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Abstract

We describe the current status of and provide preliminary performance results for a compiler of Prolog to C.

The compiler is novel in that it is designed to accept different kinds of high-level information (typically ob-

tained via an analysis of the initial Prolog program and expressed in a standardized language of assertions)

and use this information to optimize the resulting C code, which is then further processed by an off-the-shelf

C compiler. The basic translation process used essentially mimics an unfolding of a C-coded bytecode emu-

lator with respect to the particular bytecode corresponding to the Prolog program. Optimizations are then

applied to this unfolded program. This is facilitated by a more flexible design of the bytecode instructions

and their lower-level components. This approach allows reusing a sizable amount of the machinery of the

bytecode emulator: ancillary pieces of C code, data definitions, memory management routines and areas,

etc., as well as mixing bytecode emulated code with natively compiled code in a relatively straightforward

way. We report on the performance of programs compiled by the current version of the system, both with

and without analysis information.

1 Introduction

Several techniques for implementing Prolog have been devised since the original interpreter developed by

Colmerauer and Roussel [5], many of them aimed at achieving more speed. An excellent survey of a sig-
nificant part of this work can be found in [26]. The following is a rough classification of implementation

techniques for Prolog (which is, in fact, extensible to many other languages):

, Interpreters (such as C-Prolog [16] and others), where a slight preprocessing or translation might be
done before program execution, but the bulk of the work is done at runtime by the interpreter.

, Compilers to bytecode and their interpreters (often called emulators). The compiler produces relatively

low level code in a special-purpose language. An interpreter of such low-level code is still required.

Most emulators are currently based on the Warren Abstract Machine (WAM) [28, 1], but other propos-
als exist [24, 13].

, Compilers to a lower-level language, typically (“native”) machine code. In this case the output requires

little or no additional support to be executed. One solution is for the compiler to generate machine

code directly. Examples of this are the Aquarius system [27], versions of the SICStus Prolog [22]
compiler for some architectures, the BIM-Prolog compiler [14], and the Gnu Prolog compiler [7].

Another alternative is to generate code in a (lower-level) language, such as, e.g., C-- [12] or C, for

which a machine code compiler is readily available; the latter is the approach taken by -'.0/�1�1 [4].
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Each solution has its advantages and disadvantages:

Executable performance vs. executable size and compilation speed: Compilation to lower-level code can

achieve faster programs by eliminating interpretation overhead and performing lower-level optimizations.

In general, performing as much work as possible at compile time in order to avoid run-time overhead brings
faster execution speed at the expense of using more resources during the compilation phase and possibly

producing larger executables. In general, compilers are much more complex and take longer to preprocess

programs for execution than interpreters. This difference gets larger as more sophisticated forms of code
analysis are performed as part of the compilation process. This can impact development time, although

sophisticated analyses can be turned off during development and applied when only generating production
code. Interpreters in turn have potentially smaller load/compilation times and are often a good solution due

to their simplicity when speed is not a priority. Emulators occupy an intermediate point in complexity and

cost. Highly optimized emulators [19, 20, 6, 22, 2] offer very good performance and reduced program size
(since single bytecode instructions correspond to several machine code instructions), which may be a crucial

issue for very large programs and symbolic data sets.

Portability: Interpreters offer portability in a straightforward way since executing the same Prolog code
in different architectures boils down (in principle) to simply recompiling the interpreter. Emulators usually

retain the portability of interpreters, since only the emulator has to be recompiled for every target archi-
tecture (bytecode is usually architecture-independent), unless of course they are written in machine code.1

Compilers to native code require architecture-dependent back-ends, i.e., a new translation into machine code

has to be developed for each architecture. This typically makes porting and maintaining these compilers a
non-trivial task. The task of developing these back-ends can be simplified by using an intermediate RTL-level

code [7], although still different translations of this code are needed for different architectures.

Opportunities for optimizations: Code optimization can applied at all levels: to the Prolog level itself [18,
29], to WAM code [8], to lower-level code [15], and/or to native code [27, 23]. At a higher language level

it is typically possible to perform more global and structural optimizations, which are then implicitly carried
over onto lower levels. On the other hand, additional, lower-level optimizations can be introduced as we

approach the native code level. These optimizations require exposing a level of detail in the operations that

is not normally visible at higher levels. One of the most important motivations for compiling to machine
code is precisely to be able to perform these low-level optimizations. In fact, recent performance evaluations

show that well-tuned emulator-based Prolog systems can beat, at least in some cases, Prolog compilers which

generate machine code directly but do not perform extensive optimization [7]. The approach of translating to
a low-level language such as C is interesting because it makes portability straightforward, as C compilers exist

for most architectures, and, on the other hand, C is low-level enough that it allows expressing in it a large

class of low-level optimizations which will make into the final executable code in a form known beforehand,
and which go beyond what can be expressed solely by means of Prolog-to-Prolog transformations.

