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Abstract. The estimation and control of resource usage is now an impor-
tant challenge in an increasing number of computing systems. In particular,
requirements on timing and energy arise in a wide variety of applications
such as internet of things, cloud computing, health, transportation, and
robots. At the same time, parallel computing, with (heterogeneous) multi-
core platforms in particular, has become the dominant paradigm in computer
architecture. Predicting resource usage on such platforms poses a difficult
challenge. Most work on static resource analysis has focused on sequential
programs, and relatively little progress has been made on the analysis of par-
allel programs, or more specifically on parallel logic programs. We propose a
novel, general, and flexible framework for setting up cost equations/relations
which can be instantiated for performing resource usage analysis of parallel
logic programs for a wide range of resources, platforms and execution models.
The analysis estimates both lower and upper bounds on the resource usage
of a parallel program (without executing it) as functions on input data sizes.
In addition, it also infers other meaningful information to better exploit
and assess the potential and actual parallelism of a system. We develop a
method for solving cost relations involving the max function that arise in
the analysis of parallel programs. Finally, we instantiate our general frame-
work for the analysis of logic programs with Independent And-Parallelism,
report on an implementation within the CiaoPP system, and provide some
experimental results. To our knowledge, this is the first approach to the
cost analysis of parallel logic programs.

Keywords: Resource Usage Analysis, Parallelism, Static Analysis, Complexity
Analysis, (Constraint) Logic Programming, Prolog.

1 Introduction

Estimating in advance the resource usage of computations is useful for a number of
applications; examples include granularity control in parallel/distributed systems,
automatic program optimization, verification of resource-related specifications and
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detection of performance bugs, as well as helping developers make resource-related
design decisions. Besides time and energy, we assume a broad concept of resources
as numerical properties of the execution of a program, including the number of
execution steps, the number of calls to a procedure, the number of network accesses,
number of transactions in a database, and other user-definable resources. The goal
of automatic static analysis is to estimate such properties without running the
program with concrete data, as a function of input data sizes and possibly other
(environmental) parameters.

Due to the heat generation barrier in traditional sequential architectures, parallel
computing, with (heterogeneous) multi-core processors in particular, has become
the dominant paradigm in current computer architecture. Predicting resource usage
on such platforms poses important challenges. Most work on static resource analysis
has focused on sequential programs, and relatively little progress has been made on
the analysis of parallel programs, or on parallel logic programs in particular. The
significant body of work on static analysis of sequential logic programs has already
been applied to the analysis of other programming paradigms, including imperative
programs. This is achieved via a transformation into Horn clauses [23]. In this paper
we concentrate on the analysis of parallel Horn clause programs, which could be the
result of such a translation from a parallel imperative program or be themselves the
source program. Our starting point is the well-developed technique of setting up
recurrence relations representing resource usage functions parameterized by input
data sizes [28, 25, 10, 8, 11, 24, 2, 26], which are then solved to obtain (exact or safely
approximated) closed forms of such functions (i.e., functions that provide upper or
lower bounds on resource usage). We build on this and propose a novel, general, and
flexible framework for setting up cost equations/relations which can be instantiated
for performing static resource usage analysis of parallel logic programs for a wide
range of resources, platforms and execution models. Such an analysis estimates both
lower and upper bounds on the resource usage of a parallel program as functions on
input data sizes. We have instantiated the framework for dealing with Independent
And-Parallelism (IAP) [16, 12], which refers to the parallel execution of conjuncts
in a goal. However, the results can be applied to other languages and types of
parallelism, by performing suitable transformations into Horn clauses.

The main contributions of this paper can be summarized as follows:

– We have extended a general static analysis framework for the analysis of
sequential Horn clause programs [24, 26], to deal with parallel programs.

– Our extensions and generalizations support a wide range of resources, platforms
and parallel/distributed execution models, and allow the inference of both
lower and upper bounds on resource usage. This is the first approach, to our
knowledge, to the cost analysis of parallel logic programs that can deal with
features such as backtracking, multiple solutions (i.e., non-determinism), and
failure.

– We have instantiated the developed framework to infer useful information for
assessing and exploiting the potential and actual parallelism of a system.

– We have developed a method for finding closed-form functions of cost relations
involving the max function that arise in the analysis of parallel programs.

– We have developed a prototype implementation that instantiates the framework
for the analysis of logic programs with Independent And-Parallelism within the
CiaoPP system [15, 24, 26], and provided some experimental results.
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2 Overview of the Approach

Prior to explaining our approach, we provide some preliminary concepts. Indepen-
dent And-Parallelism arises between two goals when their corresponding executions
do not affect each other. For pure goals (i.e., without side effects) a sufficient condi-
tion for the correctness of IAP is the absence of variable sharing at run-time among
such goals. IAP has traditionally been expressed using the &/2 meta-predicate
as the constructor to represent the parallel execution of goals. In this way, the
conjunction of goals (i.e., literals) p & q in the body of a clause will trigger the
execution of goals p and q in parallel, finishing when both executions finish.

Given a program P and a predicate p ∈ P of arity k and a set Π of k-tuples
of calling data to p, we refer to the (standard) cost of a call p(ē) (i.e., a call to
p with actual data ē ∈ Π), as the resource usage (under a given cost metric)
of the complete execution of p(ē). The standard cost is formalized as a function
Cp : Π → R∞, where R∞ is the set of real numbers augmented with the special
symbol ∞ (which is used to represent non-termination). We extend the function

Cp to the powerset of Π, i.e., Ĉp : 2Π → 2R∞ , where Ĉp(E) = {Cp(ē) | ē ∈ E}. Our

goal is to abstract (safely approximate, as accurately as possible) Ĉp (note that

Cp(ē) = Ĉp({ē})). Intuitively, this abstraction is the composition of two abstractions:
a size abstraction and a cost abstraction. The goal of the analysis is to infer two
functions Ĉ↓p and Ĉ↑p : Nm

> → R∞ that give lower and upper bounds respectively on

the cost function Ĉp, where Nm
> is the set of m-tuples whose elements are natural

numbers or the special symbol >, meaning that the size of a given term under a
given size metric is undefined. Such bounds are given as a function of tuples of data
sizes (representing the concrete tuples of data of the concrete function Ĉp). Typical
size metrics are the actual value of a number, the length of a list, the size (number
of constant and function symbols) of a term, etc. [24, 26].

