
Pre-Indexed Terms for Prolog?

J. F. Morales1 and M. Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
2 School of Computer Science, Technical University of Madrid, Spain

Abstract. Indexing of terms and clauses is a well-known technique used

in Prolog implementations (as well as automated theorem provers) to

speed up search. In this paper we show how the same mechanism can be

used to implement efficient reversible mappings between different term

representations, which we call pre-indexings. Based on user-provided

term descriptions, these mappings allow us to use more efficient data

encodings internally, such as prefix trees. We show that for some classes

of programs, we can drastically improve the efficiency by applying such

mappings at selected program points.

1 Introduction

Terms are the most important data type for languages and systems based on

first-order logic, such as (constraint) logic programming languages or resolution-

based automated theorem provers. Terms are inductively defined as variables,

atoms, numbers, and compound terms (or structures) comprised by a functor

and a sequence of terms.3 Two main representations for Prolog terms have been

proposed. Early Prolog systems, such as the Marseille and DEC-10 implemen-

tations, used structure sharing [2], while the WAM [15,1] –and consequently

most modern Prolog implementations– use structure copying. In structure shar-

ing, terms are represented as a pair of pointers, one for the structure skeleton,

which is shared among several instances, and another for the binding environ-

ment, which determines a particular instantiation. In contrast, structure copying

makes a copy of the structure for each newly created term. The encoding of terms

in memory resembles tree-like data structures.

In order to speed up resolution, sophisticated term indexing has been im-

plemented both in Prolog [1,7] and automated theorem provers [6]. By using

specialized data structures (such as, e.g., tries), indexing achieves sub-linear

complexity in clause selection. Similar techniques are used to efficiently store

? Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO

TIN2012-39391 StrongSoft and TIN2008-05624 DOVES, and Comunidad de Madrid

ICE-2731 NGREENS Software. We would also like to thank Rémy Haemmerlé and

the anonymous reviewers for providing valuable comments and suggestions.
3 Additionally, many Prolog systems implement an extension mechanism for variable

domains using attributed variables.

predicate solutions in tabling [13]. This efficient indexing is typically also sup-

ported in dynamic predicates, i.e., for predicates whose facts or clauses can be

changed dynamically during program execution. This results in a mechanism

that is often very attractive for storing and manipulating program data: indexed

dynamic predicates offer the benefits of efficient key-value data structures while

hiding the implementation details from the user program.

Modulo some issues like variable sharing, there is thus a duality in program-

ming style between explicitly encoding data as terms or encoding data implicitly

as tuples in dynamic predicates, in order to exploit the built-in indexing pro-

vided by this representation. For example, the set {1, 2, 3, . . . ,n} is represented

naturally as the term [1,2,3,...,n] (equivalent to a linked list). However, de-

pending on the lifetime and operations to be performed on the data, binary trees,

some other map-like structure, or dynamic predicates may be preferable. Which

representation is most efficient or convenient is very application-dependent and

it would be desirable to be able to explore the relative merits of the alternative

representations with minimal changes in the program. Unfortunately, in practice

such changes in representation typically mean significant modifications, which

propagate throughout the whole program. Even worse, it is also frequent to find

code where, after changes motivated by such performance considerations, the

data is represented in the end in a quite unnatural way.

The goal of this paper is to study the merits of term indexing during term

creation rather than at clause selection time. We exploit the fact that data has

frequently a fixed skeleton structure, and introduce a mapping in order to index

and share that part. This mapping is derived from program declarations spec-

ifying term encoding (called rtypes, for representation types) and annotations

defining the program points where pre-indexing of terms is to be performed.

This is done on top of structure copying, so that no large changes are required

in a typical Prolog runtime system. Moreover, the approach does not require

large changes in program structure, which makes rtypes easily interchangeable.

We have implemented a prototype as a Ciao [4] package that deals with rtype

declarations as well as with some additional syntactic sugar that we provide for

marking pre-indexing points.

2 Background

We follow the definitions and naming conventions for term indexing of [3,6].

