
Abstraction-Carrying Code: a Model for Mobile Code Safety∗

Elvira Albert‡ Germán Puebla§ Manuel Hermenegildo§¶

Abstract

Proof-Carrying Code (PCC) is a general approach to mobile code safety in which pro-
grams are augmented with a certificate (or proof). The intended benefit is that the program
consumer can locally validate the certificate w.r.t. the “untrusted” program by means of a
certificate checker—a process which should be much simpler, efficient, and automatic than
generating the original proof. The practical uptake of PCC greatly depends on the existence
of a variety of enabling technologies which allow both to prove programs correct and to re-
place a costly verification process by an efficient checking procedure on the consumer side.
In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses ab-
stract interpretation as enabling technology. We argue that the large body of applications of
abstract interpretation to program verification is amenable to the overall PCC scheme. In
particular, we rely on an expressive class of safety policies which can be defined over different
abstract domains. We use an abstraction (or abstract model) of the program computed by
standard static analyzers as a certificate. The validity of the abstraction on the consumer side
is checked in a single-pass by a very efficient and specialized abstract-interpreter. We believe
that ACC brings the expressiveness, flexibility and automation which is inherent in abstract
interpretation techniques to the area of mobile code safety. While our approach is general,
we develop it for concreteness in the context of constraint logic programming. We have im-
plemented and benchmarked ACC within the Ciao system preprocessor. The experimental
results show that the checking phase is indeed faster than the proof generation phase, and
that the sizes of certificates are reasonable. Moreover, the preprocessor is based on compile-
time (and run-time) tools for the certification of CLP programs with resource consumption
assurances. Indeed, as an application of ACC we illustrate that, thanks to the fact that ab-
stract interpretation techniques allow inferring very rich information, our technique can be
used to generate certificates which specify complex program properties including traditional
safety issues but also resource-related properties like, for example, the kind of load the code
is going to pose.

1 Introduction

One of the most important challenges which computing research faces today is the development
of security techniques for verifying that the execution of a program (possibly) supplied by an
untrusted source is safe, i.e., that it meets certain properties according to a predefined safety
policy. Proof-Carrying Code (PCC) [33] is a general framework for mobile code safety which
proposes to associate safety information in the form of a certificate to programs. The certificate (or
proof) is created at compile time, and packaged along with the code. The consumer who receives

∗Preliminary versions of this work appeared in the Proceedings of LPAR’04 [2] and COCV’04 [1]. This work
was funded in part by the Information Society Technologies programme of the European Commission, Future
and Emerging Technologies under the IST-2001-38059 ASAP project and by the Spanish Ministry of Science and
Education under the MCYT TIC 2002-0055 CUBICO project. Part of this work was performed during a research
stay of Elvira Albert and Germán Puebla at UNM supported by respective grants from the Secretaŕıa de Estado
de Educación y Universidades, Spanish Ministry of Science and Education. Manuel Hermenegildo is also supported
by the Prince of Asturias Chair in Information Science and Technology at UNM.

‡DSIP, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain. Email:
elvira@sip.ucm.es

§Facultad de Informática, Technical University of Madrid, Spain. Email: {german,herme}@fi.upm.es
¶Depts. of Computer Science and Electrical and Computer Eng., U. of New Mexico. Email: herme@unm.edu

1

or downloads the code+certificate package can then run a checker which by an efficient inspection
of the code and the certificate, can verify the validity of the certificate and thus compliance with
the safety policy. The key benefit of this “certificate-based” approach to mobile code safety is
that the consumer’s task is reduced from the level of proving to the level of checking, a task that
should be much simpler, efficient, and automatic than generating the original certificate.

The practical uptake of PCC greatly depends on the existence of a variety of enabling tech-
nologies which allow:

1. defining expressive safety policies covering a wide range of properties,

2. solving the problem of how to automatically generate the certificates (i.e., automatically
proving the programs correct), and

3. replacing a costly verification process by an efficient checking procedure on the consumer
side.

The main approaches applied up to now are based on either theorem proving or type analysis. For
instance, in PCC the certificate is originally [33] a proof in first-order logic of certain verification
conditions and the checking process involves ensuring that the certificate is indeed a valid first-
order proof. λProlog is used in [3] to define a representation of lemmas and definitions which
helps keep the proofs small. A recent proposal [5] uses temporal logic to specify security policies
in PCC. In Typed Assembly Languages [29], the certificate is a type annotation of the assembly
language program and the checking process involves a form of type checking. Each of the different
approaches possess their own set of stronger and weaker points. Depending on the particular
safety property and the available computing resources in the consumer, some approaches are more
suitable than others. In some cases the priority is to reduce the size of the certificate as much as
possible in order to fit in small devices or to cope with scarce network access (as in, e.g., Oracle-
based PCC [35] or Tactic-based PCC [4]), whereas in other cases the priority is to reduce the
checking time (as in, e.g., standard PCC [33] or lightweight bytecode verification [26]). As a result
of all this, a successful certificate infrastructure should have a wide set of enabling technologies
available for the different requirements.

In this work we propose Abstraction-Carrying Code (ACC), a novel approach which uses ab-
stract interpretation [14] as enabling technology to handle the above practical (and difficult) chal-
lenges. Abstract interpretation is now a well established technique which has allowed the devel-
opment of very sophisticated global static program analyses that are at the same time automatic,
provably correct, and practical. The basic idea of abstract interpretation is to infer information
on programs by interpreting (“running”) them using abstract values rather than concrete ones,
thus obtaining safe approximations of the behavior of the program. The technique allows inferring
a wide range of properties about programs. This includes data structure shape (with pointer
sharing), bounds on data structure sizes, and other operational variable instantiation properties,
as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on
resource consumption (time or space cost). Our proposal, ACC, opens the door to the applicability
of the above domains as enabling technology for PCC. Figure 1 presents an overview of ACC. The
certification process carried out by the code producer is depicted to the left of the figure while the
checking process performed by the code consumer appears to the right. In particular, ACC has
the following fundamental elements which can handle the three aforementioned challenges:

1. The first element, common to both producer and consumers, is the Safety Policy. We rely
on an expressive class of safety policies based on “abstract”—i.e. symbolic—properties over
different abstract domains. Our framework is parametric w.r.t. the abstract domain(s) of
interest, which gives us generality and expressiveness.

2. The next element at the producer’s side is a fixed point-based static Analyzer which auto-
matically infers an abstract model (or simply abstraction) of the mobile code which can then
be used to prove that this code is safe w.r.t. the given policy in a straightforward way. In
particular, we identify the specific subset of the analysis results which is sufficient for this
purpose.

2

Domain Domain

OK OK

OK

Program

Checker

VCGenVCGen

Abstraction

Analyzer

Safety Policy Safety Policy

PRODUCER CONSUMER ,

Figure 1: Abstraction-Carrying Code

3. The verification condition generator, VCGen in the figure, generates, from the initial safety
policy and the abstraction, a Verification Condition (VC), which can be proved only if the
execution of the code does not violate the safety policy. As in standard PCC methods, this
process is performed also by the consumers in order to have a trustworthy VC.

4. Finally, a simple, easy-to-trust (analysis) checker at the consumer’s side verifies the validity
of the information on the mobile code. It is indeed a specialized abstract interpreter whose
key characteristic is that it does not need to iterate in order to reach a fixed point (in contrast
to standard analyzers).

While ACC is a general approach, for concreteness we develop herein an incarnation of it in the
context of (Constraint) Logic Programming, (C)LP, because this paradigm offers a good number
of advantages, an important one being the maturity and sophistication of the analysis tools avail-
able for it. Also for concreteness, we build on the algorithms of (and report on an implementation
on) CiaoPP [21], the abstract interpretation-based preprocessor of the Ciao multi-paradigm CLP
system. CiaoPP uses modular, incremental abstract interpretation as a fundamental tool to ob-
tain information about programs. In CiaoPP, the semantic approximations thus produced have
been applied to perform high- and low-level optimizations during program compilation, includ-
ing transformations such as multiple abstract specialization, parallelization, partial evaluation,
resource usage control, and program verification. More recently, novel and promising applications
of such semantic approximations are being applied in the more general context of program devel-
opment. We report on our extension of CiaoPP to incorporate ACC and on how this instantiation
of ACC already shows promising results.

The article is organized as follows. Section 2 introduces some notation and preliminary notions
on CLP and abstract interpretation. In Section 3, we review our abstract interpretation-based
approach to program verification. Section 4 describes the assertion language which is used to
define our safety policy. Section 5 discusses the generation of program abstractions. In Section 6,
we present the verification condition generator which attests compliance of the abstraction with
respect to the safety policy. In Section 7, we introduce an abstract interpretation-based checker
which validates the safety certificate in the consumer. Section 8 reports some experiments per-
formed in the CiaoPP-based implementation. In Section 9, we sketch a promising application of our
framework based on safety certificates with resource consumption assurances. Finally, Section 10
discusses the work presented in this article and related work.

3

2 Preliminaries

We assume familiarity with constraint logic programming [24] (CLP) and the concepts of abstract
interpretation [14] which underlie most analyses in CLP. The remaining of this section introduces
some notation and recalls preliminary concepts on these topics.

2.1 Constraint Logic Programming

Terms are constructed from variables (e.g., X) and functors (e.g., f). We denote by {X1 7→
t1, . . . , Xn 7→ tn} the substitution σ with σ(Xi) = ti for all i = 1, . . . , n (with Xi 6= Xj if i 6= j)
and σ(X) = X for any other variable X, where ti are terms. The identity substitution, which we
denote by id is such that ∀X id(X) = X. A renaming is a substitution ρ for which there exists
the inverse ρ−1 such that ρρ−1 ≡ ρ−1ρ ≡ id. We say that a renaming ρ is a renaming substitution
of term t1 w.r.t. term t2 if t2 = ρ(t1).

A literal has the form p(t1, ..., tn) where p/n is a procedure name (predicate symbol) and the
ti are terms. Most real-life (C)LP programs use procedures which are not defined in the program
(module) being developed. Thus, procedures are classified into internal and external. Internal
procedures are defined in the current program (module), whereas external procedures are not.
Examples of external procedures include the traditional “built-in” (predefined) procedures, such as
constraints, basic input/output facilities (e.g., open). We will also consider as external procedures
those defined in a different module, procedures written in another language, etc. We assume the
existence of a boolean function external s.t. external(p(t1, ..., tn)) succeeds iff the procedure p/n is
external. A goal is a finite sequence of literals. A rule is of the form H:-B where H, the head,
is a literal and B, the body, is a possibly empty finite sequence of literals. A CLP program, or
program, is a finite set of rules.

Example 2.1 (Running Example) The main procedure, create streams/2, of the following
CLP program receives a list of numbers which correspond to certain file names, and returns in the
second argument the list of file handlers (streams) associated to the (opened) files:

create_streams([],[]).

create_streams([N|NL],[F|FL]):-

number_codes(N,ChInN), app("/tmp/",ChInN,Fname),

safe_open(Fname,write,F), create_streams(NL,FL).

app([],L,L).

app([X|Xs],L,[X|Y]):-

app(Xs,L,Y).

safe_open(Fname,Mode,F):-

atom_codes(File,Fname), open(File,Mode,F).

