
A Generator of Efficient Abstract Machine

Implementations and its Application to

Emulator Minimization?
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Abstract. The implementation of abstract machines involves complex
decisions regarding, e.g., data representation, opcodes, or instruction spe-
cialization levels, all of which affect the final performance of the emulator
and the size of the bytecode programs in ways that are often difficult to
foresee. Besides, studying alternatives by implementing abstract machine
variants is a time-consuming and error-prone task because of the level
of complexity and optimization of competitive implementations, which
makes them generally difficult to understand, maintain, and modify. This
also makes it hard to generate specific implementations for particular
purposes. To ameliorate those problems, we propose a systematic ap-
proach to the automatic generation of implementations of abstract ma-
chines. Different parts of their definition (e.g., the instruction set or the
internal data and bytecode representation) are kept separate and auto-
matically assembled in the generation process. Alternative versions of the
abstract machine are therefore easier to produce, and variants of their im-
plementation can be created mechanically, with specific characteristics
for a particular application if necessary. We illustrate the practicality
of the approach by reporting on an implementation of a generator of
production-quality WAMs which are specialized for executing a partic-
ular fixed (set of) program(s). The experimental results show that the
approach is effective in reducing emulator size.

1 Introduction

The use of intermediate abstract machines as a means to compile and tune
programs (specially those written in high-level languages with complex features)
requires several components. In order to execute programs written in a source
language LP , a compiler into the abstract machine language, LA, is needed.
An emulator for LA, usually written in some lower-level language LC for which
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there is a compiler to native code, performs the actual execution.3 Traditional
implementations based on abstract machines start with a fixed set of abstract
machine instructions and then develop the compiler and the emulator.

One important concern when implementing such emulators is that of effi-
ciency (see [1–5]), which depends greatly on the complexity of LP and, of course,
on the compiler and emulator technology. As a result, emulators are very often
difficult to understand, maintain, and modify. This makes the implementation
of variants of abstract machines a hard task, since both the compiler and em-
ulator, which are rather complex, have to be rewritten by hand for each case.
Variants of emulators have been (naturally) used to evaluate different imple-
mentation options for a language [4], often manually. Automating the creation
of these variants will, additionally, make it possible to tailor a general design to
particular applications or environments with little effort. A particularly daunting
task is to adapt existing emulators to resource-constrained tasks, such as those
found in pervasive computing. While this can clearly be done by carefully rewrit-
ing existing emulators, selecting alternative data representations, and, maybe,
adapting them to the type of expected applications, we deem that this task is
a too difficult one, especially taking into account the amount of different small
devices which are ubiquitous nowadays.

In this work we propose an approach in which, rather than being hand-
written, emulators and (back-end) compilers are automatically generated from a
high-level description of the abstract machine instruction set. This makes it pos-
sible to easily experiment with alternative abstract machines and to evaluate the
impact of different implementation decisions, since the corresponding emulator
and compiler are obtained automatically.

In order to do so, rather than considering emulators for a particular abstract
machine, we formalize emulators as parametric programs, written, for purposes
of improved expressiveness, in a syntactical extension of LC (as explained in
Example 1) that can represent directly elements of LA and which receive two
inputs: a program to be executed, written in language LA, and a description of
the abstract machine language LA in which the operational definition of each
instruction of LA is given in terms of LC . E.g., we define a generic emulator
as a procedure interpret(program, M) which takes as input a program in the
abstract machine language LA and a definition M of the abstract machine itself
and interprets the program according to M .

For the sake of maintainability and ease of manipulation, LA is to be as
close as possible to its conceptual definition. This usually affects performance
negatively, and therefore a refinement step, based on pass separation [6], a form
of staging transformations [7], is taken to convert programs written in LA into
programs written in LB , a lower-level representation for which faster interpreters
can be written in LC . By formalizing adequately the transformation from LA

to LB it is possible to do automatically:

– The translation of programs from LA into LB .

3 Implementations of abstract machines are usually termed virtual machines. We will,
however, use the term emulator or bytecode interpreter to denote a virtual machine.
This is in line with the tradition used in the implementation of logic programming
languages.
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– The generation of efficient emulators for programs in LB based on inter-
preters for LA.

– The generation of compilers from LP to LB based on compilers from LP to
LA.

