
The AMOS Project
IST-2001-34717

The Interface Internals

Deliverable D14

Responsible person: José F. Morales, Edison F. Mera, Manuel Carro, and Jesús

Correas, Technical University of Madrid

({jfran,edison,jcorreas}@clip.dia.fi.upm.es,

mcarro@fi.upm.es)

Date of current release: December 2003

Type of deliverable: Report

Abstract

This document describes the internal interface that is needed within the Amos

tool to allow communication between the matching engine and the web-based

user interface. In order to make the search web form more user-friendly, some

searching parameters needed by the matching engine have been abstracted using

common linguistic expressions that reflect in an informal way search require-

ments. In [GCM04] and [CGC+04] the search user interface is explained in

depth. This document describes the code and interfaces involved in such com-

munication.

1

2

Contents

1 Introduction 5

2 match interface (library) 7

2.1 Usage and interface (match interface) 9

2.2 Documentation on exports (match interface) 9

2.3 Documentation on internals (match interface) 10

3 form page (library) 17

3.1 Usage and interface (form page) 17

3.2 Documentation on exports (form page) 18

4 results page (library) 19

4.1 Usage and interface (results page) 19

4.2 Documentation on exports (results page) 20

5 error page (library) 21

5.1 Usage and interface (error page) 21

5.2 Documentation on exports (error page) 21

6 term desc page (library) 23

6.1 Usage and interface (term desc page) 23

6.2 Documentation on exports (term desc page) 23

7 match (library) 25

7.1 Usage and interface (match) . 26

7.2 Documentation on exports (match) 26

3

4

1 Introduction

The matching engine [CMM04] uses a number of parameters in order to guide the

searching algorithm. These parameters are represented by means of an internal query

language interpreted by the matching engine. The part of the external interface related

to the search of assemblies translates the user query to that language, and invokes

the matching engine to obtain the assemblies that satisfy the searching parameters

specified by the user.

In the Amos system there is a clear conceptual distinction between the user inter-

face and the algorithms and techniques involved in the search for package assemblies.

In order to provide a seamless integration between both of the main components of

the system, the communication protocol between the web-based user interface and the

Amos matching engine is performed by means of Ciao Prolog module interfaces. This

approach improves the functionality of the system while at the same time eases the

implementation.

The searching user interface is based on a Ciao Prolog CGI program that gener-

ates the HTML forms for interacting with the user, transforms the user input into the

internal query language, and performs the query on the Amos database, presenting the

resulting assemblies to the user with a dynamically generated html page.

match_interface

error_page

form_page term_desc_page

match

results_page

Figure 1: Module description of the search interface internals

The matching engine and the user interface for searching have been implemented

through a set of modules, represented in Figure 1. Each module provides a different

function, as follows:

• The module match interface is the starting point of this part of the Amos

5

system. It is a CGI program that generates the HTML pages for requesting query

parameters and displaying the results of a search performed by the matching en-

gine, transforms the query input by the user and sends it to the matching engine.

This module uses the rest of the modules, as shown in 1. This module uses

form page for actual HTML page generation.

• form page generates the main search page. The main search page is com-

posed by a form to enter search parameters and options, and can be followed by

a section with the resulting assemblies of a previous page, or a section with infor-

mative messages about problems found in the previous user input. In order to do

this in a modular way, it uses the modules error page and results page.

form page also accesses the Amos database to load into the search page the

dictionary terms to facilitate user interaction.

• The modules error page and results page generate dynamically the in-

formative messages and the list of assemblies that results from a given search,

respectively.

• Finally, match contains the code of the matching engine. It receives a query in

the internal query language, and produces a list of assemblies which satisfy the

given query.

In following sections these modules are described in depth.

6

2 match interface (library)

This module performs the interaction between the user and the matching engine by

means of a web interface based on efficient CGI scripts. When the web interface starts

for the first time, an initial query with default search options is shown. The user can

then select the description terms to find, and adjust the searching parameters as well,

in order to get more precise results. When the user eventually performs the query

(by pressing the appropiate button on the web page), assemblies satisfying the query

parameters are obtained, and a result page is shown to the user. The assemblies that

result from a query evaluation are presented to the user together with another search

form, in order to enable incremental searches. The information introduced by the user

is kept in this new form to let him refine the search.

The underlying implementation of the search web interface is based on a single

HTML form which encodes the application state given by the values/1 procedure.