Given a set of terms L (the indexed terms), a binary relation R over terms (the

retrieval condition), and a term t (the query term), we want to identify the

subsetM⊆ L consisting of all the terms l such that R(l, t) holds (i.e., such that

l is R-compatible with t). We are interested in the following retrieval conditions

R (where σ is a substitution):

– unif(l, t)⇔ ∃σ lσ = tσ (unification)
– inst(l, t)⇔ ∃σ l = tσ (instance check)

– gen(l, t)⇔ ∃σ lσ = t (generalization check)

– variant(l, t)⇔ ∃σ lσ = t and σ is a renaming substitution (variant check)

Example 1. Given L = {h(f(A)),h(f(B,C)),h(g(D))}, t = h(f(1)), and R =

unif, then M = {h(f(A))}.

The objective of term indexing is to implement fast retrieval of candidate

terms. This is done by processing the indexed set L into specialized data struc-

tures (index construction) and modifying this index when terms are inserted or

deleted from L (index maintenance).

When the retrieval condition makes use of the function symbols in the query

and indexed terms, it is called function symbol based indexing.

As mentioned before, in Prolog, indexing finds the set of program clauses

such that their heads unify with a given literal in the goal. In tabled logic pro-

gramming, this is also interesting for detecting if a new goal is a variant or

subsumed by a previously evaluated subgoal [5,12].

Limitations of indexing. Depending on the part of the terms that is indexed

and the supporting data structure, the worst case cost of indexing is proportional

to the size of the term. When computing hash keys, the whole term needs to be

traversed (e.g., computing the key for h(f(A)) requires walking over h and f).

This may be prohibitively costly, not only in the maintenance of the indices, but

also in the lookup. As a compromise many systems rely only on first argument,

first level indexing (with constant hash table lookup, relying on linear search

for the selected clauses). However, when the application needs stronger, multi-

level indexing, lookup costs are repeated many times for each clause selection

operation.

3 Pre-indexing

The goal of pre-indexing is to move lookup costs to term building time. The

idea that we propose herein is to use a bijective mapping between the standard

and the pre-indexed representations of terms, at selected program points. The

fact that terms can be partially instantiated brings in a practical problem, since

binding a variable may affect many precomputed indices (e.g., precomputed in-

dices for H=h(X), G=g(X) may need a change after X=1). Our solution to this

problem is to restrict the mapping to terms of a specific form, based on instan-

tiation types, defined as (possibly recursive) unary predicates. For convenience,

the user-defined instantiation types are extended with the native definitions any

(that represents any term or variable) and nv (that represents any nonvar term).

Definition 1 (Instantiation type check). We say that t is an instance of an

instantiation type τ (defined as a unary predicate), written as checkτ (t), if there

exists a term l in the answers of τ and gen(l, t) (or inst(t, l)).

For conciseness, we will describe the restricted form of instantiation types used

herein using a specialized syntax “:- rtype Name ---> Cons1 ; . . . ; Consn”,

where each Consi is a term constructor. A term constructor is composed of a

functor name and a number of arguments, where each argument is another rtype

name. E.g.,: 4

:- rtype lst ---> [] ; [any|lst]

The rule above thus corresponds to the predicate:

lst([]).

lst([_|Xs]) :- lst(Xs).

Example 2. According to the definition above for lst, the terms [1,2,3] and

[,2] belong to lst while [1|] does not. If nv were used instead of any in the

definition above then [,2] would also not belong to lst.

Type-based pre-indexing. The idea behind pre-indexing is to maintain

specialized indexing structures for each rtype (which in this work is done based on

user annotations). We denote as inhabitants of rtype τ the set of the most general

terms (w.r.t. gen relation) that are instances of τ . The indexing structure will

keep track of the rtype inhabitants constructed during the execution dynamically,

assigning a unique identifier (the pre-index key) to each representant (modulo

variants). E.g., for lst we could assign {[] 7→ k0, [] 7→ k1, [,] 7→ k2, . . .}
(that is, ki for each list of length i). Note that special any does not define a

concrete term constructor and is not pre-indexed, while nv represents all possible

term constructors with any as arguments.