The call number codes(N,ChInN) receives the number N and returns in ChInN the list of the ASCII
codes of the characters comprising the representation of N as a decimal number. Then, it uses
the well-known list concatenation procedure app/3. The call atom codes(File,Fname) receives in
Fname a list of ASCII codes and returns in File the atom (constant) made up of the corresponding
characters. Also, a call such as open(File,Mode,F) opens the file named File and returns in F

the stream associated to the file. The argument Mode can have any of the values: read, write,
or append. Procedures number codes/2, atom codes/2, and open/3 are ISO-standard Prolog
procedures, and thus they are available in CiaoPP (in the iso-prolog library).

In the following, we assume that all rule heads are normalized, i.e., H is of the form p(X1, ..., Xn)
where X1, ..., Xn are distinct free variables. This is not restrictive since programs can always
be normalized, and it will facilitate the presentation of the algorithms later. For instance, the
procedure create streams of Example 2.1 in normalized form is as follows.

4

create_streams(X,Y):- X=[],Y=[].

create_streams(X,Y):- X=[N|NL], Y=[F|FL],

number_codes(N,ChInN), T="/tmp/",

app(T,ChInN,Fname),Mode=write,

safe_open(Fname,Mode,F), create_streams(NL,FL).

2.2 Abstract Interpretation

A distinguishing feature of our approach is that a class of safety policies can be defined for the
different abstract domains available in the system. In particular, safety properties are expressed
as substitutions in the context of an abstract domain (Dα) which is simpler than the correspond-
ing concrete domain (D). An abstract value is a finite representation of a, possibly infinite,
set of actual values in the concrete domain. Our approach relies on the abstract interpretation
theory [14], where the set of all possible abstract semantic values which represents Dα is usu-
ally a complete lattice or cpo which is ascending chain finite. However, for this study, abstract
interpretation is restricted to complete lattices over sets, both for the concrete 〈2D,⊆〉 and ab-
stract 〈Dα,v〉 domains. Abstract values and sets of concrete values are related via a pair of
monotonic mappings 〈α, γ〉: abstraction α : 2D → Dα, and concretization γ : Dα → 2D, such
that ∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v is induced by ⊆ and
α. Similarly, the operations of least upper bound (t) and greatest lower bound (u) mimic those of
2D in a precise sense. In this framework an abstract property is defined as an abstract substitution
which allows us to express properties, in terms of an abstract domain, that the execution of a
program must satisfy. The description domain we use in our examples is the following regular type
domain [15].

Example 2.2 (regular type domain) We refer to the regular type domain as eterms, since it
is the name it has in CiaoPP. Abstract substitutions in eterms [45], over a set of variables V , assign
a regular type to each variable in V . We use in our examples term as the most general type (i.e.,
term ≡ > corresponds to all possible terms). We also allow parametric types such as list(T)

which denotes lists whose elements are all of type T. Type list is equivalent to list(term). Also,
list(T) v list v term for any type T. The least general substitution ⊥ assigns the empty set of
values to each variable and indicates that the corresponding program point is unreachable.

Apart from predefined types, in the eterms domain, the user can define regular types by means
of Regular Unary Logic programs [20].1 For instance, in the context of mobile code, it is a safety
issue whether the code tries to access files which are not related to the application in the machine
consuming the code. A very simple safety policy can be to enforce that the mobile code only accesses
temporary files. In a UNIX system this can be controlled (under some assumptions) by ensuring
that the file resides in the directory /tmp/. The following regular type safe name defines this
notion of safety, where the regtype declarations are used in CiaoPP to define new regular types:

:- regtype safe_name/1.

safe_name("/tmp/"||L) :- list(L,alphanum_code).

:- regtype alphanum_code/1.

alphanum_code(X):- alpha_code(X).

alphanum_code(X):- num_code(X).

:- regtype alpha_code/1.

alpha_code(X):- member(X,"abcdefghijklmnopqrstuvwzyz").

alpha_code(X):- member(X,"ABCDEFGHIJKLMNOPQRSTUVWXYZ").

The regular type num code(X):- member(X,"0123456789.eE+-") is predefined in the system. The
abstract property made up of substitution {X7→safe name} expresses that X is bound to a string

1Additional such types are inferred by the system independently of the pre- or user-defined types.

5

which starts with “/tmp/” followed by a list of alpha-numerical characters (we use “||” to de-
note list concatenation). In the following, we write simply safe name(X) to represent it. The
crucial point here is that safe names cannot contain (back-)slashes. As a result, there is no way
safe names can access files outside the /tmp/ directory.

3 Abstract Interpretation-based Verification

In this section, we briefly describe an abstract interpretation-based approach to program verifica-
tion [38, 9, 36] which constitutes the basis for the certification process carried out in ACC.

We consider the important class of semantics referred to as fixed-point semantics. In this
setting, a (monotonic) semantic operator (which we refer to as SP) is associated to each program
P . This SP function operates on a semantic domain which is generally assumed to be a complete
lattice or, more generally, a chain-complete partial order. The meaning of the program (which
we refer to as [[P]]) is defined as the least fixed point of the SP operator, i.e., [[P]] = lfp(SP). A
well-known result is that if SP is continuous, the least fixed point is the limit of an iterative process
involving at most ω applications of SP and starting from the bottom element of the lattice.

Both program verification and debugging compare the actual semantics of the program, i.e.,
[[P]], with an intended semantics for the same program, which we denote by I. This intended
semantics embodies the user’s requirements, i.e., it is an expression of the user’s expectations. The
classical verification problem of verifying that P is partially correct w.r.t. I can be formulated as
follows:

P is partially correct w.r.t. I if [[P]] ⊆ I

However, using the exact either actual or intended semantics for automatic verification and debug-
ging is in general not realistic, since the exact semantics can be infinite, too expensive to compute,
only partially known, etc. An alternative approach is to work with approximations of the seman-
tics. This is interesting, among other reasons, because the technique of abstract interpretation
can provide safe approximations of the program semantics. For now, we assume that the program
specification is given as a semantic value Iα ∈ Dα. Comparison between actual and intended
semantics of the program is most easily done in the same domain, since then the operators on the
abstract lattice, that are typically already defined in the analyzer, can be used to perform this
comparison. Thus, for comparison we need in principle α([[P]]) and we proceed as follows:

P is partially correct w.r.t. Iα if α([[P]]) v Iα

However, using abstract interpretation, we can usually only compute [[P]]α, which is an approxi-
mation of α([[P]]) and it is computed by the analyzer as [[P]]α = lfp(Sα

P). The operator Sα
P is the

abstract counterpart of SP . A key idea in abstract interpretation-based verification is to use [[P]]α
directly in debugging and verification tasks. The possible loss of accuracy due to approximation
prevents full verification in general. However, and interestingly, it turns out that in many cases
useful verification and debugging conclusions can still be derived by comparing the approximations
of the actual semantics of a program to the (also possibly approximated) abstract intended seman-
tics. Thus, we are interested in studying the implications of comparing Iα and [[P]]α. Analyses
which over-approximate the actual semantics (which we denote [[P]]α+), are specially suited for
proving partial correctness and incompleteness with respect to the abstract specification Iα. In
particular, a sufficient condition for demonstrating that P is partially correct is as follows:

P is partially correct w.r.t. Iα if [[P]]α+ v Iα

In our approach, we compare [[P]]α directly to the (also approximate) intention which is given
in terms of assertions [37]. Such assertions are linguistic constructions which allow expressing
properties of programs, as we will see in the next section.

6

4 An Assertion Language to Specify the Safety Policy

The purpose of a safety policy is to specify precisely the conditions under which the execution
of a program is considered safe. Assertions are syntactic objects which allow expressing a wide
variety of high-level properties of (in our case CLP-) programs. Examples are assertions which
state information on entry points to a program module, assertions which describe properties of
predefined procedures (built-ins), assertions which provide some type declarations, cost bounds,
etc. They will allow us to have an expressive class of safety policies in the context of (constraint)
logic programs. Intuitively, we assume that a program will be accepted at the receiving end,
provided all properties stated within assertions can be checked, i.e., the intended semantics Iα

expressed in the assertions determines the safety policy. This can be a policy agreed a priori or
exchanged dynamically.

The original assertion language [37] available in CiaoPP is composed of several assertion
schemes. Among them, we only consider the following two schemes for the purpose of this article,
which intuitively correspond to the traditional pre- and postconditions on procedures:

calls(B, {λ1
Pre; . . . ;λ

n
Pre}): This assertion scheme is used to express properties which should hold

in any call to a given procedure, similarly to the traditional precondition. B is a procedure
descriptor, i.e., it has a procedure name (predicate symbol) as main functor and all arguments
are distinct free variables, and λi

Pre, i = 1, . . . , n, are abstract properties of execution states.
The resulting assertion should be interpreted as “in all activations of B at least one property
λi

Pre should hold in the calling state.”

success(B, [λPre,]λPost): This assertion scheme is used to describe a postcondition which must
hold on each success state for a given procedure. B is a procedure descriptor, and λPre and
λPost are abstract properties about execution states. λPre is optional and must be evaluated
w.r.t. the description at the calling state to the procedure while condition λPost is evaluated
at the success state. If the optional λPre is present, then λPost is only required to hold in
those success states which correspond to call states satisfying λPre. Note that several success
assertions for the same procedure and with different λPre may be given.

Therefore, abstract properties λPre and λPost in assertions allow us to express conditions, in terms
of an abstract domain, that the execution of a program must satisfy. Each condition is an abstract
substitution corresponding to the variables in some literal.

In existing approaches, safety policies usually correspond to some variants of type safety (which
may also control the correct access of memory or array bounds [34]). In our system, the co-existence
of several domains allows expressing a wide range of properties using the assertion language.
They include several classes of safety policies based on modes, types, non-failure, termination,
determinacy, non-suspension, non-floundering, cost bounds, and their combinations. In Section 9
we will show by means of an example, how the combination of such properties can be useful in a
particular application of the ACC framework to resource-aware certification/verification.

In general, it is the task of the compiler designer to define the safety policies associated with
the predefined system procedures. In addition to these assertions, the user can optionally provide
further assertions manually for user-defined procedures. As depicted in Figure 1, given an initial
program P , we first define its Safety Policy by means of a set of assertions AS in the context of an
abstract domain Dα. The domain is appropriately chosen among a repertoire of Domains available
in the system. The assertions are obtained from the assertions for system procedures and those
provided by the user. Let us illustrate this process by means of an example.

Example 4.1 (Safety Policy) Figure 2 shows the assertions which are relevant to the program
in our running example. The first four rows correspond to calls assertions, whereas the last
three are success assertions. Out of the four calls, the first three are predefined in the system.
For example, the first one states that calls to number codes/2 have to be performed with the first
argument bound to a number or the second argument bound to a list of num code, which is a
predefined type that includes the ASCII characters required for representing floating point (and

7

calls(number codes(X,Y), {(num(X);list(Y,num code))})
calls(atom codes(X,Y), {(constant(X);string(Y))})

calls(open(X,Y, Z), {constant(X),io mode(Y)})
calls(safe open(Fname, ,), {safe name(Fname)})

success(number codes(X,Y), >, {num(X),list(Y,num code)})
success(atom codes(X,Y),>, {constant(X),string(Y)})

success(open(X,Y,Z), >, {constant(X),io mode(Y),stream(Z)})

Figure 2: Assertions for the example

integer) numbers as strings. The last calls assertion is for procedure safe open and provides a
simple way to guarantee that all subsequent calls to open are safe. It can be read as “the calling
conventions for procedure safe open require that the first argument be a safe name.” The success
assertion for open is predefined in our system and requires, upon success, the first variable to be
of type constant, the second a proper io mode and the last one of type stream.