We now enumerate different metrics used to evaluate the performance of parallel
versions of a logic program, compared against its corresponding sequential version.
When possible, we define these metrics parameterized with respect to the resource
(e.g., number of resolution steps, execution time, or energy consumption) in which
the cost is expressed.

– Sequential cost (Work): It is the standard cost of executing a program,
assuming no parallelism.

– Parallel cost (Depth): It is the cost of executing a program in parallel,
considering an unbounded number of processors.

– Maximum number of processes running in parallel (Procmax(P )): The
maximum number of processes that can run simultaneously in a program. This
is useful, for example, to determine what is the minimum number of processors
that are required to actually run all the processes in parallel.

The following example illustrates our approach.

Example 1. Consider the predicate scalar/3 below, and a calling mode to it with
the first argument bound to an integer n and the second one bound to a list of
integers [x1, x2, · · · , xk]. Upon success, the third argument is bound to the list of
products [n ·x1, n ·x2, · · · , n ·xk]. Each product is recursively computed by predicate
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mult/3. The calling modes are automatically inferred by CiaoPP (see [15] and its
references): the first two arguments of both predicates are input, and their last
arguments are output.� �

1 scalar(_,[] ,[]).
2 scalar(N,[X|Xs],[Y|Ys]):-
3 mult(N,X,Y) & scalar(N,Xs,Ys).
4

5 mult(0,_,0).
6 mult(N,X,Y):-
7 N>1,
8 N1 is N - 1,
9 mult(N1 ,X,Y0),

10 Y is Y0 + X.� �
The call to the parallel &/2 operator in the body of the second clause of scalar/3
causes the calls to mult/3 and scalar/3 to be executed in parallel.

We want to infer the cost of such a call to scalar/3, in terms of the number of
resolution steps, as a function of its input data sizes. We use the CiaoPP system to
infer size relations for the different arguments in the clauses, as well as dealing with
a rich set of size metrics (see [24, 26] for details). Assume that the size metrics used
in this example are the actual value of N (denoted int(N)), for the first argument,
and the list-length for the second and third arguments (denoted length(X) and
length(Y)). Since size relations are obvious in this example, we focus only on the
setting up of cost relations for the sake of brevity. Regarding the number of solutions,
in this example all the predicates generate at most one solution. For simplicity
we assume that all builtin predicates, such as is/2 and the comparison operators
have zero cost (in practice they have a “trust”assertion that specifies their cost as
if it had been inferred by the system). As the program contains parallel calls, we
are interested in inferring both total resolution steps, i.e., considering a sequential
execution (represented by the seq identifier), and the number of parallel steps,
considering a parallel execution, with infinite number of processors (represented by
par). In the latter case, the definition of this resource establishes that the aggregator
of the costs of the parallel calls that are arguments of the &/2 meta-predicate is
the max/2 function. Thus, the number of parallel resolution steps for p & q is the
maximum between the parallel steps performed by p and the ones performed by q.
However, for computing the total resolution steps, the aggregation operator we use
is the addition, both for parallel and sequential calls. For brevity, in this example
we only infer upper bounds on resource usages.

We now set up the cost relations for scalar/3 and mult/3. Note that the cost
functions have two arguments, corresponding to the sizes of the input arguments5.
In the equations, we underline the operation applied as cost aggregator for &/2.

For the sequential execution (seq), we obtain the following cost relations:

Cscalar(n, l) = 1 if l = 0
Cscalar(n, l) = Cmult(n)+Cscalar(n, l − 1) + 1 if l > 0

Cmult(n) = 1 if n = 0
Cmult(n) = Cmult(n− 1) + 1 if n > 0

5 For the sake of clarity, we abuse of notation in the examples when representing the cost
functions that depend on data sizes.
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After solving these equations and composing the closed-form solutions, we obtain
the following closed-form functions:

Cscalar(n, l) = (n+ 2)× l + 1 if n ≥ 0 ∧ l ≥ 0
Cmult(n) = n+ 1 if n ≥ 0

For the parallel execution (par), we obtain the following cost relations:

Cscalar(n, l) = 1 if l = 0
Cscalar(n, l) = max(Cmult(n), Cscalar(n, l − 1)) + 1 if l > 0

Cmult(n) = 1 if n = 0
Cmult(n) = Cmult(n− 1) + 1 if n > 0

After solving these equations and composing the closed forms, we obtain the
following closed-form functions:

Cscalar(n, l) = n+ l + 1 if n ≥ 0 ∧ l ≥ 0
Cmult(n) = n+ 1 if n ≥ 0

By comparing the complexity order (in terms of resolution steps) of the sequential
execution of scalar/3, O(n · l), with the complexity order of its parallel execution
(assuming an ideal parallel model with an unbounded number of processors) O(n+l),
we can get a hint about the maximum achievable parallelization of the program.