Given all the considerations above, it is safe to say that different approaches are useful in different situ-
ations and perhaps even for different parts of the same program. In particular, the emulator approach with

its competitive compilation times, program size, and performance, can be very useful during development,
and in any case for non-performance bound portions of large symbolic data sets and programs. On the other

hand, in order to generate the highest performance code it seems appropriate to perform optimizations at

all levels and to eventually translate to machine code so that even the lowest-level optimizations can be per-
formed, at least for parts of the program. The selection of a low-level language such as C as an intermediate

target can offer a good compromise between opportunity for optimization and portability for native code.

In our compiler we have taken precisely such an approach: we use translation to C during which we apply
several optimizations, making use of high-level information. Our starting point is the standard version of the

Ciao Prolog system [2]. This is essentially an emulator-based system of quite competitive performance. Its
abstract machine is an evolution of the &-Prolog abstract machine [10], itself a separate evolution branch

from early versions (0.5–0.7) of the SICStus abstract machine. We have developed a compiler from Prolog

to native code, via an intermediate translation to C, where the translation scheme adopts the same scheme
for memory areas, data tagging, etc. as the emulator. This facilitates mixing emulated and native code

(as done also by SICStus) and also has the important practical advantage that many complex and already

1This is the case for the Quintus emulator although it is coded in a generic RTL language (“PROGOL”) to simplify ports.
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existing fragments of C code present in the components of the emulator (such as builtins, low-level file and

stream management, memory management and garbage collection routines, etc.) can be reused by the new
compiler. This is important because our intention is to develop not a prototype but a full compiler that can

be put into everyday use and it would be an unrealistic amount of work to develop all those parts again.

Also, compilation to C allows us to translate Prolog modules into C files that can be compiled as source files
in multi-language applications.

As mentioned before, the selection of C as target low-level language allows performing a large class
of low-level optimizations while easing portability. A practical advantage in this sense is the availability

of C compilers for most architectures, such as �
1�1 , which generate very efficient executable code. The

difference with other systems which compile to C comes from the fact that the translation that we propose
includes a scheme for optimizing the resulting code using higher-level information available at compile-time

regarding determinacy, types, instantiation modes, etc. of the source program. The objective is better run-

time performance, including a reduction of the size of executables. We also strive to preserve portability and
maintainability by avoiding the use of non-standard C code as much as possible.

This line of reasoning lead us also not to adopt other approaches such as compiling to C--. The goal of
C-- is to achieve portable high performance without relinquishing control over low-level details. However,

the associated tools do not seem to be presently mature enough as to be used for a compiler in production

status within a near future, and not even to be used as base for a research protoype in their present stage.
Future portability will also depend on the existence of back-ends for a range of architectures. We, however,

are quite confident that the backend which now generates C code could be adapted to generate C-- (or other

low-level languages) without too many problems.
The high-level information is expressed by means of a powerful and well-defined assertion language [17],

and inferred by automatic global analysis tools which code the results of analysis as assertions or simply
provided by the user. In our system we take advantage of the availability of relatively mature tools for this

purpose within the Ciao system, and, in particular the preprocessor, CiaoPP [11].

Our approach is thus different from, for example, -'.0/%1 1 (the forerunner of the current Gnu Prolog),
which also generated C, but did not use extensive analysis information (and it used low-level, clever tricks

which in practice tied it to a particular C compiler, �#1�1 ). Aquarius [27] (and [23]) used analysis information

at several compilation stages, but they generated directly machine code, and it has proved difficult to port
and maintain these systems. Also, program analysis technology was not as mature at the time as it is now.

Notwithstanding, they were landmark contributions that proved the power of using global information in a
Prolog compiler.

A drawback of putting more burden on the compiler is that compile times grow, and compiler complexity

increases, specially in the global analysis phase. While this can turn out to be a problem in extreme cases,
incremental analysis in combination with a suitable module system [3] can result in very reasonable analysis

times in practice. Moreover, global analysis (or even the compilation to C) are not mandatory in our proposal

and can be reserved for the phase of generating the final, “production” executable. We expect that, as the
system matures, the Prolog-to-C compiler itself (now in a prototype stage) will not be slower than a Prolog-

to-bytecode compiler.

