-based (Warren 1983; Ait-Kaci 1991), abstract

machine coded in C (an independent evolution which forked from the SICStus

0.5/0.7 virtual machine), a compiler to bytecode with an experimental extension

to emit optimized C code (Morales et al. 2004), and the CiaoPP preprocessor, a

program analysis, specialization, and transformation framework (Bueno et al. 1997;

Hermenegildo et al. 1999; Puebla et al. 2000b; Hermenegildo et al. 2005).

We will denote the source Prolog language as Ls, the symbolic WAM code as

La, the byte-encoded WAM code as Lb, and the C language as Lc. The different

languages and translation processes described in this section are typically found in

most Prolog systems, and this scheme could be easily applied to other situations.

We will use N:L to denote the program N written in language L. Thus, we can

distinguish in the traditional approach (Fig. 1):

Front-end compiler: P:Ls is compiled to P:Li, where Ls is the source language and

Li is an intermediate representation. For simplicity, we assume that this phase

includes any analysis, transformation, and optimization.

Bytecode back-end: P:Li is translated to P:La, where La is the symbolic representa-

tion of the bytecode language.

Bytecode assembler: P:La is encoded into P:Lb, where Lb defines encoded bytecode

streams (a sequence of bytes whose design is focused on interpretation speed).

To execute Lb programs, a hand-written emulator E:Lc (where Lc is a lower-level

language) is required, in addition to some runtime code (written in Lc). Alternatively,

it is possible to translate intermediate code by means of a low-level back end, which

compiles a program P:Li directly into its,P:Lc equivalent2. This avoids the need for

2 Note that in JIT systems, the low-level code is generated from the encoded bytecode representation.
For simplicity we keep the figure for static code generation, which takes elements of Li as the input.

Description and Optimization of A.M. in Prolog 5

Fig. 1. Traditional compilation architecture.

any emulator if all programs are compiled to native code, but additional runtime

support is usually necessary.

The initial classical architecture needs manual coding of a large and complex piece

of code, the emulator, using a low-level language, often missing the opportunity to

reuse compilation techniques that may have been developed for high-level languages,

not only to improve efficiency, but also program readability, correctness, etc.

In the extended compilation scheme we assume that we can design a dialect from

Ls and write the emulator for symbolic La code, instead of byte-encoded Lb, in that

language. We will call Lr
s the extended language and Er:Lr

s the emulator. Note that

the mechanical generation of an interpreter for Lb from an interpreter for La was

previously described and successfully tested in an emulator generator (Morales et al.

2005). Adopting it for this work was perceived as a correct decision, since it moves

low-level implementation (and bytecode representation) issues to a translation phase,

thus reducing the requirements on the language to preserve emulator efficiency, and

in practice making the code easier to manage. The new translation pipeline, depicted

in the extended approach path (Fig. 2) shows the following processes (the dashed

lines represent the modifications that some of the elements undergo with respect to

the original ones):

Extended front-end compiler: It compiles Lr
s programs into Lr

i programs (where Lr
i

is the intermediate language with extensions required to produce efficient native

code). This compiler includes the emulator generator. That framework makes it

6 J. F. Morales et al.

Fig. 2. Extended compilation architecture.

possible to write instruction definitions for an La emulator, plus separate bytecode

encoding rules, and process them together to obtain an Lb emulator. That is, it

translates Er:Lr
s to an Er:Lr

i emulator for Lb.

Extended low-level back-end: It compiles Lr
i programs into Lc programs. The result-

ing Er:Lr
i is finally translated to Er:Lc, which should be equivalent (in the sense

of producing the same output) to E:Lc.

The advantage of this scheme lies in its flexibility for sharing optimizations, analyses,

and transformations at different compilation stages (e.g., the same machinery for

partial evaluation, constant propagation, common subexpression elimination, etc.,

can be reused), which are normally reimplemented for high- and low-level languages.

3 The imProlog language

We describe in this section our Lr
s language, imProlog, and the analysis and code

generation techniques used to compile it into highly efficient code3. This Prolog

variant is motivated by the following problems:

3 The name imProlog stands for imperative Prolog, because its purpose is to make typically imperative
algorithms easier to express in Prolog, but minimizing and controlling the scope of impurities.

Description and Optimization of A.M. in Prolog 7

• It is hard to guarantee that certain overheads in Prolog that are directly

related with the language expressiveness (e.g., boxed data for dynamic typing,

trailing for non-determinism, uninstantiated free variables, multiple-precision

arithmetic, etc.) will always be removed by compile-time techniques.

• Even if that overhead could be eliminated, there is also the cost of some basic

operations, such as modifying a single attribute in a custom data structure,

which is not constant in the declarative subset of Prolog. For example, the

cost of replacing the value of an argument in a Prolog structure is, in most

straightforward implementations, linear w.r.t. the number of arguments of the

structure, since a certain amount of copying of the structure spine is typically

involved. In contrast, replacing an element in a C structure is a constant-

time operation. Again, while this overhead can be optimized away in some

cases during compilation, the objective is to define a language layer in which

constant time can be ensured for these operations.

We now present the different elements that comprise the imProlog language and we

will gradually introduce a number of restrictions on the kind of programs which

we admit as valid. The main reason to impose these restrictions is to achieve the

central goal in this paper: generating efficient emulators starting from a high-level

language.

In a nutshell, the imProlog language both restricts and extends Prolog. The

impure features (e.g., the dynamic database) of Prolog are not part of imProlog

and only programs meeting some strict requirements about determinism, modes

in the unification, and others, are allowed. In a somewhat circular fashion, the

requirements we impose on these programs are those which allow us to compile them

into efficient code. Therefore, implementation matters somewhat influence the design

and semantics of the language. On the other hand, imProlog also extends Prolog

in order to provide a single, well-defined, and amenable to analysis mechanism to

implement constant-time access to data: a specific kind of mutable variables. Thanks

to the restrictions aforementioned and this mechanism imProlog programs can be

compiled into very efficient low-level (e.g., C) code.

Since we are starting from Prolog, which is well understood, and the restrictions

on the admissible programs can be introduced painlessly (they just reduce the set of

programs which are deemed valid by the compiler), we will start by showing, in the

next section, how we tackle efficient data handling, which as we mentioned departs

significantly, but in a controlled way, from the semantics of Prolog.

Notation. We will use lowercase math font for variables (x, y, z, . . .) in the rules

that describe the compilation and language semantics. Prolog variable names will

be written in math capital font (X, Y, Z, . . .). Keywords and identifiers in the target

C language use bold text (return). Finally, sans serif text is used for other names

and identifiers (f, g, h, . . .). The typography will make it possible to easily distinguish

a compilation pattern for “f(a)”, where “a” may be any valid term, and “f(A)”,

where “A” is a Prolog variable with the concrete name “A.” Similarly, the expression

f (a1, . . . , an) denotes any structure with functor name f and n arguments, whatever

they may be. It differs from f(A1, . . . , An), where the functor name is fixed to f

8 J. F. Morales et al.

and the arguments are variables). If n is 0, the previous expression is tantamount to

just f.

3.1 Efficient mechanisms for data access and update

In this section, we will describe the formal semantics of typed mutable variables,

our proposal for providing efficient (in terms of time and memory) data handling

in imProlog. These variables feature backtrackable destructive assignment and are

accessible and updatable in constant time through the use of a unique, associated

identifier. This is relevant for us as it is required to efficiently implement a wide

variety of algorithms, some of which appear in WAM-based abstract machines4,

which we want to describe in enough detail as to obtain efficient executables.

There certainly exist a number of options for implementing constant-time data

access in Prolog. Dynamic predicates (assert/retract) can in some cases (maybe with

the help of type information) provide constant-time operations; existing destructive

update primitives (such as setarg/3) can do the same. However, it is difficult for

the analyses normally used in the context of logic programming to deal with them

in a precise way, in a significant part because their semantics was not devised with

analysis in mind, and therefore they are difficult to optimize as much as we need

herein.

Therefore, we opted for a generalization of mutable variables with typing con-

straints as mentioned before. In our experience, this fits in a less intrusive way with

the rest of the logic framework, and at the same time allows us to generate efficient

code for the purpose of the work in this paper5. Let us introduce some preliminary

definitions before presenting the semantics of mutable variables:

Type: τ is a unary predicate that defines a set of values (e.g., regular types as

in Dart and Zobel (1992), Gallagher and de Waal (1994) and Vaucheret and

Bueno (2002)). If τ(v) holds, then v is said to contain values of type τ.

Mutable identifier: The identifier id of a mutable is a unique atomic value that

uniquely identifies a mutable and does not unify with any other non-variable

except itself.

Mutable store: ϕ is a mapping {id1/(τ1, val1), . . . , idn/(τn, valn)}, where id i are

mutable identifiers, val i are terms, and τi type names. The expression ϕ(id) stands

for the pair (τ, val) associated with id in ϕ, while ϕ[id/(τ, val)] denotes a mapping

ϕ′ such that
ϕ′(id i) =

{
(τ, val) if id i = id

ϕ(id i) otherwise.

We assume the availability of a function new id(ϕ) that obtains a new unique

identifier not present in ϕ.

4 One obvious example is the unification algorithm of logical variables, itself based on the union-find
algorithm. An interesting discussion of this point is available in Schrijvers and Frühwirth (2006), where
a CHR version of the union-find algorithm is implemented and its complexity studied.

5 Note that this differs from Morales et al. (2007), where changes in mutable data were non-backtrackable
side effects. Notwithstanding, performance is not affected in this work, since we restrict at compile-time
the emulator instructions to be deterministic.

Description and Optimization of A.M. in Prolog 9

Fig. 3. Rules for the implicit mutable store (operations and logical connectives).

Mutable environment: By ϕ0� ϕ � g we denote a judgment of g in the context

of a mutable environment (ϕ0, ϕ). The pair (ϕ0, ϕ) relates the initial and final

mutable stores, and the interpretation of the g explicit.

We can now define the rules that manipulate mutable variables (Fig. 3). For the

sake of simplicity, they do not impose any evaluation order. In practice, and in order

to keep the computational cost low, we will use the Prolog resolution strategy, and

impose limitations on the instantiation level of some particular terms; we postpone

discussing this issue until Section 3.2:

Creation: The (M-New) rule defines the creation of new mutable placeholders. A

goal m = initmut(τ, v)6 checks that τ(v) holds (i.e., v has type τ), creates a new

mutable identifier id that does not appear as a key in ϕ0 and does not unify

with any other term in the program, defines the updated ϕ as ϕ0 where the value

associated with id is v, and unifies m with id. These restrictions ensure that m is

an unbound variable before the mutable is created.

Access: Reading the contents of a mutable variable is defined in the (M-Read) rule.

The goal x = m@ holds if the variable m is bound with a mutable identifier id,

for which an associated v value exists in the mutable store ϕ, and the variable x

unifies with v 7.

Assignment: Assignment of values to mutables is described in the (M-Assign) rule.

The goal m ⇐ v, which assigns a value to a mutable identifier, holds iff:

• m is unified with a mutable identifier id, for which a value is stored in ϕ0 with

associated type τ;

6 To improve readability, we use the functional notation of Casas et al. (2006) for the new initmut/3 and
(@)/2 built-in predicates.

7 Since the variable in the mutable store is constrained to the type, it is not necessary to check that x
belongs to that type.

10 J. F. Morales et al.

• v has type τ, i.e., the value to be stored is compatible with the type associated

with the mutable;

• ϕ0 is the result of replacing the associated type and value for id by τ and v,

respectively.

Typing: The (M-Type) rule allows checking that a variable contains a mutable

identifier of a given type. A goal mut(τ, m) is true if m is unified with a mutable

identifier id that is associated with the type τ in the mutable store ϕ.

Note that although some of the rules above enforce typing constraints, the

compiler, as we will see, is actually able to statically remove these checks and there

is no dynamic typing involved in the execution of admissible imProlog programs.

The rest of the rules define how the previous operations on mutable variables can

be joined and combined together, and with other predicates:

Weakening: The weakening rule (M-Weak) states that if some goal can be solved

without a mutable store, then it can also be solved in the context of a mutable

store that is left untouched. This rule allows the integration of the new rules with

predicates (and built-ins) that do not use mutables.