Another useful piece of information about scalar/3 that we want to infer is
the maximum number of processes that may run in parallel, considering all possible
executions. For this purpose, we define a resource in our framework named sthreads.
The operation that aggregates the cost of both arguments of the meta-predicate
&/2, count process/3 for the sthreads resource, adds the maximum number of
processes for each argument plus one additional process, corresponding to the one
created by the call to &/2. The sequential cost aggregator is now the maximum
operator, in order to keep track of the maximum number of processes created
along the different instructions of the program executed sequentially. Note that if
the instruction p executes at most Prp processes in parallel, and the instruction
q executes at most Prq processes, then the program p, q will execute at most
max(Prp, P rq) processes in parallel, because all the parallel processes created by p
will finish before the execution of q. Note also that for the sequential execution of
both p and q, the cost in terms of the sthreads resource is always zero, because
no additional process is created.
The analysis sets up the following recurrences for the sthreads resource and the
predicates scalar/3 and mult/3 of our example:

Cscalar(n, l) = 0 if l = 0
Cscalar(n, l) = Cmult(n) + Cscalar(n, l − 1) + 1 if l > 0

Cmult(n) = 0 if n ≥ 0

After solving these equations and composing the closed forms, we obtain the
following closed-form functions:

Cscalar(n, l) = l if n ≥ 0 ∧ l ≥ 0
Cmult(n) = 0 if n ≥ 0

As we can see, this predicate will execute, in the worst case, as many processes as
there are elements in the input list.
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3 The Parametric Cost Relations Framework for Sequential
Programs

The starting point of our work is the standard general framework described in [24] for
setting up parametric relations representing the resource usage (and size relations)
of programs and predicates.6

The framework is doubly parametric: first, the costs inferred are functions of
input data sizes, and second, the framework itself is parametric with respect to the
type of approximation made (upper or lower bounds), and to the resource analyzed.
Each concrete resource r to be tracked is defined by two sets of (user-provided)
functions, which can be constants, or general expressions of input data sizes:

1. Head cost ϕ[ap,r](H): a function that returns the amount of resource r used
by the unification of the calling literal (subgoal) p and the head H of a clause
matching p, plus any preparation for entering a clause (i.e., call and parameter
passing cost).

2. Predicate cost Ψ[ap,r](p, x̄): it is also possible to define the full cost for a particular
predicate p for resource r and approximation ap, i.e., the function Ψ[ap,r](p) :
Nm
> → R∞ (with the sizes of p’s input data as parameters, x̄) that returns the

usage of resource r made by a call to this predicate. This is specially useful
for built-in or external predicates, i.e., predicates for which the source code is
not available and thus cannot be analyzed, or for providing a more accurate
function than analysis can infer. In the implementation, this information is
provided to the analyzer through trust assertions.

For simplicity we only show the equations related to our standard definition of cost.
However, our framework has also been extended to allow the inference of a more
general definition of cost, called accumulated cost, which is useful for performing
static profiling, obtaining a more detailed information regarding how the cost is
distributed among a set of user-defined cost centers. See [13, 22] for more details.

Consider a predicate p defined by clauses C1, . . . , Cm. Assume x̄ are the sizes of
p’s input parameters. Then, the resource usage (expressed in units of resource r with
approximation ap) of a call to p, for an input of size x̄, denoted as Cpred[ap,r](p, x̄),
can be expressed as:

Cpred[ap,r](p, x̄) =
⊙

1≤i≤m

(Ccl[ap,r](Ci, x̄)) (1)

where
⊙

= ClauseAggregator(ap, r) is a function that takes an approximation

identifier ap and returns a function which applies over the cost of all the clauses,
Ccl[ap,r](Ci, x̄), for 1 ≤ i ≤ m, in order to obtain the cost of a call to the predicate
p. For example, if ap is the identifier for approximation ”upper bound” (ub), then
a possible conservative definition for ClauseAggregator(ub, r) is the

∑
function.

In this case, and since the number of solutions generated by a predicate that will

6 We give equivalent but simpler descriptions than in [24], which are allowed by assuming
that programs are the result of a normalization process that makes all unifications
explicit in the clause body, so that the arguments of the clause head and the body
literals are all unique variables. We also change some notation for readability and
illustrative purposes.
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be demanded is generally not known in advance, a conservative upper bound on
the computational cost of a predicate is obtained by assuming that all solutions are
needed, and that all clauses are executed (thus the cost of the predicate is assumed
to be the sum of the costs of all of its clauses). However, it is straightforward to
take mutual exclusion into account to obtain a more precise estimate of the cost of
a predicate, using the maximum of the costs of mutually exclusive groups of clauses,
as done in [26].

Let us see now how to compute the resource usage of a clause. Consider a clause
C of predicate p of the form H :- L1, . . . , Lk where Lj , 1 ≤ j ≤ k, is a literal
(either a predicate call, or an external or builtin predicate), and H is the clause
head. Assume that ψj(x̄) is a tuple with the sizes of all the input arguments to
literal Lj , given as functions of the sizes of the input arguments to the clause head.
Note that these ψj(x̄) size relations have previously been computed during size
analysis for all input arguments to literals in the bodies of all clauses. Then, the
cost relation for clause C and a single call to p (obtaining all solutions), is:

Ccl[ap,r](C, x̄) = ϕ[ap,r](head(C)) +

lim(ap,C)∑
j=1

solsj(x̄)× Clit[ap,r](Lj , ψj(x̄)) (2)

where lim(ap, C) gives the index of the last body literal that is called in the
execution of clause C, ψj(x̄) are the sizes of the input parameters of literal Lj , and
solsj represents the product of the number of solutions produced by the predecessor
literals of Lj in the clause body:

solsj(x̄) =

j−1∏
i=1

spred(Li, ψi(x̄)) (3)

where spred(Li, ψi(x̄)) gives the number of solutions produced by Li, with argu-
ments of size ψi(x̄). The number of solutions and size relations are both inferred
automatically by the framework (we refer the reader to [10, 8, 11, 26] for descriptions
of this process).

