
The AMOS Project
IST-2001-34717

AMOS User’s Manual

Deliverable D13

Responsible person: Manuel Carro, José M. Gómez, Jesús Correas, José F.

Morales, Edison F. Mera, Germán Puebla, Daniel Cabeza,

Francisco Bueno, Carlo Daffara, and Manuel Hermenegildo,

Technical University of Madrid

({mcarro,german,bardo,bueno,herme}@fi.upm.es,

{jgomez,jcorreas,jfran,edison}@clip.dia.fi.upm.es,

cdaffara@conecta.it)

Date of current release: May 2004

Type of deliverable: Report





Contents

1 A Gentle Introduction to AMOS 5

2 Project Goals: A More Technical Description 13

3 First Contact with AMOS 15

4 Searching (and Finding) 21

5 Submitting Packages 23

6 Accessing and Managing the Database 27

7 Accessing the Source Code of the Tool 35

8 Mail List 37

9 About the Partners 39

10 More Information 43

1



2



3

A note about this document

There has been an effort by the Consortium in providing as much user-oriented

information in the web site as possible, and in making a seamless integration of this

information and the tool itself. Right now, documentation text and tool sources live

in the same CVS tree and are installed / updated at the same time, and consistently.

The installation process ensures that no dangling pointers are left behind, and that all

the documentation is stored in the proper place, thus taking the role of a small content

management system, fully integrated with the tool. The menus change to adapt to the

place where the user is at the moment, and to offer help related to that location, and

the web site structure is kept separate from its contents by making a separate definition

of what pages exist and how they are linked among them. Most HTML is generated

automatically and the appearance is governed, in great part, by CSS files.

Therefore, the Consortium considers that the manual in its more up-to-date form

is contained in the tool itself, and it is in constant evolution as the tool itself evolves.

Notwithstanding, we offer here an edited (for formatting, but not for contents) version

of the information contained in the tool installation at

http://www.amosproject.org

This document reflects the tool state at 2, March, 2004. Subsequent improvements

of the tool (and its documentation) may make this report inaccurate.

Emphasized paragraphs (like this one) at the beginning of the sections are meant to

introduce the reader to the environment where each chapter appears.



4



5

1 A Gentle Introduction to AMOS

This corresponds to a short, easy-to-read introduction to the tool, why it is different

from other search tools and what advantages Amos brings in with respect of other

search tools. It also justifies some general design decisions.

The world of Free/Libre Open Source Software (FLOSS for short) has seen a

growth that is unbelievable just a few years ago. When the popular FreshMeat.net

site was launched, there were just a few updates per day. Now, usually there are more

than 50 new software announcements per day, and this represents just a small percent-

age of the true number - just consider SourceForge and its more than 60.000 projects,

of which a large number are at the “beta” or better stage, or all the specialized software

packages developed in the scientific and research communities.

As much as it seems a wonderful thing, it is becoming a problem in itself just

finding what you are looking for - not only for users, but especially for developers

and system integrators that may be willing to cooperate with an existing project, rather

than starting something new from scratch. This is especially complex when someone

wants to search for specific capabilities that may be embedded in a package, but that

are not apparent from the documentation (that may be nonexistent to start with). And

if it is a problem now, imagine what will happen in a few years, if the growth in FLOSS

software production continues at this pace!

As members of the IST-sponsored AMOS project, we are trying to devise a poten-

tial solution to the search problem, through the development of a specialized search

engine devoted to searching software code and other code-related artifacts (like code

snippets, test cases and such). We are trying to combine several technologies to im-

prove on existing techniques:

• We are using a sophisticated, extremely efficient Prolog environment (called

Ciao Prolog, and itself released under the GPL) to be able to perform complex

manipulation of symbols,

• The search engine itself is using a structured approach to representing software

packages and their relationships, in the form of a very simple “ontology” and a

dictionary of potential search terms.

• The algorithm used makes it possible to search for “assemblies”, or set of pack-

ages that together try to match the user’s requirements as closely as possible.

We will try to explain everything in a question-and-answer way. Stay tuned!



6 1 A GENTLE INTRODUCTION TO AMOS

So, you say that you are trying to create some sort of search engine. But I can

search things on FreshMeat, or SourceForge, or Google! Why another one?

Because searching isn’t that simple. Let me make a small example: suppose that you

want to find a way for creating a UDF filesystem for pressing a DVD. Let us try to find

it with FreshMeat leads us to the results in Figure 1.

Figure 1: Searching with FreshMeat

But we want to create the image, not read it. The other projects (Figure 2) are not

much better, and Google (Figure 3) does not help a lot either.