2 The Basic Compilation Scheme

We now present the basic compilation strategy. The optimizing compilation using global program informa-

tion will be described in Section 3.
The compilation process starts with a preprocessing phase which canonizes clauses (removing aliasing

and structure unification from the head, also known as “normalization”), and expands disjunctions, nega-
tions and if-then-else constructs. It also unfolds calls to ������� when possible into calls to simpler arithmetic

predicates, replaces the cut by calls to the lower-level predicates /���	:.'1�

��� 1������ (which stores in its argu-

ment the address of the current choicepoint) and /���	5.51���	
��� (which performs a cut to the choicepoint whose
address is passed in its argument), and performs a simple, local analysis which gathers information about

the type and freeness state of variables.2 Having this analysis in the compiler (in addition to the analyses

2In general, the types used throughout the paper are instantiation types, i.e., they have mode information built in (see [17] for
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put variable(I,J) � uninit,I � = � uninit,J �
put value(I,J) � init,I � = � uninit,J �
get variable(I,J) � uninit,I � = � init,J �
get value(I,J) � init,I � = � init,J �
unify variable(I[, J]) ��� (initialized(J)) ���	��


� uninit,I � = � init,J �
�
�
���

� uninit,I � = � uninit,J �
unify value(I[, J]) ��� (initialized(J)) ���	��


� init,I � = � init,J �
�
�
���

� init,I � = � uninit,J �
Table 1: Representation of some WAM unification instructions with types.

performed by the preprocessor) allows improving the code even in the case that no external information is
available from previous stages or the user. The following steps of the compiler include the translation from

this normalized version of Prolog to WAM-based instructions (at this point the same ones used by the Ciao

emulator), and then splitting these WAM instructions into an intermediate low level code and performing
the final translation to C.

Typing WAM Instructions: WAM instructions dealing with data are handled internally using an enriched

representation which encodes the possible instantiation state of their arguments.
This allows using original type information, and alsotop

init uninit

first local unsafe

bottom

Figure 1: Lattice of WAM types.

generating and propagating lower-level information re-
garding the type (i.e., from the point of view of the tags

of the abstract machine) and instantiation/initialization

state of the variables (which is not seen at a higher level).
Each unification instruction is represented as � TypeX, X �
= � TypeY, Y � , where TypeX and TypeY refer to the classi-

fication of WAM-level types (see Figure 1), and X and Y

refer to variables, which may be later stored as WAM X or

Y registers or directly passed on as C function arguments.
Table 1 summarizes the aforementioned representation for some selected cases. The registers taken as

arguments are the temporary registers x(I), the stack registers y(I) and the register for structure arguments

n(I). The last one can be seen as the second argument which is implicit in the unify * WAM instructions.
A number of other special-purpose registers ( ��� , 	 � /�� , . . . ) are available, and used, for example, to hold

intermediate results from expression evaluation and to record whether a builtin failed. * constant, * nil,

* list and * structure WAM instructions are represented similarly. Only register variables x( � ) are created
in an uninitialized state, and they are initialized on demand (in particular, when calling another predicate

which may overwrite the registers, and in the points where garbage collection can start). Stack and structure
(heap) variables are created initialized.

One of the advantages of this representation is that it is more uniform than the traditional WAM instruc-

tions. In particular, as more information is known about the variables, the associated (low level) types can
be refined and more specific code generated. Using a richer lattice and initial information (Section 3), a

more descriptive intermediate code is generated and used in the back-end.

Generation of the Intermediate Low Level Language: WAM instructions are then split into simpler ones,
which are more suitable for optimizations. This also allows simplifying the generation of the final C code

(and probably also the generation of code in other languages of similar abstraction level). The degree of
complexity of the low-level code is similar to the one proposed in the BAM [25]. Table 2 summarizes the

instructions. The Type argument which appears in several of them is intended to reflect the type of the

instruction arguments: for example, in the instruction bind, Type used to specify if the arguments contain a

a more complete discussion of this issue). Freeness of variables distinguishes between free variables and the top type, “term”, which
includes any term.
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Choice, stack and heap management instructions

no choice Mark that there is no alternative

first choice(Arity, Alt) Create a choicepoint

middle choice(Arity, Alt) Change the alternative

last choice(Arity) Remove the alternative

complete choice(Arity) Complete the choice point

cut choice(Chp) Cut to a given choice point

push frame Allocate a frame on top of the stack

complete frame(FrameSize) Complete the stack frame

modify frame(NewSize) Change the size of the frame

pop frame Deallocate the last frame

recover frame Recover after returning from a call

ensure heap(CS, Amount, Arity) Ensure that enough heap is allocated.

(CS indicates completion status of the choice point)

Data

load(X, Type) Load X with a term

trail if conditional(A) Trail if A is a conditional variable

bind(TypeX, X, TypeY, Y) Bind X and Y

read(Type, X) Begin read of the structure arguments of X

deref(X, Y) Dereference X into Y

move(X, Y) Copy X to Y

globalize if unsafe(X, Y) Copy X to Y ensuring safety

globalize to arg(X, Y) Copy X to argument register Y ensuring safety

call(CallerImp, CalledImp, Pred, In, Out, FailCont) Call a builtin or a user predicate. CallerImp and

CalleeImp mark how caller and callee are compiled.