For every term t so that checkτ (t), then exists l in the inhabitants of τ such

that gen(l, t). That is, there exists a substitution σ such that t = lσ. The pre-

indexing of a term replaces t by a simpler term using the inhabitant key k and the

substitution σ. Since k is unique for each inhabitant this translation has inverse.

The translation between pre-indexed and non-pre-indexed forms is defined in

terms of a pre-indexing casting.

Definition 2 (Pre-indexing cast). A pre-indexing cast of type τ is a bijective

mapping with the set of terms defined by checkτ as domain, denoted by #τ , with

the following properties:

1. for every term t so that checkτ (t) (which defines the domain of the mapping),

and substitution σ, then #τ(tσ) = #τ(t)σ (σ-commutative)

2. the main functor of #τ(t) encodes the (indexed) structure of the arguments

(so that it uniquely identifies the rtype inhabitant).

4 Despite the syntax being similar to that described in [10], note that the semantics

is not equivalent.

E.g., for [1,2,3] and lst the pre-indexed term would be k1(1, 2, 3).

Informally, the first property ensures that pre-indexing casts can be selec-

tively introduced in a program (whose terms are instantiated enough) without

altering the (substitution) semantics. Moreover, the meaning of many built-ins

is also preserved after pre-indexing, as expressed in the following theorem.

Theorem 1 (Built-in homomorphism). Given checkτ (x) and checkτ (y), then

unif(x, y) ⇔ unif(#τ(x), #τ(y)) (equivalently for gen, inst, variant, and other

built-ins like ==/2, ground/1).

Proof. unif(x, y) ⇔ [def. of unif] ∃σ xσ = yσ. Since #τ is bijective, then

#τ(xσ) = #τ(yσ) ⇔ [σ-commutative] #τ(x)σ = #τ(y)σ. Given the def. of

unif, it follows that unif(#τ(x), #τ(y)). The proofs for other built-ins are simi-

lar.

In this work we do not require the semantics of built-ins like @< (i.e., term or-

dering) to be preserved, but if desired this can be achieved by selecting carefully

the order of keys in the pre-indexed term. Similarly, functor arity in principle

will not be preserved since ground arguments that are part of the rtype structure

are allowed to be removed.

3.1 Building pre-indexed terms

We are interested in building terms directly into their pre-indexed form. To

achieve this we take inspiration from WAM compilation. Complex terms in

variable-term unifications are decomposed into simple variable-structure uni-

fications X = f(A1, . . . ,An) where all the Ai are variables. In WAM bytecode,

this is further decomposed into a put str f/n (or get str f/n) instruction

followed by a sequence of unify arg Ai. These instructions can be expressed as

follows:

put_str(X,F/N,S0,S1), % | F/N |

unify_arg(A1,S1,S2) % | F/N | A1 |

...

unify_arg(An,Sn,S) % | F/N | A1 | ... | An |

where the Si represent each intermediate heap state, which is illustrated in the

comments on the right.

Assume that each argument Ai can be decomposed into its indexed part

Aik and its value part Aiv (which may omit information present in the key).

Pre-indexing builds terms that encode Aik into the main functor by incremental

updates:

g_put_str(X,F/N,S0,S1), % | F/N |

g_unify_arg(A1,S1,S2) % | F/N<A1k> | A1v |

...

g_unify_arg(An,Sn,S) % | F/N<A1k,...,Ank> | A1v | ... | Anv |

The rtype constructor annotations (that we will see in Section 3.2) indicate

how the functor and arguments are indexed.

Cost analysis. Building and unifying pre-indexed terms have impact both on

performance and memory usage. First, regarding time, although pre-indexing

operations can be slower, clause selection becomes faster, as it avoids repetitive

lookups on the fixed structure of terms. In the best case, O(n) lookups (where

n is the size of the term) become O(1). Other operations like unification are

sped-up (e.g., earlier failure if keys are different). Second, pre-indexing has an

impact on memory usage. Exploiting the data structure allows more compact

representations, e.g., bitpair(bool,bool) can be assigned an integer as key

(without storage costs). In other cases, the supporting index structures may

effectively share the common part of terms (at the cost of maintaining those

structures).