Finally, Clit[ap,r](Lj , ψj(x̄)) is replaced by one of the following expressions,
depending on Lj :

– If Lj is a call to a predicate q which is in the same strongly connected component
as p (the predicate under analysis), then Clit[ap,r](Lj , ψj(x̄)) is replaced by the
symbolic call Cpred[ap,r](q, ψj(x̄)), giving rise to a recurrence relation that needs
to be bounded with a closed-form expression by the solver afterwards.

– If Lj is a call to a predicate q which is in a different strongly connected
component than p, then Clit[ap,r](Lj , ψj(x̄)) is replaced by the closed-form
expression that bounds Cpred[ap,r](q, ψj(x̄)). The analysis guarantees that this
expression has been inferred beforehand, due to the fact that the analysis is
performed for each strongly connected component, in a reverse topological
order.

– If Lj is a call to a predicate q, whose cost is specified (with a trust asser-
tion) as Ψ[ap,r](q, x̄), then Clit[ap,r](Lj , ψj(x̄)) is replaced by the expression
Ψ[ap,r](q, ψj(x̄)).
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4 Our Extended Resource Analysis Framework for Parallel
Programs

In this section, we describe how we extend the resource analysis framework detailed
above, in order to handle logic programs with Independent And-Parallelism, using
the binary parallel &/2 operator. First, we introduce a new general parameter
that indicates the execution model the analysis has to consider. For our current
prototype, we have defined two different execution models: standard sequential
execution, represented by seq, and an abstract parallel execution model, represented
by par(n), where n ∈ N ∪ {∞}. The abstract execution model par(∞) is similar to
the work and depth model, presented in [6] and used extensively in previous work
such as [18]. Basically, this model is based on considering an unbounded number of
available processors to infer bounds on the depth of the computation tree. The work
measure is the amount of work to be performed considering a sequential execution.
These two measures together give an idea on the impact of the parallelization of a
particular program. The abstract execution model par(n), where n ∈ N, assumes a
finite number n of processors.

In order to obtain the cost of a predicate, equation (1) remains almost identical,
with the only difference of adding the new parameter to indicate the execution
model.

Now we address how to set the cost for clauses. In this case, equation (2) is
extended with the execution model ex, and also the Σ default sequential cost
aggregation is replaced by a parametric associative operator

⊕
, that depends

on the resource being defined, the approximation, and the execution model. For
ex ≡ par(∞) or ex ≡ seq, the following equation is set up:

Ccl[ap,r,ex](C, x̄) = ϕ[ap,r](head(C)) +

lim(ap,ex,C)⊕
j=1

(solsj(x̄)× Clit[ap,r,ex](Lj , ψj(x̄))) (4)

Note that the cost aggregator operators must depend on the resource r (besides
the other parameters). For example, if r is execution time, then the cost of executing
two tasks in parallel must be aggregated by taking the maximun of the execution
times of the two tasks. In contrast, if r is energy consumption, then the aggregation
is the addition of the energy of the two tasks.

Finally, we extend how the cost of a literal Li, expressed as Clit[ap,r,ex](Li, ψi(x̄)),
is set up. The previous definition is extended considering the new case where the
literal is a call to the meta-predicate &/2. In this case, we add a new parallel
aggregation associative operator, denoted by

⊗
. Concretely, if Li = B1&B2, where

B1 and B2 are two sequences of goals, then:

Clit[ap,r,ex](B1&B2, x̄) = Cbody[ap,r,ex](B1, x̄)
⊗

Cbody[ap,r,ex](B2, x̄) (5)

Cbody[ap,r,ex](B, x̄) =

lim(ap,ex,B)⊕
j=1

(solsj(x̄)× Clit[ap,r,ex](L
B
j , ψj(x̄))) (6)

where B = LB1 , · · · , LBm.
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Consider now the execution model ex ≡ par(n), where n ∈ N (i.e., assuming
a finite number n of processors), and a recursive parallel predicate p that creates
a parallel task qi in each recursion i. Assume that we are interested in obtaining
an upper bound on the cost of a call to p, for an input of size x̄. We first infer
the number k of parallel tasks created by p as a function of x̄. This can be easily
done by using our cost analysis framework and providing the suitable assertions
for inferring a resource named “ptasks.” Intuitively, the “counter” associated to
such resource must be incremented by the (symbolic) execution of the &/2 parallel
operator. More formally, k = Cpred[ub,ptasks](p, x̄). To this point, an upper bound

m on the number of tasks executed by any of the n processors is given by m = d kne.
Then, an upper bound on the cost (in terms of resolution steps, i.e., r = steps) of a
call to p, for an input of size x̄ can be given by:

Cpred[ub,r,par(n)](p, x̄) = Cu + Spawu (7)

where Cu can be computed in two possible ways: Cu =
∑m
i=1 C

u
i ; or Cu = m Cu1 ,

where Cui denotes an upper bound on the cost of parallel task qi, and Cu1 , . . . , C
u
k

are ordered in descending order of cost. Each Cui can be considered as the sum
of two components: Cui = Schedui + Tui , where Schedui denotes the cost from the
point in which the parallel subtask qi is created until its execution is started by
a processor (possibly the same processor that created the subtask), i.e. the cost
of task preparation, scheduling, communication overheads, etc. Tui denotes the
cost of the execution of qi disregarding all the overheads mentioned before, i.e.,
Tui = Cpred[ub,r,seq](q, ψq(x̄)), where ψq(x̄) is a tuple with the sizes of all the input
arguments to predicate q in the body of p. Spawu denotes an upper bound on the
cost of creating the k parallel tasks qi. It will be dependent on the particular system
in which p is going to be executed. It can be a constant, or a function of several
parameters, (such as input data size, number of input arguments, or number of
tasks) and can be experimentally determined.

In addition, we propose a method for finding closed-form functions for cost
relations that arise in the analysis of parallel programs, where the max function
usually plays a role both as parallel and sequential cost aggregation operation, i.e.,
as
⊗

and
⊕

respectively. In the following subsection, we detail these methods.