Control

ijump(X) Jump to the address stored in X

jump(Label) Jump to Label

cjump(Cond, Label) Jump to Label if Cond is true

switch on type(X, Var, Str, List, Cons) Jump to the label that matches the type of X

switch on functor(X, Table, Else)

switch on cons(X, Table, Else)

Conditions

not(Cond) Negate the Cond condition

test(Type, X) True if X matches Type

equal(X, Y) True if X and Y are equal

erroneous(X) True if X has an erroneous value

Table 2: Control and data instructions.

variable (and, if this is known, whether it lives in the heap, in the stack, etc.) or not. For the unification
of structures, the use of write and read modes is avoided using a two-stream scheme (see [26] for an

explanation and references) which is encoded using with the unification instructions in Table 1 and later

translated into the required series of assignments. This scheme requires explicit control instructions, hence
the existence of jump instructions (jump, cjump, and ijump). Jumps are performed to labels, marked as global

(when they have to be stored in global data structures, such as the next alternative in a choicepoint) or local.

For efficiency in indexing, the WAM instructions switch on term, switch on cons and switch on functor are
also included, although the C back-end does not exploit them fully at the moment, resorting to a linear

search in some cases. Failing is done by jumping to the special label fail. Builtins return an exit state in one
argument, which is used to decide whether to backtrack or not. Determinism information, when available,

is passed on through this stage and used when compiling with optimizations (see Section 3).

Compilation to C: This stage in turn produces the output C code. This C code conceptually corresponds

to an unfolding of the initial bytecode emulator loop with respect to the particular sequence(s) of bytecode

corresponding to the program. In the points where the emulated program counter changes continuations
are passed using pointers to functions. Each block of bytecode (i.e., each sequence beginning in a label and

ending in an instruction involving a possible jump) is translated to an individual C function. The state of the
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Figure 2: The C execution loop and blocks scheme.

abstract machine is the input argument to the function and the next continuation is the output argument.

This approach avoids building functions that are too large and would create problems for the C compiler.
Figure 2 shows schematic versions of the execution loop and of the functions that code blocks are compiled

into. The translation also incorporates an optimization which reduces the function calling overhead: � ��	 �
statements are used for jumps to local labels which are located in the same code block.

This scheme does not require using machine-dependent options of the C compiler or extensions to the

ANSI C language (although machine-dependent optimizations can of course be given to the C compiler).

Other systems, as [20] or [21], take advantage of machine-dependent and non-portable constructs to in-
crease performance. However, one of the goals of our system –to study the impact of optimizations based

on available information on the program– can be achieved with the proposed compilation scheme, and, as
mentioned before, we give portability and code cleanliness a high priority. The possibility of producing more

efficient but non-portable code can always be added at a later stage.

An Example — the .:.'1 	
��� Predicate: We will illustrate briefly the different stages of compilation using
the well-known factorial program (Figure 3). We have chosen it due to its simplicity, even if the performance

gain is not very high in this case. The code after the first canonizing and rewriting stage is shown in Figure 4.

The WAM code corresponding to the recursive clause is listed in the leftmost column of Table 3, and the
internal representation of this code appears in the same table, in the middle column. Note how variables are

annotated using information which can be deduced from local inspection of the clause.
This WAM-like representation is translated to the low-level code shown in Figure 5 (ignore, for the

moment, the shadowed and framed regions; they will be further discussed in Section 3). This code, which is

quite low-level now, is what is finally translated to C.
For reference, executing .:.'1 	0/ ��1�1325476 20000 times took 0.65 seconds running emulated bytecode, and

0.63 seconds running the code compiled to C (a speedup of 1.03). This was all done without using any

external, global type information. In the next section we will see how this performance can be improved
with the use of type information.

��� � � ��8:9<; � #
��� � � �>=)9@? �BA�$= % 8:9

=�8 � � = $ ;C9
��� � � ��=�8:9@?�8 � 9? � � =+�D?�8 #

Figure 3: Factorial, initial code.

��� � � �>E)9@F �BA�$8 
 E)9
; 
 F #

��� � � ��E)9@F �GA�$E % 8:9
H � ����� � 
 (�( �I� H ;I(�;C�>E:9J� � 9
��� � � ���:9@K � 9H � ����� � 
 (�( � �ML��	� (�,7��E)95KN9OF � #

Figure 4: Factorial, after preprocessing.