A high-level view of the different elements we will talk about in this paper
appears in Figure 1. When the abstract machine description M is available, it
is possible (at least conceptually) to partially evaluate the procedure interpret

into an emulator for a (now fixed) M . Although this approach is attractive in
itself, it has the disadvantage that the existence of a partial evaluator of programs
written in LC is required. Depending on LC , this may or may not be feasible.

A well known result in partial evaluation [8] is that it is possible to partially
evaluate a partial evaluator w.r.t. itself and a particular program as static data.
By taking the parametric emulator as static data for the partial evaluator, we
can obtain an emulator generator (emucomp), which will produce an efficient em-
ulator when supplied with a description of an abstract machine. This approach,
known as the second Futamura projection [9], not only requires the availability
of a partial evaluator for programs in LC but also needs the partial evaluator
to be self-applicable. Somewhat surprisingly, the structure of emulator gener-
ators is often easy to understand. The approach we will follow is therefore to
write such an emulator generator directly by hand. The emulator generator we
propose has been defined in such a way that it can produce an emulator whose
code is comparable to a hand-written one when provided with a description of
an abstract machine.

The benefits of our approach are multifold. Writing an emulator generator is
clearly much more profitable than writing a particular emulator (though more
difficult to achieve for the general case) since, with no performance penalty, it
will make it possible to easily experiment with multiple variations of the origi-
nal abstract machine. For example, and as discussed later, it is straightforward
to produce reduced emulators. As an example of the application of our tech-
nique, and taking as starting point the instruction set of an existing emulator (a
production-quality implementation of a modern version of the Warren Abstract
Machine for Prolog [10, 11]), we generate emulators which can be sliced with
respect to the set of abstract machine instructions which a given application or
sets of applications are going to actually use.

2 Automatic Generation of Emulators

In this section we will develop a compiler for emulators which takes a description
of the machine and can produce emulators which are very close (and in some
cases identical) to what a skilled programmer would craft.

Our initial source language is LP , and we assume that there is a compiler
comp from LP to an LA, a symbolic representation of a lower-level language
intended to be interpreted by an emulator. We want comp to be relatively simple
and independent from the low-level details of the implementation of the final
emulator. The definition of LA will be kept separate in M so that it can be
used later (Section 2.2) in a generic emulator. Instructions in LA can, in general,
consult and modify a global state and change the control flow with (conditional)
jump/call instructions.
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Fig. 1. “Big Picture” view of the generation of emulators

2.1 Scheme of a Basic Emulator

Emulators have usually a main loop implementing a fetch-execute cycle. Figure 2
portrays an example, where that cycle is performed by a tail-recursive procedure.
The reason to choose this scheme is because it allows a shorter description of
some further transformations, but note that it can be converted automatically
into a proper loop. The function:

fetchA : locatorA × programA → 〈insA, locatorA〉

returns, for a given program and program point, the instruction at that point
(of type insA, a tuple containing instruction name and arguments) and the
next location in the program, in sequential order. This abstracts away program
counters, which can be symbolic, and indirections through the program counter.
We will reuse this function, in different contexts, in the following sections.

emuA(p, program) ≡
〈ins, p′〉 = fetch

A
(p, program)

case ins of
〈move, [r(i), r(j)]〉 : reg[j] := reg[i]; p′′ := p′

〈jump, [label(l)]〉 : p′′ := l

〈call, [label(l)]〉 : push(p′); p′′ := l

〈ret, []〉 : p′′ := pop()
〈halt, []〉 : return

otherwise : error
emuA(p′′, program)

Fig. 2. An example of simple LA-level interpreter

int1(p, program,M) ≡
〈〈name, args〉, p′〉 = fetch

A
(p, program)

if ¬validA(〈name, args〉,Mins , Mabsexp) then error
cont = λa → [p′′ := a]
JMdef (p

′, cont, name, Margs(args))K
int1(p′′, program,M)

Fig. 3. Parametric interpreter for LA

Example 1 (LA instructions and their semantics written in LC). The left hand
side of each of the branches in the case expression of Figure 2 corresponds to one
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instruction in LA. The emulator emuA is written in LC (syntactically extended
to represent LA instructions), and the semantics of each instruction is given in
terms of LC in the right hand side of the corresponding branch. The implementa-
tion of the memory model is implicit in the right hand side of the case branches;
we assume that appropriate declarations for types and global variables exist. LA

instructions are able to move data between registers, do jumps and calls to
subroutines, and stop the execution with the halt instruction. Alternative emu-
lators can be crafted by changing the way LA instructions are implemented. This
must, of course, be done homogeneously across all the instruction definitions.