In contrast to traditional approaches, assertions are not compulsory for every procedure. Thus,
the user can decide how much effort to put into writing assertions: the more of them there are,
the more complete the intended semantics (and thus the partial correctness) of the program is de-
scribed and more possibilities to detect problems. Indeed, pre- and post-conditions are frequently
provided by programmers since they are often easy to write and very useful for generating program
documentation. Nevertheless, the analysis algorithm is able to obtain safe approximations of the
program behavior even if no assertions are given. This is not always the case in other approaches
such as classical program verification, in which loop invariants are actually required. Such invari-
ants are hard to find and existing automated techniques are not always sufficient to infer them,
so that often they have to be provided by hand.

Note that the three success assertions shown in the example correspond to library procedures.
Such assertions can be verified beforehand, and indeed they are verified in our implementation
assuming that calls to such procedures satisfy the corresponding calls assertions. Unfortunately,
calls assertions for library procedures cannot be verified beforehand, since programs which use
such procedures may do so incorrectly. Thus, in order to guarantee that the safety policy holds
we only need to prove that the four calls assertions in Figure 2 hold.

5 Generation of Program Abstractions

This section introduces (part of) the certification process, represented to the left of Figure 1,
carried out by the producer, namely the generation of an abstraction which safely approximates
the behaviour of the program. The generation of the verification condition from this certificate is
discussed in the next section.

5.1 Using Analysis Results as Certificates

Consider a program P . Once the safety policy is specified as a set of assertions, we have available
the program specification Iα as a semantic value of Dα. Now, we use abstract interpretation in
order to compute [[P]]α, which is an approximation of α([[P]]). To do this, a standard Analyzer is
run. Then, the certification method is based on the following idea:

An abstraction of the program, [[P]]α, computed by abstract interpretation-based ana-
lyzers can play the role of certificate for attesting program safety if [[P]]α v Iα.

Global program analysis is becoming a practical tool in constraint logic program compilation
in which information about calls, answers, and the effect of the constraint store on variables at
different program points is computed statically [23, 44, 32, 42, 8]. Essentially, an analyzer returns

8

an abstraction of P ’s execution in terms of the abstract domain Dα. The underlying theory,
formalized in terms of abstract interpretation [14], and the related implementation techniques
are well understood for several general types of analysis and, in particular, for top-down analysis
of Prolog [17, 16, 6, 32, 28, 12]. Several generic analysis engines, such as the one implemented
in the CiaoPP system [22], PLAI [32, 30], GAIA [12], and the CLP(R) analyzer [25], facilitate
construction of such top-down analyzers. As shown in Figure 1 in principle the analyzer is domain–
independent. This allows plugging in different abstract Domains provided suitable interfacing
functions are defined. From the user’s point of view, it is sufficient to specify the particular
abstract domain desired during the generation of the safety assertions. Different domains yield
analyzers which provide different kinds of information, degrees of accuracy, and efficiency. The
core of each generic abstract interpretation-based engine is an algorithm for efficient fixed-point
computation [30, 32, 11, 40].

5.2 The Analysis Graph

In order to analyze a program, traditional (goal dependent) abstract interpreters for (C)LP pro-
grams receive as input, in addition to the program and the abstract domain, a set S of calling
patterns. Such calling patterns are pairs of the form A : CP where A is a procedure descriptor
and CP is an abstract substitution (i.e., a condition of the run-time bindings) of A expressed as
CP ∈ Dα.2 Given a program P and a set S of calling patterns in the context of an abstract domain
Dα, the analyzer constructs an and–or graph (or analysis graph) for S which can be viewed as an
abstraction, i.e., a finite representation of the (possibly infinite) set of (possibly infinite) AND-OR
trees explored by the concrete execution of initial calls described by S in P [6]. Finiteness of
the program analysis graph (and thus termination of analysis) is achieved by considering abstract
domains with certain characteristics (such as being finite, or of finite height, or without infinite
ascending chains) or by the use of a widening operator [14].

Example 5.1 Consider our running example and assume that we are interested in analyzing it
for the call create streams(X, Y) with initial description list(X ,num), indicating that we wish to
analyze it for any call to create streams/2 with the first argument being a list of numbers. In
essence the analyzer must produce the program analysis graph given in Figure 3.

The graph has two sorts of nodes. Those which correspond to literals are called “OR-nodes”.
For instance, the OR-node 〈create streams(X, Y) :list(X ,num) 7→ {list(X ,num), list(Y , stream)}〉
indicates that when the literal create streams(X, Y) is called with description list(X ,num) the an-
swer (or success) substitution computed is {list(X, num), list(Y, stream)}.

Those nodes which correspond to rules are called “AND-nodes”. In Fig. 3, they appear within
a dashed box and contain the head of the corresponding clause. Each AND-node has as children
as many OR-nodes as literals there are in the body. We indicate with the symbol 2 that the rule
is a fact with no literals in the body. And the symbol ◦ denotes that the code for this procedure is
not available (i.e., it is an external procedure). These rules are annotated by abstract descriptions
(referenced by numbers 0, . . . , 13 whose corresponding description appears to the bottom of the fig-
ure) at each program point when the rule is executed from the calling pattern of the node connected
to the rules. The program points are at the entry to the rule, the point between each two literals,
and at the return from the call. If a child OR-node is already in the tree, it is not further expanded
and the currently available answer is used. For instance, the analysis graph in Figure 3 contains
two occurrences of the abstract literal create streams(X, Y) : list(X ,num) (modulo renaming),
but only one of them has been expanded. This is depicted by an arrow from the non-expanded oc-
currence of create streams(X, Y) : list(X ,num) to the expanded one. How this program analysis
graph is constructed is detailed in Example 5.3 below.

2In principle, calling patterns are only required for exported procedures. The analysis algorithm is able to
generate them automatically for the remaining internal procedures. Nevertheless, they can still be automatically
generated by assuming > (i.e., no initial data) for all exported procedures (although the idea is to improve this
information in the initial calling patterns).

9

0
create streams(X, Y)13

create streams([], []) create streams([N|NL], [F|FL])

ggggggggggggggggggggggggggggggg

ooooooooooooooooo

OOOOOOOOOOOOOOOOO

2

1
number codes(N, C)

2 3
app(“/tmp”, C, Fn)4 5

safe open(Fn, write, F)1011create streams(NL, FL)12

iiS
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S

◦ ◦ safe open(Fn, Mod, F)

ggggggggggg

WWWWWWWWWWW

6
atom codes(File, Fn)7 8

open(File, Mod, Fn)9

◦ ◦

0 : list(X, num)
1 : num(N)
2 : num(N), list(C, num code)
3 : list(C, num code)
4 : list(C, num code), sf(Fn)
5 : sf(Fn)
6 : sf(Fn)

7 : constant(File), sf(Fn)
8 : constant(File), Mod = write

9 : constant(File), Mod = write, stream(F)
10 : sf(FN), stream(F)
11 : list(NL, num)
12 : list(NL, num), list(FL, stream)
13 : list(X, num), list(Y, stream)

Figure 3: Analysis Graph

For a given program and set of calling patterns there may be many different analysis graphs.
However, for a given set of initial calling patterns, program, and abstract operations on the abstract
domain, there is a unique least analysis graph which gives the most precise information possible.

5.3 The Analysis Algorithm

In this section we on one hand introduce an analysis algorithm which computes an analysis graph
and, on the other hand, identify the fragment of the information stored in such graph which is
sufficient in order to play the role of safety certificate. The analysis algorithm presented is an
extension of the generic analysis algorithm in [22] in order to handle (constraint) logic programs
with external (including imported) procedures.

In order to deal with real programs that include external procedures, our analyzers rely again
on assertion-based techniques [37]. Intuitively, our analyzer trusts the information stated in the
success assertions for external procedures by considering the answer pattern in them a safe ap-
proximation of their concrete answer patterns. However, presenting all details regarding analysis
of modular programs is out of the scope of this article (details can be found in [39]). In our algo-
rithm, the analysis of external procedures is handled by the function Atrust which is introduced
below.

The program analysis graph is implicitly represented in the algorithm [22] by means of two
data structures, the answer table and the dependency arc table. Given the information in these,
it is straightforward to construct the graph and the associated program point annotations. The
answer table contains entries of the form A : CP 7→ AP where A is always a base form. This
corresponds to OR-nodes in the analysis graph of the form 〈A : CP 7→ AP〉. A dependency arc
is of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2. This is interpreted as follows: if the rule with Hk

as head is called with description CP0 then this causes literal Bk,i to be called with description
CP2. The remaining part CP1 is the program annotation just before Bk,i is reached and contains
information about all variables in rule k. As we will see below, dependency arcs are used for
forcing recomputation until a fixed-point is reached.

Intuitively, the analysis algorithm is a graph traversal algorithm which places entries in the
answer table and dependency arc table as new nodes and arcs in the program analysis graph

10

are encountered. To capture the different graph traversal strategies used in different fixed-point
algorithms, we use a priority queue. Thus, the third, and final, structure used in the algorithm is
a prioritized event queue. Events are of three forms:

– newcall(A : CP) which indicates that a new calling pattern for literal A with description
CP has been encountered.

– arc(R) which indicates that the rule referred to in R needs to be (re)computed from the
position indicated.

– updated(A : CP) which indicates that the answer description to calling pattern A with
description CP has been changed.

Our analysis algorithm is given in Figure 4. It is defined in terms of five abstract operations on
the abstract domain Dα of interest:

– Arestrict(CP,V) performs the abstract restriction of a description CP to the set of variables
in the set V , denoted vars(V);

– Aextend(CP,V) extends the description CP to the variables in the set V ;
– Atrust(A,CP) returns an answer pattern for an external procedure A which is a safe approx-

imation of the concrete answer patterns for all call patterns described by CP.
– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Apart from the parametric description domain-dependent functions, the algorithm has several
other undefined functions. The functions add event and next event respectively add an event to
the priority queue and return (and delete) the event of highest priority.

When an event being added to the priority queue is already in the priority queue, a single event
with the maximum of the priorities is kept in the queue. When an arc Hk : CP⇒ [CP′′]Bk,i : CP′

is added to the dependency arc table, it replaces any other arc of the form Hk : CP ⇒ []Bk,i :
in the table and the priority queue. Similarly when an entry Hk : CP 7→ AP is added to the
answer table, it replaces any entry of the form Hk : CP 7→ . Note that the underscore () matches
any description, and that there is at most one matching entry in the dependency arc table or
answer table at any time. The function initial guess returns an initial guess for the answer to a
new calling pattern. The default value is ⊥ but if the calling pattern is more general than an
already computed call then its current value may be returned.