4.1 Solving Cost Recurrence Relations Involving max Operation

Automatically finding closed-form upper and lower bounds for recurrence relations
is an uncomputable problem. For some special classes of recurrences, exact solutions
are known, for example for linear recurrences with one variable. For some other
classes, it is possible to apply transformations to fit a class of recurrences with
known solutions, even if this transformation obtains an appropriate approximation
rather than an equivalent expression.

Particularly for the case of analyzing independent and-parallel logic programs,
nonlinear recurrences involving the max operator are quite common. For example,
if we are analyzing elapsed time of a parallel logic program, a proper parallel
aggregation operator is the maximum between the times elapsed for each literal
running in parallel. To the best of our knowledge, no general solution exists for
recurrences of this particular type. However, in this paper we identify some common
cases of this type of recurrences, for which we obtain closed forms that are proven
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to be correct. In this section, we present these different classes, together with the
corresponding method to obtain a correct bound.

Consider the following function f : Nm → N, defined as a general form of a
first-order recurrence equation with a max operator:

f(x̄) =

{
max(C, f(x̄|i − 1)) +D xi > Θ

B xi ≤ Θ
(8)

where Θ ∈ N. C,D and B are arbitrary expressions possibly depending on x̄. Note
that x̄ = x1, x2, · · · , xm. We define x̄|i − 1 = x1, · · · , xi − 1, · · · , xm, for a given i,
1 ≤ i ≤ m. If C and D do not depend on xi, then C and D do not change through
the different recursive instances of f . In this case, a closed-form upper bound is
defined by the following theorem (whose proof is included in A):

Theorem 1. Given f : Nm → N as defined in (8), where C and D are non-
decreasing functions of x̄ \ xi. Then, ∀x̄:

f(x̄) = f
′
(x̄) =

{
max(C,B) + (xi −Θ) ·D xi > Θ

B xi ≤ Θ

For the case where C = g(x̄) and D = h(x̄) are functions non-decreasing on xi,
then the upper bound is given by the following closed form:

Theorem 2. Given f : Nm → N as defined in (8), where g and h are functions of
x̄, non-decreasing on xi. Then, ∀x̄:

f(x̄) ≤ f ′(x̄) =

{
max(g(x̄), B) + (xi −Θ − 1)×max(g(x̄), h(x̄|i − 1)) + h(x̄|i) xi > Θ

B xi ≤ Θ

The proof of this Theorem is included in B.
For the remaining cases, where a max(e1, e2) appears, we try to eliminate the

max operator by proving either e1 ≤ e2 or e2 ≤ e1, for any input. In order to
do that, we use the function comparison capabilities of CiaoPP, presented in [20,
21]. In cases where e1 and/or e2 contains non-closed recurrence functions, we use
the Z3 SMT solver [7] to find, if possible, a proof either for e1 ≤ e2 or e2 ≤ e1,
treating the non-closed functions as uninterpreted functions, assuming that they
are positive and non-decreasing. As the algorithm used by SMT solvers in this case
is not guaranteed to terminate, we set a timeout. In the worst case, when no proof
is found, then we replace the max operator with an addition, loosing precision but
still finding safe upper bounds.

5 Implementation and Experimental Results

We have implemented a prototype of our approach, leveraging the existing resource
usage analysis framework of CiaoPP. The implementation basically consists of the
parameterization of the operators used for sequential and parallel cost aggregation,
i.e., for the aggregation of the costs corresponding to the arguments of ,/2 and
&/2, respectively. This allows the user to define resources in a general way, taking
into account the underlying execution model.

10



Table 1. Description of the benchmarks.

map add1/2 Parallel increment by one of each element of a list.
fib/2 Parallel computation of the nth Fibonacci number.

mmatrix/3 Parallel matrix multiplication.
blur/2 Generic parallel image filter.

add mat/3 Matrix addition.
intersect/3 Set intersection.

union/3 Set union.
diff/3 Set difference.
dyade/3 Dyadic product of two vectors.

dyade map/3 Dyadic product applied on a set of vectors.
append all/3 Appends a prefix to each list of a list of lists.

Table 2. Resource usage inferred for Independent And-Parallel Programs.

Bench Res Bound Inferred BigO TA(ms)

map add1(x)

SCost 2 · lx + 1 O(lx)

35.57
PCost 2 · lx + 1 O(lx)

SThreads lx O(lx)

fib(x)

SCost F (ix) + L(ix)− 1 O(2ix )

52.66
PCost ix + 1 O(ix)

SThreads F (ix) + L(ix)− 1 O(2ix )

mmatrix(m1, n1,m2, n2)

SCost in2
· im2

· im1
+ 2 · im2

· im1
+ 2 · im1

+ 1 O(in2
· im2

· im1
)

220.9
PCost 2 · im1

+ in1
+ 1 O(in1

+ im1
)

SThreads im2
· im1

+ im1
O(im2

· im1
)

blur(m,n)

SCost 2 · im · in + 2 · in + 1 O(im · in)

123.321
PCost 2 · im + 2 · in + 1 O(im + in)

SThreads in O(in)

add mat(m,n)

SCost im · in + 2 · in + 1 O(im · in)

62.72
PCost im + 2 · in + 1 O(im + in)

SThreads in O(in)

intersect(a, b)

SCost la · lb + 3 · la + 3 O(lx)

191.16
PCost lb + 2 · la + 3 O(in)

SThreads la O(lx)

union(a, b)

SCost la · lb + 3 · la + 3 O(la · lb)

193.37
PCost 2 · lb + 2 · la + 3 O(la + lb)

SThreads la O(la)

diff(a, b)

SCost la · lb + 3 · la + 3 O(la · lb)