2.2 Parameterizing the Emulator

In order to make emulators parametric with respect to the abstract machine
definition, we need to settle on an emulator scheme first (Figure 3) and to make
the definition of the abstract machine precise. We will use a piecewise definition
M = (Mdef , Marg , Mins , Mabsexp) of LA which is passed as a parameter to the
emulator scheme and which relates different parts of the abstract machine with
a feasible implementation thereof. The meaning of every component of M (see
also Example 2) is as follows:

Mdef The correspondence between every instruction of LA and the code to ex-
ecute it in LC .

Marg The correspondence between every argument for the instructions in LA

and the corresponding data in LC . Margs generalizes Marg by mapping lists
of arguments in LA into lists of arguments in LC . The definitions of Mdef

and Marg are highly dependent, and quite often updating one will require
changes in the other.

Mins The instruction set, described as the name and the format every instruc-
tion in LA accepts, i.e., which kinds of expressions in LA can be handled
by the instruction. The format is given as a list of abstract expressions of
LA, whose definition is also included in M (see next item). For example, a
jump instruction might be able to jump to a (static) label, but not to the
address contained in a register, or a move instruction might be able to store
a number in a register but not directly in a memory location. Note that the
same instruction name can be used with different formats.

Mabsexp An abstraction function which returns the type of an instruction argu-
ment.

The interpreter in Figure 3 uses the definition of the semantics of LA in terms
of LC . For every instruction, arguments in LA are translated into arguments in
LC by Margs , and Mdef selects the right code for the instruction. Both Mdef and
Marg are functions which return unevaluated pieces of code, which are meant to
be executed by int1 — this is marked by enclosing the function call by double
square brackets. The next program location is set by a function cont which is
handed in to Mdef as an argument. The language expressions not meant to be
evaluated but passed as data are enclosed inside square brackets. The context
should be enough to distinguish them from those used to access array elements
or to denote lists.
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Mdef (next, cont, name, args) =
case 〈name, args〉 of

〈move, [a, b]〉 → [a := b; cont(next)]
〈jump, [a]〉 → [cont(a)]
〈call, [a]〉 → [push(next); cont(a)]
〈ret, []〉 → [cont(pop())]
〈halt, []〉 → [return]

Mins =
{ 〈move, [r, r]〉
〈jump, [label]〉
〈call, [label]〉
〈ret, []〉
〈halt, []〉 }

Marg (arg) =
case arg of

r(i) → reg[i]
label(l) → l

Mabsexp(arg) =
case arg of

r( ) → r
label( ) → label
otherwise →⊥

Fig. 4. Definition of M for our example

In order to ensure that no ill-formed instruction is executed (for example,
because a wrongly computed location tries to access instructions outside the
program scope), the function validA checks that the instruction named name

can understand the arguments args which it receives. It needs to traverse every
argument, extract its type, which defines an argument format, and check that
the instruction name can be used with arguments following that format.

Example 2 (Definitions for a trivial abstract machine in int1). In the definitions
for M in Figure 4, the higher-order argument cont is used to set the program
counter pointing to the instruction to be executed next. The instruction defini-
tions do not check operator and operand types, since that has been taken care
of by validA by checking that the type of every argument which matches those
accepted by the instruction at hand.

Instructions can in general admit several argument formats. For example,
arithmetic instructions might accept integers and floating-point numbers. That
would make Mins have several entries for some instructions. This poses no prob-
lem, as long as Mabsexp returns all abstractions for a given pattern and there
is a suitable selection rule (e.g., the most concrete applicable pattern) is used
to choose among different possibilities. For the sake of simplicity we will not
deal with that case in this paper. Multi-format instructions are helpful when
compiling weakly-typed languages, or languages with complex inheritance rules,
where types of expressions might not be completely known until runtime. If
this happens, compiling to a general case to be dynamically checked is the only
solution.