Conjunction: The (M-Conj) rule defines how to solve a goal a ∧ b (written as (a, b)

in code) in an environment where the input mutable store ϕ0 is transformed into

ϕ, by solving a and b and connecting the output mutable store of the former (ϕ1)

with the input mutable store of the latter. This conjunction is not commutative,

since the updates performed by a may alter the values read in b. If none of those

goals modify the mutable store, then commutativity can be ensured. If none of

them access the mutable store, then it is equivalent to the classic definition of

conjunction (by applying the (M-Weak) rule).

Disjunction: The disjunction of two goals is defined in the (M-Disj) rule, where a ∨
b (written as (a ; b) in code) holds in a given environment if either a or b holds in

such environment, with no relation between the mutable stores of both branches.

That means that changes in the mutable store would be backtrackable (e.g., any

change introduced by an attempt to solve one branch must be undone when trying

another alternative). As with conjunction, if the goals in the disjunction do not

update nor access the mutable store, then it is equivalent to the classic definition

of disjunction (by applying the (M-Weak) rule).

Mutable terms, conceptually similar to the mutables we present here, were

introduced in SICStus Prolog as a replacement for setarg/3, and also appear in

proposals for global variables in logic programming (such as Schachte (1997), Bart

Demoen’s implementation of (non)backtrackable global variables for hProlog/SWI-

Prolog (Demoen et al. 1998)), or imperative assignment (Giannesini et al. 1985). In

the latter case, there was no notion of types and the terms assigned to had to be

(ground) atoms at the time of assignment.

We will consider that two types unify if their names match. Thus, typing in

mutables divide the mutable store into separate, independent regions, which will

facilitate program analysis. For the purpose of this work, we will treat mutable

variables as a native part of the language. It would however be possible to emulate

Description and Optimization of A.M. in Prolog 11

the mutable store as a pair of additional arguments, threaded from left to right

in the goals of the predicate bodies. A similar translation is commonly used to

implement DCGs or state variables in Mercury (Somogyi et al. 1996).

3.2 Compilation strategy

In the previous section, the operations on mutable data were presented separately

from the host language, and no commitment was made regarding their implementa-

tion other than assuming that it could be done efficiently. However, when the host

language Lr
s has a Prolog-like semantics (featuring unification and backtracking)

and even if backtrackable destructive assignment is used, the compiled code can be

unaffordably inefficient for deterministic computations unless extensive analysis and

optimization is performed. On the other hand, the same computations may be easy

to optimize in lower-level languages.

A way to overcome those problems is to specialize the translated code for a

relevant subset of the initial input data. This subset can be abstractly specified: let

us consider a predicate bool/1 that defines truth values, and a call bool(X) where

X is known to be always bound to a dereferenced atom. The information about

the dereferencing state of X is a partial specification of the initial conditions, and

replacing the call to the generic bool/1 predicate by a call to another predicate that

implements a version of bool/1 that avoids unnecessary work (e.g., there is no need

for choice points or tag testing on X) produces the same computation, but using

code that is both shorter and faster. To be usable in the compilation process, it is

necessary to propagate this knowledge about the program behavior as predicate-level

assertions or program-point annotations, usually by means of automatic methods

such as static analysis. Such techniques has been tested elsewhere (Warren 1977;

Taylor 1991; Van Roy and Despain 1992; Van Roy 1994; Morales et al. 2004).

This approach (as most automatic optimization techniques) has obviously its own

drawbacks when high performance is a requirement: (a) the analysis is not always

precise enough, which makes the compiler require manual annotations or generate

under-optimized programs; (b) the program is not always optimized, even if the

analysis is able to infer interesting properties about it, since the compiler may not

be clever enough to improve the algorithm; and (c) the final program performance

is hard to predict, as we leave more optimization decisions to the compiler, of which

the programmer may not be aware.

For the purposes of this paper, cases (a) and (b) do not represent a major problem.

Firstly, if some of the annotations cannot be obtained automatically and need to be

provided by hand, the programming style still encourages separation of optimization

annotations (as hints for the compiler) and the actual algorithm, which we believe

makes code easier to manage. Secondly, we adapted the language imProlog and

compilation process to make the algorithms implemented in the emulator easier to

represent and compile. For case (c), we took an approach different from that in

other systems. Since our goal is to generate low-level code that ensures efficiency,

we impose some constraints on the compilation output to avoid generation of code

known to be suboptimal. This restricts the admissible code and the compiler informs

12 J. F. Morales et al.

Fig. 4. Syntax of normalized programs.

the user when the constraints do not hold, by reporting efficiency errors. This is

obviously too drastic a solution for general programs, but we found it a good

compromise in our application.

3.2.1 Preprocessing imProlog programs

The compilation algorithm starts with the expansion of syntactic extensions (such

as, e.g., functional notation), followed by normalization and analysis. Normalization

is helpful to reduce programs to simpler building blocks for which compilation

schemes are described.

The syntax of the normalized programs is shown in Figure 4, and is similar to

that used in ciaocc (Morales et al. 2004). It focuses on simplifying code generation

rules and making analysis information easily accessible. Additionally, operations on

mutable variables are considered built-ins. Normalized predicates contain a single

clause, composed of a head and a body which contains a conjunction of goals or

if-then-elses. Every goal and head are prefixed with program point information which

contains the abstract substitution inferred during analysis, relating every variable

in the goal/head with an abstraction of its value or state. However, compilation

needs that information to be also available for every temporary variable that may

appear during code generation and which is not yet present in the normalized

program. In order to overcome this problem, most auxiliary variables are already

introduced before the analysis. The code reaches a homogeneous form by requiring

that both head and goals contain only syntactical variables as arguments, and

making unification and matching explicit in the body of the clauses. Each of

these basic data-handling steps can therefore be annotated with the corresponding

abstract state. Additionally, unifications are restricted to the variable–variable and

variable–constant cases. As we will see later, this is enough for our purposes.

Program transformations. Normalization groups the bodies of the clauses of the same

predicate in a disjunction, sharing common new variables in the head arguments,

introducing unifications as explained before, and taking care of renaming variables

local to each clause8. As a simplification for the purposes of this paper, we restrict

8 This is required to make their information independent in each branch during analysis and compilation.

Description and Optimization of A.M. in Prolog 13

ourselves to treating atomic, ground data types in the language. Structured data

is created by invoking built-in or predefined predicates. Control structures such

as disjunctions (;) and negation (\+) are only supported when they can be

translated to if-then-elses, and a compilation error is emitted (and compilation is

aborted) if they cannot. If cuts are not explicitly written in the program, mode

analysis and determinism analysis help in detecting the mutually exclusive prefixes

of the bodies, and delimit them with cuts. Note that the restrictions that we impose

on the accepted programs make it easier to treat some non-logical Prolog features,

such as red cuts, which make the language semantics more complex but are widely

used in practice. We allow the use of red cuts (explicitly or as (. . . → . . . ; . . .)

constructs) as long as it is possible to insert a mutually exclusive prefix in all the

alternatives of the disjunctions where they appear: (b1, !, b2 ; b3) is treated as

equivalent to (b1, !, b2 ; \+ b1, !, b3) if analysis (e.g., Debray et al. (1997)) is able

to determine that b1 does not generate multiple solutions and does not further

instantiate any variables shared with the head or the rest of the alternatives.

Predicate and program point information. The information that the analysis infers

from (and is annotated in) the normalized program is represented using the Ciao

assertion language (Hermenegildo et al. 1999; Puebla et al. 2000a; Hermenegildo

et al. 2005) (with suitable property definitions and mode macros for our purposes).

This information can be divided into predicate-level assertions and program point

assertions. Predicate-level assertions relate an abstract input state with an output

state (β0
f (a1, . . . , an)	β
), or state facts about some properties (see below) of the

predicate. Given a predicate f /n, the properties needed for the compilation rules

used in this work are as follows:

• det(f /n): The predicate f /n is deterministic (it has exactly one solution).

• semidet(f /n): The predicate f /n is semideterministic (it has one or zero

solutions).

We assume that there is a single call pattern, or that all the possible call patterns

have been aggregated into a single one, i.e., the analysis we perform does not take

into account the different modes in which a single predicate can be called. Note

that this does not prevent effectively supporting different separate call patterns, as

a previous specialization phase can generate a different predicate version for each

calling pattern.

The second kind of annotations keeps track of the abstract state of the execution

at each program point. For a goal 	β
g, the following judgments are defined on the

abstract substitution β on variables of g:

• β � fresh(x): The variable x is a fresh variable (not instantiated to any value,

not sharing with any other variable).

• β � ground(x): The variable x contains a ground term (it does not contain

any free variable).

• β � x :τ: The values that the variable x can take at this program point are of

type τ.

14 J. F. Morales et al.

3.2.2 Overview of the analysis of mutable variables

The basic operations on mutables are restricted to some instantiation state on input

and have to obey to some typing rules. In order to make the analysis as parametric

as possible to the concrete rules, these are stated using the following assertions on

the predicates @/2, initmut/3, and ⇐/2:

:– pred @(+mut(T), −T).

:– pred initmut(+(ˆT), +T, −mut(T)).

:– pred (+mut(T)) ⇐ (+T).

These state that

• Reading the value associated with a mutable identifier of type mut(T) (which

must be ground) gives a value type T.

• Creating a mutable variable with type T (escaped in the assertion to indicate

that it is the type name that is provided as argument, not a value of that type)

takes an initial value of type T and gives a new mutable variable of type

mut(T).

• Assigning a mutable identifier (which must be ground and of type mut(T)) a

value requires the latter to be of type T.

Those assertions instruct the type analysis about the meaning of the built-ins,

requiring no further changes w.r.t. equivalent9 type analyses for plain Prolog.

However, in our case more precision is needed. For example, given mut(int, A)

and (A ⇐ 3, p(A@)) we want to infer that p/1 is called with an integer value 3

and not with any integer (as inferred using just the assertion). With no information

about the built-ins, that code is equivalent to (T 0 = 3, A ⇐ T 0, T 1 = A@, p(T 1)),

and no relation between T 0 and T 1 is established.

However, based on the semantics of mutables variables and their operations

(Fig. 3), it is possible to define an analysis based on abstract interpretation to infer

properties of the values stored in the mutable store. To natively understand the

built-ins, it is necessary to abstract the mutable identifiers and the mutable store,

and represent it in the abstract domain, for which different options exist.

One is to explicitly keep the relation between the abstraction of the mutable

identifier and the variable containing its associated value. For every newly created

mutable or mutable assignment, the associated value is changed, and the previous

code would be equivalent to (T = 3, A ⇐ T, T = A@, p(T)). The analysis in this

case will lose information when the value associated with the mutable is unknown.

That is, given mut(int, A) and mut(int, B), it is not possible to prove that A ⇐ 3,

p(B@) will not call p/1 with a value of 3.

Different abstractions of the mutable identifiers yield different precision levels in

the analysis. For example, given an abstract domain for mutable identifiers that

distinguishes newly created mutables, the chunk of code (A = initmut(int, 1), B =

9 In the sense that the behavior of the built-ins is not hard-wired into the analysis itself.

Description and Optimization of A.M. in Prolog 15

initmut(int, 2), A ⇐ 3, p(B@)) has enough information to ensure that B is unaffected

by the assignment to A. In the current state, and for the purpose of the paper,

the abstraction of mutable identifiers is able to take into account newly created

mutables and mutables of a particular type. When an assignment is performed on

an unknown mutable, it only needs to change the values of mutables of exactly the

same type, improving precision10. If mutable identifiers are interpreted as pointers,

that problem is related to pointer aliasing in imperative programming (see Hind and

Pioli (2000) for a tutorial overview).

3.3 Data representation and operations

Data representation in most Prolog systems often chooses a general mapping from

Prolog terms and variables to C data so that full unification and backtracking

can be implemented. However, for the logical and mutable variables of imProlog,

we need the least expensive mapping to C types and variables possible, since

anything else would bring an unacceptable overhead in critical code (such as

emulator instructions). A general way to overcome this problem, which is taken

in this work, is to start from a general representation and replacing it by a more

specific encoding.

Let us recall the general representation in WAM-based implementations (Warren

1983; Ait-Kaci 1991). The abstract machine state is composed of a set of registers

and stacks of memory cells. The values stored in those registers and memory cells

are called tagged words. Every tagged word has a tag and a value, the tag indicating

the kind of value stored in it. Possible values are constants (such as integers up to

some fixed length, indexes for atoms, etc.), or pointers to larger data which does not

fit in the space for the value (such as larger integers, multiple precision numbers,

floating point numbers, arrays of arguments for structures)11. There exist a special

reference tag that indicates that the value is a pointer to another cell. That reference

tag allows a cell to point to itself (for unbound variables), or set of cells point to

the same value (for unified variables). Given our assumption that mutable variables

can be efficiently implemented, we want to point out that these representations can

be extended for this case, using, for example, an additional mutable tag, to denote

that the value is a pointer to another cell which contains the associated value. How

terms are created and unified using a tagged cell representation is well described in

the relevant literature.