3.2 Pre-indexing Methods

Pre-indexing is enabled in an rtype by annotating each constructor with mod-

ifiers that specify the indexing method. Currently we support compact trie-like

representations and packed integer encodings.

Trie representation is specified with the index(Args) modifier, which indi-

cates the order in which arguments are walked in the decision-tree. The process

is similar to term creation in the heap, but instead of moving a heap pointer,

we combine it with walking through a trie of nodes. Keys are retrieved from the

term part that corresponds to the rtype structure.

./2

a/1

x

./2

c/1

z

[]

./2

a/1

x

./2

d/1

w

[]

./2

b/1

y

./2

c/1

z

[]

./2

b/1

y

./2

d/1

w

[]

Fig. 1. Example terms for pre-indexing

For example, let us consider the input set of terms [a(x), c(z)], [a(x), d(w)],

[b(y), c(z)], [b(y), d(w)], where a, b, c, d are function symbols and x, y, z,w are

variable symbols. The heap representation is shown in Fig. 1.5 We will compare

different rtype definitions for representing these terms.

5 Remember that [1,2] = .(1,.(2,[])).

1

2

[]

3

4

5

(z)

#2

c(z)

6

7

(w)

#2

d(w)

8

9

(x, z)

#5(z)

10

(x,w)

#7(w)

a(x)
11

12

(y, z)

#5(z)

13

(y,w)

#7(w)

b(y)

./2

Fig. 2. Index for example terms (rtype lst ---> [] ; [nv|lst]:::index([0,1,2]))

1

2

[]

2

3

4

(z)

c(z)

5

(w)

d(w)

<lst>./2

4

6

7

(x, z)

a(x)

8

(y, z)

b(y)

<lst>./2

5

9

10

(x,w)

a(x)

11

(y,w)

b(y)

<lst>./2

Fig. 3. Index for example terms (rtype lst ---> [] ; [nv|lst]:::index([2,0,1]))

As mentioned before, nv represents the rtype for any nonvar term (where its

main functor is taking part in pre-indexing). The declaration:

:- rtype lst ---> [] ; [nv|lst]:::index([0,1,2]).

specifies that the lookup order for [|] is a) the constructor name (./2), b)

the first argument (not a pre-indexed term, but takes part in pre-indexing), and

c) the second argument (pre-indexed). The resulting trie is in Fig. 2. In the

figure, each node number represents a position in the trie. Singly circled nodes

are temporary nodes, doubly circled nodes are final nodes. Final nodes encode

terms. The initial node (#1) is unique for each rtype. Labels between nodes

indicate the lookup input. They can be constructor names (e.g., ./2), nv terms

(e.g., b(y)), or other pre-indexed lst (e.g., #2 for [], or #5(z) for [c(z)]). The

arguments are placeholders for the non-indexed information. That is, a term

[a(g),c(h)] would be encoded as #9(g,h).

Trie indexing also supports anchoring on non-root nodes. Consider this dec-

laration:

:- rtype lst ---> [] ; [nv|lst]:::index([2,0,1]).

Figure 3 shows the resulting trie (which has been separated into different sub-

trees for the sake of clarity). For ./2, the lookup now starts from the second

argument, then the constructor name, and finally the first argument. The main

difference w.r.t. the previous indexing method is that the beginning node is an-

other pre-indexed term. This may lead to more optimal memory layouts and

need fewer lookup operations. Note that constructor names in the edges from

initial nodes need to be prefixed with the name of the rtype. This is necessary

to avoid ambiguities, since the initial node is no longer unique.

Garbage Collection and Indexing Methods. Indexing structures require

special treatment for garbage collection.6 In principle, it would not be necessary

to keep in a trie nodes for terms that are no longer reachable (e.g., from the

heap, WAM registers, or dynamic predicates), except for caching to speed-up

node creation. Node removal may make use of lookup order. That is, if a key at

a temporary level n corresponds to an atom that is no longer reachable, then all

nodes above n can be safely discarded.