2.3 A More Specialized Intermediate Language and its Interpreter

The symbolic nature of LA, which should be seen as an intermediate language,
makes it convenient to express instruction definitions and to associate internally
properties to them, but it is not designed be directly executed. Most emulators
use a so-called bytecode representation, where many details have been settled:
operation codes for each instruction (which capture the instruction name and
argument types), size of every instruction, values of some arguments, etc. In
return bytecode interpreters are quite fast, because a great deal of the work int1

has been statically encoded, so that many overheads may be removed. In short,
the bytecode design focuses on achieving speed.
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On the other hand, working right from the beginning with a low-level defi-
nition is cumbersome, because many decisions percolate through the whole lan-
guage and seemingly innocent changes can force the update of a significant part
of the bytecode definition (and, therefore, of its emulator). This is the main rea-
son to keep LA at a high level, with many details still to be filled in. It is however
possible to translate LA into a lower-level language, LB , closer to LC and eas-
ier to represent using LC data structures. That process can be instrumented so
that programs written in LA are translated into LB and interpreters for LA are
transformed in interpreters for LB using a similar encoding. Translating from
LA to LB is done by a function:

encode : LA → LB

encode accepts instructions in LA (including name and arguments) and returns
tokens in LB . The encoding function has to:

1. Assign a unique operation code (opcode) to each instruction in LA when
the precondition expressed by validA holds (a compile-time error would be
raised otherwise). This moves the overhead of checking formats from runtime
to compile-time.

2. Take the arguments of instructions in LA and translate them into LB .

encode is used to generate a compiler from LP into LB from a compiler from
LP into LA (Figure 1). As encode gives a unique opcode to every combination
of instruction name and format, it has an associated function:

decode : LB → LA

which brings bytecode instructions back to its original form.4 In order to capture
the meaning of encode / decode, we augment and update the abstract machine
definition to be M = (Mdef , Marg , Mins′ , Mabsexp, Menc , Mdec) (see Figure 5 and
Example 3). Mins′ is derived from Mins by capturing the opcode assignment.
It accepts an opcode and returns the corresponding instruction in LA as a pair
〈name, format〉. Argument encoding is taken care of by a new function Menc.
Mdec is the inverse of Menc .

An interpreter int2 for LB (see Figure 6) can be derived from int1 with the
help of bytecode decoding. int2 receives an (extended) definition of M and uses
it to retrieve the original instruction 〈name, format〉 in LA corresponding to an
opcode in a bytecode program (returned by program[p], where p is a program
counter in LB). The arguments are brought from the domain of LB to the domain
of LA by Mdec, and code and argument translations defined by Mdef and Marg

can then be employed as in int1.
We want to note that in Figure 6 the recursive call has been placed inside

the continuation code, which avoids the use of the intermediate variable p′′ used
in Figure 2 and makes it easier to apply program transformations.

Example 3 (Encoding instructions). Every combination of instruction name and
format from Example 2, Figure 4, is assigned a different opcode. Mins′ retrieves
both the corresponding instruction name and format for every opcode. In Fig-
ure 8, the sample LA program on the left is translated by encode into the program
LB on the right, which can be interpreted by int2 using the definitions for M .

4 Both encode and decode may need to resolve symbols. As this is a standard practice
in compiling (which can even be delayed until link time), we will not deal with that
problem here.
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Mins′ (opcode) =
case opcode of

0 → 〈move, [r, r]〉
1 → 〈jump, [label]〉
2 → 〈call, [label]〉
3 → 〈ret, []〉
4 → 〈halt, []〉

Menc(arg) =
case arg of

〈r(a)〉 → a

〈label(l)〉 → symbol(l)

Mdec(t, f) =
case 〈t, f〉 of

〈a, r〉 → r(a)
〈l, label〉 → label(l)

Fig. 5. New Parts of the Abstract Machine Definition

int2(p, prg,M) ≡
opcode = prg[p]
〈name, format〉 = Mins′ (opcode)
〈args, p′〉 = decodeins(format , [p], [prg],M)
cont = λa → [int2(a, prg,M); return]
JMdef (p

′, cont, name,Margs (args)); cont(p′)K

decodeins(〈f1, . . . , fn〉, p, prg,M) =
〈〈d1, . . . , dn〉, p + 1 + n〉 where
di = Mdec([prg[p + i]], fi)

Fig. 6. Parametric interpreter for LB

2.4 A Final Emulator

The interpreter int2 in Section 2.3 still has the overhead associated with using
continuously the abstract machine definition M . However, once M is fixed, it is
possible to instantiate the parts of int2 which depend statically on M , to give
another emulator int3. This can be seen as a partial evaluation of int2 with
respect to M , i.e., int3 ≡ JspecK(int2, M). This returns an emulator written in
LC without the burden of translating instructions in LB to the level of LA in
order to access the corresponding code and argument definitions in Mdef and
Marg . Finally, and although program[p] is not known at compile time, we can
introduce a case statement which enumerates the possible values for the opcode,
thus becoming static. This is a common technique to make partial evaluation
possible in similar cases.