When a Prolog-like language is (naively) translated to C, a large part of the

overhead comes from the use of tags (including bits reserved for automatic memory

management) and machine words with fixed sizes (e.g., unsigned int) for tagged

cells. If we are able to enforce a fixed tag for every variable (which we can in

principle map to a word) at compile time at every program point, those additional

10 That was enough to specialize pieces of imProlog code implementing the unification of tagged words,
which was previously optimized by hand.

11 Those will be ignored in this paper, since all data can be described using atomic constants, mutable
identifiers, and built-ins to control the emulator stacks.

16 J. F. Morales et al.

tag bits can be removed from the representation and the whole machine word can

be used for the value. This makes it possible to use different C types for each kind

of value (e.g., char, float, double, etc.). Moreover, the restrictions that we have

imposed on program determinism (Section 3.2.1), variable scoping, and visibility of

mutable identifiers make trailing unnecessary.

3.3.1 C types for values

The associated C type that stores the value for an imProlog type τ is defined in a

two-layered approach. First, the type τ is inferred by means of Prolog type analysis.

In our case, we are using the regular type analysis of Vaucheret and Bueno (2002),

which can type more programs than a Hindley–Damas–Milner type analysis (Damas

and Milner 1982). Then, for each variable a compatible encoding type, which contains

all the values that the variable can take, is assigned, and the corresponding C type

for that encoding type is used. Encoding types are Prolog types annotated with an

assertion that indicates the associated C type. A set of heuristics is used to assign

economic encodings so that memory usage and type characteristics are adjusted as

tightly as possible. Consider, for example, the type flag/1 defined as

:– regtype flag/1 + low(int32).

flag := off | on.

It specifies that the values in the declared type must be represented using the int32

C type. In this case, off will be encoded as 0 and on encoded as 1. The set of

available encoding types must be fixed at compile time, either defined by the user

or provided as libraries. Although, it is not always possible to automatically provide

a mapping, we believe that this is a viable alternative to more restrictive typing

options, such as Hindley–Damas–Milner based typings. A more detailed description

of data types in imProlog is available in (Morales et al. 2008).

3.3.2 Mapping imProlog variables to C variables

The logical and mutable variables of imProlog are mapped onto imperative, low-

level variables which can be global, local, or passed as function arguments. Thus,

pointers to the actual memory locations where the value, mutable identifier, or

mutable value are stored may be necessary. However, as stated before, we need to

statically determine the number of references required. The reference modes of a

variable will define the shape of the memory cell (or C variable), indicating how the

value or mutable value is accessed

• 0v: the cell contains the value.

• 1v: the cell contains a pointer to the value.

• 0m: the cell contains the mutable value.

• 1m: the cell contains a pointer to the mutable cell, which contains the value.

• 2m: the cell contains a pointer to another cell, which contains a pointer to the

mutable cell, which contains the mutable value.

Description and Optimization of A.M. in Prolog 17

Table 1. Operation and translation table for different mapping modes of imProlog variables

refmode(x)

0v 1v 0m 1m 2m

Final C type cτ cτ * cτ cτ * cτ * *

ref rval[[x]] &x x - &x x

val lval[[x]] x *x - x *x

val rval[[x]] x *x &x x *x

mutval/val lval[[x]] x *x **x

mutval/val rval[[x]] x *x **x

For an imProlog variable x, with associated C symbol x, and given the C type

for its value cτ, Table 1 gives the full C type definition to be used in the variable

declaration, the r-value (for the left part of C assignments) and l-value (as C

expressions) for the reference (or address) to the variable, the variable value, the

reference to the mutable value, and the mutable value itself. These definitions relate

C and imProlog variables and will be used later in the compilation rules. Note that

the translation for ref rval and val lval is not defined for 0m. That indicates that it

is impossible to modify the mutable identifier itself for that mutable, since it is fixed.

This tight mapping to C types, avoiding when possible unnecessary indirections,

allows the C compiler to apply optimizations such as using machine registers for

mutable variables.

The following algorithm infers the reference mode (refmode()) of each predicate

variable making use of type and mode annotations:

(1) Given the head 	β0
f (a1, . . . , an)	β
, the i th-argument mode argmode(f /n, i)

for a predicate argument a i, is defined as:

argmode(f /n, i) =

{
in if β � ground(a i)

out if β0 � fresh(a i), β � ground(a i).

(2) For each predicate argument a i, depending on argmode(f /n, a i):

• If argmode(f /n, a i) = in, then

— if β � a i:mut(t) then refmode(a i) = 1m, else refmode(a i) = 0v.

• If argmode(f /n, a i) = out, then

— if β � a i:mut(t) then refmode(a i) = 2m, else refmode(a i) = 1v.

(3) For each unification 	β
a = b:

• if β � fresh(a), β � ground(b), β � b:mut(t), then refmode(a) = 1m.

• Otherwise, if β � fresh(a), then refmode(a) = 0v.

(4) For each mutable initialization 	β
a = initmut(t, b):

• if β � fresh(a), β � ground(b), β � b: mut(t), then refmode(a) = 0m.

(5) Any case not covered above is a compile-time error.

18 J. F. Morales et al.

Escape analysis of mutable identifiers. According to the compilation scheme we

follow, if a mutable variable identifier cannot be reached outside the scope of

a predicate, it can be safely mapped to a (local) C variable. That requires the

equivalent of escape analysis for mutable identifiers. A conservative approximation

to decide that mutables can be assigned to local C variables is the following: the

mutable variable identifier can be read from, assigned to, and passed as argument

to other predicates, but it cannot be assigned to anything else than other local

variables. This is easy to check and has been precise enough for our purposes.

3.4 Code generation rules

Compilation processes a set of predicates, each one composed of a head and body

as defined in Section 3.2.1. The body can contain control constructs, calls to user

predicates, calls to built-ins, and calls to external predicates written in C. For each of

these cases we will summarize the compilation as translation rules, where p stands

for the predicate compilation output that stores the C functions for the compiled

predicates. The compilation state for a predicate is denoted as θ, and it is composed

of a set of variable declarations and a mapping from identifiers to basic blocks. Each

basic block, identified by δ, contains a sequence of sentences and a terminal control

sentence.

Basic blocks are finally translated to C code as labels, sequences of sentences, and

jumps or conditional branches generated as gotos and if-then-elses. Note that the use

of labels and jumps in the generated code should not make the C compiler generate

suboptimal code, as simplification of control logic to basic blocks and jumps is one

of the first steps performed by C compilers. It was experimentally checked that

using if-then-else constructs (when possible) does not necessarily help mainstream

C compilers in generating better code. In any case, doing so is a code generation

option.

For simplicity, in the following rules we will use the syntax 〈θ0〉 ∀i=1,. . . ,n g

〈θn〉 to denote the evaluation of g for every value of i between 1 and n, where the

intermediate states θj are adequately threaded to link every state with the following

one.

3.4.1 Compilation of goals

The compilation of goals is described by the rule 〈θ0〉 gcomp(goal, η, δ) ⇒ 〈 θ〉. η is a

mapping which goes from continuation identifiers (e.g., s for the success continuation,

f for the failure continuation, and possibly more identifiers for other continuations,

such as those needed for exceptions) to basic blocks identifiers. Therefore, η(s) and

η(f) denote the continuation addresses in case of success (resp. failure) of goal. The

compilation state θ is obtained from θ0 by appending the generated code for goal to

the δ basic block, and optionally introducing more basic blocks connected by the

continuations associated to them.

The rules for the compilation of control are presented in Figure 5. We will assume

some predefined operations to request a new basic block identifier (bb new) and a

list of new identifiers (bb newn), and to add a C sentence to a given basic block

Description and Optimization of A.M. in Prolog 19

Fig. 5. Control compilation rules.

(emit). The conjunction (a, b) is translated by rule (Conj) by reclaiming a new basic

block identifier δb for the subgoal b, generating code for a in the target δ, using

as success continuation δb, and then generating code for b in δb. The construct

(a → b ; c) is similarly compiled by the (IfThenElse) rule. The compilation of a

takes place using as success and failure continuations, the basic block identifiers

where b and c are emitted, respectively. Then, the process continues by compiling

both b and c using the original continuations. The goals true and fail are compiled

by emitting a jump statement (goto) that goes directly to the success and failure

continuation (rules (True) and (Fail)).

As stated in Section 3.2.1, there is no compilation rule for disjunctions (a ; b).

Nevertheless, program transformations can change them into if-then-else structures,

following the constraints on the input language. For example, (X = 1 ; X = 2) is

accepted if X is ground on entry, since the code can be translated into the equivalent

(X = 1 → true ; X = 2 → true). It will not be accepted if X is unbound, since the

if-then-else code and the initial disjunction are not equivalent.

Note that since continuations are taken using C goto statements, there is a great

deal of freedom in the physical ordering of the basic blocks in the program. The

current implementation emits code in an order roughly corresponding to the source

program, but it has internal data structures which make it easy to change this order.

Note that different orderings can impact performance, by, for example, changing

code locality, affecting how the processor speculative execution units perform, and

changing which goto statements which jump to an immediate label can be simplified

by the compiler.

3.4.2 Compilation of goal calls

External predicates explicitly defined in C and user predicates compiled to C code

have both the same external interface. Thus we use the same call compilation rules

for them.

Predicates that may fail are mapped to functions with Boolean return types

(indicating success/failure), and those which cannot fail are mapped to procedures

(with no return result — as explained later in Section 3.4.4). Figure 6 shows the

rules to compile calls to external or user predicates. Function argpass(f /n) returns

the list [r1, . . . , rn] of argument passing modes for predicate f /n. Depending on

20 J. F. Morales et al.

Fig. 6. Compilation of calls.

Fig. 7. Unification compilation rules.

argmode(f /n, i) (see Section 3.3.2) , r i is val rval for in or ref rval for out. Using

the translation in Table 1, the C expression for each variable is given as r i[[a i]].

Taking the C identifier assigned to predicate (c id(f /n)), we have all the pieces to

perform the call. If the predicate is semi-deterministic (i.e., it either fails or gives

a single solution), the (Call-S) rule emits code that checks the return value and

jumps to the success or failure continuation. If the predicate is deterministic, the

(Call-D) rule emits code that continues at the success continuation. To reuse those

code generation patterns, rules (Emit-S) and (Emit-D) are defined.

3.4.3 Compilation of built-in calls

When compiling goal calls, we distinguish the special case of built-ins, which are

natively understood by the imProlog compiler and which treats them especially.

The unification a = b is handled as shown in Figure 7. If a is a fresh variable

and b is ground (resp. for the symmetrical case), the (Unify-FG) rule specifies a

translation that generates an assignment statement that copies the value stored in b

into a (using the translation for their r-value and l-value, respectively). When a and

Description and Optimization of A.M. in Prolog 21

Fig. 8. Compilation rules for mutable operations.

b are both ground, the built-in is translated into a comparison of their values (rule

(Unify-GG)). When a is a variable and b is a constant, the built-in is translated into

an assignment statement that copies the C value encoded from b, using the encoding

type required by a, into a (rule (Instance-FC)). Note that although full unification

may be assumed during program transformations and analysis, it must be ultimately

reduced to one of the cases above. Limiting to the simpler cases is expected, in order

to avoid bootstrapping problems when defining the full unification in imProlog as

part of the emulator definition.

The compilation rules for operations on mutable variables are defined in Figure 8.

The initialization of a mutable a = initmut(τ, b) (rule (InitMut)) is compiled as a

mutable assignment, but limited to the case where the reference mode of a is 0m

(that is, it has been inferred that it will be a local mutable variable). The built-in a

⇐ b is translated into an assignment statement (rule (AssignMut)), that copies the

value of b as the mutable value of a. The (ReadMut) rule defines the translation of

b = a@, an assignment statement that copies the value stored in the mutable value

of a into b, which must be a fresh variable. Note that the case x = a@ where x

is not fresh can be reduced to (t = a@, x = t), with t a new variable, for which

compilation rules exist.