The algorithm centers around the processing of events on the priority queue in main loop, which
repeatedly removes the highest priority event and calls the appropriate event-handling function.
When all events are processed it calls remove useless calls. This procedure traverses the dependency
graph given by the dependency arcs from the initial calling patterns S and marks those entries in
the dependency arc and answer table which are reachable. Those remaining are removed.

The function new calling pattern initiates processing of the rules in the definition of the internal
literal A, by adding arc events for each of the first literals of these rules, and determines an initial
answer for the calling pattern and places this in the table. The function add dependent rules adds
arc events for each dependency arc which depends on the calling pattern A : CP for which the
answer has been updated. The function process arc performs the core of the analysis. It performs
a single step of the left-to-right traversal of a rule body. If the literal Bk,i is not for an external
procedure, the arc is added to the dependency arc table. The current answer for the call Bk,i : CP2

is conjoined with the description CP1 from the program point immediately before Bk,i to obtain
the description for the program point after Bk,i. This is either used to generate a new arc event to
process the next literal in the rule if Bk,i is not the last literal; otherwise the new answer for the
rule is combined with the current answer in insert answer info. The function get answer processes
a literal. The current answer to that literal for the current description is looked up; then this
answer is extended to the variables in the rule the literal occurs in and conjoined with the current
description. The function lookup answer first looks up an answer for the given calling pattern
in the answer table and if it is not found and the procedure is local, it places a newcall event.
Otherwise (the procedure is external), it uses Atrust to obtain a safe answer pattern. Finally,
insert answer info, updates the answer table entry when a new answer is found.

11

analyze(S)
foreach A : CP ∈ S

add event(newcall(A : CP))
main loop()

main loop()
while E := next event()

if (E = newcall(A : CP))
new calling pattern(A : CP)

elseif (E = updated(A : CP))
add dependent rules(A : CP)

elseif (E = arc(R))
process arc(R)

endwhile
remove useless calls(S)

new calling pattern(A : CP)
foreach rule Ak :- Bk,1, . . . , Bk,nk

CP0 :=
Aextend(CP, vars(Bk,1, . . . , Bk,nk

))
CP1 := Arestrict(CP0, vars(Bk,1))
add event(arc(

Ak : CP⇒ [CP0] Bk,1 : CP1))
AP := initial guess(A : CP)
if (AP 6= ⊥)

add event(updated(A : CP))
add A : CP 7→ AP to answer table

add dependent rules(A : CP)
foreach arc of the form

Hk : CP0 ⇒ [CP1] Bk,i : CP2

in graph
where there exists renaming σ

s.t. A : CP = (Bk,i : CP2)σ
add event(arc(

Hk : CP0 ⇒ [CP1] Bk,i : CP2))

process arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2)
if (not external(Bk,i))

add Hk : CP0 ⇒ [CP1] Bk,i : CP2

to dependency arc table
W := vars(Ak :- Bk,1, . . . , Bk,nk

)
CP3 := get answer(Bk,i : CP2,CP1,W)
if (CP3 6= ⊥ and i 6= nk)

CP4 := Arestrict(CP3, vars(Bk,i+1))
add event(arc(

Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4))
elseif (CP3 6= ⊥ and i = nk)

AP1 := Arestrict(CP3, vars(Hk))
insert answer info(H : CP0 7→ AP1)

get answer(L : CP2,CP1,W)
AP0 := lookup answer(L : CP2)
AP1 := Aextend(AP0,W)
return Aconj(CP1,AP1)

lookup answer(A : CP)
if (there exists a renaming σ s.t.

σ(A : CP) 7→ AP in answer table)
return σ−1(AP)

elsif (not external(A))
add event(newcall(σ(A : CP)))
where σ is a renaming s.t.
σ(A) is in base form
return ⊥

else % external(A)
AP := Atrust(A,CP)
add (A : CP 7→ AP) to answer table
return AP

insert answer info(H : CP 7→ AP)
AP0 := lookup answer(H : CP)
AP1 := Alub(AP,AP0)
if (AP0 6= AP1)

add (H : CP 7→ AP1) to answer table
add event(updated(H : CP))

Figure 4: Fixed-point Analyzer

Theorem 5.2 (correctness [22]) For a program P and calling patterns S, the analysis algo-
rithm of Figure 4 returns an answer table and dependency arc table which represents the least
program analysis graph of P and S.

A central idea in ACC is that, for certifying program safety, it suffices to send the information
stored in the analysis answer table. The theory of abstract interpretation guarantees that the
answer table is a safe approximation of the runtime behavior (see [6, 22, 40] for details). In
contrast to this analysis algorithm, a simple checker can be designed for validating the answer
table without requiring the use of the arc dependency table at all (as we show in Sect. 7).

5.4 An Example

The following example briefly illustrates the operation of the fixed-point algorithm. It shows how
the create streams program is analyzed, to obtain the program analysis graph shown in Figure 3.
We use in our example well-known abstract operations for a regular type domain, in particular, the
operations formalized in [45] for the eterms domain described in Example 2.2. For the analysis of
library procedures, we assume that the parametric routine Atrust returns the abstract descriptions

12

which appear in the three success assertions shown in Figure 2 for the corresponding library
procedures. This can be done safely because, as already mentioned, such success assertions have
been verified beforehand.

Example 5.3 Analysis begins from an initial set S of calling patterns. In our example S contains
the single calling pattern create streams(X,Y):list(X,num). For brevity, variables which do not
appear in abstract substitutions are assumed to be “term”. Also nil(X) indicates that X is the
empty list. The first step in the algorithm is to add the initial calling patterns as a newcall event
to the priority queue. After this the priority queue contains

newcall(create streams(X,Y):list(X ,num))

and the answer and dependency arc tables are empty. The newcall event is taken from the event
queue and processed as follows: for each rule defining create streams, an arc is added to the
priority queue which indicates the rule body which must be processed from the initial literal. An
entry for the new calling pattern is added to the answer table with an initial guess of ⊥ as the
answer. The data structures are now:

priority queue:
arc(create streams(X,Y):list(X,num)⇒ [list(X,num)] X=[]:list(X,num))
arc(create streams(X,Y):list(X,num)⇒ [list(X,num)] X=[N|NL]:list(X,num))

answer table:
create streams(X,Y):list(X,num) 7→ ⊥

dependency arc table:
no entries

An arc on the event queue is now selected for processing, say the first. The routine get answer is
called to find the answer pattern to the literal X=[] with description list(X,num). As the literal
is an external constraint, the parametric routine Atrust is used. It returns the answer pattern
{list(X,num), nil(X)}. A new arc is added to the priority queue which indicates that the second
literal in the rule body must be processed. The priority queue is now

arc(create streams(X,Y):list(X,num)⇒ [list(X,num), nil(X)] Y=[]:{ })
arc(create streams(X,Y):list(X,num)⇒ [list(X,num)] X=[N|NL]:list(X,num))

The answer and dependency arc table remain the same.
Again, an arc on the event queue is selected for processing, say the first. As before, get answer

and Atrust are called to get the next annotation {list(X,num), nil(X), nil(Y)}. This time, as there
are no more literals in the body, the answer table entry for create streams(X,Y):list(X,num) is
updated. Alub is used to find the least upper bound of the new answer {list(X,num), nil(X), nil(Y)}
with the old answer ⊥. This gives {list(X,num), nil(X), nil(Y)}. The entry in the answer table
is updated, and an updated event is placed on the priority queue. The data structures are now:

priority queue:
updated(create streams(X,Y):list(X,num))
arc(create streams(X,Y):list(X,num)⇒ [list(X,num)] X=[N|NL]:list(X,num))

answer table:
create streams(X,Y):list(X,num) 7→ {list(X,num), nil(X), nil(Y)}

dependency arc table:
no entries

The updated event can now be processed. As there are no entries in the dependency arc table,
nothing in the current program analysis graph depends on the answer to this call, so nothing needs
to be recomputed. The priority queue now contains

arc(create streams(X,Y):list(X,num)⇒ [list(X,num)] X=[N|NL]:list(X,num))

13

The answer and dependency arc table remain the same. Similarly to before we process the arc,
giving rise to the new priority queue

arc(create streams(X,Y):list(X,num)⇒ [list(X,num), num(N), list(NL, num)] Y=[F|FL]:{ }).

The arc is processed to give the priority queue

arc(create streams(X,Y):list(X,num)⇒ [list(X,num), num(N), list(NL, num), Y = [F |FL]]
number codes(N,ChInN):num(N))

Note that CiaoPP creates the regular type rt2 to represent a term whose top-level functor is a
list constructed with F as head and FL as tail. For simplicity, we just write this description as
Y=[F|FL] in the following.

This time, because number codes(N,ChInN) is an external literal, the parametric routine Atrust

is used and no dependency is stored (as success patterns for external procedures are never updated).
As a result, the data structures are now:

priority queue:
arc(create streams(X,Y):list(X,num)⇒ [list(X,num), num(N),

list(NL, num), Y = [F |FL], list(ChInN, num code)] T="/tmp/":{ })
answer table:

create streams(X,Y):list(X,num) 7→ list(X,num), nil(X), nil(Y)
number codes(N,ChInN):num(N) 7→ num(N), list(ChInN ,num code)

dependency arc table:
no entries

Following the analysis, we process the unique arc in the priority queue, obtaining the new
priority queue:

priority queue:
arc(create streams(X,Y):list(X,num)⇒ [list(X,num), num(N),

list(NL, num), Y = [F |FL], list(ChInN ,num code), T = ”/tmp/”]
app(T,ChInN,Fname):T = ”/tmp/”, list(ChInN ,num code))

Similarly as done so far, and skipping the intermediate steps, we obtain finally the following data
structures in which, the dependency arc table contains a different arc for each one of the literals
in the second rule of create streams which are not external.

priority queue:
arc(create streams(X,Y):list(X,num)⇒ CP create streams(NL,FL):list(NL, num))

answer table:
create streams(X,Y):list(X,num) 7→ {list(X,num), nil(X), nil(Y)}
number codes(N,ChInN):num(N) 7→ {num(N), list(ChInN ,num code)}
app(T,ChInN,Fname):{list(ChInN ,num code), T = ”/tmp/”} 7→

{list(ChInN ,num code), T = ”/tmp/”, sf (Fname)}
safe open(Fname,Mode,F):{sf (Fname),Mode = write} 7→

{sf (Fname),Mode = write, stream(F)}
atom codes(File,Fname):sf (Fname) 7→ {constant(File), sf (Fname)}
open(File,Mode,F):{constant(File),Mode = write} 7→

{constant(File),Mode = write, stream(F)}

where

CP = [list(X ,num),num(N), list(NL,num),Y = [F |FL], list(ChInN ,num code),
sf (Fname), constant(File),Mode = write, stream(F),T = ”/tmp/”]

14

It is interesting to note that CiaoPP creates the auxiliary type:

sf("/tmp/"||A):-list(A,num_code).

to represent strings which start with the prefix "/tmp/" and continue with a list of type num code.
Since all num codes are also alphanum codes, it is clear that sf v safe name. This will allow
our system to infer that calls to open performed within this program satisfy the simple safety
policy discussed in Example 4.1. Therefore, the information stored in the answer table is sufficient
to attest the safety policy. Also, we use the notation Var = constant to denote that the system
generates a new type whose only element is this constant, as it happens: for write, in the entries
for safe open and open and, for "/tmp/", in the entry for app.