Since the interpreter structure is fixed, a compiler of emulators could be
generated by specializing the partial evaluator for the case of int2, i.e.,

emucomp : M → codeC

emucomp = JspecK(spec, int2)

which is equivalent to the emulator compiler in Figure 7. It reuses the definition of
decodeins seen in the previous section. Note that, as stated before, this emulator
compiler has a regular structure, and we have opted to craft it manually, instead
of relying on a self-applicable partial evaluator for LC . This compiler emulator,
of course, does not need to be implemented in LC , and, in fact, in our particular
implementation it is written in Prolog and it generates emulators in C.

emucomp(M) =
[ emuB(p, prg) ≡

case get opcode(p, prg) of
opcode1 : inscomp(opcode1, M)
. . .

opcoden : inscomp(opcoden, M)]
where opcodei ∈ domain(Mins′ )

inscomp(opcode, M) =
[Mdef (p

′, cont, name,Margs (args)); cont(p′)]
where
〈name, format〉 = Mins′ (opcode)
〈args, p′〉 = decodeins(format , [p], [prg], M)
cont = λa → [emuB(a, prg); return]

Fig. 7. Emulator Compiler
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LA program

move r(0) r(2)
move r(1) r(0)
move r(2) r(1)
halt

LB program

0 0 2 0 1 0 0 2 1 4

Fig. 8. Sample program

emuB(p, program) ≡
case program[p] of

0 : reg[program[p + 1]] := reg[program[p + 2]];
emuB(p + 3, program); return

1 : emuB(program[p + 1], program); return

2 : push(p + 2);
emuB(program[p + 1], program); return

3 : emuB(pop(), program); return

4 : return; return

Fig. 9. Generated emulator

Example 4 (The generated emulator). Figure 9 depicts an emulator for our work-
ing example, obtained by specializing int2 with respect to the machine definition
in Example 3. Note the recursive call and returns at the end of every case branch
which ensure that no other code after those statements is executed. All the re-
cursive calls are tail recursions.

3 An Example Application: Minimal and Alternative
Emulators

We will illustrate our technique with two (combined) applications: generating
WAM emulators which are specialized for executing a fixed set of programs,
and using different implementations of the WAM data structures. The former
is very relevant in the context of applications meant for embedded devices and
pervasive computing. It implements an automatic specialization scheme which
starts at the Prolog level (by taking as input the programs to be executed) and,
by slicing the abstract machine definition, traverses the compilation chain until
the final specialized emulator for these programs is generated. The latter makes
it possible to easily experiment with alternative implementation decisions.

We have already introduced how a piecewise definition of an abstract machine
can allow making emulator generation automatic. In the rest of this section we
will see how this technique can be used to generate such application-specific
emulators, and we will report on a series of experiments performed around those
ideas. We will focus, for the moment, on generating correct emulators of minimal
size, although the technique can obviously also be applied to investigating the
impact of alternative implementations on performance.

3.1 Obtaining Specialized Emulators

The objective of specializing a program with respect to some criteria is to obtain
a new program that preserves the initial semantics and is smaller or requires
fewer operations. The source and target language are typically the same; this is
expected, since specialization which operates across different translation levels
is harder. It is however highly interesting, and applicable to several cases, such
as the compilation to virtual machines and JIT compilation.

Among previous experiences which cross implementation boundaries we can
cite [12], where automatically specialized WAM instructions are used as an in-
termediate step to generate C code which outperforms compilers to native code,
and the Aquarius Prolog compiler [13] which carried analysis information along
the compilation process to generate efficient native code.
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As mentioned before, simplifying automatically hand-coded emulators (in
order to speed them up or to reduce the executable size) written in LC requires
a specializer for LC programs able to understand the emulator structure. The
task can be quite difficult for efficient, complex emulators. Even in the case that
the emulator can be dealt with, there are very few information sources to use
in order to perform useful optimizations: the input data is, in principle, any
bytecode program.

One way to propagate bytecode properties about a particular program p down
to the emulator so that the specializer can do some effective optimization is by
partially evaluating the emulator w.r.t. p and specializing the resulting program.
Even if the specializer is powerful enough to work with this input, this solution
has some drawbacks. The resulting code lacks some interesting properties: it is
not as portable as the bytecode (since it is written in LC) and it is presumably
less compact than the combination emulator + bytecode. Portability can often
be sacrificed if compactness is preserved; in exchange, the resulting program
is usually self-contained and generating stand-alone applications is in principle
easier. This is not a bad scenario if there are automatic tools which can do a good
job on these tasks (i.e., the code explosion generated by the partial evaluator is
then taken care of by the specializer). Unfortunately, this is usually not the case.