If you know where to look, you can find the right project (that is on SourceForge,

and is called dvd-create). Of course, this is just an example- if we look for a LaTeX-

to-PDF converter, for example, FreshMeat returns sensible answers at the 15th and

16th place, while Google fares much better. More complex examples are much more

difficult to search for; even more so in specialized areas where word meaning can be

different.



7

Figure 2: More FreshMeat Projects

Figure 3: Google results



8 1 A GENTLE INTRODUCTION TO AMOS

How do you plan to do it better?

We try to improve the situation by describing packages through their capabilities. That

is, we are introducing a set of words (called “dictionary”) and using those to describe

what the package do. The AMOS search engine is also capable of combining packages

together; let me make another example: suppose you want to find a way for converting

LaTeX to PDF. You can do it in one sweep, or converting latex to postscript and the

postscript to PDF, or using other intermediate formats. AMOS tries to find all suit-

able chain of packages, and creates “assemblies” that implements (if possible) what is

requested.

If it does all this work, it will be too slow to be useful, especially if you imagine to

have thousands of packages!

We have tested the engine, by loading all the package descriptions of a RedHat distri-

bution, and using the dependencies as capabilities. This test used 700 package descrip-

tions and around 90000 relationships (dependencies) among them, with a dictionary

of some 14000 terms (much more than we expect in a real database to have). This

should give a reasonable approximation of the kind of load that may end up having.

On a fairly standard PC quite complex queries with all the data stored in a relational

database give back results in a few milliseconds (faster than RPM, taking into account

that dependencies are used recursively). More detailed information, including detailed

figures, can be found in the technical report The Matching Engine Design.

One general reason for this speed is the use of a technique termed inverted indexes,

which, so to speak, precomputes part of the search work. This has been classically

used in relational databases, and is also in the heart of the Google web search tool.

OK, let’s say that we have thousands of packages, and our search returns several

possible assemblies. How can we sort through it?

We added to the engine the capability of using heuristics and it is designed so that these

can be modified or added easily. For example, it should be possible to prefer sets of

packages that are written in the same language, or set of packages with the minimum

size. We plan to add to the engine a series of sensible preference rules in order to guide

the search and not to overwhelm the user with many undesired matches. As an exam-

ple, we will add to the engine a special “license” part that will warn when assemblies

made of GPL and non-GPL software are mixed together, to prevent potential licens-

ing problem. This is only a warning, since for example mixing user-level packages is



9

always allowed.

You target FLOSS software. What about you?

The Ciao Prolog system is already Open Source software. The AMOS engine is also

distributed under the GPL, and the database and tool information that will be filled up

will be under the Free Documentation License (FDL).

But, Prolog?? Why not ¡python, C, C++, Java, name-your-favorite here..¿

Modern Prolog compilers (Ciao Prolog among them) are extremely efficient, and Pro-

log data structures are perfectly suited for the task at hand. Also, the declarative nature

of Prolog maps extremely well to our algorithm, and there are several nice libraries

for generation of web pages and interfacing with databases. If you really, really want

it, the Ciao compiler can output C as its target, so you can have C if you really want

(not that it’s much readable, and it will not give you more capabilities than the Prolog

system itself.)

OK, I bought it. In one of your technical papers (The Internal Query Language

Design) you present also an API (Application Programmer’s Interface) to directly

call the engine. Is it only for Prolog?

No. As a direct inheritance from Ciao Prolog, the engine can be called from Java and

C, and more interfaces are on their way.

What about XML? I like XML!

XML is nice as a representation language; it is quite easy to take the database engine

dump (that is, the full content of the database) and output XML. Reasoning over XML

is still a difficult problem, especially in terms of efficiency when the XML tree is huge.

So, we prefer to do all the reasoning and the internal representation in the Ciao internal

format, and leave to output plugins the task of converting to-from other formats.

OK, your project seems interesting. I would like to know something more about

how to do searching.

First, a little introduction on the dictionary and the ontology (which, in our case, is

just a different way of calling a tree containing all the relations between packages and



10 1 A GENTLE INTRODUCTION TO AMOS

the words that describe them). The dictionary is a long list, containing many differ-

ent “words”, or dictionary atoms. For example, “image blurring” may be a suitable

“word” (even if it is composed by two English words). To a dictionary atom we can

also attach several synonyms, and one generalization- for example, you can generalize

“SQL database” into “database”. This is used by the engine when no possible match

is found, and generalization are used to try to find an approximate solution. The dic-

tionary list is quite important in AMOS, and most of the effort in adding packages to

the search engine is really related to finding the best “words” for describing packages.

It is also quite important that the words that are added are not already in, thus leading

to what we call “dictionary pollution”.

“Dictionary pollution”? What’s that?