3.4.4 Compilation of predicates

The rules in the previous sections defined how goals are compiled. In this section,

we will use those rules to compile predicates as C functions. Figure 9 provides

rules that distinguish between deterministic and semi-deterministic predicates. For

a predicate with name = f /n, the lookup(name) function returns its arguments

and body. The information from analysis of encoding types and reference modes

(Section 3.3) is used by argdecls and vardecls to obtain the list of argument and

variable declarations for the program. On the other hand, bb code is a predefined

operation that flattens the basic blocks in its second argument θ as a C block

composed of labels and statements. Finally, the emitdecl operation is responsible

22 J. F. Morales et al.

Fig. 9. Predicate compilation rules.

for inserting the function declarations in the compilation output p. Those definitions

are used in the (Pred-D) and (Pred-S) rules. The former compiles deterministic

predicates by binding a single success to a return statement, and emits a C function

returning no value. The latter compiles semi-deterministic predicates by binding the

continuations to code that returns a true or false value depending on the success and

failure status. Note that this code matches exactly the scheme needed in Section 3.4.2

to perform calls to imProlog predicates compiled as C functions.

3.4.5 A compilation example

In order to clarify how the previous rules generate code, we include here a code

snippet (Fig. 10) with several types of variables accessed both from the scope of

their first appearance, and from outside that frame. We show also how this code is

compiled into two C functions. Note that redundant jumps and labels have been

simplified. It is composed of an encoding type definition flag/1, two predicates that

are compiled to C functions (p/1 semi-deterministic, swmflag/1 deterministic), and

two predicates with annotations to unfold the code during preprocessing (mflag/2

and swflag/2). Note that by unfolding the mflag/2 predicate, a piece of illegal code

(passing a reference to a local mutable) becomes legal. Indeed, this kind of predicate

unfolding has proved to be a good, manageable replacement for the macros which

usually appear in emulators written in lower-level languages and which are often a

source of mistakes.

3.4.6 Related compilation schemes

Another compilation scheme which produces similar code is described in Henderson

and Somogyi (2002). There are, however, significant differences, of which we will

mention just a few. One of them is the source language and the constraints imposed

on it. In our case, we aim at writing a WAM emulator in imProlog from which C

Description and Optimization of A.M. in Prolog 23

Fig. 10. imProlog compilation example.

code is generated with the constraint that it has to be identical (or, at least, very

close) to a hand-written and hand-optimized emulator, including the implementation

of the internal data structures. This has forced us to pay special attention to the

compilation and placement of data, use mutable variables, and ignore for now

non-deterministic control. Also, in this work we use an intermediate representation

based on basic blocks, which makes it easier to interface with internal back-ends for

compilers other than GCC, such as LLVM (Lattner and Adve 2004) (which enables

JIT compilation from the same representation).

4 Extensions for emulator generation in imProlog

The dialect and compilation process that has been described so far is general enough

to express the instructions in a typical WAM emulator, given some basic built-

ins about operations on data types, memory stacks, and O.S. interface. However,

combining those pieces of code together to build an efficient emulator requires a

compact encoding of the bytecode language, and a bytecode fetching and dispatching

loop that usually needs a tight control on low-level data and operations that

we have not included in the imProlog language. In Morales et al. (2005) we

showed that it is possible to automate the generation of the emulator from generic

instruction definitions and annotations stating how the bytecode is encoded and

decoded. Moreover, this process was found to be highly mechanizable, while making

instruction code easier to manage and other optimizations (such as instruction

merging) easier to perform. In this section, we show how this approach is integrated

in the compilation process, by including the emulator generation as part of it.

24 J. F. Morales et al.

Fig. 11. Unification with a constant and auxiliary definitions.

4.1 Defining WAM instructions in imProlog

The definition of every WAM instruction in imProlog looks just like a regular

predicate, and the types, modes, etc., of each of their arguments have to be

declared using (Ciao) assertions. As an example, Figure 11 shows imProlog code

corresponding to the definition of an instruction which tries to unify a term and a

constant. The pred declaration states that the first argument is a mutable variable

and that the second is a tagged word containing a constant. It includes a sample

implementation of the WAM dereference operation, which follows a reference chain

and stops when the value pointed to is the same as the pointing term, or when

the chain cannot be followed any more. Note the use of the native type tagged/2

and the operations tagof/2 and tagval/2 which access the tag and the associated

value of a tagged word, respectively. Also note that the tagval/2 of a tagged word

with ref results in a mutable variable, as can be recognized in the code. Other

native operations include trail cond/1, trail push/1, and operations to manage the

emulator stacks. Note the special predicates next ins and fail ins. They execute the

next instruction or the failure instruction, respectively. The purpose of the next

instruction is to continue the emulation of the next bytecode instruction (which can

be considered as a recursive call to the emulator itself, but which will be defined as a

built-in). The failure instruction must take care of unwinding the stacks at the WAM

level and selecting the next bytecode instruction to execute (to implement the failure

in the emulator). As a usual instruction, it can be defined by calling built-ins or

other imProlog code, and it should finally include a call to next ins to continue the

emulation. Since this instruction is often invoked from other instructions, a special

treatment is given to share its code, which will be described later.

The compilation process is able to unfold (if so desired) the definition of the

predicates called by u cons/2 and to propagate information inside the instruction, in

Description and Optimization of A.M. in Prolog 25

order to optimize the resulting piece of the emulator. After the set of transformations

that instruction definitions are subject to, and other optimizations on the output

(such as transformation of some recursions into loops) the generated C code is of

high quality (see, for example, Fig. 14, for the code corresponding to a specialization

of this instruction).

Our approach has been to define a reduced number of instructions (50 is a

ballpark figure) and let the merging and specialization process (see Section 5)

generate all instructions needed to have a competitive emulator. Note that efficient

emulators tend to have a large number of instructions (hundreds, or even thousands,

in the case of Quintus Prolog) and many of them are variations (obtained through

specialization, merging, etc., normally done manually) on “common blocks.” These

common blocks are the simple instructions we aim at representing explicitly in

imProlog.

In the experiments we performed (Section 5.3) the emulator with a largest number

of instructions had 199 different opcodes (not counting those which result from

padding some other instruction with zeroes to ensure a correct alignment in memory).

A simple instruction set is easier to maintain and its consistency is easier to ensure.

Complex instructions are generated automatically in a (by construction) sound way

from this initial “seed.”

4.2 An emulator specification in imProlog

Although imProlog could be powerful enough to describe the emulation loop, as

mentioned before we leverage on previous work (Morales et al. 2005) in which Lc

emulators were automatically built from definitions of instructions written in La and

their corresponding code written in Lc. Bytecode representation, compiler back-end,

and an emulator (including the emulator loop) able to understand Lb code can be

automatically generated from those components. In our current setting, definitions

for La instructions are written in Lr
s (recall Fig. 2) and these definitions can be

automatically translated into Lc by the imProlog compiler. We are thus spared of

making this compiler more complex than needed. More details on this process will

be given in the following section.

4.3 Assembling the emulator

We will describe now the process that takes an imProlog representation of an

abstract machine and obtains a full-fledged implementation of this machine. The

overall process is sketched in Figure 12, and can be divided into two stages, which we

have termed mgen and emucomp. The emulator definition, E , is a set of predicates and

assertions written in imProlog, and mgen is basically a normalization process where

the source E is processed to obtain a machine definition M. This definition contains

components describing the instruction semantics written in imProlog and a set of

hints about the bytecode representation (e.g., numbers for the bytecode instructions).

M is then processed by an emulator compiler emucomp which generates a bytecode

26 J. F. Morales et al.

Fig. 12. From imProlog definitions to Lb emulator in Lc.

emulator for the language Lb, written in the language Lc. The machinery to encode

La programs into the bytecode representation Lb is also given by definitions in M.

Using the terminology in Morales et al. (2005), we denote the components of M
as follows:

M = (Menc, Mdec, MargI , MdefI , Mins′).

First, the relation between La and Lb is given by means of several components12:

Menc declares how the bytecode encodes La instructions and data: e.g., X(0) is

encoded as the number 0 for an instruction which needs access to some X register.

Mdec declares how the bytecode should be decoded to give back the initial instruc-

tion format in La: e.g., for an instruction which uses as argument an X register, a

0 means X(0).

The remaining of the components of M capture the meaning of the (rather

low-level) constituents of La, providing a description of each instruction. Those

components do not make bytecode representation issues explicit, as they have

already been specified in Menc and Mdec. In the present work, definitions for La

instructions are given in Lr
s , instead of in Lc as was done in the formalization

presented in (Morales et al. 2005). The reason for this change is that in Morales et

al. (2005) the final implementation language (Lc, in which emulators were generated)

was also the language in which each basic instruction was assumed to be written.

However, in our case, instructions are obviously written in Lr
s (i.e., imProlog, which

is more amenable to automatic program transformations) and it makes more sense

to use it directly in the definition of M. Using Lr
s requires, however, extending

and/or modifying the remaining parts of M with respect to the original definition

as follows:

MargI which assigns a pair (T ,mem) to every expression in La, where T is the

type of the expression and mem is the translation of the expression into Lc. For

12 The complete description includes all elements for a WAM: X and Y registers, atoms, numbers, functors,
etc.

Description and Optimization of A.M. in Prolog 27

Fig. 13. Emulator compiler.

example, the type of X(0) is mut(tagged) and its memory location is &(x[0]),

assuming X registers end up in an array13.

MdefI which contains the definition of each instruction in Lr
s .

Mins′ which describes the instruction set with opcode numbers and the format of

each instruction, i.e., the type in La for each instruction argument: e.g., X registers,

Y registers, integers, atoms, functors.

The rest of the components and Mins′ are used by the emulator compiler to

generate an Lb emulator written in Lc. A summarized definition of the emulator

compiler and how it uses the different pieces in M can be found in Figure 13.

The (Emu) rule defines a function that contains the emulator loop. It is similar

to the (Pred-D) rule already presented, but takes parts of the source code from

M. It generates a list of basic block identifiers for each instruction, and a basic

block identifier for the emulator loop entry. The (Swr) rule is used to insert a

switch statement that implements the opcode fetching, and jumps to the code of

each instruction. The (Ins) rule is used to generate the code for each instruction.

To implement the built-ins next ins and fail ins, two special continuations ni and fi

are stored in the continuation mapping. The continuation to the failure instruction

is bound to the δf basic block identifier (assuming that the opf opcode is that of

the failure instruction). The (FailIns) rule includes a special case in gcomp that

implements this call. The continuation to the next instruction is a pair of the basic

block that begins the emulator switch, and a piece of C code that moves the bytecode

pointer to the next instruction (that is particular to each instruction, and is returned

by insdef alongside with its code). The (NextIns) rule emits code that executes that

code and jumps to opcode fetching.

13 This definition has been expanded with respect to its original Marg definition in order to include the
imProlog type in addition to the memory location.

28 J. F. Morales et al.

The abstract machine component Mins′ is used to obtain the name and data format

of the instruction identified by a given opcode. From the format and MargI definition,

a type, an encoding type, and a custom r-value for each instruction argument are

filled. In this way, the compilation process can transparently work with variables

whose value is defined from the operand information in a bytecode stream (e.g., an

integer, a machine register, etc.).

Relation with other compilation schemes. The scheme of the generated emulator code

is somewhat similar to what the Janus compilation scheme (Gudeman et al. 1992)

produces for general programs. In Janus, addresses for continuations are either

known statically (e.g., for calls, and therefore a direct, static jump to a label can

be performed) or are popped from the stack when returning. Since labels cannot

be directly assigned to variables in standard C, an implementation workaround is

made by assigning a number to each possible return address (and it is this number

which is pushed onto / popped from the stack) and using a switch to relate these

numbers with the code executing them. In our case, we have a similar switch, but it

relates each opcode with its corresponding instruction code, and it is executed every

time a new instruction is dispatched.

We want to note that we deliberately stay within standard C in this presentation:

taking advantage of C extensions, such as storing labels in variables, which are

provided by gcc and used, for example, in (Codognet and Diaz 1995) and (Henderson

et al. 1995), is out of the scope of this paper. These optimizations are not difficult

to add as code generation options, and therefore they should not be part of a basic

scheme. Besides, that would make it difficult to use compilers other than gcc.

Example 4.1

As an example, from the instruction in Figure 11, which unifies a term living in

some variable with a constant, we can derive a specialized version in which the term

is assumed to live in an X register. The declaration

:– ins alias(ux cons, u cons(xreg mutable, constagged)).

assigns the (symbolic) name ux cons to the new instruction, and specifies that the

first argument lives in an X register. The declaration

:– ins entry(ux cons).

indicates that the emulator has an entry for that instruction14. Figure 14 shows the

code generated for the instruction (right) and a fragment of the emulator generated

by the emulator compiler in Figure 13.