Now, the call get answer for the recursive call create streams(NL,FL):list(NL,num) is
made. The answer table is looked up to find the answer and, appropriately renamed and restricted
to the variables in the call, gives AP0 = {nil(NL), nil(FL), list(NL,num)}. This description is
extended to all variables (no change) and then conjoined with CP to give the next annotation
{nil(X),nil(Y), list(X ,num), list(Y, stream)}. We take the least upper bound of this answer
with the old answer in the table, giving {list(X ,num), list(Y , stream)}. The answer table will re-
place the current annotation for create streams(X,Y): list(X ,num) by create streams(X,Y):

list(X ,num) 7→ {list(X,num), list(Y, stream)}, adding the processed arc to the dependency arc
table.

As the answer has changed, an updated event is added to the priority queue. The priority
queue contains:

updated(create streams(X,Y):list(X,num))

The updated event is processed by looking in the dependency arc table for all arcs which have a
body literal which is a variant of create streams(X,Y):list(X , num) and adding these arcs to
the priority queue to be reprocessed. There is only one (the last processed arc). After reprocessing
this arc we obtain as answer {list(X,num), list(Y, stream)}. Taking the least upper bound of this
with the old answer, the result is identical to the old answer, hence no updated event is added to
the priority queue. As there are no events on the priority queue, the analysis terminates.

As a result of the whole analysis, the answer table computed by CiaoPP contains (among others)
these entries:

Procedure Calling Pattern Success Pattern

create streams(A,B) list(A,num) list(A, num),list(B, stream)
number codes(A,B) num(A) num(A),list(B,num code)

app(A,B,C) A="/tmp/", A="/tmp/",

list(B,num code) list(B,num code),sf(C)

safe open(A,B,C) sf(A),B=write sf(A),B=write,stream(C)

atom codes(A,B) sf(B) constant(A),sf(B)

open(A,B,C) constant(A),B=write constant(A),B=write,stream(C)

We show in the next section that the information stored in the above table is sufficient to certify
that the mobile code is safe according to the policy defined in Example 4.1.

In order to increase accuracy, analyzers are usually multivariant on calls (see, e.g., [22]). Indeed,
though not visible in this example, CiaoPP incorporates a multivariant analysis, i.e., more than
one triple

〈A : CP1 7→ AP1〉, . . . , 〈A : CPn 7→ APn〉

n > 1 with CPi 6= APi for some i, j may be computed for the same procedure descriptor A.
It is important to note that our approach would work directly in other programming paradigms,

such as imperative or functional programming (the latter already covered in our current system),
as long as a static analyzer/checker is available. Note that the fundamental components of the
approach (fixed-point semantics and abstract interpretation) have both been widely applied also
in these paradigms.

15

6 The Verification Condition

As part of the certification process carried out by the code producer, the verification condition
generator (VCGen in Fig. 1) extracts, from the initial assertions and the abstraction, a Verification
Condition (VC) which can be proved only if the execution of the code does not violate the safety
policy. In particular, we are interested in studying the implications of comparing the intended
program specification described in Section 4, denoted Iα, with the program abstraction described
in Section 5, denoted [[P]]α+ . Therefore, VCGen generates a VC which encodes the comparison
[[P]]α+ ⊆ Iα. If VC can be proved (marked as OK in Fig. 1), then the certificate (i.e., the
abstraction) is sent together with the program P to the code consumer.

Definition 6.1 (VC – verification condition) Let AT be an analysis answer table computed
for a program P and a set of calling patterns S in the abstract domain Dα. Let S be an assertion.
Then, the verification condition, V C(S,AT), for S w.r.t. AT is defined as follows:

V C(S,AT) ::=

∧

〈A:CP 7→AP 〉∈AT

(ρ(CP) v λ1
Prec ∨ . . . ∨ ρ(CP) v λn

Prec)

if S = calls(B, {λ1
Prec; . . . ;λ

n
Prec})

∧

〈A:CP 7→AP 〉∈AT

ρ(CP) u λPrec = ⊥ ∨ ρ(AP) v λPost

if S = success(B, λPrec, λPost)

where ρ is a variable renaming substitution of A w.r.t. B.
If AS is a finite set of assertions, then its verification condition, V (AS,AT), is the conjunction

of the verification conditions of the elements of AS.

Roughly speaking, the VC generated according to Def. 6.1 is a conjunction of boolean expressions
(possibly containing disjunctions) whose validity ensures the consistency of a set of assertions w.r.t.
the answer table computed by Analysis. It distinguishes two different cases depending on the kind
of assertion. For calls assertions, the VC requires that at least one precondition λi

Prec be a safe
approximation of each existing abstract calling patterns for the literal B. In the case of success
assertions, there are two cases for them to hold. The first one indicates that the precondition
is never satisfied and, thus, the assertion trivially holds (and the postcondition does not need to
be tested). The second corresponds to the case in which the success substitutions computed by
analysis for the procedure are equal or more particular than the one required by the assertion.

Example 6.2 (Verification Condition) Consider the answer table generated in Example 5.3
and the calls and success assertions of Figure 2. According to Def. 6.1, the VC is:

(num(X) v (num(X); list(Y, num code))∧
sf(Y) v (constant(X); string(Y))∧

constant(X), Y = write v constant(X), io mode(Y)∧
sf(X) v safe name(X)

Each conjunct corresponds to a calls assertion in Fig. 2 in the same order they appear there. As
already mentioned, success assertions for predefined procedures are verified beforehand.

The validity of the whole conjunction can be easily proved by taking into account the following
(trivial) relations between the elements in the domain:

sf(X) v string(X)
X = write v io mode(X)

Note that the first two conjuncts contain a disjunction in the right hand condition. In the second
one, the condition sf(Y) v (constant(X); string(Y)) holds because sf(Y) v string(Y).

Therefore, upon creating the answer table and generating the VC, the validity of the whole boolean
condition is checked by resolving each conjunct separately. Note that each conjunct consists of
comparisons of pairs of abstract substitutions, which simply return either true or false but do not

16

compute any substitution. This validation may yield three different possible status: i) the VC
is indeed checked and the answer table is considered a valid abstraction (marked as OK), ii) it
is disproved, and thus the certificate is not valid and the code is definitely not safe to run (we
should obviously correct the program before continuing the process); iii) it cannot be proved nor
disproved. The latter case happens because some properties are undecidable and the analyzer
performs approximations in order to always terminate. Therefore, it may not be able to infer
precise enough information to verify the conditions. The user can then provide a more refined
description of initial calling patterns or choose a different, finer-grained, domain. Although, it
is not shown in the picture, in both the ii) and iii) cases, the certification process needs to be
restarted until achieving a VC which meets i).

The following theorem states the soundness of the VC. Intuitively, it amounts to saying that
if the VC holds, then the execution of the program will preserve all safety assertions. Following
the notation of [33], we write BV C when V C is valid.

Theorem 6.3 (Soundness of the Verification Condition) Let AT be an analysis answer ta-
ble for a program P and a set of calling patterns S in an abstract domain Dα (as defined in Fig-
ure 4). Let AS be a set of assertions. Let V C(AS,AT) be the verification condition for AS w.r.t.
AT (generated as stated in Def. 6.1). If BV C(AS,AT), then P satisfies all assertions in AS for
all computations described by S.

This result directly derives from the fact that the static analysis algorithm computes a safe ap-
proximation of the states reached during computation (see Theorem 5.2).

7 Checking Safety in the Consumer

The checking process performed by the consumer is illustrated on the right hand side of Figure 1.
Initially, the supplier sends the program P together with the certificate to the consumer. To
retain the safety guarantees, the consumer can provide a new set of assertions, denoted I ′α, which
specifies the Safety Policy required by this particular consumer. It should be noted that ACC is very
flexible in that it allows different implementations on the way the safety policy is provided. Clearly,
the same assertions AS used by the producer, denoted Iα, can be sent to the consumer. But,
more interestingly, the consumer can decide to impose a weaker safety condition, i.e., Iα ⊆ I

′
α,

which can be proved with the submitted abstraction since [[P]]α ⊆ Iα. Also, the imposed safety
condition can be stronger, i.e., I ′α ⊆ Iα and it may not be provable if it is not implied by the
current abstraction [[P]]α (which means that the code would be rejected). From the provided
assertions, the consumer must generate again a trustworthy VC and use the incoming certificate
to efficiently check that the VC holds. Thus, in the validation process, a code consumer not only
checks the validity of the answer table but it also (re-)generates a trustworthy VC. The validation
of AT is carried out by the Analysis Checker. The re-generation of V C (and its corresponding
validation) is identical to the process already discussed in the previous section.

7.1 Fixed-point Checking

Although global analysis is now routinely used as a practical tool, it is still unacceptable to
run the whole Analysis to validate the certificate since it involves considerable cost. One of
the main reasons is that the analysis algorithm is an iterative process which often computes
answers (repeatedly) for the same call due to possible updates introduced by further iterations.
At each iteration, the algorithm has to manipulate rather complex data structures—which involve
performing updates, lookups, etc.—until the fixed point is reached. The whole validation process
is centered around the following observation:

The checking algorithm can be defined as a very simplified “one-pass” analyzer.

The Analysis process can be understood as: Analysis = fixed − point(analysis step). I.e., a
process which repeatedly performs a traversal of the analysis graph (denoted by analysis step)

17

until the computed information does not change. The idea is that the simple, non-iterative,
analysis step process can play the role of abstract interpretation-based checker (or simply analysis
checker). In other words, check ≡ analysis step. Intuitively, since the certification process should
provide a correct fixed-point result (i.e., [[P]]α+) as certificate, an additional analysis pass over this
fixed point should not change the result, since if it thus then the current answer table is not a
valid abstraction of the program. Thus, in our context, as long as the answer table is valid, one
single execution of analysis step is required to validate the certificate.

7.2 The Checking Algorithm

The next definition presents our abstract interpretation-based checking algorithm. It receives as an
additional input a Certificate (which is the analysis fixed point). In a single traversal, it constructs
a program analysis graph by using the information in Certificate. The algorithm is devised as a
graph traversal procedure which places entries in a local answer table, AT , as new nodes in the
program analysis graph are encountered. Thus, it handles two distinct answer tables: the local
AT + the incoming Certificate. The final goal of the checking is to reconstruct the analysis graph
and compare the results with the information stored in Certificate. As long as Certificate is valid,
both results coincide and, thus, the certificate is guaranteed to be valid w.r.t. the program.

Definition 7.1 (Analysis Checker) Let P be a normalized program and S be a set of calling
patterns in the abstract domain Dα. Let Certificate be an answer table (or safety certificate) as
defined in Figure 4. The validation of Certificate is performed by the procedure check depicted in
Figure 5. The algorithm uses a local answer table, AT , to compute the results (initially it does
not contain any entry).