Anchoring on non-root nodes allows the simulation of interesting memory

layouts. For example, a simple way to encode objects in Prolog is by introducing a

new object operation that creates new fresh atoms, and storing object attributes

with a dynamic objattr(ObjId, AttrName, AttrValue) predicate. Anchoring

on ObjId allows fast deletion (at the implementation level) of all attributes of a

specific object when it becomes unreachable.

4 Applications and Experimental Evaluation

To show the feasibility of the approach, we have implemented the pre-indexing

transformations as source-to-source transformations within the Ciao system.

This is done within a Ciao package which defines the syntax and processes the

rtype declarations as well as the marking of pre-indexing points.

As examples, we show algorithmically efficient implementations of the Lempel-

Ziv-Welch (LZW) lossless data compression algorithm and the Floyd-Warshall

algorithm for finding the shortest paths in a weighted graph, as well as some

considerations regarding supporting module system implementation. In the fol-

lowing code, forall/2 is defined as \+ (Cond, \+ Goal).

4.1 Lempel-Ziv-Welch compression

Lempel-Ziv-Welch (LZW) [16] is a lossless data compression algorithm. It en-

codes an input string by building an indexed dictionary D of words and writing

a list of dictionary indices, as follows:

1- D := {w | w has length 1} (all strings of length one).

6 Automatic garbage collection of indexing structures is not supported in the current

implementation.

1 compress(Cs, Result) :- % Compress Cs

2 build_dict(256), % Build the dictionary

3 compress_(Cs, #lst([]), Result).

4

5 compress_([], W, [I]) :- % Empty, output code for W

6 dict(W,I).

7 compress_([C|Cs], W, Result) :- % Compress C

8 WC = #lst([C|^W]),

9 (dict(WC,_) -> % WC is in dictionary

10 W2 = WC,

11 Result = Result0

12 ; dict(W,I), % WC not in dictionary

13 Result = [I|Result0], % Output the code for W

14 insert(WC), % Add WC to the dictionary

15 W2 = #lst([C])

16),

17 compress_(Cs, W2, Result0).

Fig. 4. LZW Compression: Main code.

2- Remove from input the longest prefix that matches some word W in D, and

emit its dictionary index.

3- Read new character C, D := D ∪ concat(W ,C), go to step 2;

otherwise, stop.

A simple Prolog implementation is shown in Fig. 4 and Fig. 5. Our imple-

mentation uses a dynamic predicate dict/2 to store words and corresponding

numeric indices (for output). Step 1 is implemented in the build dict/1 pred-

icate. Steps 2 and 3 are implemented in the compress /3 predicate. 7 For en-

coding words we use lists. We are only interested in adding new characters and

word matching. For that, list construction and unification are good enough. We

keep words in reverse order so that appending a character is done in constant

time. For constant-time matching, we use an rtype for pre-indexing lists. The

implementation is straighforward. Note that we add a character to a word in WC

= #lst([C|^W]) (Line 8). The annotation (whose syntax is implemented as a

user-defined Prolog operator) is used by the compiler to generate the pre-indexed

version of term construction. In this case, it indicates that words are pre-indexed

7 We use updates in the dynamic program database as an instrumental example for

showing the benefits of preindexing from an operational point of view. It is well

known that this style of programming is often not desirable. The illustrated benefits

of preindexing can be easily translated to more declarative styles (like declaring and

composing effects in the type system) or more elaborate evaluation strategies (such

as tabling, that uses memoization techniques).

1 % Mapping between words and dictionary index

2 :- data dict/2.

3

4 % NOTE: #lst can be changed or removed, ˆ escapes cast

5 % Anchors to 2nd arg in constructor

6 :- rtype lst ---> [] ; [int|lst]:::index([2,0,1]).

7

8 build_dict(Size) :- % Initial dictionary

9 assertz(dictsize(Size)),

10 Size1 is Size - 1,

11 forall(between(0, Size1, I), % Single code entry for I

12 assertz(dict(#lst([I]), I))).