A fundamental point of our project is the fact that the dictionary stays manageable,

that is that it does not grow too much. All searches in AMOS are done only through

words that are in the dictionary. You can freely use them in the search row, or use the

boxes and select among them (eventually using the CTRL and shift keys to perform

multiple selections), but you can’t perform a free-text search (it will be no different

from Google, in that case).

So, it is important to maintain the dictionary size to a minimum, because people

performing the search will be forced to sift through the list, at least in the beginning.

How do you plan to avoid that?

By having an administrative interface, that allows for our reviewers to decide if the

words are adequate, and eventually suggest alternatives. This administrative work is

part of the project, and after the end of the contract we plan to give this administrative

task also to the community. We will maintain to our best the system for at least 2 years

after the end of the contract, providing connectivity and machines for that, and we

hope to be able to donate at least a person to continue the maintenance work. We hope

that the system will be adopted, and will be happy to help anyone that wants to deploy

it. Everything contributed will be under the FDL, and periodically we will provide

dumps of it for download.



11

How does the administration work?

When you fill in a package, you simply submit it through the web interface. It is then

saved in a temporary database, and reviewed for consistency; the reviewer can propose

modification, that are sent back to the submitter through email (including comments).

When the reviewer gets back to the submission page, she gets back all the filled fields

and the comments, and can change it at will and resubmit. If it is accepted, it gets

immediately into the database, and can be immediately searched.

Will it always be like that?

If we see that the need for modifications remains small, in the end we can opt for a

no-administration system, and simply let the people enter packages directly into the

database. This decision will be left for the end of the project, probably. Of course, the

source is there - if you want, you can install your own AMOS!



12 1 A GENTLE INTRODUCTION TO AMOS



13

2 Project Goals: A More Technical Description

Reusing Open Source Code

Open source code (OSC) packages will be used to create a database of (loosely defined)

components, or pieces of code that implement a specific functionality. The project

does not target the strictly defined component [Mau00] market only, but it tries to find

a methodology general enough so as to allow the optimal finding of software which

matches some desired characteristics. Software is then considered as a white box

piece, which will simplify the reuse of the enormous number of open source projects

in existence, and increase significantly the number of elements which can be reused.

During the project, a methodology and a tool will be devised which can significantly

reduce the work needed to identify, from a large number of components, those which

can be used to implement a desired functionality. This will greatly help the reuse of

existing code and the take up of open source software, by helping and guiding the

search process and by making the usage of lesser-known packages easier. The project

aims can be decomposed into the more precise following points:

• Finding an ontology that targets source code software packages. These are un-

derstood not only as libraries, but also as well-defined, valuable routines and

capabilities inside existing source code. This ontology will be used to describe

in a portable and coherent way the properties of packages and, if present, of their

subcomponents.

• Creating a dictionary of terms and attributes to describe the software packages

and their properties (designed to match the ontology).

• Finding a compact, complete, and portable representation for the ontology.

• Implementing a search and matching engine to allow the automatic generation of

a list of software pieces to be assembled, starting from a high level description

of the needs of the developer. This search engine will use heuristics to guide

the search as directly as possible toward a solution and will take into account

metrics to express the preferences of the developer. Developing and assessing

these heuristics and metrics will also be performed as part of this project.

• Implementing a suitable and persistent database, capable of holding several hun-

dreds of code descriptions, and interfaced to the matching engine.



14 2 PROJECT GOALS: A MORE TECHNICAL DESCRIPTION

• Filling in the database with a large enough number of descriptions to be able to

test the matching engine with non-trivial problems.

Selecting Code

The selection of code to assemble from the database will be performed through a

specialized matching engine, created using a Logic Programming environment (Ciao

Prolog [HBC+00, HBC+99]) developed along the last years within the framework of

several ESPRIT projects by one of the project partners (UPM), which is itself dis-

tributed under OSC license. The database of software components will be initially

extracted (and later extended) from the internal archive developed by one of the part-

ners (Conecta s.r.l.), currently holding descriptions of more than 14.000 open source

and publicly available software packages, most of them unlisted in the commonly used

software search sites like FreshMeat or SourceForge. Both the matching tool and the

database will be open-sourced, in order to guarantee the best possible dissemination

of the results. A live demonstration system using a selected database will be cre-

ated within the project. It will only differ from more realistic cases in its size, and

the database schema and query engine should therefore be immediately applicable to

problems of any size. The ontology will be flexible enough so as to admit changes

(specialization or abstraction of some of its parts) to tailor it to specific, local needs

(e.g., to match tools and components created inside a single company, or a group of

affiliated companies).