14 We optionally allow a pre-assignment of an opcode number to each instruction entry. Different
assignments of instruction numbers to opcodes can impact the final performance, as they dictate how
the code is laid out in the emulator switch which affects, for example, the behavior of the cache.

Description and Optimization of A.M. in Prolog 29

Fig. 14. Code generated for a simple instruction.

5 Automatic generation of abstract machine variations

Using the techniques described in the previous section, we now address how

abstract machine variations can be generated automatically. Substantial work has

been devoted to abstract machine generation strategies such as, e.g., Demoen and

Nguyen (2000), Nässén et al. (2001) and Zhou (2007), which explore different

design variations with the objective of putting together highly optimized emulators.

However, as shown previously, by making the semantics of the abstract machine

instructions explicit in a language like imProlog, which is easily amenable to

automatic processing, such variations can be formulated in a straightforward way

mostly as automatic transformations. Adding new transformation rules and testing

them together with the existing ones becomes then a relatively easy task.

We will briefly describe some of these transformations, which will be experimen-

tally evaluated in Section 5.3. Each transformation is identified by a two-letter code.

We make a distinction between transformations which change the instruction set (by

creating new instructions) and those which only affect the way code is generated.

5.1 Instruction set transformations

Let us define an instruction set transformation as a pair (ptrans, etrans), so that ptrans

transforms programs from two symbolic bytecode languages La and (a possibly

different) La’
15 and etrans transforms the abstract machine definition within Lr

s .

Figure 15 depicts the relation between emulator generation, program compilation,

program execution, and instruction set transformations. The full emulator generation

includes etrans as preprocessing before mgen is performed. The resulting emulator

15 Those languages can be different, for example, if the transformation adds or removes some instructions.

30 J. F. Morales et al.

Fig. 15. Application of an instruction set transformation (ptrans, etrans).

is able to interpret transformed programs after ptrans is applied (before bytecode

encoding), that is, the new compiler is obtained by including ptrans as a new

compilation phase.

Note that both ptrans and etrans are working at the symbolic bytecode level.

It is easier to work with a symbolic La program than with the stream of bytes

that represents Lb code, and it is easier to transform instructions written in Lr
s and

specified at the La level, than those already written in Lc code (where references to

Lb code and implementation details obscure the actual semantics). Reasoning about

the correctness of the global transformation that affects the La program and the

instruction code is also easier in the Lr
s specification of the emulator instructions

than in a low-level Lc emulator (assuming the correctness of the emulator generation

process).

In the following sections, we will review the instruction set transformations

currently available. Although more transformations can of course be applied, the

current set is designed with the aim of generating, from simple imProlog definitions,

an emulator which is as efficient as a hand-crafted, carefully tuned one.

5.1.1 Instruction merging [im]

Instruction Merging generates larger instructions from sequences of smaller ones,

and is aimed at saving fetch cycles at the expense of a larger instruction set and,

therefore, an increased switch size. This technique has been used extensively in high-

performance systems (e.g., Quintus Prolog, SICStus, Yap, etc.). The performance of

different combinations has been studied empirically (Nässén et al. 2001), but in that

work new instructions were generated by hand, although deciding which instructions

had to be created was done by means of profiling. In our framework only a single

declaration is needed to emit code for a new, merged instruction. Merging is done

automatically through code unfolding and based on the definitions of the component

instructions. This makes it possible, in principle, to define a set of (experimentally)

optimal merging rules. However, finding exactly this set of rules is actually not

straightforward.

Description and Optimization of A.M. in Prolog 31

Merging rules are specified separately from the instruction code itself, and these

rules state how basic instructions have to be combined. To start with, we will need

to show how instructions are defined based on their abstract versions. For example,

definition

move(A, B) :– B ⇐ A@ .

moves data between two locations, i.e., the contents of the a mutable into the b

mutable. In order to specify precisely the source and destination of the data, it is

necessary to specify the instruction format, with a declaration such as

:– ins alias(movexy, move(xreg mutable, yreg mutable)).

which defines a virtual instruction named movexy, that corresponds to the instanti-

ation of the code for move/2 for the case in which the first argument corresponds

to an X register and the second one corresponds to a Y register. Both registers are

seen from imProlog as mutable variables of type mut(tagged). Then, and based on

this more concrete instruction, the declaration

:– ins entry(movexy + movexy).

forces the compiler to actually use during compilation an instruction composed

of two virtual ones and to emit bytecode containing it (thanks to the ptrans

transformation in Fig 15, which processes the program instruction sequence to

replace occurrences of the collapsed pattern by the new instruction). Emulator code

will be generated implementing an instruction which merges two movexy instructions

(thanks to the etrans transformation). The corresponding code is equivalent to

:– ins entry(movexy movexy).

:– pred movexy movexy(xreg mutable, yreg mutable,

xreg mutable, yreg mutable).

movexy movexy(A, B, C, D) :– B ⇐ A@, D ⇐ C@ .

This can later be subject to other transformations and used to generate emulator

code as any other imProlog instruction.

5.1.2 Single-instruction encoding of sequences of the same instruction [ie]

In some cases, a series of similar instructions (e.g., unify with void) with different

arguments can be collapsed into a single instruction with a series of operands which

correspond to the arguments of each of the initial instructions. For example, a

bytecode sequence such as

unify with void(x(1)), unify with void(x(2)), unify with void(x(5))

can be compiled into

unify with void n([x(1), x(2), x(5)])

32 J. F. Morales et al.

which would perform exactly as in the initial instruction series, but taking less space

and needing fewer fetch cycles. Such an instruction can be created, emitted, and

the corresponding emulator code generated automatically based on the definition of

unify with void.

In order to express this composite instruction within imProlog using a single

predicate, unify with void n needs to receive a fixed number of arguments. A different

predicate for each of the possible lengths of the array would have to be generated

otherwise. A single argument actually suffices; hence the square brackets, which are

meant to denote an array.

The imProlog code which corresponds to the newly generated instruction is,

conceptually, as follows:

unify with void n(Array) :–

array len(Array, L),

unify with void n 2(0, L, Array).

unify with void n 2(I, L, Array) :–

(I = L → true

; elem(I, Array, E),

unify with void(E),

I 1 is I + 1,

unify with void n 2(I 1, L, Array)

).

It should be clear here why a fixed number of arguments is needed: a series of

unify with void n/1, unify with void n/2, etc., would have to be generated otherwise.

Note that the loop code ultimately calls unify with void/1, the Lr
s reflection of the

initial instruction.

In this particular case, the compiler to Lc performs some optimizations not

captured in the previous code. For example, instead of traversing explicitly the

array with an index, this array is expanded and inlined in the bytecode and the

program counter is used to retrieve the indexes of the registers by incrementing

it after every access. As the length of the array is known when the bytecode is

generated, it is actually explicitly encoded in the final bytecode. Therefore, all of the

newly introduced operations (array len/2, elem/3, etc.) need constant time and are

compiled efficiently.

5.1.3 Instructions for special built-Ins [ib]

As mentioned before, calling external library code or internal predicates (classically

termed “built-ins”) requires following a protocol, to pass the arguments, to check

for failure, etc. Although the protocol can be the same as for normal predicates

(e.g., passing arguments as X registers), some built-ins require a special (more

efficient) protocol (e.g., passing arguments as Lc arguments, avoiding movements in

X registers). Calling those special built-ins is, by default, taken care of by a generic

Description and Optimization of A.M. in Prolog 33

family of instructions, one per arity. This is represented as per the instructions given

below

:– ins alias(bltin1d, bltin1(bltindet(tagged), xreg)).

bltin1(BltName, A) :– BltName(A@).

:– ins alias(bltin2d, bltin2(bltindet(tagged, tagged), xreg, xreg)).

bltin2(BltName, A, B) :– BltName(A@, B@).

where each bltinI/i + 1 acts as a bridge to call the external code expecting i

parameters. The BltName argument represents a predicate abstraction that will

contain a reference to the actual code of the built-in during the execution. The

type of the BltName argument reflects the accepted calling pattern of the predicate

abstraction. When compiling those instructions to Lc code, that predicate abstraction

is efficiently translated as an unboxed pointer to an Lc procedure16. With the

definition shown above, the imProlog compiler can generate, for different arities, an

instruction which calls the built-in passed as first argument.

However, by specifying at compile time a predefined set of built-ins or predicates

written in Lc (that is, a static value for BltName instead of a dynamic value), the

corresponding instructions can be statically specialized and an instruction set which

performs direct calls to the corresponding built-ins can be generated. This saves an

operand, generating slightly smaller code, and replaces an indirection by a direct call,

which saves memory accesses and helps the processor pipeline, producing faster code.

5.2 Transformations of instruction code

Some transformations do not create new instructions; they perform instead a number

of optimizations on already existing instructions by manipulating the code or by

applying selectively alternative translation schemes.

5.2.1 Unfolding rules [ur]

Simple predicates can be unfolded before compilation. In the case of instruction

merging, unfolding is used to merge two (or more) instructions into a single piece of

code, in order to avoid fetch cycles (Section 5.1.1). However, uncontrolled unfolding

is not always an advantage, because an increased emulator size can affect negatively

the cache behavior. Therefore, the ur option turns on or off a predefined set of rules

to control which instruction mergings are actually performed. Unfolding rules follow

the scheme

:– ins entry(Ins1 + Ins2 + . . . + Insn, WhatToUnfold).

16 In the bytecode, the argument that corresponds to the predicate abstraction is stored as a number
that uniquely identifies the built-in. When the bytecode is actually loaded, this number is used to
look up the actual address of the built-in in a table maintained at runtime. This is needed since, in
general, there is no way to know which address will be assigned to the entry point of a given built-in
in different program executions.

34 J. F. Morales et al.

where Ins1 to Insn are the basic instructions to be merged, and WhatToUnfold is a

rule specifying exactly which instruction(s) has to be unfolded when ur is activated.

As a concrete example, the unfolding rule:

:– ins entry(alloc + movexy + movexy, 1).

means that in the instruction to be generated by combining one alloc and two

movexy, the code for alloc is inlined (the value of the last argument 1 refers to the

first instruction in the sequence), and the (shared) code for movexy + movexy is

invoked afterwards. A companion instruction merging rule for movexy + movexy

exists

:– ins entry(movexy + movexy, all).

which states that the code for both movexy has to be unfolded in a combined

instruction. The instruction alloc + movexy + movexy would generate code for

alloc plus a call to movexy + movexy. The compiler eventually replaces this call by

an explicit jump to the location of movexy + movexy in the emulator. The program

counter is updated accordingly to access the arguments correctly.

5.2.2 Alternative tag switching schemes [ts]

Tags are used to determine dynamically the type of basic data (atoms, structures,

numbers, variables, etc.) contained in a (tagged) memory word. Many instructions

and built-ins (like unification) take different actions depending on the type (or tag)

of the input arguments. This is called tag switching, and it is a heavily-used operation

which is therefore worth optimizing as much as possible. The tag is identified (and

the corresponding action taken) using tag switching such as

(tagtest1 → tagcode1 ; . . . ; tagtestn → tagcoden)

where every tagtest i has the form tagof(v, tag i) (i.e., code that performs a different

action depending on the tag value of a tagged v). The ts option chooses between

either a switch control structure (when enabled) or a set of predefined test patterns

based on tag encodings and assertions on the possible tags (when disabled).

Both possibilities are studied in more detail in Morales et al. (2008). Since the

numbers that encode the tags are usually small, it is easy for a modern C compiler

(e.g., gcc) to generate an indirection table and jump to the right code using it (that

is, it does not require a linear search). It is difficult, however, to make the C compiler

aware that checks to ensure that the tag number will actually be one of the cases in

the switch are, by construction, unnecessary (i.e., there is no need for a default case).

This information could be propagated to the compiler with a type system which not

all low-level languages have. The alternative compilation scheme (rule (Tif)) makes

explicit use of tag-checking primitives, where the sequence of ctest i and the code of

each branch depends on the particular case.