13

14 insert(W) :- % Add W to the dictionary

15 retract(dictsize(Size)), Size1 is Size + 1, assertz(dictsize(Size1)),

16 assertz(dict(W, Size)).

Fig. 5. LZW Compression: Auxiliary code and rtype definition for words.

data size indexing (time)

original result none clause term

data1 1326 732 0.074 0.025 0.015

data2 83101 20340 49.350 1.231 0.458

data3 149117 18859 93.178 2.566 0.524

Table 1. Performance of LZW compression (in seconds) by indexing method.

using the lst rtype and that W is already pre-indexed (indicated by the escape

^ prefix). Thus we can effectively obtain optimal algorithmic complexity.

Performance evaluation. We have encoded three files of different format and

size (two HTML files and a Ciao bytecode object) and measured the performance

of alternative indexing and pre-indexing options. The experimental results for

the algorithm implementation are shown in Table 1.8 The columns under in-

dexing show the execution time in seconds for different indexing methods: none

indicates that no indexing is used (except for the default first argument, first

level indexing); clause performs multi-level indexing on dict/2; term uses pre-

indexed terms.

Clearly, disabling indexing performs badly as the number of entries in the

dictionary grows, since it requires one linear (w.r.t. the dictionary size) lookup

operation for each input code. Clause indexing reduces lookup complexity and

8 Despite the simplicity of the implementation, we obtain compression rates similar

to gzip.

shows a much improved performance. Still, the cost has a linear factor w.r.t. the

word size. Term pre-indexing is the faster implementation, since the linear factor

has disappeared (each word is uniquely represented by a trie node).

4.2 Floyd-Warshall

1 floyd_warshall :-

2 % Initialize distance between all vertices to infinity

3 forall((vertex(I), vertex(J)), assertz(dist(I,J,1000000))),

4 % Set the distance from V to V to 0

5 forall(vertex(V), set_dist(V,V,0)),

6 forall(weight(U,V,W), set_dist(U,V,W)),

7 forall((vertex(K), vertex(I), vertex(J)),

8 (dist(I,K,D1),

9 dist(K,J,D2),

10 D12 is D1 + D2,

11 mindist(I,J,D12))).

12

13 mindist(I,J,D) :- dist(I,J,OldD), (D < OldD -> set_dist(I,J,D) ; true).

14

15 set_dist(U,V,W) :- retract(dist(U,V,_)), assertz(dist(U,V,W)).

Fig. 6. Floyd-Warshall Code

The Floyd-Warshall algorithm computes the shortest paths problem in a

weighted graph in O(n3) time, where n is the number of vertices. Let G = (V ,E)

be a weighted directed graph, V = v1, . . . , vn the set of vertices, E ⊆ V 2, and wi,j
the weight associated to edge (vi, vj) (where wi,j =∞ if (vi, vj) /∈ E and wi,i =

0). The algorithm is based on incrementally updating an estimate on the shortest

path between each pair of vertices until the result is optimal. Figure 6 shows a

simple Prolog implementation. The code uses a dynamic predicate dist/3 to

store the computed minimal distance between each pair of vertices. For each

vertex k, the distance between each (i, j) is updated with the minimum distance

calculated so far.

Performance evaluation. The performance of our Floyd-Warshall implemen-

tation for different sizes of graphs is shown in Fig. 7. We consider three indexing

methods for the dist/3 predicate: def uses the default first order argument

indexing, t12 computes the vertex pair key using two-level indices, p12 uses a

packed integer representation (obtaining a single integer representation for the

pair of vertices, which is used as key), and p12a combines p12 with a specialized

array to store the dist/3 clauses.

20 40 60 80 100

0

5

10

15

Number of nodes

T
im

e
re
la
ti
ve

to
p
1
2
a

def
t12
p12
p12a

Fig. 7. Execution time for Floyd-Warshall

The execution times are consistent with the expected algoritmic complexity,

except for def. The linear relative factor with the rest of methods indicates that

the complexity without proper indexing is O(n4). On the other hand, the plots

also show that specialized computation of keys and data storage (p12 and p12a)

outperforms more generic encoding solutions (t12).