191.16
PCost lb + 2 · la + 3 O(la + lb)

SThreads la O(la)

dyade(a, b)

SCost la · lb + 2 · la + 1 O(la · lb)

71.08
PCost lb + la + 1 O(la + lb)

SThreads la O(la)

dyade map(l,m)

SCost imax(m) · lm · ll + 2 · lm · ll + 2 · lm + 1 O(imax(m) · lm · ll)

248.39
PCost imax(m) + lm + ll + 1 O(imax(m) + lm + ll)

SThreads ll · lm + ll O(lm · ll)

append all(l,m)

SCost ll · lm + 2 · lm + 1 O(ll · lm)

108.4
PCost ll + lm + 1 O(ll + lm)

SThreads lm O(lm)

F (n) represents the nth element of the Fibonacci sequence.
L(n) represents the nth Lucas number.
ln, in represent the size of n in terms of the metrics length and int, respectively.

We selected a set of benchmarks that exhibit different common parallel patterns,
briefly described in Table 1, together with the definition of a set of resources that help
understand the overall behavior of the parallelization. Table 2 shows some results
of the experiments that we have performed with our prototype implementation.
Column Bench shows the main predicates analyzed for each benchmark. Set
operations (intersect, union and diff), as well as the programs append all,
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Table 3. Resource usage inferred for a bounded number of processors.

Bench Bound Inferred BigO TA(ms)

map add1(x) 2 · d lxp e+ 1 O(d lxp e) 54.36

blur(m,n) 2 · d inp e · im + 2 · d inp e+ 1 O(d inp e · im) 205.97

add mat(m,n) d inp e · im + 2 · d inp e+ 1 O(d inp e · im) 185.89

intersect(a, b) d lap e · lb + 2 · d lap e+ la + 2 O(d lap e · lb) 330.47

union(a, b) d lap e · lb + 2 · d lap e+ la + lb + 2 O(d lap e · lb) 311.3

diff(a, b) d lap e · lb + 2 · d lap e+ la + 2 O(d lap e · lb) 339.01

dyade(a, b) d lap e · lb + 2 · d lap e+ 1 O(d lap e · lb) 120.93

append all(l,m) d lmp e · ll + 2 · d lmp e+ 1 O(d lmp e · ll) 117.8

p is defined as the minimum between the number of processors and SThreads.

dyade and add mat, are Prolog versions of the benchmarks analyzed in [18], which
is the closest related work we are aware of.

Column Res indicates the name of each of the resources inferred for each
benchmark: sequential resolution steps (SCost), parallel resolution steps assuming
an unbounded number of processors (PCost), and maximum number of processes
executing in parallel (SThreads). The latter gives an indication of the maximum
parallelism that can potentially be exploited. Column Bound Inferred shows
the upper bounds obtained for each of the resources indicated in Column Res.
While in the experiments both upper and lower bounds were inferred, for the
sake of brevity, we only show upper-bound functions. Column BigO shows the
complexity order, in big O notation, corresponding to each resource. For all the
benchmarks in Table 2 we obtain the exact complexity orders. We also obtain the
same complexity order as in [18] for the Prolog versions of the benchmarks taken
from that work. Finally, Column TA(ms) shows the analysis times in milliseconds.
The results show that most of the benchmarks have different asymptotic behavior in
the sequential and parallel execution models. In particular, for fib(x), the analysis
infers an exponential upper bound for sequential execution steps, and a linear
upper bound for parallel execution steps. As mentioned before, this is an upper
bound for an ideal case, assuming an unbounded number of processors. Nevertheless,
such upper-bound information is useful for understanding how the cost behavior
evolves in architectures with different levels of parallelism. In addition, this dual
cost measure can be combined together with a bound on the number of processors
in order to obtain a general asymptotic upper bound (see for example Brent’s
Theorem [14], which is also mentioned in [18]). The program map add1(l) exhibits
a different behavior: both sequential and parallel upper bounds are linear. This
happens because we are considering resolution steps, i.e., we are counting each
head unification produced from an initial call map add1(l). Even under the parallel
execution model, we have a chain of head unifications whose length depends linearly
on the length of the input list. It follows from the results of this particular case
that this simple, non-associative parallelization will not be useful for improving the
number of resolution steps performed in parallel.

Another useful information inferred in our experiments is the maximum number
of processes that can be executed in parallel, represented by the resource named
SThreads. We can see that for most of our examples the analysis obtains a linear
upper bound for this resource, in terms of the size of some of the inputs. For
example, the execution of intersect(a,b) (parallel set intersection) will create at
most la processes, where la represents the length of the list a. For other examples,
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the analysis shows a quadratic upper bound (as in mmatrix), or even exponential
bounds (as in fib). The information about upper bounds on the maximum level
of parallelism required by a program is useful for understanding its scalability in
different parallel architectures, or for optimizing the number of processors that a
particular call will use, depending on the size of the input data.

Finally, the results of our experiments considering a bounded number of proces-
sors are shown in Table 3.

6 Related Work

Our approach is an extension of an existing cost analysis framework for sequential
logic programs [11, 13, 21], which extends the classical cost analysis techniques
based on setting up and solving recurrence relations, pioneered by [28], with
solutions for relations involving max and min functions. The framework handles
characteristics such as backtracking, multiple solutions (i.e., non-determinism),
failure, and inference of both upper and lower bounds including non-polynomial
bounds. These features are inherited by our approach, and are absent from other
approaches to parallel cost analysis in the literature.

The most closely-related work to our approach is [18], which describes an
automatic analysis for deriving bounds on the worst-case evaluation cost of first
order functional programs. The analysis derives bounds under an abstract dual
cost model based on two measures: work and depth, which over-approximate the
sequential and parallel evaluation cost of programs, respectively, considering an
unlimited number of processors. Such an abstract cost model was introduced by [6] to
formally analyze parallel programs. The work is based on type judgments annotated
with a cost metric, which generate a set of inequalities which are then solved by
linear programming techniques. Their analysis is only able to infer multivariate
resource polynomial bounds, while non-polynomial bounds are left as future work.
In [17] the authors propose an automatic analysis based on the work and depth
model, for a simple imperative language with explicit parallel loops.