Description and Optimization of A.M. in Prolog 35

The latter approach is somewhat longer (and more complex as the number of

allowed tags grows) than the former. However, in some cases there are several

advantages to the latter, besides the already mentioned avoidance of boundary

checks are as follows:

• Tags with higher runtime probability can be checked before, in order to select

the right branch as soon as possible.
• Since the evaluation order is completely defined, tests can be specialized to

determine as fast as possible which alternative holds. For example, if by initial

assumption v can only be either a heap variable, a stack variable, or a structure

(having a different tag for each case), then the tests can check if it is a heap

variable or a stack variable and assume that it is a structure in the last branch.

Deciding on the best option has to be based on experimentation, the results of

which we summarize in Section 5.3.3 and in Tables 4 and 5.

5.2.3 Connected continuations [cc]

Some actions can be repeated unnecessarily because they appear at the end of an

operation and at the beginning of the next one. Often they have no effect the second

time they are called (because they are, e.g., tests which do not change the tested

data, or data movements). In the case of tests, for example, they are bound to fail

or succeed depending on what happened in the previous invocation.

As an example, in the fragment deref(T), (tagof(T, ref) → A ; B) the test

tagof(R, ref) is performed just before exiting deref/1 (see Fig. 11). Code generation

for instructions which include similar patterns is able to insert a jump either to

A or B from the code generated for deref/1. This option enables or disables this

optimization for a series of preselected cases, by means of code annotations similar

to the ones already shown.

5.2.4 Read/write mode specialization [rw]

WAM-based implementations use a flag to test whether heap structures are being

read (matched against) or written (created). According to the value of this flag,

which is set by code executed immediately before, several instructions adapt their

behavior with an internal, local if-then-else.

A common optimization is to partially evaluate the switch statement which

implements the fetch-and-execute cycle inside the emulator loop. Two different

switches can be generated, with the same structure, but with heap-related instructions

specialized to perform either reads or writes (Carlsson 1991). Enabling or disabling

the rw optimization makes it possible to generate instruction sets (and emulators)

where this transformation has been turned on or off.

This is conceptually performed by generating different versions of the code for the

instructions, depending on the value of a mutable variable mode, which can only

take the values read or write. Deciding whether to generate different code versions

or to generate if-then-elses to be checked at run-time is done based on a series of

heuristics which try to forecast the complexity and size of the resulting code.

36 J. F. Morales et al.

5.3 Experimental evaluation

We present in this section experimental data regarding the performance achieved on

a set of benchmarks by a collection of emulators, all of which were automatically

generated by selecting different combinations of the options presented in previous

sections. In particular, by using all compatible possibilities for the transformation

and generation options given in Section 5 we generated 96 different emulators

(instead of 27 = 128, as not all options are independent; for example, ie needs

im to be performed). This bears a close relationship with (Demoen and Nguyen

2000), but here we are not changing the internal data structure representation (and

of course our instructions are all initially coded in imProlog). It is also related

to the experiment reported in (Nässén et al. 2001), but the tests we perform are

more extensive and cover more variations on the kind of changes that the abstract

machine is subject to. Also, (Nässén et al. 2001) starts off by being selective about

the instructions to merge, which may seem a good idea but, given the very intricate

dependencies among different optimizations, can also result in a loss of optimization

opportunities. In any case, this is certainly a point we want to address in the future

by using instruction-level profiling.

Although most of the benchmarks we used are relatively well known, a brief

description as follows:

boyer Simplified Boyer-Moore theorem prover kernel.

crypt Cryptoarithmetic puzzle involving multiplication.

deriv Symbolic derivation of polynomials.

factorial Compute the factorial of a number.

fib Simply recursive computation of the nth Fibonacci number.

knights Chess knight tour, visiting only once every board cell.

nreverse Naive reversal of a list using append.

poly Raises symbolically the expression 1 + x + y + z to the nth power.

primes Sieve of Eratosthenes.

qsort Implementation of QuickSort.

queens11 N-Queens with N = 11.
query Makes a natural language query to a knowledge database with infor-

mation about country names, population, and area.

tak Computation of the Takeuchi function.

Our starting point was a “bare” instruction set comprising the common basic

blocks of a relatively efficient abstract machine (the “optimized” abstract machine

of Ciao 1.13, in the ‘optim comp’ directory of the Ciao 1.13 repository)17. The Ciao

abstract machines have their remote roots in the emulator of SICStus Prolog 0.5/0.7

(1986–89), but have evolved over the years quite independently and been the object

of many optimizations and code rewrites resulting in performance improvements and

much added functionality18. The performance of this, our baseline engine matches

17 Changes in the optimized version include tweaks to clause jumping, arithmetic operations, and built-ins
and some code clean-ups that reduce the size of the emulator loop.

18 This includes modules, attributed variables, support for higher order, multiprocessing, parallelism,
tabling, modern memory management, etc.

Description and Optimization of A.M. in Prolog 37

Table 2. Speed comparison of baseline with other Prolog systems

Benchmark Yap hProlog SWI Ciao-std Ciao-opt

5.1.2 2.7 5.6.55 1.13 (baseline)

boyer 1,392 1,532 11,169 2,560 1,604

crypt 3,208 2,108 36,159 6,308 3,460

deriv 3,924 3,824 12,610 6,676 3,860

exp 1,308 1,740 2,599 1,400 1,624

factorial 4,928 2,368 16,979 3,404 2,736

fft 1,020 1,652 14,351 2,236 1,548

fib 2,424 1,180 8,159 1,416 1,332

knights 2,116 1,968 11,980 3,432 2,352

nreverse 1,820 908 18,950 3,900 2,216

poly 1,328 1,104 6,850 1,896 1,160

primes 4,060 2,004 28,050 3,936 2,520

qsort 1,604 1,528 8,810 2,600 1,704

queens11 1,408 1,308 24,669 3,200 1,676

query 632 676 6,180 1,448 968

tak 3,068 1,816 27,500 5,124 2,964

that of modern Prolog implementations. Table 2 helps evaluating the speed of

this baseline optimized Ciao emulator w.r.t. to the relatively unoptimized Ciao 1.13

emulator compiled by default in the Ciao distribution, some high-performance Prolog

implementations (Yap 5.1.2 (Santos-Costa et al. 2011) and hProlog 2.7 (Demoen

2012)), and the popular SWI-Prolog system (version 5.6.55 (Wielemaker 2010)).

Figures 16 (in page 39) to 37 (in page 48) summarize graphically the results of

the experiments, as the data gathered — 96 emulators × 13 benchmarks = 1,248

performance figures — is too large to be comfortably presented in regular tables.

Each figure presents the speedup obtained by different emulators for a given

benchmark (or all benchmarks in the case of the summary tables). Such speedups

are relative to some “default” code generation options, which we have set to be

those which were active in the Ciao emulator we started with (our baseline), and

which therefore receive speedup 1.0. Every point in each graph corresponds to the

relative speed of a different emulator obtained with a different combination of the

options presented in Sections 5.1 and 5.2.

The options are related to the points in the graphs as follows: each option is

assigned a bit in a binary number, where “1” means activating the option and “0”

means deactivating it. Every value in the y-axis of the figures corresponds to a

combination of the three options in Section 5.1. Note that only six combinations

(out of the 23 = 8 possible ones) are plotted due to dependencies among options (for

example, ‘instruction encoding” always implies ‘instruction merging”). The options

in Section 5.2, which correspond to transformations in the way code is generated

and which need four bits, are encoded using 24 = 16 different dot shapes. Every

combination of emulator generation options is thus assigned a different 7-bit number

encoded as a dot shape and a y-coordinate. The x-coordinate represents the speedup

as presented before (i.e., relative to the hand-coded emulator currently in Ciao 1.13).

38 J. F. Morales et al.

Table 3. Meaning of the bits in the plots

Instruction Instruction

Generation Transformations

Instruction Special Instruction Tag Connected Unfolding R/W

Encoding Builtins Merging Switching Conts. Rules Mode

(ie) (ib) (im) (ts) (cc) (ur) (rw)

The level of aggressiveness of the instruction set transformations used in the paper

was selected to automatically generate an emulator identical to the hand-crafted

one. We have experimentally confirmed that it is difficult to outperform this engine

without changing other parameters, such as the overall architecture.

Different selections for the bits assigned to the y-coordinate and to the dot shapes

would of course yield different plot configurations. However, our selection seems

intuitively appropriate, as it uses two different encodings for two different families

of transformations, one which affects the bytecode language itself, and another one

which changes the way these bytecode operands are interpreted. Table 3 relates the

bits in these two groups, using the same order as in the plots.

Every benchmark was run several times on each emulator to make timings stable.

The hosts used were an x86 machine with a Pentium 4 processor running Linux

and an iMac with a PowerPC 7450 running Mac OS X. Arithmetic and geometric19

averages of all benchmarks were calculated and are shown in Figures 16, 17, 32,

and 33. Their similarity seems to indicate that there are no “odd” behaviors off the

average. Additionally, we are including detailed plots for every benchmark and all

the engine generation variants, following the aforementioned codification, first for

the x86 architecture (Figs. 19–31) and then for the PowerPC architecture (Figs 34–

46), in the same order in both cases. Plots for specially relevant cases are shown

first, followed by the rest of the figures sorted following an approximate (subjective)

“more sparse” to “less sparse” order.

5.3.1 General analysis

The best speedup among all tried options, averaged across the exercised benchmarks

and with respect to the baseline Ciao 1.13 emulator, is 1.05 times for the x86 processor

(Table 4, top section, under the column w.r.t. def.) and 1.01 times for the PowerPC

(Table 5, top section, same column heading). While this is a modest average gain,

some benchmarks achieve much better speedups. An alternative interpretation of

this result is that by starting with a relatively simple instruction set (coded directly

in imProlog) and applying automatically and systematically a set of transformation

and code generation options which can be trusted to be correct, we have managed

to match (and even exceed) the time performance of an emulator which was hand-

coded by very proficient programmers, and in which decisions were thoroughly

19 The geometric average is known to be less influenced by extremely good or bad cases.

Description and Optimization of A.M. in Prolog 39

Fig. 16. Geometric average of all benchmarks (with a dot per emulator) — Intel.

tested along several years. Memory usage was unaltered. Note (in the same tables)

that the speedup obtained with respect to the basic instruction set (under the column

labeled w.r.t. base) is significantly higher.

Figure 16 depicts the geometric average of the executions of all benchmarks in

an Intel platform. It aims at giving an intuitive feedback of the overall performance

of the option sets, and indeed a well-defined clustering around eight centers is clear.

Figure 17, which uses the arithmetic average, is very similar (but not identical —

it is very slightly biased towards higher speedups), and it shows eight well-defined

clusters as well.

From these pictures we can infer that bytecode transformation options can be

divided into two different sets: one which is barely affected by options of the

generation of code for the emulator (corresponding to the upper four clusters), and

another set (the bottom four clusters) in which changes to the generation of the

emulator code does have an effect in the performance.

In general, the results obtained in the PowerPC show fewer variations than those

obtained in an x86 processor. We attribute this behavior to differences between

these two architectures, as they greatly affect the optimization opportunities and

the way the C compiler can generate code. For example, the larger number of

general-purpose registers available in a PowerPC seems to make the job of the C

compiler less dependent on local variations of the code (as the transformations shown

in Section 5.2 produce). Additionally, internal differences between both processors

(e.g., how branch prediction is performed, whether there is register renaming, shadow

registers, etc.) can also contribute to the differences we observed.

As a side note, while Figures 16 and 17 portray an average behavior, there were

benchmarks whose performance depiction actually match this average behavior very

faithfully — e.g., the simply recursive Factorial (Fig. 19), which is often disregarded

as an unrealistic benchmark but which, for this particular experiment, turns out to

predict quite well the (geometric) average behavior of all benchmarks. Experiments

in the PowerPC (Figs. 32 and 34) generate similar results.

40 J. F. Morales et al.

Fig. 17. Arithmetic average of all benchmarks (with a dot per emulator) — Intel.

Fig. 18. Size (in bytes) of WAM emulator with respect to the generation options (i86).

Figure 18 presents the size of the WAM loop (using actual i86 object code size

measured in bytes) for each bytecode and Lc code generation option. This size is

independent from the benchmarks, and therefore only one plot is shown. It resembles

notably the depictions of the speedup graphs. In fact, a detailed inspection of the

distribution of low-level code generation options (where each of them corresponds

to one of the 16 different dot shapes) inside each bytecode language option shows

some correlation among larger and faster emulators. This is not surprising as some

code generation schemes which tend to increase the size do so because they generate

additional, specialized code.