4.3 Module System Implementations

Module systems add the notion of modules (as separate namespaces) to predi-

cates or terms, together with visibility and encapsulation rules. This adds a sig-

nificantly complex layer on top of the program database (whether implemented

in C or in Prolog meta-logic as hidden tables, as in Ciao [4]). Nevertheless, almost

no changes are required in the underlying emulator machinery or program se-

mantics. Modular terms and goals can be perfectly represented as M:T terms and

a program transformation can systematically introduce M from the context. How-

ever, this would include a noticeable overhead. To solve this issue, Ciao reserves

special atom names for module-qualified terms (currently, only predicates).

We can see this optimization as a particular case of pre-indexing, where the

last step in module resolution (which maps to the internal representation) is a

pre-indexing cast for an mpred rtype:

:- rtype mpred ---> nv:nv ::: index([1,0,2]).

For example, given a module M = lists and goal G = append(X,Y,Z), the

pre-indexed term MG = #mpred(M:G) can be represented as

’lists:append’(X,Y,Z),9 where the first functor encodes both the module and

9 Note that the identifier does not need any symbolic description in practice.

the predicate name. To enable meta-programming, when MG is provided, both M

and G can be recovered.

Internally, another rewrite step replaces predicate symbols by actual pointers

in the bytecode, which removes yet another indirection step. This indicates that

it would be simple to reuse pre-indexing machinery for module system imple-

mentations, e.g., to enhance modules with hierarchies or provide better tools

for meta-programming. In principle, pre-indexing would bring the advantages of

efficient low-level code with the flexibility of Prolog-level meta representation of

modules. Moreover, anchoring on M mimicks a memory layout where predicate

tables are stored as key-value tables inside module data structures.

5 Related Work

There has been much previous work on improving indexing for Prolog and

logic programming. Certain applications involving large data sets need any- and

multi-argument indexing. In [7] an alternative to static generation of multi-

argument indexing is presented. The approach presented uses dynamic schemes

for demand-driven indexing of Prolog clauses. In [14] a new extension to Prolog

indexing is proposed. User-defined indexing allows the programmer to index both

instantiated and constrained variables. It is used for range queries and spatial

queries, and allows orders of magnitude speedups on non-trivial datasets.

Also related is ground-hashing for tabling, studied in [17]. This technique

avoids storing the same ground term more than once in the table area, based on

computation of hash codes. The approach proposed adds an extra cell to every

compound term to memoize the hash code and avoid the extra linear time factor.

Our work relates indexing techniques (which deal with fast lookup of terms in

collections) with term representation and encoding (which clearly benefits from

specialization). Both problems are related with optimal data structure imple-

mentation. Prolog code is very often used for prototyping and then translated to

(low-level) imperative languages (such as C or C++) if scalability problems arise.

This is however a symptom that the emulator and runtime are using subopti-

mal data structures which add unnecessary complexity factors. Many specialized

data structures exist in the literature, with no clear winner in all cases. If they

can be directly implemented in Prolog, they are often less efficient than their

low-level counterparts (e.g., due to data immutability). Without proper abstrac-

tion they obscure the program to the point where a low-level implementation

may not be more complex. On the other hand, adding them to the underlying

Prolog machines is not trivial. Even supporting more than one term represen-

tation may have prohibitive costs (e.g., efficient implementations require a low

number of tags, small code that fits in the instruction cache, etc.). Our work

aims at reusing the indexing machinery when possible and specializing indexing

for particular programs.

The need for the right indexing data structures to get optimal complexity is

also discussed in [11] in the context of CHR. In [9] an improved term encoding for

indexed ground terms that avoids the costs of additional hash-tables is presented.

This offers similar results to anchoring in pre-indexing. Reusing the indexing

machinery is also studied in [8], which shows term flattening and specialization

transformations.