Following the presentation of the analysis algorithm in Section 5.3, we assume that the program
P and the answer table are global parameters throughout the algorithm. The checking algorithm
proceeds as follows: as in the analysis algorithm, the procedure process arc is aimed at computing
the resulting description CPa after processing a given literal Bk,i. The computed result is used
to process the next literal in the rule when Bk,i is not the last one. Otherwise, the computed
result constitutes indeed the computed answer for the rule. The difference w.r.t. the analyzer is
that the answer is combined with the corresponding answer supplied by the certification process
in Certificate. If Certificate is valid, the comparison should hold; otherwise the process prompts
an error and the program is not safe to run. Therefore, no control structure is needed in order
to guarantee that a fixed point is reached. This eliminates the need for the “event queue” of
the analysis algorithm in Fig. 4. Moreover, since only one traversal of the analysis graph is to
be performed, no detailed dependency information is required. This eliminates the need for the
“dependency arc table” of the analysis algorithm. As a result, check is a suitable procedure for
determining the validity of the certificate.

The following theorem ensures that algorithm check is able to validate safety certificates which
are stored in a valid analysis answer table.

Theorem 7.2 (partial correctness) Let P be a program, let S be a set of calling patterns in
an abstract domain Dα. Let Certificate be an answer table for P and S as defined in Figure 4.
Then, check(S,Certificate) terminates and, if it returns Valid, then Certificate is an abstraction of
P and S.

The theorem is implied by the definition of fixed point and the fact that check is a single pass of
a correct Analysis algorithm [22].

Another issue is the efficiency of the checking algorithm. Our point to justify an efficient
behavior of check for validating an answer table is that it performs a single graph traversal. Indeed,
for a regular type domain, [10] demonstrates that directional type-checking for logic programs is
fixed-parameter linear. The next section reports experimental evidence of efficiency issues.

18

check(S,Certificate)
foreach A : CP ∈ S

process node(A : CP,Certificate)
return Valid

process node(A : CP,Certificate)
if (∃ a renaming σ s.t. σ(A : CP 7→ AP) in Certificate)

then add (A : CP 7→ AP) to AT
else return Error

if (not external(A))
foreach rule Ak ← Bk,1, . . . , Bk,nk

in P
W := vars(Ak, Bk,1, . . . , Bk,nk

)
CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk

))
CPRb := Arestrict(CPb, Bk,1)
foreach Bk,i in the rule body i = 1, ..., nk

CPa := process arc(Bk,i : CPRb, CPb,W,Certificate)
if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1))
CPb := CPa

CPRb := CPRa

AP1 := Arestrict(CPa, vars(Ak))
AP2 := Alub(AP1, σ

−1(AP))
if AP <> AP2 then return Error

else % external(A))
AP1 := Atrust(A,CP)
if σ−1(AP) <> AP1 then return Error

process arc(Bk,i : CPRb, CPb,W,Certificate)
if (6 ∃ a renaming σ s.t. σ(Bk,i : CPRb 7→ AP ′) in AT)
then

process node (Bk,i : CPRb,Certificate)
AP1 := Aextend (ρ−1(AP),W) where ρ is a renaming s.t.

ρ(Bk,i : CPRb 7→ AP) in AT
CPa := Aconj (CPb, AP1)
return CPa

Figure 5: Abstract Interpretation-based Checking in CiaoPP

7.3 An Example

We describe the more representative steps that algorithm check performs in order to validate the
answer table of Example 5.3.

Example 7.3 Consider the answer table, called Certificate, of Example 5.3. First, procedure
process node looks up an answer for the initial calling pattern in Certificate and adds the entry

〈create streams(X, Y) :list(X ,num) 7→ AP = {list(X ,num), list(Y , stream)}〉

to the answer table AT (note that, for short, we use AP to denote this particular answer pattern).
Since there are two rules defining create streams the outermost loop performs two iterations:

Iter 1. We start by describing the processing of the first rule (although the order is irrelevant).
Since the first literal X=[] in the rule body is a constraint, its description is computed
within procedure process arc by adding its abstract description, i.e., {nil(X)}, to the ini-
tial description {list(X,num)}, resulting in {nil(X), list(X,num)}. Similarly, the analy-
sis for the second constraint adds {nil(Y)} to the former description producing {nil(X),

19

nil(Y), list(X ,num)}. Upon exiting the innermost loop, the disjunction of this description
with the answer stored in Certificate is calculated:

AP2 := Alub({nil(X), nil(Y), list(X,num)}, AP)

since nil(X) v list(X,num) and nil(Y) v list(Y, stream), then AP2 = AP . Thus, the
certificate holds for this rule.

Iter 2. In the second iteration, we find eight literals in the rule body. Thus, the innermost loop
performs the following eight steps. The first two traversals deal with the constraints for X

and Y, and are similar to Iter 1. They produce the calling pattern

{list(X ,num),num(N), list(NL,num),Y = [F |FL]}

The next literal, number codes, in the rule body is an external procedure, thus, process node
uses the parametric routine Atrust which gives the answer {num(N), list(ChInN ,num code)}
for it. This answer is conjoined with the description of the program point immediately before
the literal, i.e.:

{list(X,num), num(N), list(NL, num), Y = [F |FL], list(ChInN, num code)}

The remaining intermediate literals are dealt in a similar way (see Example 5.3 for more
specific details). Let us just consider the processing of the recursive call to create streams,
for which we get as final description:

CP = [list(X ,num),num(N), list(NL,num),Y = [F |FL], list(ChInN ,num code),
sf (Fname), constant(File),Mode = write, stream(F),T = ”/tmp/”]

Now, process node finds out that AT already contains an answer pattern for this proce-
dure. Then, both calling patterns are conjoined: CPa := Aconj (CP ,AP) and restricted
to variables X and Y, obtaining CPa = AP as final result. Upon return from process arc,
it performs the disjunction of the computed answer with the answer supplied by Certificate:
AP2 := Alub(CPa ,AP). Since CPa = AP and also the result, AP2 = AP, coincides

with the one in the certificate, the proof is validated and the algorithm terminates in a single
graph traversal for the initial query. Note that in the analysis example, there is an addi-
tional full iteration due to the existence of update events which make the analyzer re-process
all arcs which depend on a calling pattern whose answer has been updated. It is well known
that several passes over the program are often needed to reach a fixed point.

8 Experimental Results

In this section we show some experimental results aimed at studying two crucial points for the
practicality of our proposal: the checking time as compared to the analysis time, and the size of
certificates. We have implemented the checker as a simplification of the generic abstract interpreta-
tion system of CiaoPP. It should be noted that this is an efficient, highly optimized, state-of-the-art
analysis system and which is part of a working compiler. Both the analysis and checker are para-
metric w.r.t. the abstract domain. In these experiments they both use the same implementation
of the domain-dependent functions of the sharing+freeness domain [31]. We have selected this
domain because the information it infers is very useful for reasoning about instantiation errors,
which is a crucial aspect for the safety of logic programs. The whole system is implemented in
Ciao 1.11#200 [7] with compilation to bytecode. All of our experiments have been performed on
a Pentium 4 at 2.4GHz and 512MB RAM running GNU Linux RH9.0. The Linux kernel used
is 2.4.25, customized with the hrtime patch to provide improved precision and resolution in time
measurements.

20

Analysis Checking Speedup

Bench PA An TA PC Ch TC A/C TA/TC

aiakl 2 87 89 2 71 72 1.2 1.2

ann 22 452 474 18 254 272 1.8 1.7

bid 4 56 60 4 35 38 1.6 1.6

boyer 9 143 151 7 85 92 1.7 1.6

browse 3 14 17 3 12 15 1.2 1.2

deriv 2 86 88 1 19 20 4.6 4.4

grammar 2 10 12 2 9 11 1.1 1.1

hanoiapp 2 25 26 2 16 18 1.5 1.5

mmatrix 1 13 14 1 10 11 1.3 1.3

occur 2 16 18 2 10 12 1.7 1.6

progeom 2 13 15 2 9 11 1.5 1.4

read 9 792 801 8 488 497 1.6 1.6

qplan 13 1411 1424 11 962 973 1.5 1.5

qsortapp 1 20 21 1 12 14 1.6 1.5

query 5 11 15 4 9 12 1.2 1.3

rdtok 8 141 149 6 43 49 3.3 3.1

serialize 2 40 42 2 17 19 2.3 2.2

warplan 8 173 181 7 108 115 1.6 1.6

witt 16 196 212 14 72 86 2.7 2.5

zebra 3 94 97 3 90 92 1.1 1.0

Overall 1.63 1.61

Table 1: Checking Time

8.1 Checking Time

Table 1 presents our experimental results regarding checking time. Execution times are given in
milliseconds and measure runtime. They are computed as the arithmetic mean of five runs. A
relatively wide range of programs has been used as benchmarks. They are the same ones used
in [22], where they are described in some detail. For each benchmark, the columns for Analysis

are the following: PA is the time required by the preprocessing phase, in which program rules are
processed and stored in the format required by the analyzer. The analysis time proper is shown
in column An. The actual time needed for analysis –the sum of these two times– is shown in
column TA. Similarly, in the case of checking, three columns are shown. The preprocessing phase,
PC , includes asserting the certificate in addition to asserting the program to be analyzed. As the
figures show, the overhead required for asserting the certificate is negligible. Column Ch is the
time for executing the checking algorithm. Finally, TC is the total time for checking. The columns
under Speedup compare analysis and checking times. As can be seen in columns A/C and TA/TC ,
the checking algorithm is faster than the analysis algorithm in all cases. The actual speedup ranges
from almost none, as in the case of zebra, to over four times faster in the case of deriv. The last
row summarizes the results for the different benchmarks using a weighted mean, which places more
importance on those benchmarks with relatively larger analysis times. We use as weight for each
program its actual analysis time. We believe that this weighted mean is more informative than
the arithmetic mean, as, for example, doubling the speed in which a large and complex program is
analyzed (checked) is more relevant than achieving this for small, simple programs. Overall, the
speedup is 1.63 in just analysis time, or 1.61 if we also take into account the preprocessing time.
We believe that the achieved speedup is significant taking into account that CiaoPP’s analyzer for
this domain is highly optimized and converges very efficiently [40]. However, it is to be expected
that, for other domains and implementations, the relative gains will be higher.

21

Source Byte Code Certificate

Bench Source ByteC B/S Cert C/S

aiakl 1555 3805 2.4 3090 2.0

ann 12745 43884 3.4 24475 1.9

bid 4945 10376 2.1 5939 1.2

boyer 11010 32522 3.0 12300 1.1

browse 2589 8467 3.3 1661 0.6

deriv 957 4221 4.4 288 0.3

grammar 1598 3182 2.0 1259 0.8

hanoiapp 1172 2264 1.9 2325 2.0

mmatrix 557 1053 1.9 880 1.6

occur 1367 6903 5.0 1098 0.8

progeom 1619 3570 2.2 2148 1.3

read 11843 24619 2.1 25359 2.1

qplan 9983 33472 3.4 20509 2.1

qsortapp 664 1176 1.8 2355 3.5

query 2090 8833 4.2 531 0.3

rdtok 13704 15354 1.1 6533 0.5

serialize 987 3801 3.9 1779 1.8

warplan 5203 23971 4.6 15305 2.9

witt 17681 41760 2.4 19131 1.1

zebra 2284 5396 2.4 4058 1.8

Overall 1 2.66 1.44

Table 2: Certificate Size

8.2 Certificate Size

Table 2 shows our experimental results regarding certificate size, coded in compact (fastread)
format, for the different benchmarks and compares it to the size of the source code for the same
program and to the size of the corresponding bytecode. To make this comparison fair, we sub-
tract 4180 bytes from the size of the bytecode for each program: the size of the bytecode for an
empty program in this version of Ciao (minimal top-level drivers and exception handlers for any
executable). The results show the size of the certificate to be quite reasonable. It ranges from 0.3
times the size of the source code (for deriv) to 3.5 (in the case of qsortapp). Overall, it is 1.44
times the size of the source code. We consider this acceptable since in general (C)LP programs
are quite compact (up to 10 times more compact than equivalent imperative programs). In fact,
the size of source plus certificate is smaller (1+1.44) than that of the bytecode (2.66).