There are other approaches to cost analysis of parallel and distributed systems,
based on different models of computation than the independent and-parallel model
in our work. In [3] the authors present a static analysis which is able to infer upper
bounds on the maximum number of active (i.e., not finished nor suspended) processes
running in parallel, and the total number of processes created for imperative
async-finish parallel programs. The approach described in [1] uses recurrence
(cost) relations to derive upper bounds on the cost of concurrent object-oriented
programs, with shared-memory communication and future variables. They address
concurrent execution for loops with semi-controlled scheduling, i.e., with no arbitrary
interleavings. In [4] the authors address the cost of parallel execution of object-
oriented distributed programs. The approach is to identify the synchronization
points in the program, use serial cost analysis of the blocks between these points,
and then, exploiting the techniques mentioned, construct a graph structure to
capture the possible parallel execution of the program. The path of maximal cost is
then computed. The allocation of tasks to processors (called “locations”) is part of
the program in these works, and thus, although independent and-parallel programs
could be modeled in this computation style, it is not directly comparable to our
more abstract model of parallelism.
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Solving, or safely bounding recurrence relations with max and min functions has
been addressed mainly for recurrences derived from divide-and-conquer algorithms [5,
27, 19]. In [2] the authors present solutions for Cost Relation Systems by obtaining
upper bounds for both the number of nodes and the cost added in each node, in the
derived evaluation tree. These bounds are then combined in order to obtain a closed-
form, upper-bound expression. This closed form possibly contains maximization
operations to express upper bounds for a set of subexpressions. However, each
cost relation is defined as a summatory of costs, while in our work we consider
other operations for aggregating the costs, including max operators. The presence
of these operators often generates recurrence relations where the recursive calls are
under the scope of such a max operator, for which we present a method to obtain a
closed-form bound. This class of recurrences are not handled by most of the current
computer algebra systems, as the authors in [2] mention.

7 Conclusions

We have presented a novel, general, and flexible analysis framework that can
be instantiated for estimating the resource usage of parallel logic programs, for
a wide range of resources, platforms, and execution models. To the best of our
knowledge, this is the first approach to the cost analysis of parallel logic programs.
Such estimations include both lower and upper bounds, given as functions on input
data sizes. In addition, our analysis also infers other information which is useful for
improving the exploitation and assessing the potential and actual parallelism of a
program. We have also developed a method for solving the cost relations that arise
in this particular type of analysis, which involve the max function. Finally, we have
developed a prototype implementation of our general framework, instantiated it for
the analysis of logic programs with Independent And-Parallelism, and performed
an experimental evaluation, obtaining very encouraging results w.r.t. accuracy and
efficiency.
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13. R. Haemmerlé, P. Lopez-Garcia, U. Liqat, M. Klemen, J. P. Gallagher, and M. V.
Hermenegildo. A Transformational Approach to Parametric Accumulated-cost Static
Profiling. In FLOPS’16, volume 9613 of LNCS, pages 163–180. Springer, 2016.

14. Robert Harper. Practical Foundations for Programming Languages. Cambridge
University Press, 2 edition, 2016.

15. M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
2005.

16. M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in
Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of
Logic Programming, 22(1):1–45, 1995.

17. T. Hoefler and G. Kwasniewski. Automatic complexity analysis of explicitly parallel
programs. In 26th ACM Symp. on Parallelism in Algorithms and Architectures, SPAA
’14, pages 226–235, 2014.

18. J. Hoffmann and Z. Shao. Automatic static cost analysis for parallel programs. In Jan
Vitek, editor, Programming Languages and Systems, pages 132–157, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

19. H. Hwang and T.-H. Tsai. An asymptotic theory for recurrence relations based on
minimization and maximization. Theoretical Computer Science, 290(3):1475 – 1501,
2003.

20. P. Lopez-Garcia, L. Darmawan, and F. Bueno. A Framework for Verification and
Debugging of Resource Usage Properties. In Technical Communications of ICLP,
volume 7 of LIPIcs, pages 104–113. Schloss Dagstuhl, July 2010.

21. P. Lopez-Garcia, L. Darmawan, M. Klemen, U. Liqat, F. Bueno, and M. V.
Hermenegildo. Interval-based Resource Usage Verification by Translation into Horn
Clauses and an Application to Energy Consumption. TPLP, 18:167–223, March 2018.

22. P. Lopez-Garcia, M. Klemen, U. Liqat, and M. V. Hermenegildo. A General Framework
for Static Profiling of Parametric Resource Usage. TPLP, 16(5-6):849–865, 2016.

23. M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach
to the Analysis of Object-Oriented Programs. In LOPSTR, volume 4915 of LNCS,
pages 154–168. Springer-Verlag, August 2007.

24. J. Navas, E. Mera, P. Lopez-Garcia, and M. Hermenegildo. User-Definable Resource
Bounds Analysis for Logic Programs. In Proc. of ICLP’07, volume 4670 of LNCS,
pages 348–363. Springer, 2007.

25. M. Rosendahl. Automatic Complexity Analysis. In Proc. of FPCA’89, pages 144–156.
ACM Press, 1989.

26. A. Serrano, P. Lopez-Garcia, and M. V. Hermenegildo. Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. TPLP, ICLP’14
Special Issue, 14(4-5):739–754, 2014.

27. B.-F. Wang. Tight bounds on the solutions of multidimensional divide-and-conquer
maximin recurrences. Theoretical Computer Science, 242(1):377 – 401, 2000.