6 Conclusions and Future Work

Traditionally, Prolog systems index terms during clause selection (in the best

case, reducing a linear search to constant time). Despite that, index lookup is

proportional to the size of the term. In this paper we have proposed a mixed

approach where indexing is precomputed during term creation. To do that, we

define a notion of instantiation types and annotated constructors that specify

the indexing mode. The advantage of this approach is that lookups become

sub-linear. We have shown experimentally that this approach improves clause

indexing and that it has other applications, for example for module system im-

plementation.

These results suggest that it may be interesting to explore lower-level index-

ing primitives beyond clause indexing. This work is also connected with structure

sharing. In general, pre-indexing annotations allow the optimization of simple

Prolog programs with scalability problems due to data representation.

As future work, there are some open lines. First, we plan to polish the current

implementation, which is mostly based on program rewriting and lacks garbage

collection of indexing tables. We expect major performance gains by optimizing

some operations at the WAM or C level. Second, we want to extend our repertoire

of indexing methods and supporting data structures. Finally, rtype declarations

and annotations could be discovered and introduced automatically via program

analysis or profiling (with heuristics based on cost models).

References

1. Ait-Kaci, H.: Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press

(1991)

2. Boyer, R., More, J.: The sharing of structure in theorem-proving programs. Ma-

chine Intelligence 7 pp. 101–116 (1972)

3. Graf, P.: Term Indexing, Lecture Notes in Computer Science, vol. 1053. Springer

(1996)

4. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales,

J., Puebla, G.: An Overview of Ciao and its Design Philosophy. The-

ory and Practice of Logic Programming 12(1–2), 219–252 (January 2012),

http://arxiv.org/abs/1102.5497

5. Johnson, E., Ramakrishnan, C., Ramakrishnan, I., Rao, P.: A space efficient engine

for subsumption-based tabled evaluation of logic programs. In: Middeldorp, A.,

Sato, T. (eds.) Functional and Logic Programming, Lecture Notes in Computer

Science, vol. 1722, pp. 284–299. Springer Berlin / Heidelberg (1999)

6. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964. Elsevier

and MIT Press (2001)

7. Santos-Costa, V., Sagonas, K., Lopes, R.: Demand-Driven Indexing of Prolog

Clauses. In: International Conference on Logic Programming. LNCS, vol. 4670,

pp. 395–409. Springer Verlag (2007)

8. Sarna-Starosta, B., Schrijvers, T.: Transformation-based indexing techniques for

Constraint Handling Rules. In: CHR. pp. 3–18. RISC Report Series 08-10, Univer-

sity of Linz, Austria (2008)

9. Sarna-Starosta, B., Schrijvers, T.: Attributed data for CHR indexing. In: ICLP.

pp. 357–371 (2009)

10. Schrijvers, T., Costa, V.S., Wielemaker, J., Demoen, B.: Towards Typed Prolog.

In: Pontelli, E., de la Banda, M.M.G. (eds.) International Conference on Logic

Programming. pp. 693–697. No. 5366 in LNCS, Springer Verlag (December 2008)

11. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity

of Constraint Handling Rules. ACM Trans. Program. Lang. Syst. 31(2), 8:1–8:42

(2009)

12. Swift, T., Warren, D.S.: Tabling with answer subsumption: Implementation, ap-

plications and performance. In: Janhunen, T., Niemelä, I. (eds.) JELIA. Lecture

Notes in Computer Science, vol. 6341, pp. 300–312. Springer (2010)

13. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming.

TPLP 12(1-2), 157–187 (2012)

14. Vaz, D., Costa, V.S., Ferreira, M.: User Defined Indexing. In: ICLP. pp. 372–386

(2009)

15. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, Ar-

tificial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park

CA 94025 (1983)

16. Welch, T.A.: A technique for high-performance data compression. IEEE Computer

17(6), 8–19 (1984)

17. Zhou, N.F., Have, C.T.: Efficient tabling of structured data with enhanced hash-

consing. TPLP 12(4-5), 547–563 (2012)

	Pre-Indexed Terms for Prolog