An alternative approach is to express the specialization of the emulator in
terms of slicing [14–16]. A slicing algorithm and the properties that it focus on,
φ, of the emulator input, such as, e.g., bytecode reachable points, output vari-
ables, etc., are defined so that only the parts of the emulator (or a conservative
approximation thereof) needed to maintain those properties have to be kept by
the transformation.

One problem with this approach is that the bytecode is quite low level and
the emulator too complicated to be automatically manipulated. However, our
emulator generation scheme makes this problem more tractable. In our case
LB programs are generated from a higher-level representation which can be
changed quite freely (even enriched with compiler-provided information to be
later discarded by encode) and which aims at being easily manageable rather
than efficient. It seems therefore more convenient to work at the level of LA to
extract the slicing information, since it offers more simplification opportunities.
It has to be noted that transforming the LC emulator code using some LA

properties may be extremely difficult: to start with, suitable tools to work with
LC are needed, and they should be able to understand the relationship between
LB and LA elements. It is much easier to work at the level of the definition
of the abstract machine M , where LA is completely captured, and where its
relationship with LB is contained.

We therefore formulate a slicing transformation that deals directly with M
and whose result is used to generate a specialized emulator emus:

emus = emucomp(JsliceMK(M, φ))

emus can also be viewed as the result of slicing emucomp(M) (i.e., emuB)
with a particular slicing algorithm that, among other things, preserves the (loop)
structure of the emulator. 5 That is, sliceM deals with the instruction set or the

5 Due to the simplicity of the interpreter scheme, this is not a hard limitation for most
emulator transformations, as long as the transformation output is another emulator.
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instruction code definitions, and leaves complex data and control issues, quite
common in efficient emulators, untouched and under the control of emucomp.
Slicing can change all the components of the definition of M , including Mdef ,
which may cause the compiled emulator to lose or specialize instructions. Note
that when Mins is modified, the transformation affects the compiler, because the
encode function uses definitions in M .

3.2 Some Examples of Opportunities for Simplification

There is a variety of simplifications at the level of M that preserve the loop
structure. They can be expressed in terms of the previously presented technique.

Instruction Removal: Programs compiled into bytecode can be scanned and
brought back into LA using Mins′ to find the set I of instructions used in them.
M is then sliced with respect to I and a new, specialized emulator is created
as in Section 2.4. The new emulator may be leaner than the initial one since it
probably has to interpret fewer instructions.

Removing Format Support: If LA has instructions which admit arguments of dif-
ferent types (e.g., arithmetical operations which admit both integers and floating
point numbers), programs that only need support for some of the available types
can be executed in a reduced emulator. This can be achieved, again, by slicing
M with respect to the remaining instruction and argument formats.

Removing Specialized Instructions: M can define specialized instructions (for
example, for special argument values) or collapsed instructions (for often-used
instruction sequences). Those instructions are by definition redundant, but some-
times useful for the sake of performance. However, not all programs require or
benefit from them. When the compiler to LA can selectively choose whether
using or not those versions, a smaller emulator can be generated.

Obtaining the optimal set of instructions (w.r.t. some metric) for a particular
program is an interesting problem. It is however out of the scope of this paper.

3.3 Experimental Evaluation

We tested the feasibility of the techniques proposed herein for the particular
case of the compilation of Prolog to a WAM-based bytecode. We started off
with Ciao [17], a real, full-fledged logic programming system, featuring a (Ciao-
)Prolog to WAM compiler, a complex bytecode interpreter (the emulator) writ-
ten in C, and the machinery necessary to generate multi-platform, bytecode-
based executables. We refactored the existing emulator as an abstract machine
as described in the previous sections, and we implemented an emulator com-
piler which generates emulators written in C. We also implemented a slicer for
removing unused instructions from the abstract machine definition.