28. B. Wegbreit. Mechanical Program Analysis. Comm. of the ACM, 18(9):528–539, 1975.

15



Appendices

A Proof for Theorem 1

Theorem Given f : Nm → N as defined in (8), where C and D are non-decreasing
functions of x̄ \ xi. Then, ∀x̄:

f(x̄) = f
′
(x̄) =

{
max(C,B) + (xi −Θ + 1) ·D xi > Θ

B xi ≤ Θ

Proof. The proof for the case xi ≤ Θ is trivial.
In the following, we prove the theorem for xi > Θ, or equivalently, for xi ≥ Θ + 1.
The proof is by induction on this subset.

Base Case. We have to prove that f(x1, · · · , xi−1, Θ + 1, · · · , xm) =
f ′(x1, · · · , xi−1, Θ + 1, · · · , xm). Using the definition of f and f ′ we have that

f(x1, · · · , xi−1, Θ + 1, · · · , xm) = max(C, f(x1, · · · , xi−1, Θ, · · · , xm)) +D

= max(C,B) +D

f ′(x1, · · · , xi−1, Θ + 1, · · · , xm) = max(C,B) + (Θ + 1−Θ) ·D
= max(C,B) +D

General Case. Assuming
f(x1, · · · , xi−1, xi, · · · , xm) = f ′(x1, · · · , xi−1, xi, · · · , xm), we need to prove that
f(x1, · · · , xi−1, xi + 1, · · · , xm) = f ′(x1, · · · , xi−1, xi + 1, · · · , xm). By induction
hypothesis we have that:

f(x1, · · · , xi−1, xi + 1, · · · , xm) = max(C, f(x1, · · · , xi−1, xi, · · · , xm)) +D

= max(C,max(C,B) + (xi −Θ) ·D) +D

= max(C,B) + (xi −Θ) ·D +D

= max(C,B) + (xi −Θ + 1) ·D
= f ′(x1, · · · , xi−1, xi + 1, · · · , xm)
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B Proof of Theorem 2

For all a, b, c ∈ N ∪ {0}, the following properties hold:

– Commutative: max(a, b) = max(b, a)
– Associative: max(a,max(b, c)) = max(max(a, b), c)
– Idempotent: max(a, a) = a

Lemma 1. ∀a, b, c ∈ N : max(a, b+ c) ≤ max(a, b) +max(a, c)

Lemma 2. ∀a, b, c, d ∈ N : a ≤ c ∧ b ≤ d =⇒ max(a, b) ≤ max(c, d)

Theorem Given f : Nm → N as defined in (8), where g and h are functions of x̄,
non-decreasing on xi. Then, ∀x̄:

f(x̄) ≤ f ′(x̄) =

{
max(g(x̄), B) + (xi −Θ − 1)×max(g(x̄), h(x̄|i − 1)) + h(x̄|i) xi > Θ

B xi ≤ Θ

Proof. The proof for the case xi ≤ Θ is trivial.
In the following, we prove the theorem for xi > Θ, or equivalently, for xi ≥ Θ + 1.
The proof is by induction on this subset. For brevity, we only show the argument
corresponding to the position of xi in x̄. However, the proof is still valid considering
all of the arguments.

Base Case. We have to prove that f(Θ + 1) ≤ f ′(Θ + 1). Using the definition
of f and f ′ we have that

f(Θ + 1) = max(g(Θ + 1), f(Θ)) + h(Θ + 1)

= max(g(Θ + 1), B) + h(Θ + 1)

f ′(Θ + 1) = max(g(Θ + 1), B) + ((Θ + 1)−Θ − 1)×max(g(Θ + 1), h(Θ)) + h(Θ + 1)

= max(g(Θ + 1), B) + h(Θ + 1)

General Case. Assuming f(x) ≤ f ′(x), we need to prove that f(x+1) ≤ f ′(x+1).
By induction hypothesis and Lemma 2 we have that:

f(x+ 1) = max(g(x+ 1), f(x)) + h(x+ 1)

≤ max(g(x+ 1),max(g(x), B) + (x−Θ − 1)×max(g(x), h(x− 1)) + h(x)) + h(x+ 1)

By Lemma 1 we have that:

f(x+ 1) ≤ max(g(x+ 1),max(g(x), B))

+max(g(x+ 1), (x−Θ − 1)×max(g(x), h(x− 1)))

+max(g(x+ 1), h(x))

+ h(x+ 1)

(9)
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Consider now the first term appearing in the sum of the right hand side of the
inequality (9). Since max is associative, and it holds that ∀x : g(x + 1) ≥ g(x)
(which follows from the hypothesis of the theorem), we obtain:

max(g(x+ 1),max(g(x), B)) = max(max(g(x+ 1), g(x)), B)

= max(g(x+ 1), B)
(10)

We consider now the second term in (9). By Lemma 1 we obtain:

max(g(x+ 1), (x−Θ − 1)×max(g(x), h(x− 1)))

≤ (x−Θ − 1)×max(g(x+ 1),max(g(x), h(x− 1)))

As before, by associativity of max, this is equivalent to:

(x−Θ − 1)×max(g(x+ 1), h(x− 1))

By Lemma 2, and h(x− 1) ≤ h(x) (by hypothesis), we have that:

(x−Θ − 1)×max(g(x+ 1), h(x)) (11)

Replacing the results of (10) and (11) in (9):

f(x+ 1) ≤ max(g(x+ 1), B)

+ (x−Θ − 1)×max(g(x+ 1), h(x))

+max(g(x+ 1), h(x)) + h(x+ 1)

= max(g(x+ 1), B)

+ (x−Θ)×max(g(x+ 1), h(x)) + h(x+ 1)

= f ′(x+ 1)

∴ f(x+ 1) ≤ f ′(x+ 1)
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