9 An Application of Abstraction Carrying Code

As already mentioned, abstract interpretation techniques allow inferring very rich information.
This information will allow us to specify safety policies involving not only traditional safety issues
(e.g., that the code will not write on specific areas of the disk) but also resource-related issues
(e.g., that it will not compute for more than a given amount of time, or that it will not take up
an amount of memory or other resources above a certain threshold) and, thus, achieving further
expressiveness.

We illustrate through a simple example the fundamental intuition behind the application of
ACC to resource-awareness. Consider the naive reverse Ciao program in Figure 6 written in
functional syntax. The entry assertion states information on the entry points to the program
module. In our case, initial calls to nrev must be performed with a totally instantiated list (i.e.,
a ground list of terms) in the first argument and a variable in the second one (the output), i.e., it
will indeed be used as a function. Assume also that the cost unit is the number of procedure calls.
With these assumptions, the exact cost function of procedure append is Costappend(x, y) = x + 1,

22

:- module(reverse, [nrev/2], [assertions,functions]).

:- entry nrev/2 : {list, ground} * var.

nrev([]) := [].

nrev([H|L]) := ~append(nrev(L), [H]).

append([],X) := X.

append([H|X],Y) := [H | append(X,Y)].

Figure 6: The naive reverse program.

:- true pred nrev(A,B) : (list(A), var(B))

=> (list(A), list(B))

+ (not_fails, covered, is_det, mut_exclusive).

:- true pred nrev(A,B) : (ground(A), var(B), mshare([[B]]))

=> (ground(A), ground(B)).

Figure 7: CiaoPP compiler output (types, modes, determinacy, non-failure).

where x and y are the sizes (lengths) of the first and second input lists respectively. Note that
this cost function does not depend on the size of the second argument of append. Also, based on
this cost function, the exact cost function of procedure nrev is Costnrev(n) = 0.5 n2 + 1.5 n + 1,
where n is the size (length) of the input list. In order to obtain a lower-bound approximation
of the previous cost functions, CiaoPP first performs the following analyses (all using abstract
interpretation techniques):

– A mode (and sharing) analysis. This determines which arguments (or parts of them) are
inputs and which are outputs for each constructor operation, procedure and procedure call,
as well as the dependencies between any variables (pointers) in the data structures passed
via these arguments.

– A type analysis. This infers the types for all program variables. Note that type declarations
are not compulsory in the language, so the relevant type definitions may also have to be
inferred.

– A determinacy analysis. It requires the results of type and mode analysis, and it detects
which procedures and procedure calls are deterministic.

– A non-failure analysis. This also requires the results of type and mode analysis, and can
detect procedures and goals that can be guaranteed not to fail, i.e., to produce at least
one solution or not terminate. The need for a non-failure analysis stems from an interesting
problem with estimating lower bounds: in general it is necessary to account for the possibility
of failure of a call to the procedure (because of, e.g., an inadmissible argument) leading to a
trivial lower bound of 0.

– Inference of size metrics for relevant arguments. It is based on the type information.

The results of these analyses for nrev ([[P]]α for these domains), as produced by CiaoPP in the form
of assertions are shown in Figure 7 (the information for append/3 has been left out for brevity).
Once all this information is obtained, the work done by (recursive) rules is determined. To this
end, it is first necessary to be able to estimate the size of input arguments in the procedure calls
in the body of the procedure, relative to the sizes of the input arguments to the procedure, using
the inferred metrics. The size of an output argument in a procedure call depends, in general,
on the size of the input arguments in that call. For this reason, for each output argument,
CiaoPP uses an expression which yields its size as a function of the input data sizes. For this, an
abstraction of procedure definitions called a data dependency graph is used, built using all the
abstract information inferred previously. The following steps are then performed:

23

:- true pred nrev(A,B) : (list(A), var(B))

=> (list(A), list(B),

size_lb(A,length(A)), size_lb(B,length(A)),

size_ub(A,length(A)), size_ub(B,length(A))

+ (not_fails, covered, is_det, mut_exclusive,

steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1),

steps_ub(0.5*exp(length(A),2)+1.5*length(A)+1)).

:- true pred nrev(A,B) : (ground(A), var(B), mshare([[B]]))

=> (ground(A), ground(B)).

Figure 8: CiaoPP compiler output (including sizes and cost).

:- comp nrev(_,_) + (not_fails, is_det, terminates). % A1

:- comp nrev(_,_) + seff(free). % A2

:- comp nrev(A,_) + steps_ub(o(exp(length(A),2))). % A3

Figure 9: Some assertions for the nrev/2 program.

– The data dependency graphs are used to determine the relative sizes of variable bindings at
different program points.

– The size information is used to set up difference equations representing the computational
cost of procedures.

– Abstractions (lower and upper bounds) of the solutions of these difference equations are then
obtained which provide the lower/upper-bound procedure cost and data size functions.

It is beyond the scope of this paper to fully explain all the techniques involved in inferring this
information (see, e.g., [21, 18, 19] and their references). For illustration purposes, the concrete
output from CiaoPP obtained after performing this process for the nrev program is presented in
Figure 8. This output includes the assertion (simplified for brevity):

:- true pred nrev(A,B) : (list(A), var(B))

=> (list(A), list(B), size_lb(B, length(A)))

+ (not_fails, is_det, steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)).

Such a “pred” assertion specifies in a combined way properties of both: “:” the entry (i.e., upon
calling) and “=>” the exit (i.e., upon success) points of all calls to the procedure, as well as some
global properties of its execution. The assertion above, with a “true” prefix, expresses that the
compiler has proved that procedure nrev will produce as output a list of numbers B, whose length
is at least (size lb) equal to the length of the input list, that the procedure will never fail (i.e., at
least an output value will be computed for any possible input), that it is deterministic (only one
solution will be produced as output for any input), and that a lower bound on its computational
cost (steps lb) is 0.5 length(A)2 + 1.5 length(A) + 1 execution steps (where the cost measure
used in the example is again the number of procedure calls, but it can be any other arbitrary
measure).

Then, “check” assertions can be added to a program in order to state its partial specification
Iα. For our example, let us assume that the assertions shown in Figure 9 (the check prefix,
meaning that such assertions are part of the specification and must be checked, is assumed when
no prefix is given, as in the example) are given as specification for the nrev program. The
properties used in these assertions, such as not fails, terminates, costs and types, are external
in the example from system libraries. These check assertions play the role of integrity constraints:
if their properties do not hold at the corresponding program points (procedure call, procedure
exit, etc.), the program is incorrect. Comp assertions specify global properties of the execution of

24

:- checked comp nrev(_,_) + (not_fails, is_det, terminates). % A1

:- checked comp nrev(_,_) + seff(free). % A2

:- checked comp nrev(A,_) + steps_ub(o(exp(length(A),2))). % A3

Figure 10: CiaoPP compiler output (assertion checking).

a procedure. These include complex properties such as determinacy or termination and are in
general not amenable to run-time checking. They can also be restricted to a subset of the calls
using “:”.

Concretely, the first assertion (A1) in Figure 9 states that nrev should never fail, that it
should be deterministic, and terminate. In addition, and directly related to our resource-awareness
objective, assume that we know that the consumer will only accept tasks of polynomial (actually,
at most quadratic) complexity, and only those which are purely computational, i.e., tasks that
have no side effects. This safety policy can be expressed at the producer side for this particular
program using the assertions A2 and A3, respectively, of Figure 9. More concretely, A2 states that
it should be verified that the computation is pure in the sense that it does not produce any side
effects (such as opening a file, etc.). A3 states that it should be verified that if the procedure is
called with a list in the first argument and a variable in the second one, then there is an upper
bound for the cost of this procedure in O(n2), i.e., quadratic in n, where n is the length of the
first list (represented as length(A)).

We are assuming that the code will be accepted at the receiving end, provided all assertions
can be checked, i.e., that the intended semantics expressed in the assertions determines the safety
condition. Stating the policy in this form will allow us to ensure during program development that
we produce a program that adheres to our specifications and also to the known safety policy of
the consumer. Indeed, during compilation of the nrev program, CiaoPP will check the assertions
above (representing Iα) by comparing them with the assertions inferred by the types, modes, non-
failure, determinism, and upper- and lower-bound cost analysis (representing [[P]]α) and given in
Figure 8. The result of compile-time checking the intended semantics (assertions in Fig. 9) against
this output appears in Fig. 10 (refer also to the output of the VCGen). Note that all initial
assertions have been marked as checked, i.e., they have been validated. Thus, the program has
been verified which means that all calls to nrev performed within this program satisfy the resource-
aware safety policy, i.e., the safety condition is met and the code is indeed safe to run, for now on
the producer side.

Following the ACC scheme, (a subset of) the assertions in Fig. 8 (i.e., the analysis results) is
used as the abstract cost and safety certificate to be used to check for a safe and efficient use of
procedure nrev on the receiving side. The consumer will use this abstract certificate in order to
accept/reject code depending on whether it adheres or not to some specification.

First of all, the code receiver proceeds to validate the certificate. This implies running the
checker over the program assuming the information in Fig. 8 in the relevant points and checking
that it is indeed a fixed point (and later a solution to the recurrence equations, for the case of
cost analysis). This process clearly involves less effort that creating the certificate, since only a
single pass over the program is required (and checking that an expression is a solution is typically
cheaper than obtaining such solution). If the certificate is not valid, the code is discarded. If the
certificate is valid, it is compared against the (local) specifications. The code will be accepted only
if all assertions involved can be turned to “checked”.

In our example, if we assume that the specification at the receiving end contains, e.g., (possibly
a subset of) the assertions from Fig. 9, then the code would be accepted. Clearly, in order to guar-
antee that the cost assertion holds, the certificate has to contain upper bounds on computational
cost. In contrast, let us assume that a consumer with very limited computing resources is assigned
to perform a computation using this code. Then, the following “check” assertion (instead of A3)
could perhaps represent one of the resource-related requirements at this particular node:

:- check comp nrev(A,_) : list * var + steps_ub(o(length(A))). % A3R

25

i.e., this consumer node will not accept an implementation of nrev with larger complexity than
linear.

In this case, given that the certificate contains the (valid) information that nrev will take
at least 0.5 (length(A))2 + 1.5 length(A) + 1 resolution steps, this will be found incompatible
with the assertion A3R, which requires the cost to be in O(length(A)) resolution steps. In our
implementation the checker produces the following “complexity error:”

ERROR: false comp assertion:

:- comp nrev(A,B) : true => steps_ub(o(length(A)))

because in the computation the following holds:

steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)

thus flagging that the program does not satisfy the efficiency requirements imposed. This means
of course that the consumer will reject the code.