3 Improving Code Generation

As mentioned in Section 1, our objective is to improve the code generation process using information regard-
ing global properties of predicates which is coded as assertions [17] –a few such assertions can be seen in

the example of Section 3. In the current version of the compiler optimization is performed using information

on instantiation types (i.e., moded types) as well as number of solutions (determinacy).
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WAM code Without Types With Types

put constant(0,2) 0 = � uninit,x(2) � 0 = � uninit,x(2) �
builtin 2(37,0,2) � init,x(0) ��� � int(0),x(2) � � int,x(0) ��� � int(0),x(2) �
allocate builtin push frame builtin push frame

get y variable(0,1) � uninit,y(0) � = � init,x(1) � � uninit,y(0) � = � var,x(1) �
get y variable(2,0) � uninit,y(2) � = � init,x(0) � � uninit,y(2) � = � int,x(0) �
init([1]) � uninit,y(1) � = � uninit,y(1) � � uninit,y(1) � = � uninit,y(1) �
true(3) builtin complete frame(3) builtin complete frame(3)

function 1(2,0,0) builtin sub1 1( builtin sub1 1(

� init,x(0) � , � uninit,x(0) � ) � int,x(0) � , � uninit,x(0) � )
put y value(1,1) � init,y(1) � = � uninit,x(1) � � var,y(1) � = � uninit,x(1) �
call(fac/2,3) builtin modify frame(3) builtin modify frame(3)

fact( � init,x(0) � , � init,x(1) � ) fact( � init,x(0) � , � var,x(1) � )
put y value(2,0) � init,y(2) � = � uninit,x(0) � � int,y(2) � = � uninit,x(0) �
put y value(2,1) � init,y(1) � = � uninit,x(1) � � number,y(1) � = � uninit,x(1) �
function 2(9,0,0,1) builtin times 2( � init,x(0) � , builtin times 2( � int,x(0) � ,

� init,x(1) � , � uninit,x(0) � ) � number,x(1) � , � uninit,x(0) � )
get y value(0,0) � init,y(0) � = � init,x(0) � � var,y(0) � = � init,x(0) �
deallocate builtin pop frame builtin pop frame

execute(true/0) builtin proceed builtin proceed

Table 3: WAM code and internal representation without and with external types information. Underlined
instruction changed due to additional information.

The generation of low-level code using additional type information makes use of an extended type lattice

obtained by replacing the init element in the lattice in Figure 1 with the type domain in Figure 6. This
information enriches the Type parameter of the low-level code. Additionally, as mentioned before, any

information about the determinacy / number of solutions of each call is carried over into this stage and used

in it to optimize the generated C code.
In general, information about the types of variables and determinism of predicates allows avoiding intro-

ducing unnecessary tests during the compilation to low level code. The standard WAM compilation performs
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Figure 5: Low level code for the .:.'1 	
��� example (see also Section 3).
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Figure 6: Extended init subdomain.

also some optimizations (e.g., classification of variables and indexing on the first argument), but it is based

on a per-clause (per-predicate, in the case of indexing) based analysis, and in general it does not propagate,
e.g., information deduced from arithmetical builtins. A number of further optimizations can be done by

using richer type, mode, and determinism information:

Unify instructions: A call to the general unify builtin is replaced by the more specialized bind instruction
if one or both arguments are known to store variables. When arguments are known to be constants, a simple

comparison instruction is emitted instead.

Two-Stream Unification: The unification of a register with a structure or constant requires some tests
for determining the unification mode (read or write). Also, in read mode, an additional test is required to

compare the register value with the constant or the structure functor. These tests can often be reduced to

true or false at compile-time if enough information is known about the variable.

Index Tree Generation: Type information is also used to optimize the generation of index trees, which are

used as part of the clause selection process. An index tree is generated by selecting some literals from the
beginning of the clause, mostly builtins and unifications, which give some amount of type/mode information.

This is used to construct a decision tree on the types of the first argument.3 When type information is

available, the indexing tree can be optimized by removing some of the tests in the nodes.

Avoiding Unnecessary Variable Safety Tests: Another optimization performed in the low level code using

type information is the replacement of globalizing instructions for unsafe variables by explicit dereferences.

When the type of a variable is nonvar, its globalization is equivalent to a dereference, which is faster.

Uninitialized Output Arguments: When possible, letting the called predicate fill in the contents of output

arguments in pre-established registers avoids allocation, initialization and binding of free variables, which is

slower.

Selecting Optimized Predicate Versions: Calls to predicates can also be optimized in the presence of type

information. Specialized versions (in the sense of low level optimizations) can exist and be selected using the

call patterns deduced from the type information. The current implementation does not support automatic
versions of user predicates (since this is done automatically by the preprocessor[18]), but it does optimize

natively internal builtin predicates written in C (such as, e.g., arithmetic builtins) which results in relevant
speedups in many cases.