As in the case for speed, Lb generation options are the ones which influence most

heavily the code size. This is understandable because some options (for example, the

im switch for instruction merging, corresponding to the leftmost bit of the “bytecode

generation options”) increment notably the size of the emulator loop. On the other

hand, code generation options have a less significant effect, as they do not necessarily

affect all the instructions.

Description and Optimization of A.M. in Prolog 41

Fig. 19. Factorial involving large numbers — Intel.

Fig. 20. Queens (with 11 queens to place) — Intel.

It is to be noted that the generation of specialized switches for the write and read

modes of the WAM (the rw option) does not increase the size of the emulator. The

reason is that when the rw flag is checked by all the instructions which need to do

so (and many instructions need it), a large number of if-then-else constructions with

their associated code are generated. In the case of the specialized switches, only an

if-then-else is needed and the savings from generating less branching code make the

emulator smaller.

5.3.2 A more detailed inspection of selected cases

Figures 20 (Queens 11) and 21 (Cryptoarithmetic puzzle) show two cases of interest.

The former corresponds to results which, while departing from the average behavior,

still resemble it in its structure, although there is a combination of options which

achieves a speedup (around 1.25) that is significantly higher than average. Figure 21

shows a different landscape where variations on the code generation scheme

appear to be as relevant as those on the bytecode itself. Both benchmarks are,

42 J. F. Morales et al.

Fig. 21. Cryptoarithmetic puzzle — Intel.

Fig. 22. Computation of the Takeuchi function — Intel.

Fig. 23. Symbolic derivation of polynomials — Intel.

Description and Optimization of A.M. in Prolog 43

Fig. 24. Naive reverse — Intel.

Fig. 25. Symbolic exponentiation of a polynomial — Intel.

Fig. 26. Version of Boyer–Moore theorem prover — Intel.

44 J. F. Morales et al.

Fig. 27. QuickSort — Intel.

Fig. 28. Calculate primes using the sieve of Eratosthenes — Intel.

Fig. 29. Natural language query to a geographical database — Intel.

Description and Optimization of A.M. in Prolog 45

Fig. 30. Chess knights tour — Intel.

Fig. 31. Simply recursive Fibonacci — Intel.

however, search-based programs which perform mainly arithmetic operations (with

the addition of some data structure management in the case of the Queens program),

and could in principle be grouped in the same class of programs. This points to the

need to perform a finer grain analysis to determine, instruction by instruction, how

every engine/bytecode generation option affects execution time, and also how these

different options affect each other.

Studying which options are active inside each cluster sheds some light about

their contribution to the overall speedup. For example, the upper four clusters

of Figures 16 and 17 have in common the use of the ib option, which generates

specialized instructions for built-ins. These clusters have consistently better (and,

in some cases, considerably better) speedups than the clusters which do not have

it activated. It is, therefore, a candidate to be part of the set of “best options.”

A similar pattern, although less acute, appears in the results of the PowerPC

experiments (Figs. 32 and 33).

46 J. F. Morales et al.

Fig. 32. Geometric average of all benchmarks (with a dot per emulator) — PowerPC.

Fig. 33. Arithmetic average of all benchmarks (with a dot per emulator) — PowerPC.

The two leftmost clusters of the group of four at the bottom correspond to

executions of emulators generated with the rw specialization activated, and the two

clusters at their right do not have it activated. It can come as a surprise that

using separate switches for read/write modes, instead of checking the mode in every

instruction which needs to do so, does not seem to bring any advantage in the Intel

processor. Indeed, a similar result was already observed in (Demoen and Nguyen

2000), and was attributed to modern architectures performing branch prediction and

speculative work with redundant units.

5.3.3 Best generation options and overall speedup

An important general question is which options should be used for the “stock”

emulator to be offered to general users. Our experimental results show that options

cannot be considered in isolation — i.e., the overall option set constructed by taking

separately the best value for every option does not yield a better set (defined as

the best options obtained by averaging speedups for every option set). As we have

Description and Optimization of A.M. in Prolog 47

Fig. 34. Factorial involving large numbers — PowerPC.

Fig. 35. Queens (with 11 queens to place) — PowerPC.

Fig. 36. Cryptoarithmetic puzzle — PowerPC.

48 J. F. Morales et al.

Fig. 37. Computation of the Takeuchi function — PowerPC.

Fig. 38. Symbolic derivation of polynomials — PowerPC.

Fig. 39. Naive reverse — PowerPC.

Description and Optimization of A.M. in Prolog 49

Fig. 40. Symbolic exponentiation of a polynomial — PowerPC.

Fig. 41. Version of Boyer–Moore theorem prover — PowerPC.

Fig. 42. QuickSort — PowerPC.

50 J. F. Morales et al.

Fig. 43. Calculate primes using the sieve of Eratosthenes — PowerPC.

Fig. 44. Natural language query to a geographical database — PowerPC.

Fig. 45. Chess knights tour — PowerPC.

Description and Optimization of A.M. in Prolog 51

Fig. 46. Simply recursive Fibonacci — PowerPC.

seen, there is some interdependence among options. A more realistic answer is that

the average best set of options should come from selecting the rightmost point in

the plot corresponding to average speedups. We must however bear in mind that

averages always suffer the problem that a small set of good results may bias the

average and, in this case, force the selection of an option set which performs worse

for a larger set of benchmarks.

In order to look more closely at the effects of individual options (without resorting

to extensively listing them and the obtained performance), Tables 4 and 5 show which

options produced the best and the worst results time-wise for each benchmark. We

include the geometric average as an specific case and the Ciao-1.10 baseline options

as reference.

It has to be noted that the best/worst set of options is not the negation of the

worst/best options: there are plenty of cases where the same option was (de)activated

both for the best and for the worst executions. The observed situation for the

PowerPC architecture (Table 5) is more homogeneous: at least some better/worst

behaviors really come from combinations which are complementary, and, in the

cases where this is not so, the amount of non-complementary options goes typically

from 1 to 3 — definitely less than in the x86 case.

Despite the complexity of the problem, some conclusions can be drawn: instruction

merging (im) is a winner for the x86, probably followed by having a variable number

of operands (ie), and then by specialized calls to built-ins (ib). The first and second

options save fetch cycles, while the third one saves processing time in general. It is

to be noted that some options appear both in the best and worst cases: this points

to interdependencies among the different options.

The performance table for the PowerPC (Table 5) also reveals that instruction

merging, having a variable number of operands, and generating specialized instruc-

tions for built-ins, are options which bring performance advantages. However, and

unlike the x86 table, the read/write mode specialization is activated in all the lines

of the “best performance” table, and off in the “worst performance.” A similar case

52 J. F. Morales et al.

Table 4. Options which gave best/worst performance (x86)

Benchmark
Best performance

ie ib im ts cc ur rw Speed-up

baseline x x x x x w.r.t. def. w.r.t. base

all (geom.) x x x x x 1.05 1.28

boyer x x x x 1.18 1.52

crypt x x x 1.22 1.07

deriv x x x x 1.10 1.46

factorial x x x 1.02 1.21

fib x x x x x x 1.02 1.32

knights x x x x 1.06 1.39

nreverse x x x x 1.03 1.34

poly x x x x x 1.02 1.52

primes x x x x 1.10 1.26

qsort x x x x 1.05 1.46

queens11 x x x x x x x 1.26 1.46

query x x x x x x 1.06 1.21

tak x x x x 1.23 1.62

Benchmark
Worst performance

ie ib im ts cc ur rw Speed-up

baseline x x x x x w.r.t. def. w.r.t. base

all (geom.) x x 0.70 0.88

boyer x 0.70 0.90

crypt x x 0.86 0.75

deriv x x 0.62 0.82

factorial x x 0.76 0.99

fib x x x 0.75 0.91

knights x x x x 0.72 0.97

nreverse x x x 0.57 0.95

poly x x 0.56 0.74

primes x x x 0.73 0.84

qsort x x 0.54 0.84

queens11 x x x 0.77 0.75

query x x 0.71 0.89

tak x x x x 0.69 0.92

is that of the tag switching schema, in the sense that the selection seems clear in the

PowerPC case.

The transformation rules we have applied in our case are of course not the only

possible ones, and we look forward to enlarging this set of transformations by,

for example, performing a more aggressive merging guided by profiling20. Similar

work, with more emphasis on the production of languages for microprocessors

is presented in Holmer (1993), where a set of benchmarks is used to guide the

(constrained) synthesis of such a set of instructions.

20 Merging is right now limited in depth to avoid a combinatorial explosion in the number of instructions.

Description and Optimization of A.M. in Prolog 53

Table 5. Options which gave best/worst performance (PowerPC)

Benchmark
Best performance

ie ib im ts cc ur rw Speed-up

baseline x x x x x w.r.t. def. w.r.t. base

all (geom.) x x x x x x 1.01 1.21

boyer x x x x 1.02 1.25

crypt x x x x 1.00 1.13

deriv x x x x x 1.00 1.30

factorial x x x x x 1.00 1.02

fib x x x x 1.03 1.17

knights x x x x 1.00 1.10

nreverse x x x x 1.02 1.20

poly x x x x x x 1.01 1.35

primes x x x x x x 1.02 1.33

qsort x x x x x x 1.01 1.17

queens11 x x x x x 1.06 1.33

query x x x x x x x 1.01 1.20

tak x x x x x 1.01 1.22

Benchmark
Worst performance

ie ib im ts cc ur rw Speed-up

baseline x x x x x w.r.t. def. w.r.t. base

all (geom.) x 0.82 0.99

boyer x x 0.81 0.99

crypt x x x x 0.87 0.98

deriv x x x 0.76 0.99

factorial x x 0.85 0.97

fib 0.94 0.99

knights x x 0.82 1.00

nreverse x x 0.74 0.98

poly x 0.74 0.98

primes x x 0.86 0.97

qsort x 0.75 0.99

queens11 x 0.88 0.99

query x 0.82 0.99

tak x x 0.78 0.99

We want to note that although exceeding the speed of a hand-crafted emulator is

not the main concern in this work21, the performance obtained by the implementation

of the emulator in imProlog allows us to conclude that the imProlog approach can

match the performance of lower-level languages, while making it possible to apply

non-trivial program transformation techniques.

Additional experiments carried out in a very different context (that of embedded

systems and digital signal processing using Ciao Prolog (Carro et al. 2006), which

21 In order to do that, a better approach would probably be to start off by finding performance
bottlenecks in the current emulator and redesigning/recoding it. We want to note, however, that we
think that our approach can greatly help in making this redesign and recoding easier.

54 J. F. Morales et al.

pertains to a realm traditionally considered disadvantageous for symbolic languages)

showed also very good performance — only 20% slower than a comparable C

program — and also very good speedups (up to 7-fold compared with a bytecode-

based implementation). Analysis and compilation techniques similar to those applied

in this paper were used, but put to work in a program using the full Prolog language.

6 Conclusions

We have designed a language (imProlog, a variation of Prolog with some imperative

features) and its compiler, and we have used this language to describe the semantics

of the instructions of a bytecode interpreter (in particular, the Ciao engine). The

imProlog language, with the proposed constraints and extensions, is semantically

close enough to Prolog to share analysis, optimization and compilation techniques,

but at the same time it is designed to make translation into very efficient C code

possible. The low-level code for each instruction and the definition of the bytecode is

taken as input by a previously developed emulator generator to assemble full high-

quality emulators. Since the process of generating instruction code and bytecode

format is automatic, we were able to produce and test different versions thereof to

which several combinations of code generation options were applied.

Our main conclusion is that indeed the proposed approach can produce emulators

that are as efficient as the best state-of-the-art emulators hand-coded in C, while

starting from a much higher-level description. This high-level nature of the language

used allows avoiding some of the typical problems that hinder the development and

maintenance of highly-tuned emulators.

In our experience, in addition to greatly increased clarity and readability the

port allowed replacing many duplicated code structures, redundant hand-made

specializations, and a large number of C macros (which notwithstanding do help in

writing less code, but they are not easily recognized in the source — leading often to

programmer confusion — they are prone to subtle scoping-related errors, and they

are typically not understood by automatic compilation tools), with more abstract

predicates, sometimes adorned with some annotations to guide the transformations.

The proposed approach makes it possible to perform non-trivial transformations

on both the emulator and the instruction level (e.g., unfolding and partial evaluation

of instruction definitions, instruction merging or specialization, etc.). The different

transformations and code generation options, result in different grades of optimiza-

tion/specialization and different bytecode languages from a single (higher-level)

abstract machine definition.