Specialized emulators were built for a series of benchmark programs. For each
of them, the WAM code resulting from its compilation was scanned to collect
the set I of actually used instructions, and the general instruction set Mins was
sliced with respect to I in order to remove unused instructions. The resulting
description was used to encode the WAM code into bytecode and to generate
the specialized emulator. We have verified that, when no changes are applied to
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the abstract machine description, the generated emulator and bytecode repre-
sentation are as optimized as the original ones. Orthogonally, we defined three
slightly different instruction sets and generated specialized emulators for each of
these sets and each of the benchmark programs, and we measured the resulting
size (Table 1).

The benchmarks feature both symbolic and numerical computation, and they
are thus representative of several possible scenarios. The list of benchmarks in-
cludes some widely known programs which we will not describe here. Other pro-
grams, used less often as benchmarks, include hw (which prints “Hello world!”),
exp (which computes 137111 with a linear- and a logarithmic-time algorithm),
knights (chess knight tour visiting once every board cell), poly (symbolically
raise 1+x+y+z to the nth power), and query (query a database of countries, pop-
ulation, and area). Specially interesting are a set of signal processing programs,
applied in wearable computing: stream, which generates 3-D stereo audio from
mono audio, compass, and GPS signals to simulate the movement of a subject in
a virtual world; stream dyn, an improved version of stream which can use any
number of different input signals and sampling frequencies, and stream opt, an
optimized version where number of signals and sampling frequency is fixed.

It has to be noted that, although most of these benchmarks are of moderate
size, our aim in this section is precisely to show how to reduce automatically the
footprint of an otherwise large engine for these particular cases. On the other
hand, reduced size does not necessarily make them unrealistic, in the sense that
they effectively perform non-trivial tasks. As an example, stream opt processes
audio in real time and with constant memory usage using Ciao Prolog in a
200MHz GumStix (a computer the size of a chewing gum).

The whole compilation process is fairly efficient. On a Pentium M at 1400MHz,
with 512MB of RAM, and running Linux 2.6.10, the compiler compiles itself and
generates a specialized emulator in 31.6 seconds: less than 0.1 seconds to gener-
ate the code of the emulator loop itself, 11.3 seconds to compile the compiler to
bytecode (written in Prolog), and 20.3 seconds to compile all the C code: Prolog-
accessible predicates written in C (e.g., builtins and associated glue code) and
the generated emulator using gcc with optimization grade -O2. Both the Prolog
compiler and emulator generator are written in (Ciao-)Prolog.

The results of the benchmarks are in Table 1, were different instruction sets
were used. Columns under the basic label correspond to the instruction set of the
original emulator. The ivect label presents the case for an instruction set where
several compact instructions which are specialized to move register values before
calls to predicates have been added to the studied emulator. Finally, columns
below the label iblt shows results for the instruction set iblt, where specialized
WAM instructions for the arithmetic builtins have been added to the emulator.
In each of these set of columns, and for each benchmark, we studied the impact
of specialization in the emulator size (the loop columns) and bytecode size (the
bytecode columns).

The bytecode columns show two different figures: full is the bytecode size
including all libraries used by the program and the initialization code (roughly
constant for every program) automatically added by the standard compiler. The
numbers in the strip column were obtained after performing dead code elimina-
tion at the Prolog level (such as removing unused Prolog library modules and
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Basic ivect iblt

loop bytecode loop bytecode loop bytecode
(29331) (33215) (34191)
full strip full strip full strip full strip full strip full strip

hw 28% 71% 33116 48 29% 74% 31548 48 29% 75% 31136 48
boyer 26% 46% 40198 8594 27% 50% 38606 8542 28% 52% 38168 8512
crypt 27% 58% 33922 2318 28% 62% 32306 2242 28% 63% 31842 2186
deriv 27% 56% 33606 2002 28% 59% 32022 1958 28% 61% 31606 1950
exp 28% 59% 32102 498 29% 63% 30542 478 29% 63% 30114 458
fact 28% 69% 31756 152 29% 72% 30216 152 29% 73% 29804 148
fib 28% 70% 31758 154 29% 74% 30218 154 29% 74% 29798 142
knights 27% 54% 32306 702 28% 56% 30726 662 29% 57% 30298 642
nrev 27% 65% 31866 262 28% 69% 30322 258 28% 70% 29910 254
poly 26% 48% 34682 3078 27% 52% 33098 3034 27% 53% 32664 3008
primes 27% 56% 32082 478 28% 61% 30526 462 29% 62% 30102 446
qsort 27% 58% 32334 730 28% 61% 30778 714 28% 62% 30370 714
queens11 28% 55% 32248 644 29% 59% 30696 632 29% 60% 30220 564
query 28% 59% 32816 1212 29% 63% 31256 1192 29% 64% 30840 1184
stream dyn 25% 42% 36060 2992 25% 45% 34420 2920 26% 45% 33890 2802
stream opt 26% 46% 35152 2084 26% 49% 33516 2016 26% 49% 32990 1902
stream 26% 46% 34496 1428 27% 49% 32868 1368 28% 49% 32402 1314
tak 28% 67% 31886 282 29% 70% 30334 270 29% 71% 29910 254