3This can of course be extended to other arguments.
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Determinism: These optimizations are based on two types of analysis. The first one uses information

regarding the number of solutions for a predicate call to deduce, for each such call, if there is a known and
fixed fail continuation. Then, instructions to create choicepoints and to restore previous choicepoint states

are inserted. The resulting code is then re-analyzed to remove these instructions when possible or to replace

them by simpler ones (e.g., to restore a choice point state without untrailing, if it is known at compile time
that the execution will not trail any value since the choice point was created). The latter can take advantage

of additional information regarding register, heap, and trail usage of each predicate.4 In addition, the C
back-end can generate different argument passing schemes based on determinism information: predicates

with zero or one solution can be translated to a function returning a boolean, and predicates with exactly

one solution to a function returning � �
� � .

An Example — the .:.51 	
��� Predicate with program information: Let us assume that it is known that

.:.'1�	
��� (Figure 3) is always called with its first argument instantiated to a small integer (an integer which
fits into a tagged word of the internal representation) and its second argument is a free variable. This

information can be written in the assertion language as follows:5

��� 	����
� ����� � .:.'1 	0/	� 2�
:6 � �
��	����:.������ ����	���� � /��
�����

which reflects the types and modes of the calls and successes of the predicate. The propagation of that

information through the canonized predicate gives the annotated program shown in Figure 7.

��� � � ��E)9@F �BA>$
� * �	� � � 
 � �>E ��� 98 
 E)9
� * �	� ��� � * ��F ��� 9; 
 F #

��� � � �>E)9@F � A�$
� * �	� � � 

� �>E ��� 9E % 8:9
� * �	� � � 

� �>E ��� 9 � * �	� ��� � * �>� ��� 9H �������	� 
 (�( � � H ;I(�;��>E)95� � 9
� * �	� � ��
�� ��� ��� 9 � * �	� ��� � * � K ��� 9
��� � � �>�:9@K � 9
� * �	� � � 

� �>E ��� 9 � * �	� � 
�� L H � * ��K ��� 9
� * �	� � � � * ��F ��� 9H �������	� 
 (�( �	�ML �	� (�,7�>E)9 KN9 F � #

Figure 7: Annotated factorial (using type information).

The WAM code generated for this example is shown in the rightmost column of Table 3. Underlined

instructions were made more specific due to the initial information — note, however, that the representation
is homogeneous with respect to the “no information” case. The impact of type information in the generation

of low-level code can be seen in Figure 5. Instructions in the shaded regions are removed when type

information is available, and the (arithmetic) builtins enclosed in rectangles are replaced by calls to versions
specialized to work with small integers and which do not perform type/mode testing. The optimized .�.'1 	
���
program took 0.54 seconds with the same call as in Section 2: a 20% speedup with respect to the bytecode

version and a 16% speedup over the compilation to C without type information.

4 Performance Measurements

We have evaluated the performance behavior of the executables generated with our compiler using transla-
tion to C with respect to that of the emulated bytecode on a set of standard benchmarks. The benchmarks

are not real-life programs, and some of them have been executed up to 10.000 times in order to obtain rea-
sonable and stable execution times. All the measurements have been made in a Pentium 4 Xeon @ 2.0GHz

with 1Gb of RAM, running Linux with a 2.4 kernel and using �#1�1 3.2 as C compiler. A short description of

the benchmarks follows:

4This is currently known only for internal predicates written in C, and which are available by default in the system, but the scheme
is general and can be extended to Prolog predicates.

5The ����*�! prefix implies that this information is to be used, rather than to be checked by the compiler.
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Program Bytecode Non opt. C Opt1. C Opt2. C

(Std. Ciao)
� �	����
�� ;�;B� ; � 691 391 (1.76) 208 (3.32) 166 (4.16)� * ���
� �M; 8�8�8 � 1525 976 (1.56) 598 (2.55) 597 (2.55)

� * � L �	� �M; 8�8�8�8 � 896 697 (1.28) 403 (2.22) 402 (2.22)

����� �M; 8�8�8 � 9836 5625 (1.74) 5285 (1.86) 771 (12.75)� � * � � �M; 8�8�8�8 � 125 83 (1.50) 82 (1.52) 72 (1.74)

� � � � �M; 8�8 � 439 251 (1.74) 199 (2.20) 177 (2.48)
� � � * � �M; 8�8�8�8 � 521 319 (1.63) 378 (1.37) 259 (2.01)

����� �M; 8 � 494 508 (0.97) 469 (1.05) 459 (1.07)

� � H �M; 8�8�8 � 263 245 (1.07) 234 (1.12) 250 (1.05)

�

������
� � � ; � 621 441 (1.40) 390 (1.59) 356 (1.74)

Average Speedup (1.47) (1.88) (3.18)

Table 4: Bytecode emulation vs. unoptimized, optimized (types), and optimized (types and determinism)
compilation to C.