15

3 First Contact with AMOS

The starting page of Amos (Figure 4) gives a short overview of the project and some

indications about how the tool can be immediately used. Figure 5 shows a detail of the

menus at the left of the page; all the menus in the tool look alike. The topmost box of

this menu set changes according to the page in which it appears; the middle one and

the bottommost one are permanent.

Figure 4: Initial Amos page



16 3 FIRST CONTACT WITH AMOS

Figure 5: Sample of menus (from the initial Amos page)

What is this about?

Amos is a tool which implements a proof-of-concept of a way to categorize and search

among Open Source packages by means of descriptions thereof. It should be useful for

people who want to build open source-based solutions by reusing code previously built

and, hopefully, tested. Amos has been funded by the EU Fifth ESPRIT Programme.

All the information needed should be reachable in the rightmost navigation bar.

The topmost box changes according to the section you are in. The middle and bottom-

most boxes do not change, and their links are available at any time. Links with boldface

text point to pages which implement actions, while regular text points to intermediate

pages or to information pages.

Navigation in the Amos web site is shown in figure 6 as a tree−like structure.

The dark shaded state corresponds to the initial point from which all the others can

be reached. Leaf states provide no further transition apart from those to the states

marked with *, which are reachable from anywhere in the web site at any point of

user interaction. These parts of the web site provide access to the fundamental ser-

vices [GCM04, CGC+04]implemented in the Amos project, i.e. search of packages,

insertion of packages into the database, and adminitration of the database and the web

site.

The following is a brief description of each state which can be reached from the



17

initial one, Start:

• General links provides access to the system main funtionalities:

– Search Packages: Access to the search interface.

– Describe Packages: Access to the packages insertion interface.

– Administration: Access to the system management and package validation

facilities:

∗ Review Packages: Provides access to the package revision process.

∗ Edit dictionary: Allows inserting, modifying and deleting the dictio-

nary terms contained in the database.

∗ Manage the DB: Gives access to management services on the database

containing validated packages:

· Search: Allows fine search on the package database.

· Show Package Information: Displays all the information provided

by the user about the package.

· Edit Package: Allows modifying the package moving the pack-

age back to a state pending of validation.

· Send to Author for Edition: Sends an email to the author encoding

theURL which gives access to the edition interface.

· Delete Package: Removes the package from the database.

– More Information: Further information about the Amos project.

• Partners and Funding: Links to the project members and the EU programme.

• Useful Information

– Tool Source Code: Gives access to the CVS keeping the project source

code.

– Technical Papers: A link to the papers produced during the project.

– Mailing List: A link to the Amos mailing list.

– Web Master: Mail the web master.

Do not hesitate to write us if you need any help or if you have any comment to do.



18 3 FIRST CONTACT WITH AMOS

CODE

STATUS

GENERAL
LINKS

PARTNERS
& FUNDING

START
SOURCE

TECHNICAL
PAPERS

LIST
MAILING

WEB
MASTER

SEARCH DESCRIBE ADMIN
MORE
INFO CVS

INFO

REVIEW
DICT
EDIT

DB
MANAGE VIEW

DIALOGUES
MODIFY

TEMPLATES
RELOAD

* * *

*

*

Figure 6: Amos web site navigation

What can you do now?

If you are a newcomer, we suggest that you learn a bit on the Amos project first, how

it can help you in locating Open Source software, and how you can contribute to the

Open Source community. The link labeled “More Information?” (at the left) is a good

place to start.

If you are already acquainted with the tool, you surely want to go to the search or

package addition sections.

A note of caution: This implementation is still in prototype state. Please do not

try to stress it now - it is not time (yet) to do so. Package revision is being undertaken,

but not as a high-priority task: we prefer, at the moment, to populate the database with

meaningful terms and sample packages in order to ease later interactions to the tool.

Notwithstanding, your help will be enormously appreciated. We head toward a

community-based effort, not unlike that of SourceForge or FreshMeat, but with differ-

ent grounds and slightly different aims.

We will do our best to preserve all the data you enter across different versions of

the tools involved, but we cannot guarantee 100% everything will always be there.

However, as the data we enter would suffer the same fate as yours, be sure we will

really try to keep it safe.



19

Privacy

All the data you enter will be stored with the sole intention of helping performing

successful searches. No personal or project data will be sold, traded, or added

to commercial or public databases. Thanks for your understanding, patience, and,

above all, help.

Note: Reviewing packages and shutting down / restarting the database server is

restricted to administrators.



20 3 FIRST CONTACT WITH AMOS



21

4 Searching (and Finding)

The search interface (Figure 7) makes it possible to specify characteristics of packages

to search for, along with a series of packages the user wants to include (or exclude)

from the final solution, and a series of parameters which help (if needed) to cut down

the search.