Average 27% 56% 27% 60% 28% 61%
Table 1. Emulator sizes for different instruction sets

predicates, producing specialized versions, etc. using information from analysis
–see, e.g., [18] and its references) and then generating the bytecode. This spe-
cialization of Prolog programs at the source and module level is done by the
Ciao preprocessor and is beyond the scope of this paper.

The loop columns contain, right below the label, the size of the main loop
of the standard emulator with no specialization. For each benchmark we also
show the percentage of reduction achieved with bytecode generated from full or
specialized program with respect to the original, non-specialized emulator — the
higher, the more savings.

Even in the case when the emula-
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Fig. 10. Relationship between stripped
bytecode size (x axis) and emulator size
(y axis)

tor is specialized with respect to the
full bytecode, we get a steady sav-
ings of around 27%, including library
and initialization code. We can de-
duce that this is a good approxima-
tion of the amount of reduction that
can be expected from typical programs
where no redundant code exists. Of
course, programs which use all the
available WAM instructions can be
crafted on purpose, but this is not the
general case. In our experience, not
even the compiler itself uses all the abstract machine instructions: we also gen-
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erated an abstract machine specialized for it which was simpler (although only
marginally) than the original one.

The savings obtained when the emulator is generated from specialized byte-
code are more interesting. Savings range from 45% to 75%, averaging 60%. This
shows that substantial size reductions can be obtained with our technique. The
absolute sizes do not take into account ancillary pieces, such as I/O and operat-
ing system interfaces, which would be compiled or not with the main emulator
as necessary, and which are therefore subject to a similar process of selection.

It might be expected that smaller programs would result in more emulator
minimization. In general terms this is so, but with a wide variation, as can be
seen in Figure 10. Thus, predicting in advance which savings will be obtained
from a given benchmark in a precise way is not immediate.

4 Conclusions and Further Work

We have presented the design and implementation of an emulator compiler that
generates efficient code using a high-level description of the instruction set of
an abstract machine and a set of rules which define how intermediate code is
to be represented as bytecode. The approach allowed separating details of the
low-level data and code representation from the set of instructions and their se-
mantics. We were therefore able to perform, at the abstract machine description
level, transformations which affect both the bytecode format and the generated
emulator without sacrificing efficiency.

We have applied our emulator compiler to a description of the abstract ma-
chine underlying a production, high-quality, hand-written emulator. The auto-
matically generated emulator is as efficient as the original one. By using a slicer
at the level of the abstract machine definition, we were able to reduce automati-
cally its instruction set, producing a smaller, dedicated, but otherwise completely
functional, emulator. By changing the definition of the code corresponding to the
instructions we were able to produce automatically emulators with substantial
internal implementation differences, but still correct and efficient.

We expect to use the emulator compiler to also perform extensive exper-
imentation with variations of abstract machine instruction sets and bytecode
representations. We are already applying it in order to generate ad-hoc emula-
tors for specific cases, such as those often found in pervasive computing. We are
also experimenting with the combination of the emulator minimization with our
automatic dead code elimination, slicing, and partial evaluation, in part at the
level of the emulator and ancillary machinery and quite fully at the level of LP

(Ciao/Prolog, in our case) in order to generate high-quality, small executables.
There is also a strong connection with [19]: the fundamental pieces of the C

code generation performed there and the code definitions for instructions in LA

are intimately related, and we have reached a single abstract machine definition
in the Ciao system which is used both to generate bytecode emulators and to
compile to C code. Also, as in [19], we are using compile-time information (such
as type, mode, and determinism information), to generate better LA code (e.g.,
generating specialized instructions or removing unnecessary instructions).

We also plan to redefine and refine the initial instruction set using information
from execution profiling in order to merge frequently contiguous instructions,
specialize them with respect to some frequently used argument value, etc. These
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variations have been explored in [20] for a fixed set of benchmarks, but emulators
were hand-coded, somewhat limiting the per-application use of this approach.
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