Program GProlog WAMCC SICStus SWI Yap Mercury
Opt2. C
Mercury� �	� ��
�� ;�;B�M; � 809 378 572 5869 362 106 1.57� * ��� � �M; 8�8�8 � 1258 966 1517 8740 1252 160 3.73

� * �ML��	� �M; 8�8�8�8 � 1102 730 797 7259 1233 336 1.20

����� � ; 8�8�8 � 11955 7362 6869 74750 8135 482 1.60� � * � � �M; 8�8�8�8 � 108 126 121 339 100 72 1.00

� � ��� �M; 8�8 � 440 448 420 1999 424 84 2.11
� � � * � �M; 8�8�8�8 � 618 522 523 2619 354 129 2.01

����� � ; 8 � — — 415 — 340 — —

� � H � ; 8�8�8 � — — 285 — 454 — —

�

������
� � �M; � 911 545 631 2800 596 135 2.63

Average 1.98

Table 5: Speed of other Prolog systems and Mercury

crypt: Cryptoarithmetic puzzle involving multiplication.

primes: Sieve of Erathostenes (with N = 98).
tak: Computation of the Takeuchi function with arguments 	5.��0/���	32 ���32�
32 �:6 .
deriv: Symbolic derivation of polynomials.

poly: Symbolically raise ����
�������� to the 10 �
�

power.

qsort: QuickSort of a list of 50 elements.
exp: Computation of 13

�������
using both a linear- and a logarithmic-time algorithm.

fib: Computation of � ������� using a simply recursive predicate.

knight: Chess knight tour (visit only once all the board cells) in a 5 � 5 board.

A summary of the results appears in Table 4. The number between parentheses in first column is the

number of iterations of each benchmark (used to obtain an execution long enough). The second column

contains the execution times of programs compiled to bytecode (this represents the speed of the standard
Ciao bytecode emulator). The third column corresponds to programs compiled to C without compile-time

information (which corresponds, basically, to mimicking the bytecode execution). The fourth and fifth

columns correspond, respectively, to the execution times when compiling to C using type information and
type+determinism information to optimize the resulting code. The numbers between parentheses are the

speedups relative to the bytecode version. All times are in milliseconds.
In order to know how these numbers compare with the performance of other Prolog systems, Table 5

shows the execution times (also in milliseconds) for the same benchmarks in four well-known Prolog com-

pilers: GNU Prolog 1.2.16, wamcc 2.23, SICStus 3.8.6, SWI-Prolog 5.2.7, and Yap 4.5.0. The aim here is
not really to compare directly with them, because a different technology is being used (compilation to C and
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use of external information which they cannot take advantage of), but rather to establish that our baseline,

the speed of the bytecode system (Ciao), is similar (and quite close, in particular, to that of SICStus and
Yap). Thus, in principle, comparable optimizations could be made in these systems. YAP was itself compiled

with multi-precision arithmetic, which makes its execution a little bit slower than without it (just some mil-

liseconds, not enough as to make a significant difference). The cells marked with “—” correspond to cases
where the benchmark could not be executed (in GNU Prolog, wamcc, and SWI, due to lack of multi-precision

arithmetic).
We also include the performance results for the compiler for the Mercury language [21] (version 0.11.0).

Strictly speaking the Mercury compiler is not a Prolog compiler, since the source language is substantially

different from Prolog. On the other hand the Mercury language does have enough similarities to be relevant
and its performance is interesting as an upper reference line given that the language was designed precisely

to allow the compiler, which directly generates machine code, to achieve very high performance by using ex-

tensive low-level optimization compilation techniques. Also, the language design requires that the programs
necessarily contain as part of the source the necessary information to perform these optimizations.

Going back to Table 4, while some performance gains are obtained in the naive translation to C, such
gains are not very significant, and there is even one program which shows a slowdown. We have tracked this

down to be due to several factors:

, The simple compilation scheme generates C code that is as clean and portable as possible, avoiding

tricks which would speed up the programs. The execution profile is also very near to what the emulator
would do.

, The C execution loop (Figure 2) is slightly more costly (by a few assembler instructions) than the
fetch/switch loop of the emulator. We have identified this as a cause for the poor speedup of programs

where recursive calls dominate the execution time. We want, of course, to improve this point in the
future.

, The increment in size of the program (see Table 6) may also cause more cache misses. We also want
to investigate this point in more detail.

As expected, the performance obtained when using compile-time information is much better. The best

speedups are obtained in benchmarks using arithmetic builtins, for which the compiler produces optimized

versions where several groundness and type checks have been removed. This is, for example, the case of
� �
��� ��� , in which it is known that all the numbers involved are small integers (i.e., there is no need for infinite

precision arithmetic). Besides avoiding checks, the functions which implement the arithmetic operations for
small integers are simple enough as to be inlined by the C compiler. This is an example of an added benefit

which comes for free from compiling to an intermediate language (C, in this case) and using tools designed

for it. When determinism information is used, the execution is often (but not always) improved. The
Takeuchi function ( 	5. � ) is an extreme case, where determinism information saves choicepoint generation

and execution time. While the performance obtained is still far (a factor of 2 on average) from that of

Mercury, the results are encouraging given that we are dealing with a more complex source language (which
preserves fully unification, logical variables, etc.), we are using a portable approach (compilation to standard

C), and we have not applied yet all possible optimizations.
Table 6 compares object size of the bytecode and the different schemes of compilation to C. Unit is bytes.