Figure 7: Search interface



22 4 SEARCHING (AND FINDING)

How do I Search?

Through the search interface you can find a number of packages fulfilling your soft-

ware needs. This interface offers a multiple choice menu where the user can select all

those terms related with the target software. The terms chosen can be included into the

current search either by clicking on the button “Add selected entries to search terms”

or just by writing them in the “Search terms” field. It is also possible to set an upper

bound to the number of results desired by writing it in the field “Maximum number

of assemblies”. Additionally, if there is one or more packages required to be part of

the result, the user can ensure it by writing the name(s) of the package(s) in the field

“Include packages”. If, on the contrary, there is one ore more undesired packages the

user can write the name(s) in the field “Exclude packages”.

Another interesting feature of the search interface is the possibility to select the

type of search to perform. It is possible to select the search node and also to specify a

number of best branches on which to concentrate search.

Once the desired search parameters are set you only have to click on “Start search”

to find a combination of software packages satisfying your needs.

At any time you can also reset the form by clicking on “Revert to initial state” or

go through a description of the search terms by clicking on “Description of terms”

What Are Terms?

Search terms are a number of descriptive items provided in order to help the user

describe the characteristics of the software sought. Search only attends to these terms

and no other will be taken into account. So, it is recommended to choose them among

the menu offered by the interface.

What Are Packages?

Open Source Packages are implementations of open source software ranging from

libraries to utilities or any other component or piece of knowledge with a clear speci-

fication. They can be part of the search itself, but also results are composed by sets of

them.



23

5 Submitting Packages

The package submission procedure takes place currently in a single screen (Figure 8),

where the user should describe the package to be submitted. This screen summarizes

all the information that is logically spread across a number of entities which are gen-

erated from the ontology description [Daf02]. Mandatory fields are placed at the

beginning, and links to a description of every field are placed by the editable fields.

Figure 8: Package submission



24 5 SUBMITTING PACKAGES

Current Submission Fields

Mandatory fields are shown in boldface, and marked with an asterisk in the form.

• Package Name: The (unique) name of this package.

• Version: What is the version number of this package.

• Size: Size of the package (can be used to sort / select packages to be presented

to the user).

• Description: A terse, text-only description of what the package does.

• Download page: The URL from where the software can be downloaded is to be

written here.

• Author: The name (or nickname) of the original author be introduced here.

• Submitted by: Identity of the submitter (i.e., you).

• Contact e-mail: This is the email of the person entering the information. It

will only be used to get in touch with you regarding the information you have

entered.

• License: The type of the license (GPL, LGPL, Artistic, Free Documentation,

Modified BSD...) applied to the package. Note that in general your package will

only be broadly used if you choose a Open Source / Free Software license.

• New Version of : If this package is a new version of a previous package, filling

in this form will help to track down the version tree.

• Required capabilities: Which capabilities are needed by the package.

• Uses: Which other facilities are recommended (but not strictly required) to com-

pile the package.

• Language: Language the package is written in. May be used to select among

different answers to a query.

• Home page: If there is any home page where information about the package is

stored (such as documentation, mailing lists, etc.) it should be entered here.

• Creation date: When the package was created



25

• Cost: Cost of using the package (some packages have an initial cost).

• Certification: Type of certification the package has gone through, if any.

• Security classification: Type of security classification

• Maintained by: This is the name of the maintainer, which can be different from

the original author. It helps getting in touch with someone deeply involved in

the development of the package.

• License URL: A URL where information (e.g., the text) about the chosen license

is stored.

• References: References of the license.

• Additional constraints: Additional license restrictions.

• Additional freedom: Additional freedom given by the license.

• Target environment: For source packages which have a strong dependency to

some operating system or architecture, this field gives information about that

dependency.

• Digital signature: Digital signature used to verify the package.



26 5 SUBMITTING PACKAGES



27

6 Accessing and Managing the Database

Administrators may need to access the database, in order to validate packages which

have been submitted or to correct or delete packages which are already part of the

database, or perform any other maintenance operations. The administrative interface

presents a web view of the database and makes it possible to verify manually that the

packages meet a minimum of requirements. The interface permits a sophisticated nav-

igation, allowing to search (using regular expressions) and sequentially browse the

matching tuples. When reviewing recently submitted packages, the administrator in-

terface is designed to ease the reviewer task by providing tick boxes and a “Reject”

button. Rejecting a package will automatically send a message back to the person who

entered the package, listing the faulty fields, and giving him/her the possibility to cor-

rect them. Additionaly, the interface allows to manage already validated packages, in

terms of giving access to package visualization, edition, deletion, and message send-

ing to the owner for edition. Also, the interface facilitates administration tasks on the

web site, like reloading the templates which determine the general appearance of the

interface, and editing the dialogues.