Basically, this procedure abstracts away the implementation details of the HTML page,

mapping each state element as an HTML input, which can be either hidden, visible or

a human readable menu which disguises the representation of the matching engine

parameters. Depending on whether the application has been started or not, the main

procedure form handling/0 executes one of these actions:

1- to emit an initial form with default values, or

2- to receive the CGI input, extract the event identifier (represented by an element

of type id), input fields and previous state encoded as input fields, process them

into a new state, and generate an updated form.

The actions of the web interface which require the Amos matching engine are

Search, Next page (to show the next page of search results when the last query

resulting assemblies do not fit a single page) or Previous page (to show the pre-

vious page of search results). The connection with the matching engine to retrieve the

search solutions is made by make search/2. Any other action simply updates the

input state without performing any search.

The search parameters are translated to the internal query language needed by the

matching engine. The translation is straightforward, with the exception of the param-

eters to control the search heuristics (described in sort method/1). This interface

makes use of linguistic modifiers to link the meaning of numeric weights (explained

in match) in order to make them more intuitive for humans, as follows:

7

• number of packages: very few (-2), few (-1), any number or (0), a few (1), many

(2)

• unsatisfied requirements: very few (-2), few (-1), any number or (0)

• auxiliary requirements: very few (-2), few (-1), any number or (0)

• number of capabilities: very few (-2), few (-1), any number or (0), a few (1),

many (2)

• ratio of fullfilled capabilities: a very small (-2), a small (-1), any (0), a large (1),

a very large (2)

8

2.1 Usage and interface (match interface)

• Library usage:

:- use module(library(match interface)).

• Exports:

– Predicates:

start/0.

– Regular Types:

id/1, values/1, results/1.

• Other modules used:

– Application modules:

search(form page), search(term desc page),

search(match), search(utils),

amos(configuration).

– System library modules:

pillow/http, pillow/html, prolog sys, lists,

aggregates, terms, pillow/pillow types.

– Internal (engine) modules:

hiord rt, arithmetic, atomic basic, attributes,

basic props, basiccontrol, data facts, exceptions,

io aux, io basic, prolog flags, streams basic,

system info, term basic, term compare, term typing.

2.2 Documentation on exports (match interface)

start/0: PREDICATE

Usage:

– Description: Main procedure to start the CGI.

id/1: REGTYPE

9

Usage: id(X)

– Description: Identifier of the action.

values/1: REGTYPE

values(values(Terms,Ini,Len,SortMethod,Mode,InP,ExP)) :-

atm(Terms),

num(Ini),

num(Len),

sort_method(SortMethod),

match_mode(Mode),

atm(InP),

atm(ExP).

Usage: values(X)

– Description: Internal state of the search CGI.

results/1: REGTYPE

results(Results)

A list of assemblies which are the result of a search, plus the total number of

solutions Total and the computation time Time.

2.3 Documentation on internals (match interface)

form handling/0: PREDICATE

Usage:

– Description: Gets the CGI input and sends back the corresponding HTML

page to the client web browser.

process form/1: PREDICATE

Usage: process form(Info)

– Description: Generates and sends an HTML page.

10

– Calls should, and exit will be compatible with:

Info is a dictionary of values of the attributes of a form. It is a list of

form assignment (form dict/1)

– The following properties should hold at call time:

Info is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Info is currently ground (it contains no variables). (ground/1)

decide page/3: PREDICATE

Usage: decide page(Id, Info, HtmlCode)

– Description: Processes form input information Info and the action iden-

tifier Id, and generates HtmlCode.

– Calls should, and exit will be compatible with:

Identifier of the action. (id/1)

Info is a dictionary of values of the attributes of a form. It is a list of

form assignment (form dict/1)

HtmlCode is a term representing HTML code. (html term/1)

– The following properties should hold at call time:

Id is currently ground (it contains no variables). (ground/1)

Info is currently ground (it contains no variables). (ground/1)

HtmlCode is a free variable. (var/1)

– The following properties hold upon exit:

Id is currently ground (it contains no variables). (ground/1)

Info is currently ground (it contains no variables). (ground/1)

HtmlCode is currently ground (it contains no variables). (ground/1)

concat with spaces/2: PREDICATE

Usage: concat with spaces(Xs, Y)

– Description: Y is the concatenation of the elements of Xs separated with

blank spaces.