Note that if we had replaced A3 with A3R during the compilation process at the producer end,
this same error would have appeared during compilation, i.e., the compilation process would have
flagged the “complexity error” at compile time (and reported this assertion as false in the output).

10 Conclusions and Related Work

We have presented abstraction-carrying code (ACC) as a novel enabling technology for PCC, which
follows the standard strategy of associating safety certificates to programs but it is based through-
out on the use of abstract interpretation techniques. We argue that ACC is highly flexible, one
aspect being the parametricity on the abstract domain inherited from analysis engines as exempli-
fied by those used in (C)LP. We argue that our proposal brings the expressiveness, flexibility and
automation which is inherent in the abstract interpretation techniques developed in logic program-
ming to this area. We have illustrated through an application of ACC for resource-aware security
that our approach supports a very rich set of domains. We believe that ACC provides novel means
for certifying security by enhancing mobile code with certificates which guarantee that the exe-
cution of the (in principle untrusted) code received from another node in the network is safe but
also, as mentioned above, efficient, according to a predefined safety policy which includes proper-
ties related to resource consumption. We have illustrated the approach using the CiaoPP system.
This system already uses a combination of abstract interpretation, abstract specialization, and
a flexible assertion language, to perform program debugging, verification, and optimization with
a wide variety of domains. Other approaches to abstract verification and debugging have also
been proposed (see [13, 21] for further references). The system has been enhanced to produce
certificates as dictated by the ACC scheme, as an integral part of the static debugging and veri-
fication performed during the program development process. A simplified version of the analysis
framework of CiaoPP has also been developed that serves as an efficient checker of the certificates.
The approach is currently being tested in a number of pervasive applications using an embedded
version of the Ciao system which runs on PDAs and Gumstix processors. Ongoing work also
includes the study of techniques for further reducing the size of certificates, such as only include
information on recursive procedures and reducing the checking time.

Our approach differs from existing approaches to PCC in several aspects. In our case, the
certificate is computed automatically on the producer side by an abstract interpretation-based
analyzer and the certificate takes the form of a particular subset of the analysis results. The
burden on the consumer side is reduced by using a simple one-traversal checker, which is a very
simplified and efficient abstract interpreter which does not need to compute a fixed point.

A type-level dataflow analysis of Java virtual machine bytecode is also the basis of several
existing verifiers [27, 26], and some are loosely based on abstract interpretation. These analyses
allow proving that the program is correct w.r.t. type-related correctness conditions. In [41] a
proposal is presented to split the type-based bytecode verification of the KVM (an embedded
variant of the JVM) in two phases, where the producer first computes the certificate by means of
a type-based dataflow analyzer and then the consumer simply checks that the types provided in

26

the code certificate are valid. As in our case, the second phase can be done in a single, linear pass
over the bytecode. However, these approaches are designed limited to types.

Let us note that the checker is part of the trusted computing base and, hence, the code
consumer has to trust also the domain operations. Other approaches to PCC use logic-based
verification methods as enabling technology, an example is [46] which formalizes a simple assembly
language with procedures and presents a safety policy for arithmetic overflow in Isabelle/HOL.
The coexistence of several abstract domains in our framework is somewhat related to the notion
of models to capture the security-relevant properties of code, as addressed in the work on Model-
Carrying Code (MCC) [43]. MCC enables code consumers to try out different security policies of
interest and select one that can be statically proved to be consistent with the model associated
to the untrusted code. However, models are intended to describe low-level properties and their
combination has not been studied, which differs from our idea of combining (high-level) abstract
domains.

Another difference between our work and other related work is that the particular instance that
we have described is actually defined at the source-level, whereas in existing PCC frameworks the
code supplier typically packages the certificate with the object code rather than with the source
code (both are untrusted). Actually, both approaches are of interest from our point of view (and,
in fact, ACC can also be applied to bytecode). Clearly, in many cases the source code is simply
not available to the consumer and even when there is a choice between object and source code,
using object code means reducing the trusted computing base in the consumer since there is no
need for a compiler. However, open-source code is becoming much more relevant these days (in
fact, Ciao and CiaoPP are themselves GNU-licensed and available in source code for reviewing and
modification). As a result, it is now realistic to expect that a relatively large amount of untrusted
source code is available to the consumer. The advantages of open-source with respect to safety
are important since it allows inspecting the code and applying powerful techniques for program
analysis and validation which allow inferring information which may be difficult to observe in
low-level, compiled code. This allows handling richer properties which in turn potentially allow
more expressive safety policies.

References

[1] E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-based Approach
to Mobile Code Safety. In Proc. of Compiler Optimization meets Compiler Verification
(COCV’04), Electronic Notes in Theoretical Computer Science 132(1), pages 113–129. El-
sevier - North Holland.

[2] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In 11th Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR’04),
number 3452 in LNAI, pages 380–397. Springer-Verlag, March 2005.

[3] A. Appel and A. Felty. Lightweight Lemmas in lambda-Prolog. In Proc. of ICLP’99, pages
411–425. MIT Press, 1999.

[4] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource guarantees
for smart devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors,
Proceedings of CASSIS’04, LNCS. Springer, 2004. To appear.

[5] A. Bernard and P. Lee. Temporal logic for proof-carrying code. In Proc. of CADE’02, pages
31–46. Springer LNCS, 2002.

[6] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
Journal of Logic Programming, 10:91–124, 1991.

[7] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla.
The Ciao Prolog System. Reference Manual (v1.8). The Ciao System Documenta-
tion Series–TR CLIP4/2002.1, School of Computer Science, Technical University of

27

Madrid (UPM), May 2002. System and on-line version of the manual available at
http://clip.dia.fi.upm.es/Software/Ciao/.

[8] F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Effectiveness of Global Analysis in
Strict Independence-Based Automatic Program Parallelization. In International Symposium
on Logic Programming, pages 320–336. MIT Press, November 1994.

[9] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and
G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of Constraint
Logic Programs. In Proc. of the 3rd. Int’l Workshop on Automated Debugging–AADEBUG’97,
pages 155–170, Linköping, Sweden, May 1997. U. of Linköping Press.

[10] W. Charatonik. Directional Type Checking for Logic Programs: Beyond Discriminative
Types. In Proc. of ESOP 2000, pages 72–87. LNCS 1782, 2000.

[11] B. Le Charlier, O. Degimbe, L. Michael, and P. Van Hentenryck. Optimization Techniques
for General Purpose Fixpoint Algorithms: Practical Efficiency for the Abstract Interpretation
of Prolog. In Workshop on Static Analysis, pages 15–26. Springer-Verlag, September 1993.

[12] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog. ACM Transactions on Programming Languages and
Systems, 16(1):35–101, 1994.

[13] M. Comini, R. Gori, G. Levi, and P. Volpe. Abstract Interpretation based Verification of
Logic Programs. Electr. Notes Theor. Comput. Sci., 30(1), 2000.

[14] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proc. of POPL’77, pages
238–252, 1977.

[15] P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types in Logic
Programming, pages 157–187. MIT Press, 1992.

[16] S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Interpretation,
volume 13(1–2). North-Holland, July 1992.

[17] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs. ACM
Transactions on Programming Languages and Systems, 11(3):418–450, 1989.

[18] S.K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Estimating the Computa-
tional Cost of Logic Programs. In Static Analysis Symposium, SAS’94, number 864 in LNCS,
pages 255–265, Namur, Belgium, September 1994. Springer-Verlag.

[19] S.K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Es-
timation for Logic Programs. In 1997 International Logic Programming Symposium, pages
291–305. MIT Press, Cambridge, MA, October 1997.

[20] T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for logic
programs. In Proc. LICS’91, pages 300–309, 1991.

[21] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Development Using
Abstract Interpretation (and The Ciao System Preprocessor). In Proc. of SAS’03, pages
127–152. Springer LNCS 2694, 2003.

[22] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Constraint
Logic Programs. ACM Transactions on Programming Languages and Systems, 22(2):187–223,
March 2000.

[23] M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Practical Com-
pilation Tool. Journal of Logic Programming, 13(4):349–367, August 1992.

28

[24] J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming, 19/20:503–581, 1994.

[25] A. Kelly, K. Marriott, H. Søndergaard, and P.J. Stuckey. A practical object-oriented analysis
engine for CLP. Software: Practice and Experience, 28(2):188–224, 1998.

[26] Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal of Auto-
mated Reasoning, 30(3-4):235–269, 2003.

[27] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1997.

[28] K. Marriott, H. Søndergaard, and N.D. Jones. Denotational Abstract Interpretation of Logic
Programs. ACM Transactions on Programming Languages and Systems, 16(3):607–648, 1994.

[29] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language.
ACM Transactions on Programming Languages and Systems, 21(3):527–568, 1999.

[30] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algorithm for
Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90,
Microelectronics and Computer Technology Corporation (MCC), Austin, TX 78759, April
1990.

[31] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness of
Program Variables Through Abstract Interpretation. In 1991 International Conference on
Logic Programming, pages 49–63. MIT Press, June 1991.

[32] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315–347, July 1992.

[33] G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM Press, 1997.

[34] G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. In Proc. of
PLDI’98. ACM Press, 1998.

[35] G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In Proceedings of
POPL’01, pages 142–154. ACM Press, 2001.

[36] G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program Validation
and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis
and Visualization Tools for Constraint Programming, number 1870 in LNCS, pages 63–107.
Springer-Verlag, September 2000.

[37] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic
Programs. In Analysis and Visualization Tools for Constraint Programming, pages 23–61.
Springer LNCS 1870, 2000.

[38] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-Based
Debugging of Constraint Logic Programs. In Logic-based Program Synthesis and Transfor-
mation (LOPSTR’99), number 1817 in LNCS, pages 273–292. Springer-Verlag, 2000.

[39] G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. Garćıa de la Banda, K. Marriott, and
P. J. Stuckey. A Generic Framework for Context-Sensitive Analysis of Modular Programs.
In M. Bruynooghe and K. Lau, editors, Program Development in Computational Logic, A
Decade of Research Advances in Logic-Based Program Development, number 3049 in LNCS,
pages 234–261. Springer-Verlag, Heidelberg, Germany, August 2004.

[40] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Analysis of Logic
Programs. In Proc. of SAS’96, pages 270–284. Springer LNCS 1145, 1996.

29

[41] K. Rose, E. Rose. Lightweight bytecode verification. In OOPSALA Workshop on Formal
Underpinnings of Java, 1998.

[42] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Supporting Full
Prolog on the Basic Andorra Model. In 1991 International Conference on Logic Programming,
pages 443–456. MIT Press, June 1991.

[43] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-carrying
code: A practical approach for safe execution of untrusted applications. In Proc. of SOSP’03,
pages 15–28. ACM, 2003.

[44] P. Van Roy and A.M. Despain. High-Performance Logic Programming with the Aquarius
Prolog Compiler. IEEE Computer Magazine, pages 54–68, January 1992.

[45] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic programs. In
International Static Analysis Symposium, number 2477 in LNCS, pages 102–116. Springer-
Verlag, September 2002.

[46] Martin Wildmoser and Tobias Nipkow. Certifying Machine Code Safety: Shallow Versus Deep
Embedding. In 17th Int. Conference on Theorem Proving in Higher Order Logics, number
3223 in LNCS. Springer, 2004.

30