Manage the DB

The AMOS administrative interface offers a dynamic, context sensitive front-end which

allows browsing the packages hosted in the AMOS system. It offers a first page where

it is possible to make a package search. All the tuples satisfying the search are dis-

played in a table, figure 9 with information about the package, namely the package

name, its description, and its author. Each entry also presents a number of links to the

following services:

Show Package Displays all the information entered about the package entered upon

description.

Edit Package Allows modifying the package, and then moving it back to a state pend-

ing of validation

Send to Author for Edition Sends an email to the author encoding the URL which

gives access to the edition interface.

Delete Package Removes the package from the database.



28 6 ACCESSING AND MANAGING THE DATABASE

Reviewing Procedure

The AMOS interface for reviewing packages displays first a list of the packages cur-

rently pending of validation, figure 10. Here, a reviewer can click on any of them and

be forwarded to a new screen showing the complete description of the package 11.

The reviewer can now check the package and decide whether or not to accept it into

AMOS, using the above described action “Answer about submission”. After doing so,

a reviewer can use the current interface to check further pending packages or insert,

modify or delete package proposals himself.

Editing the Dictionary

This interface (Figure 12) allows browsing the dictionary terms currently available in

AMOS as well as editing, deleting, modifying and enter new ones. The following is a

detailed descriptions of these operations:

Sequential search All the results of the query are displayed one by one on demand.

The interface provides nice features to browse these results by selecting search

state sensitive, dynamically generated search options “Next” and “Previous”.

Show matches in a table All the tuples satisfying the query are displayed in a table.

Insert Allows the insertion of a new dictionary term previously checking all the manda-

tory fields have been filled in. It also ensures the element to be inserted doesn’t

exist in the table already. If generalizations are provided that correspond to

dictionary terms which do not exist in the database, these are inserted into the

database.

Delete Deletes all the dictionary terms that instantiate the query. Watch out: Empty

form fields instantiate anything!

Modify Allows editing a given entry.

Clean the form After a search action, this option can be used to get an empty form.

Note that when any query is made over a database table, the information written

into the form fields is taken as Prolog terms. This way, any empty field of the form is

translated into a free variable and therefore will unify all the corresponding arguments

of the given table.

Besides, three different search modes are provided:



29

Normal search mode This is the most restrictive search mode. The results of the

query will be just those tuples which exactly match the fields specified.

Case insensitive search mode In this mode upper and lower case is indistinct.

Wildcards search mode Implements a search where wildcards can be used. Special

characters are:

* Matches any string, including the null string.

? Matches any single character.

[ ... ] Matches any one of the enclosed characters. A pair of characters sep-

arated by a minus sign denotes a range; any character lexically between

those two characters, inclusive, is matched. If the first character following

the [ is a t̂hen any character not enclosed is matched. No other character

is special inside this construct. To include a ] in a character set, you must

make it the first character. To include a ‘-’, you must use it in a context

where it cannot possibly indicate a range: that is, as the first character, or

immediately after a range.

| specifies an alternative. Two regular expressions A and B with — in between

form an expression that matches anything that either A or B will match.

{...} groups alternatives inside larger patterns.

’ Quotes a special character (including itself).

View System Status

Provides information and statistics about the system usage.

Modify Dialogues

Provides a list with all the dialogues and the text settings of the adminstration interface

and allows the system administrator to edit them.

Reload Templates

In case the configuration files have been changed, this option reloads them and updates

the interface with the new configuration.



30 6 ACCESSING AND MANAGING THE DATABASE

Starting and stopping the interface is done by running executables amos start

and amos stop, respectively, under

$(INSTALLATION ROOT)/$(WEBDBINSTANCENAME)/admin (see file COMMON).



31

Figure 9: Package Administration



32 6 ACCESSING AND MANAGING THE DATABASE

Figure 10: Package validation firt screen



33

Figure 11: Package validation



34 6 ACCESSING AND MANAGING THE DATABASE

Figure 12: Specialized edition of dictionary entries



35

7 Accessing the Source Code of the Tool

Public, read-only access to the source files can be done through CVS. Just issue the

command:

cvs -d \

:pserver:amospub@clip.dia.fi.upm.es:/home/clip/CvsRoot \

co Systems/Amos

in any shell,1 or set the corresponding parameters in your favorite tool. This will give

you the latest snapshot of the sources, which include this documentation. Note that

this applies only to the files in the Amos project, and not to other projects stored in the

CVS server of the Clip Group. It does not give you write access, either. Please get in

touch with amos at clip.dia.fi.upm.es if you want to contribute!