11

– Calls should, and exit will be compatible with:

Xs is a list of atms. (list/2)

Y is an atom. (atm/1)

– The following properties should hold at call time:

Xs is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Xs is currently ground (it contains no variables). (ground/1)

Y is currently ground (it contains no variables). (ground/1)

default values/1: PREDICATE

Usage: default values(Values)

– Description: Values is the default state of a newly loaded search page.

– Calls should, and exit will be compatible with:

Internal state of the search CGI. (values/1)

– The following properties hold upon exit:

Values is currently ground (it contains no variables). (ground/1)

get values/2: PREDICATE

Usage: get values(Info, Values)

– Description: Decodes the information Info obtained by the CGI from the

input form and returns it in Values.

– Calls should, and exit will be compatible with:

Info is a dictionary of values of the attributes of a form. It is a list of

form assignment (form dict/1)

Internal state of the search CGI. (values/1)

– The following properties should hold at call time:

Info is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Info is currently ground (it contains no variables). (ground/1)

Values is currently ground (it contains no variables). (ground/1)

12

no results/1: PREDICATE

Usage: no results(Results)

– Description: Results is an empty result

– Calls should, and exit will be compatible with:

results(Results) (results/1)

– The following properties hold upon exit:

Results is currently ground (it contains no variables). (ground/1)

make search/2: PREDICATE

Usage: make search(Values, Results)

– Description: Converts the search parameters Values stored in the CGI

state to the internal query language and performs the query.

– Calls should, and exit will be compatible with:

Internal state of the search CGI. (values/1)

results(Results) (results/1)

– The following properties should hold at call time:

Values is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Values is currently ground (it contains no variables). (ground/1)

Results is currently ground (it contains no variables). (ground/1)

decode package list/2: PREDICATE

Usage: decode package list(PA, P)

– Description: P is the result of decoding PA.

– Calls should, and exit will be compatible with:

PA is an atom. (atm/1)

P is a list of packages. (list/2)

– The following properties should hold at call time:

PA is currently ground (it contains no variables). (ground/1)

13

– The following properties hold upon exit:

PA is currently ground (it contains no variables). (ground/1)

P is currently ground (it contains no variables). (ground/1)

check request/2: PREDICATE

Usage: check request(Values, Problems)

– Description: Checks the types of Values and generate a the possible list

of problems Problems

– Calls should, and exit will be compatible with:

Internal state of the search CGI. (values/1)

Problems is a list of problems. (list/2)

– The following properties should hold at call time:

Values is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Values is currently ground (it contains no variables). (ground/1)

Problems is currently ground (it contains no variables). (ground/1)

check request number/4: PREDICATE

Usage: check request number(Name, Value, P0, P)

– Description: Inserts the corresponding problem (identifing the culprit input

Name) into the difference list P0-P if the type of Value is not a number.

– Calls should, and exit will be compatible with:

Name is an atom. (atm/1)

Value is an atom. (atm/1)

P0 is a list of problems. (list/2)

P is a list of problems. (list/2)

– The following properties should hold at call time:

Name is currently ground (it contains no variables). (ground/1)

Value is currently ground (it contains no variables). (ground/1)

P is currently ground (it contains no variables). (ground/1)

14

– The following properties hold upon exit:

Name is currently ground (it contains no variables). (ground/1)

Value is currently ground (it contains no variables). (ground/1)

P0 is currently ground (it contains no variables). (ground/1)

P is currently ground (it contains no variables). (ground/1)

check request empty/4: PREDICATE

Usage: check request empty(Name, Value, P0, P)

– Description: Insert the corresponding problem (identifing the culprit input

Name) into the difference list P0-P if the type of Value is empty.

– Calls should, and exit will be compatible with:

Name is an atom. (atm/1)

Value is an atom. (atm/1)

P0 is a list of problems. (list/2)

P is a list of problems. (list/2)

– The following properties should hold at call time:

Name is currently ground (it contains no variables). (ground/1)

Value is currently ground (it contains no variables). (ground/1)

P is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Name is currently ground (it contains no variables). (ground/1)

Value is currently ground (it contains no variables). (ground/1)

P0 is currently ground (it contains no variables). (ground/1)

P is currently ground (it contains no variables). (ground/1)

which page id/2: PREDICATE

Usage: which page id(Info, Id)

– Description: Obtains the identifier of the current page Id from Info. This

identifier can be blank if the form is in its initial state or a particular value

telling which button or action was selected by the user.