We have also studied how these combinations perform with a series of benchmarks

in order to find, e.g., what is the “best” average solution and how independent coding

rules affect the overall speed. We have in this way as one case the regular emulator

we started with (and which was decomposed to break complex instructions into

basic blocks). However, we also found out that it is possible to outperform it slightly

by using some code patterns and optimizations not explored in the initial emulator,

and, what is more important, starting from abstract machine definitions in imProlog.

Description and Optimization of A.M. in Prolog 55

Performance evaluation of non-trivial variations in the emulator code showed

that some results are hard to predict and that there is no absolute winner for all

architectures and programs. On the other hand, it is increasingly difficult to reflect

all the variations in a single source using more traditional methods like m4 or cpp

macros. Automatic program manipulation at the emulator level represents a very

attractive approach, and although difficult, the problem becomes more tractable

when the abstraction level of the language to define the virtual machine is raised

and enriched with some problem-specific declarations.

As future work, it would be interesting to study the generation of efficient code

for full Prolog with imProlog features. A partial application of such compilation

techniques was already put to work in the real-time digital sound processing

application written in Prolog mentioned before, with very successful results.

Acknowledgements

This work was funded in part by the Information Society Technologies program

of the European Commission, through EU project FP7 318337 ENTRA, by the

Spanish Ministry of Economy and Competitiveness through projects TIN2012-39391

StrongSoft and TIN2008-05624 DOVES, and by the Madrid Regional Government

through project S-0505/TIC/0407 PROMESAS.

References

Ait-Kaci, H. 1991. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT, Cambridge,

MA.

Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M., Maluszynski, J.

and Puebla, G. 1997. On the role of semantic approximations in validation and diagnosis of

constraint logic programs. In Proc. of 3rd International Workshop on Automated Debugging–

AADEBUG’97. University of Linköping, Sweden, 155–170.

Carlsson, M. 1991. The SICStus Emulator. SICS Technical Report T91:15, Swedish Institute

of Computer Science.

Carro, M., Morales, J., Muller, H., Puebla, G. and Hermenegildo, M. 2006. High-level

languages for small devices: A case study. In Compilers, Architecture, and Synthesis for

Embedded Systems, K. Flautner and T. Kim, Eds. ACM Press/Sheridan, New York, NY,

USA, 271–281.

Casas, A., Cabeza, D. and Hermenegildo, M. 2006. A syntactic approach to combining

functional notation, lazy evaluation and higher-order in LP systems. In Proc. of 8th

International Symposium on Functional and Logic Programming (FLOPS’06). Fuji Susono,

Japan, 142–162.

Codognet, P. and Diaz, D. 1995. WAMCC: Compiling Prolog to C. In Proc. of 12th

International Conference on Logic Programming, L. Sterling, Ed. MIT, Cambridge, MA,

317–331.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In Proc.

of 9th Annual Symposium on Principles of Programming Languages, New York, NY, USA,

207–212.

Dart, P. and Zobel, J. 1992. A regular type language for logic programs. In Types in Logic

Programming. MIT, Cambridge, MA, 157–187.

56 J. F. Morales et al.

Debray, S., López-Garcı́a, P. and Hermenegildo, M. 1997. Non-failure analysis for logic

programs. In Proc. of International Conference on Logic Programming. MIT, Cambridge,

MA, 48–62.

Demoen, B. 2012. h-Prolog. URL: http://people.cs.kuleuven.be/~bart.demoen/

hProlog/.

Demoen, B., de la Banda, M. G., Marriott, K., Schachte, P. and Stuckey, P. 1998. Global

variables in HAL, a logic implementation. CW Reports, CW271. Department of Computer

Science, K.U. Leuven, Leuven, Belgium.

Demoen, B. and Nguyen, P.-L. 2000. So many WAM variations, So little time. In Proc. of

Computational Logic, Springer-Verlag, 1240–1254.

Dorward, S., Pike, R., Presotto, D. L., Ritchie, D., Trickey, H. and Winterbottom, P. 1997.

Inferno. In Proc. of 42nd IEEE International Computer Conference, IEEE, Washington, DC,

USA.

Gallagher, J. and de Waal, D. 1994. Fast and precise regular approximations of

logic programs. In Proc. of the 11th International Conference on Logic Programming,

P. Van Hentenryck, Ed. MIT, Cambridge, MA, 599–613.

Giannesini, F., Kanoui, H., Pasero, R. and Caneghem, M. V. 1985. Prolog. InterEditions, 87

Avenue du Maine, 75014, Paris. ISBN 2-7296-0076-0.

Gosling, J., Joy, B., Steele, G. and Bracha, G. 2005. Java(TM) Language Specification, The

(3rd Edition). Addison-Wesley Professional, Boston, MA, USA.

Gudeman, D., Bosschere, K. D. and Debray, S. 1992. jc: An efficient and portable sequential

implementation of Janus. In Proc. of Joint International Conference and Symposium on Logic

Programming, MIT, Cambridge, MA, 399–413.

Henderson, F., Conway, T. and Somogyi, Z. 1995. Compiling logic programs to C using GNU

C as a portable assembler. In Proc. of ILPS 1995 Postconference Workshop on Sequential

Implementation Technologies for Logic Programming, Portland, Oregon, 1–15.

Henderson, F. and Somogyi, Z. 2002. Compiling mercury to high-level C code. In Proc. of

Compiler Construction, R. Nigel Horspool, Ed. Lecture Notes in Computer Science, vol.

2304. Springer-Verlag, Berlin Heidelberg, 197–212.

Hermenegildo, M., Puebla, G. and Bueno, F. 1999. Using global analysis, partial

specifications, and an extensible assertion language for program validation and debugging.

In The Logic Programming Paradigm: a 25–Year Perspective, K. R. Apt, V. Marek,

M. Truszczynski and D. S. Warren, Eds. Springer-Verlag, Berlin Heidelberg, 161–192.

Hermenegildo, M., Puebla, G., Bueno, F. and López-Garcı́a, P. 2005. Integrated program

debugging, verification, and optimization using abstract interpretation (and The Ciao

system preprocessor). Science of Computer Programming 58, 1–2, 115–140.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J. and Puebla,

G. 2012. An overview of Ciao and its design philosophy. Theory and Practice of Logic

Programming 12, 1–2, 219–252. URL: http://arxiv.org/abs/1102.5497.

Hind, M. and Pioli, A. 2000. Which pointer analysis should I use? In Proc. of International

Symposium on Software Testing and Analysis, ACM, New York, NY, USA, 113–123.

Holmer, B. K. 1993. Automatic design of computer instruction sets. Ph.D. thesis, University

of California, Berkeley, CA.

Lattner, C. and Adve, V. 2004. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proc. of International Symposium on Code Generation and

Optimization (CGO’04), Palo Alto, California.

Morales, J., Carro, M. and Hermenegildo, M. 2004. Improving the compilation of prolog to

C using moded types and determinism information. In Proceedings of the 6th International

Symposium on Practical Aspects of Declarative Languages, Lecture Notes in Computer

Science, vol. 3057. Springer-Verlag, Heidelberg, Germany, 86–103.

Description and Optimization of A.M. in Prolog 57

Morales, J., Carro, M. and Hermenegildo, M. 2007. Towards description and optimization

of abstract machines in an extension of prolog. In Logic-Based Program Synthesis and

Transformation (LOPSTR’06), G. Puebla, Ed. Lecture Notes in Computer Science, Springer,

Berlin, Heidelberg, vol. 4407. 77–93.

Morales, J., Carro, M. and Hermenegildo, M. 2008. Comparing tag scheme variations

using an abstract machine generator. In 10th International ACM SIGPLAN Symposium on

Principles and Practice of Declarative Programming (PPDP’08), ACM Press, New York,

NY, USA, 32–43.

Morales, J., Carro, M., Puebla, G. and Hermenegildo, M. 2005. A generator of

efficient abstract machine implementations and its application to emulator minimization. In

International Conference on Logic Programming, M. Gabbrielli and G. Gupta, Eds. Lecture

Notes in Computer Science, vol. 3668. Springer-Verlag, Berlin Heidelberg, 21–36.

Nässén, H., Carlsson, M. and Sagonas, K. 2001. Instruction merging and specialization

in the SICStus prolog virtual machine. In Proc. of the 3rd ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming, ACM, New York, NY,

USA, 49–60.

Nori, K. V., Ammann, U., Jensen, K., Nageli, H. H. and Jacobi, C. 1981. Pascal-p

implementation notes. In Pascal - The Language and its Implementation, D. W. Barron,

Ed. John Wiley, London, UK, 125–170.

Paleczny, M., Vick, C. and Click, C. 2001. The Java hotspotTM Server Compiler.

Proceedings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology

Symposium – Volume 1. JVM’01. USENIX Association. Berkeley, CA, USA.

Puebla, G., Bueno, F. and Hermenegildo, M. 2000a. An assertion language for

constraint logic programs. In Analysis and Visualization Tools for Constraint Programming,

P. Deransart, M. Hermenegildo and J. Maluszynski, Eds. Lecture Notes in Computer

Science, vol. 1870. Springer-Verlag, Berlin Heidelberg, 23–61.

Puebla, G., Bueno, F. and Hermenegildo, M. 2000b. Combined static and dynamic

assertion-based debugging of constraint logic programs. In Logic-based Program Synthesis

and Transformation (LOPSTR’99). Lecture Notes in Computer Science, vol. 1817. Springer-

Verlag, 273–292.

Rigo, A. 2004. Representation-based just-in-time specialization and the psyco prototype for

python. In PEPM ’04: Proc. of the 2004 ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-Based Program Manipulation, ACM, New York, USA, 15–26.

Rigo, A. and Pedroni, S. 2006. PyPy’s approach to virtual machine construction. In Dynamic

Languages Symposium, ACM, New York, NY, USA.

Santos-Costa, V., Damas, L. and Rocha, R. 2011. The YAP prolog system. Theory and

Practice of Logic Programming . URL: http://arxiv.org/abs/1102.3896v1.

Santos-Costa, V., Sagonas, K. and Lopes, R. 2007. Demand-driven indexing of prolog clauses.

In Proc. of International Conference on Logic Programming. Lecture Notes in Computer

Science, vol. 4670. Springer-Verlag, Berlin Heidelberg, 395–409.

Schachte, P. 1997. Global variables in logic programming. In Proc. of International Conference

on Logic Programming, MIT, Cambridge, MA, 3–17.

Schrijvers, T. and Frühwirth, T. W. 2006. Optimal union-find in constraint handling rules.

TPLP 6, 1-2, 213–224.

Somogyi, Z., Henderson, F. and Conway, T. 1996. The execution algorithm of

Mercury: An efficient purely declarative logic programming language. Journal of Logic

Programming 29, 1–3, 17–64.

Taivalsaari, A. 1998. Implementing a Java Virtual Machine in the Java Programming

Language. Technical Report, Sun Microsystems. Mar. Technical report SMLI TR-98-64.

58 J. F. Morales et al.

Tarau, P. 2006. BinProlog 2006 version 11.x Professional Edition User Guide. BinNet

Corporation. URL: http://www.binnetcorp.com/.

Taylor, A. 1991. High performance prolog implementation through global analysis. Slides of

the invited talk at PDK’91, Kaiserslautern, Germany.

Van Roy, P. 1994. 1983–1993: The wonder years of sequential Prolog implementation. Journal

of Logic Programming 19-20, 385–441.

Van Roy, P. and Despain, A. 1992. High-performance logic programming with the aquarius

prolog compiler. IEEE Computer Magazine, 54–68.

Vaucheret, C. and Bueno, F. 2002. More precise yet efficient type inference for logic

programs. In International Static Analysis Symposium, Lecture Notes in Computer Science,

vol. 2477. Springer-Verlag, Berlin Heidelberg, 102–116.

Warren, D. 1977. Applied logic—its use and implementation as programming tool. Ph.D.

thesis, University of Edinburgh, UK. Also available as SRI Technical Note 290.

Warren, D. H. D. 1983. An abstract prolog instruction set. Technical Report 309, Artificial

Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025.

Wielemaker, J. 2010. The SWI-Prolog User’s Manual 5.9.9. URL: http://www.swi-prolog.

org.

Zhou, N.-F. 2007. A register-free abstract prolog machine with jumbo instructions. In Proc. of

23rd International Conference on Logic Programming, V. Dahl and I. Niemelä, Eds. Lecture

Notes in Computer Science, vol. 4670. Springer, Berlin Heidelberg, 455–457.