As mentioned in Section 1, due to the different granularity of instructions, larger object files and executables

are expected when compiling to C. The ratio depends heavily on the program and the optimizations applied.
Size increase can be as large as ��� � when translating to C without optimizations, and the average case sits

around a 7-fold increase. This is also partially due to the indexing mechanism, which repeats some code.

We plan to improve this in the future. It must also be pointed out that executing the bytecode requires
always the presence of the bytecode emulator, which is around 300Kb (depending on the architecture and

the optimizations applied) and which should be added to the figures in Table 6 for the emulator. On the
other hand this can be shared among different executables as a library. The executables obtained through

C do not need the emulation loop, and only the code for the GC routines and the definition of predicates

internally written in C has to be linked at runtime.
The size of the object code produced by -'. /%1�1 is roughly comparable to that generated by our compiler,

although -'. /%1�1 produces smaller object code files. However the final executable / process size depends also
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Program Bytecode Non opt. C Opt1. C Opt2. C
� �	� ��
�� ;�; 7167 36096 (5.03) 29428 (4.10) 42824 (5.97)� * ���
� 12205 186700 (15.30) 107384 (8.80) 161256 (13.21)

� * �ML �	� 6428 50628 (7.87) 19336 (3.00) 31208 (4.85)

����� 5445 18928 (3.47) 18700 (3.43) 25476 (4.67)� � * � � 9606 46900 (4.88) 46644 (4.85) 97888 (10.19)

� � ��� 13541 163236 (12.05) 112704 (8.32) 344604 (25.44)
� � � * � 6982 90796 (13.00) 67060 (9.60) 76560 (10.96)

����� 6463 28668 (4.43) 28284 (4.37) 25560 (3.95)

�	� H 5281 15004 (2.84) 14824 (2.80) 18016 (3.41)

� 
������
�	� 7811 39496 (5.05) 39016 (4.99) 39260 (5.03)

Average Increase (7.39) (5.43) (8.77)

Table 6: Compared size of object files (bytecode vs. C).

on which libraries are linked statically and/or dynamically. The Mercury system is somewhat incomparable

in this regard: it certainly produces relatively small component files but then relatively large final executables

(over 1.5 MByte).
The size, in general, decreases when using type information, as many dynamic type tests are removed.

The average size is now around five times the bytecode size. Adding determinism information increases the

code size because of the additional inlining performed by the C compiler and the more complex parameter
passing code. The options passed on to the C compiler were the same in all the programs, and the decision

of whether to inline or not was left to it. Some experiments showed that asking the C compiler to do more
aggressive inlining did not help to achieve better speedups.

It is interesting that some of the optimizations used in the compilation to C would not give comparable

results when applied directly to a bytecode emulator. A version of the bytecode emulator hand-coded to work
only with small integers (which can be boxed into a tagged word) performed worse than that obtained doing

the same with compilation to C. That suggests that when the overhead of calling builtins is reduced, as is

the case in the compilation to C, some optimizations which only produce minor improvements for emulated
systems acquire greater importance.

5 Conclusions and Future Work

We have reported on the scheme and performance of a Prolog-to-C compiler which uses type analysis and

determinacy information to improve the final code by removing type and mode checks and by making calls

to specialized versions of some builtins. We have also provided preliminary performance results for this
compiler. Our compiler is still in a preliminary stage, but already shows promising results.

The compilation uses internally a simplified and more homogeneous representation for WAM code, which

is then translated to a lower-level intermediate code. This step uses the type and determinacy information
available at compile time. This code is finally translated into C by the compiler back-end. The intermediate

code, as in other similar compilers, makes the final translation step easier and will make it easier to develop
new back-ends for other target languages.

We have found using the same information to optimize a WAM bytecode emulator to be more difficult

and to result in lower speedups, due to the greater granularity of the bytecode instructions (which aims
at reducing the cost of fetching them). The same result has been reported elsewhere [26], although some

recent work tries to improve WAM code by means of local analysis [9, 8].

We expect to be able to use information (e.g., determinacy) to improve also clause selection, as well as to
generate a better indexing scheme at the C level by using hashing on constants, instead of the linear search

performed now. Also, we want to study which other optimizations can be added to the generation of C code
without breaking its portability, and how the intermediate representation can be used to generate code for

other back-ends (for example, GCC RTL, CIL, Java bytecode, etc.).
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