15

– Calls should, and exit will be compatible with:

Info is a dictionary of values of the attributes of a form. It is a list of

form assignment (form dict/1)

Identifier of the action. (id/1)

– The following properties should hold at call time:

Info is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Info is currently ground (it contains no variables). (ground/1)

Id is currently ground (it contains no variables). (ground/1)

16

3 form page (library)

This module generates the initial search form, used to perform queries. The initial

search form must be generated dynamically, as it depends on the description terms

stored in the Amos database.

3.1 Usage and interface (form page)

• Library usage:

:- use module(library(form page)).

• Exports:

– Predicates:

generate form page/4,

generate selected termnames/1.

• Other modules used:

– Application modules:

portalfiles(web utils),

portalfiles(standard page), search(utils),

search(results page), search(error page),

search(match interface), search(balboa),

search(db names), balboa term desc.

– System library modules:

pillow/http, pillow/html, aggregates, lists,

between, pillow/pillow types.

– Internal (engine) modules:

hiord rt, arithmetic, atomic basic, attributes,

basic props, basiccontrol, data facts, exceptions,

io aux, io basic, prolog flags, streams basic,

system info, term basic, term compare, term typing.

17

3.2 Documentation on exports (form page)

generate form page/4: PREDICATE

Usage: generate form page(Values, PageId, Results, HTML)

– Description: Generates in HTML the code of the main search page, us-

ing Values as the values to fill in the fields of the search form. This

HTML page may contain results of previous queries, that can be specified

in Results, if it is available.

– Calls should, and exit will be compatible with:

Internal state of the search CGI. (values/1)

Identifier of the action. (id/1)

results(Results) (results/1)

HTML is a term representing HTML code. (html term/1)

– The following properties should hold at call time:

Values is currently ground (it contains no variables). (ground/1)

PageId is currently ground (it contains no variables). (ground/1)

Results is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Values is currently ground (it contains no variables). (ground/1)

PageId is currently ground (it contains no variables). (ground/1)

Results is currently ground (it contains no variables). (ground/1)

HTML is currently ground (it contains no variables). (ground/1)

generate selected termnames/1: PREDICATE

Usage: generate selected termnames(TermNames2Add)

– Description: Obtains the names of the selection lists of description terms

in the search form page.

– Call and exit should be compatible with:

TermNames2Add is a list of atms. (list/2)

– The following properties should hold upon exit:

TermNames2Add is currently ground (it contains no variables). (ground/1)

18

4 results page (library)

This module generates a HTML page that contains resulting assemblies of a given

query. This HTML page is embedded in the general search form page (generated by

form page), in order to allow sequences of queries.

4.1 Usage and interface (results page)

• Library usage:

:- use module(library(results page)).

• Exports:

– Predicates:

results page/3.

• Other modules used:

– Application modules:

amos(configuration), search(utils),

portalfiles(standard page),

portalfiles(web utils), search(match interface),

search(balboa), search(db names),

balboa term desc.

– System library modules:

pillow/http, pillow/html, lists, terms,

pillow/pillow types.

– Internal (engine) modules:

hiord rt, arithmetic, atomic basic, attributes,

basic props, basiccontrol, data facts, exceptions,

io aux, io basic, prolog flags, streams basic,

system info, term basic, term compare, term typing.

19

4.2 Documentation on exports (results page)

results page/3: PREDICATE

Usage: results page(Values, Results, HTML)

– Description: Translates the search results stored in Results plus the

search parameters Values given by the user in the search form to a for-

matted HTML view HTML

– Calls should, and exit will be compatible with:

Internal state of the search CGI. (values/1)

results(Results) (results/1)

HTML is a term representing HTML code. (html term/1)

– The following properties should hold at call time:

Values is currently ground (it contains no variables). (ground/1)

Results is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Values is currently ground (it contains no variables). (ground/1)

Results is currently ground (it contains no variables). (ground/1)

HTML is currently ground (it contains no variables). (ground/1)

20

5 error page (library)

This module generates an HTML page showing a list of error messages.

5.1 Usage and interface (error page)

• Library usage:

:- use module(library(error page)).

• Exports:

– Predicates:

error page/2.

– Regular Types:

problem/1.

• Other modules used:

– System library modules:

pillow/http, pillow/html, hiordlib,

pillow/pillow types.

– Internal (engine) modules:

hiord rt, arithmetic, atomic basic, attributes,

basic props, basiccontrol, data facts, exceptions,

io aux, io basic, prolog flags, streams basic,

system info, term basic, term compare, term typing.