The CVS repository holding the sources (Figure 13) can be accessed by pointing

any web browser to

http://clip.dia.fi.upm.es/ViewCVS/viewcvs.cgi/Systems/Amos/

1Backslashes are meant to represent line changes, and can be omitted if the command and arguments

are written in a single line.



36 7 ACCESSING THE SOURCE CODE OF THE TOOL

Figure 13: WWW view of the CVS repository



37

8 Mail List

A public mail list (Figure 14) has been set up at the Conecta mail server, which also

hosts a number of other Open Source related lists. It is reachable from

http://mail.conecta.it/mailman/listinfo/amos-general

which includes information on how to subscribe.

Figure 14: Mail list



38 8 MAIL LIST



39

9 About the Partners

The Clip Group

The Computational Logic, Implementation, and Parallelism (CLIP) Group at the Com-

puter Science School of the Technical University of Madrid (UPM) started in 1990, and

since then has been strongly committed to developing solutions which at the same time

constitute quality research with a strong theoretical foundation and result in clearly ap-

plicable technology.

The group has a long and active research history in (Constraint) Logic Program-

ming, mainly in the fields of program analysis, implementation of sequential and par-

allel systems, visualization, and program development environments (including static

/ dynamic debugging and user interfaces). A number of popular products in the area

include the results of these research efforts. The Clip group is actively involved in the

practical application of (constraint) logic based programming languages and systems

in emerging application areas.

The Clip Group has developed, among others, the constraint logic programming

system and development environment Ciao. Ciao is a LGPL licensed, free software

system, which is being used in industrial applications and in academia, and it is their

main platform for developing logic-based applications and performing language de-

sign and implementation research. Ciao Prolog offers unique possibilities of exten-

sion which have allowed writing many libraries which add significant functionality:

constraint solvers, concurrency, distributed and agent programming primitives, persis-

tence, higher-order, objects, foreign language interfaces, etc. In this context, the Clip

Group has also developed the PiLLoW library, arguably the most widely used library

for interfacing (constraint) logic programming systems to the WWW. The Clip Group

has also developed and distributes freely an automatic documentation generator for

logic-based programming systems (lpdoc).

UPM’s Clip Group has also defined and implemented several analysis frameworks

for (constraint) logic languages, with applications ranging from automatic detection of

parallelism to performance improvement through better compilation. The information

obtained from such an analysis has also been used to discover inconsistencies with

respect to program assertions to drive static / dynamic debugging tools. All these

techniques are integrated in a generic preprocessor, instances of which are CiaoPP (for

Ciao) and CHIPRE (for CHIP). Several 2D and 3D techniques for visualization of

the run-time behavior of constraint programs have been also tested and implemented



40 9 ABOUT THE PARTNERS

within the Ciao project.

The research group at UPM has participated in several European and Spanish

projects in the last 12 years. Among them we may cite, as more directly related to

the present proposal, the ESPRIT projects DiSCiPl, RadioWeb, Vocal, ACCLAIM,

PRINCE, and ParForCe, and the ERCIM working group on constraints, HCM Abile

program, and the COMPULOG II/III and Colognet Networks of Excellence. The

group has also been granted projects by the Spanish government such as IPL-D, ELLA,

and EDIPIA, which are related to the development and implementation of advanced

logic systems and analysis tools for them. UPM has also obtained a U.S.A.-Spain Ful-

bright and NATO scientific collaboration grants. Besides a well-established undergrad-

uate and PhD curriculum and strong relationships with other universities worldwide in

the form of regular student exchanges, UPM has collaborated with a large number

of companies in different projects. The companies with which UPM has currently

contacts with, or has collaborated with, include SAGE (the Spanish branch of the Ger-

man Software AG), Motorola Inc., Iberdrola (the main Spanish electrical company),

PrologIA (France), OEM Partners (Belgium), Ibermatica (Spain), and Dalet (Israel).

Additionally, UPM’s Ciao Prolog System, as well as some related tools, are being used

by industries in the development of several products including WWW interfaces, B2B

systems, and agent systems.

The CLIP group acts as coordinator in the project, and also takes the role of tech-

nology provider, due to its long standing experience on logic programming systems

and environments.