5.2 Documentation on exports (error page)

error page/2: PREDICATE

Usage: error page(Problems, HTML)

– Description: Generates an HTML page HTML for showing a list of prob-

lems Problems detected in the data introduced by the user in the search

form page. It is used throughout the system to generate user friendly error

messages when necessary.

21

– Calls should, and exit will be compatible with:

Problems is a list of problems. (list/2)

HTML is a term representing HTML code. (html term/1)

– The following properties should hold at call time:

Problems is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

Problems is currently ground (it contains no variables). (ground/1)

HTML is currently ground (it contains no variables). (ground/1)

problem/1: REGTYPE

problem(empty(X)) :-

atm(X).

problem(no_num(X)) :-

atm(X).

Usage:

– Description: Type for use in error page/2.

22

6 term desc page (library)

This module generates a HTML page showing the description of all dictionary terms

included in the Amos database.

6.1 Usage and interface (term desc page)

• Library usage:

:- use module(library(term desc page)).

• Exports:

– Predicates:

generate term description/1.

• Other modules used:

– Application modules:

search(utils), portalfiles(standard page),

portalfiles(web utils), search(balboa),

search(db names), balboa term desc.

– System library modules:

pillow/http, pillow/html, aggregates,

pillow/pillow types.

– Internal (engine) modules:

hiord rt, arithmetic, atomic basic, attributes,

basic props, basiccontrol, data facts, exceptions,

io aux, io basic, prolog flags, streams basic,

system info, term basic, term compare, term typing.

6.2 Documentation on exports (term desc page)

generate term description/1: PREDICATE

Usage: generate term description(HTML)

23

– Description: Generates a HTML page with the description of all dictionary

terms included in the Amos database.

– Call and exit should be compatible with:

HTML is a term representing HTML code. (html term/1)

– The following properties should hold upon exit:

HTML is currently ground (it contains no variables). (ground/1)

24

7 match (library)

This module contains the implementation of the matching engine. Given a query ex-

pressed in the Amos internal language, it produces a list of packages that satisfy the

query.

25

7.1 Usage and interface (match)

• Library usage:

:- use module(library(match)).

• Exports:

– Predicates:

match sort interval list/9.

– Regular Types:

match mode/1, match sort result/1, sort method/1,

weight package number/1,

weight unsatisfied deps/1,

weight tighter assemblies/1,

weight capabilities/1,

weight best capabilities ratio/1, package/1,

capability/1.

• Other modules used:

– Application modules:

search(balboa), search(db names),

balboa term desc, search(utils).

– System library modules:

sets, hiordlib, sort, lists, aggregates.

– Internal (engine) modules:

hiord rt, arithmetic, atomic basic, attributes,

basic props, basiccontrol, data facts, exceptions,

io aux, io basic, prolog flags, streams basic,

system info, term basic, term compare, term typing.

7.2 Documentation on exports (match)

match sort interval list/9: PREDICATE

Usage: match sort interval list(SortMethod, Mode, Wanted,

26

IncPack, ExcPack, Ini, Len, MatchList, Total)

– Description: This is the main procedure for performing a search expressed

in the internal language. This procedure generates a list MatchList con-

taining the resulting assemblies of a given query. A query is expressed in

the internal query language, and is defined as follows:

∗ SortMethod specifies the sorting method used for the query. Sev-

eral values are allowed, as described in sort method/1.

∗ Mode selects the search type. Allowed values are described in match mode/1.

∗ Wanted is the list of capabilities to search. It must be provided to the

matching engine as a list of description terms.

∗ IncPack allows to specify that the results of the matching engine

must contain a mandatory set of packages, represented by a list of

package names. If there are no packages to include, IncPack must

be an empty list.

∗ In the same way, ExcPack specifies a (possibly empty) list of pack-

ages which should not appear in the resulting assemblies given by the

matching engine.

The assemblies provided by the matching engine that satisfy the query are

sorted using the criteria specified in SortMethod, and returned in subsets

of length Len, starting with the Inith element of the complete results list

(the first element of the list is numbered 0). In Total the total number of

results found is returned.

– Calls should, and exit will be compatible with:

SortMethod Weights assigned for the different sort options in the inter-

nal query language. (sort method/1)

Mode Matching modes available in the search engine. Available modes

can be:

∗ all returns all the assemblies which match the query.

∗ best(N) selects the best N assemblies which satisfy the query.

∗ gen(N,M) extends the matching of assemblies taking into account

possible generalizations: N determines the maximum level of gener-

alizations in preconditions (the description terms that a package re-

quires), while M specifies the level of generalizations in postconditions

(terms that a package provides).

27

(match mode/1)

Wanted is a list. (list/1)

IncPack is a list. (list/1)

ExcPack is a list. (list/1)

Ini is an integer. (int/1)

Len is an integer. (int/1)

MatchList Sorted result of a search (match sort result/1)

Total is an integer. (int/1)

– The following properties should hold at call time:

SortMethod is currently ground (it contains no variables). (ground/1)

Mode is currently ground (it contains no variables). (ground/1)

Wanted is currently ground (it contains no variables). (ground/1)

IncPack is currently ground (it contains no variables). (ground/1)

ExcPack is currently ground (it contains no variables). (ground/1)

Ini is currently ground (it contains no variables). (ground/1)

Len is currently ground (it contains no variables). (ground/1)

– The following properties hold upon exit:

SortMethod is currently ground (it contains no variables). (ground/1)

Mode is currently ground (it contains no variables). (ground/1)

Wanted is currently ground (it contains no variables). (ground/1)

IncPack is currently ground (it contains no variables). (ground/1)

ExcPack is currently ground (it contains no variables). (ground/1)

Ini is currently ground (it contains no variables). (ground/1)

Len is currently ground (it contains no variables). (ground/1)

MatchList is currently ground (it contains no variables). (ground/1)

Total is currently ground (it contains no variables). (ground/1)

match mode/1: REGTYPE

Usage: match mode(X)

– Description: X Matching modes available in the search engine. Available

modes can be:

28

∗ all returns all the assemblies which match the query.

∗ best(N) selects the best N assemblies which satisfy the query.

∗ gen(N,M) extends the matching of assemblies taking into account

possible generalizations: N determines the maximum level of gener-

alizations in preconditions (the description terms that a package re-

quires), while M specifies the level of generalizations in postconditions

(terms that a package provides).

match sort result/1: REGTYPE

match_sort_result(X) :-

list(match_result_key,X).

Usage: match sort result(X)

– Description: X Sorted result of a search

sort method/1: REGTYPE

sort_method(key_weights(P,U,T,C,B)) :-

weight__package_number(P),

weight__unsatisfied_deps(U),

weight__tighter_assemblies(T),

weight__capabilities(C),

weight__best_capabilities_ratio(B).

Usage: sort method(X)

– Description: X Weights assigned for the different sort options in the inter-

nal query language.

weight package number/1: REGTYPE

Usage: weight package number(X)

– Description: X Weight assigned to the number of packages provided by the

matching engine.

weight unsatisfied deps/1: REGTYPE

Usage: weight unsatisfied deps(X)

29

– Description: X Weight assigned to the number of unsatisfied dependencies

(less dependencies get higher weights).

weight tighter assemblies/1: REGTYPE

Usage: weight tighter assemblies(X)

– Description: XWeight assigned to the number of tighter assemblies (looser

assemblies get higher weights).

weight capabilities/1: REGTYPE

Usage: weight capabilities(X)

– Description: X Weight for number of capabilities.

weight best capabilities ratio/1: REGTYPE

Usage: weight best capabilities ratio(X)

– Description: X Weight assigned to the ratio satisfied/unsatisfied capabili-

ties.

package/1: REGTYPE

Usage: package(X)

– Description: X is a Amos package

capability/1: REGTYPE

Usage: capability(X)

– Description: X is a Amos capability

30

References

[CGC+04] M. Carro, J. M. Gomez, J. Correas, J. F. Morales, E. F. Mera, G. Puebla,

D. Cabeza, F. Bueno, C. Daffara, and M. Hermenegildo. AMOS User’s

Manual. Technical Report CLIP4/2004.0, Technical University of Madrid,

School of Computer Science, UPM, March 2004.

[CMM04] J. Correas, E. Mera, and J. F. Morales. Final matching engine. Technical

Report CLIP8/2004.0, Computer Science School, Technical University of

Madrid, School of Computer Science, UPM, May 2004. Deliverable D15

of the AMOS Project.

[GCM04] J. M. Gomez, M. Carro, and J. F. Morales. The external interface. Techni-

cal Report CLIP6/2004.0, Computer Science School, Technical University

of Madrid, School of Computer Science, UPM, May 2004. Deliverable

D12 of the AMOS Project.

31