Conecta Srl

Conecta was born in May of 1995, with the goal of offering tools for total network inte-

gration and training, and IT consulting to business customers. From the start, Conecta

focused on offering high quality services, with a strong belief on Open Source code

as a way to suit the customers needs. Conecta extended his reach to offer open source

consulting, code porting, network planning, e-commerce, and business integration ser-

vices. This allowed the firm to create a complete infrastructure for the creation of

e-commerce and e-hub systems-one of the firsts in Italy. With a staff of 12 people,

several external consultants, and a projected revenue of one million Euros for the year

2001, Conecta is now one of the most important open source consulting firms in Italy

and one of the few independent houses for the creation of high-level e-commerce and

transactional systems. Conecta has extensive experience in performing matching of



41

open source, and its past experience can be used in order to perform a verification of

the adequateness of the outcome of the project with respect to its goals. It has also an

extensive experience in creating complex software systems out of open source compo-

nents, creating the necessary glue code, and improving and extending the individual

pieces to meet the customer needs. This allows the company to address immediately

the technical difficulties of the project and also to apply it immediately to real world

examples.



42 9 ABOUT THE PARTNERS



43

10 More Information

More information is available through the “Technical Information” section of the

Amos tool. The information currently reachable from there is summarized below.

Reading them is recommended for anyone interested in the Amos approach, in ex-

tending Amos, or in making a similar tool.

Technical Reports

• Deliverable D02: Ontology2

• Deliverable D03: The Internal Query Language3

Papers and Talks Related to the Project

• Talk given at the workshop Free Software and Research4, Soissons, France, De-

cember 2003.

• Talk given at University Rey Juan Carlos I, Madrid, 2003.5

• Project Summary delivered at the Open Source Meeting, Brussels, 2002.6

• Paper presented at the V Hispalinux Conference.7

• Paper presented at the First CologNet Workshop on Component-Based Soft-

ware Development and Implementation Technology for Computational Logic

Systems.8

2http://www.amosproject.org/Papers/ontology.pdf
3http://www.amosproject.org/Papers/internal QL design.pdf
4http://clip.dia.fi.upm.es/papers/FSR2003-amos.pdf
5http://lml.ls.fi.upm.es/˜mcarro/Slides/Free Software/Amos Talk URJC/
6http://lml.ls.fi.upm.es/˜mcarro/Slides/Free Software/Amos Presentation Brussels/
7http://clip.dia.fi.upm.es/papers/amos-hispalinux-TR.pdf
8http://clip.dia.fi.upm.es/papers/amos-cbd.pdf



44 10 MORE INFORMATION



REFERENCES 45

References

[BLHL01] T. Berners-Lee, J. Hender, and O. Lassila. The Seman-

tic Web. Scientific American, May 2001. Available from

http://www.sciam.com/2001/0501issue/0501berners-lee.html.

[CGC+04] M. Carro, J. M. Gomez, J. Correas, J. F. Morales, E. F. Mera, G. Puebla,

D. Cabeza, F. Bueno, C. Daffara, and M. Hermenegildo. Web site. Techni-

cal Report CLIP9/2004.0, Computer Science School, Technical University

of Madrid, School of Computer Science, UPM, May 2004. Deliverable

D17 of the AMOS Project.

[Daf02] Carlo Daffara. An ontology for open source code. Technical report,

Conecta s.r.l., 2002. Deliverable D2 of the AMOS Project.

[dRG95] Maria del Rosario Girardi. Classification and Retrieval of Software

through their Description in Natural Language. PhD thesis, Computer

Science Department, University of Geneva, 1995.

[GCM04] J. M. Gomez, M. Carro, and J. F. Morales. The external interface. Techni-

cal Report CLIP6/2004.0, Computer Science School, Technical University

of Madrid, School of Computer Science, UPM, May 2004. Deliverable

D12 of the AMOS Project.

[GI95] M. R. Girardi and B. Ibrahim. Using English to Retrieve Software. The

Journal of Systems and Software, 30(3):249–270, September 1995.

[HBC+99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcı́a de la Banda,

P. López-Garcı́a, and G. Puebla. The CIAO Multi-Dialect Compiler and

System: An Experimentation Workbench for Future (C)LP Systems. In

Parallelism and Implementation of Logic and Constraint Logic Program-

ming, pages 65–85. Nova Science, Commack, NY, USA, April 1999.

[HBC+00] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcı́a de la Banda,

P. López-Garcı́a, and G. Puebla. The Ciao Logic Programming Environ-

ment: A Tutorial. In International Conference on Computational Logic,

CL2000, July 2000.

[Mau00] P.M. Maurer. Components: What if the gave a revolution and nobody

came? IEEE Computer, pages 28–34, June 2000.



46 REFERENCES

[MMM95] H. Mili, F. Mili, and A. Mili. Reusing Software: Issues and research

directions. IEEE Transactions on Software Engineering, 1995.

[SWCP] The Semantic Web Community Portal. Markup

Languages and Ontologies. Available from

http://www.semanticweb.org/knowmarkup.html.


