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Abstract. Abstract interpretation is a well-established technique for
performing static analyses of logic programs. However, choosing the ab-
stract domain, widening, fixpoint, etc. that provides the best precision-
cost trade-off remains an open problem. This is in a good part because
of the challenges involved in measuring and comparing the precision of5

different analyses. We propose a new approach for measuring such pre-
cision, based on defining distances in abstract domains and extending
them to distances between whole analyses of a given program, thus al-
lowing comparing precision across different analyses. We survey and ex-
tend existing proposals for distances and metrics in lattices or abstract10

domains, and we propose metrics for some common domains used in logic
program analysis, as well as extensions of those metrics to the space of
whole program analysis. We implement those metrics within the CiaoPP
framework and apply them to measure the precision of different analyses
over on both benchmarks and a realistic program.15

Keywords: Abstract interpretation, static analysis, logic programming, met-
rics, distances, complete lattices, program semantics.

1 Introduction

Many practical static analyzers for (Constraint) Logic Programming ((C)LP)
are based on the theory of Abstract Interpretation [8]. The basic idea behind20

this technique is to interpret (i.e., execute) the program over a special abstract
domain to obtain some abstract semantics of the program, which will over-
approximate every possible execution in the standard (concrete) domain. This
makes it possible to reason safely (but perhaps imprecisely) about the proper-
ties that hold for all such executions. As mentioned before, abstract interpre-25

tation has proved practical and effective for building static analysis tools, and
in particular in the context of (C)LP [30,21,38,6,12,5,29,16,25]. Recently, these
techniques have also been applied successfully to the analysis and verification
of other programming paradigms by using (C)LP (Horn Clauses) as the inter-
mediate representation for different compilation levels, ranging from source to30

bytecode or ISA [1,3,33,17,26,10,19,4,28,24].



When designing or choosing an abstract interpretation-based analysis, a cru-
cial issue is the trade-off between cost and precision, and thus research in new
abstract domains, widenings, fixpoints, etc., often requires studying this trade-
off. However, while measuring analysis cost is typically relatively straightforward,35

having effective precision measures is much more involved. There have been a
few proposals for this purpose, including, e.g., probabilistic abstract interpre-
tation [13] and some measures in numeric domains [27,37] 4 , but they have
limitations and in practice most studies come up with ad-hoc measures for mea-
suring precision. Furthermore, there have been no proposals for such measures40

in (C)LP domains.
We propose a new approach for measuring the precision of abstract interpretation-

based analyses in (C)LP, based on defining distances in abstract domains and
extending them to distances between whole analyses of a given program, which
allow comparison of precision across different analyses. Our contributions can be45

summarized as follows: We survey and extend existing proposals for distances
in lattices and abstract domains (Sec. 3). We then build on this theory and
ideas to propose distances for common domains used in (C)LP analysis (Sec.
3.2). We also propose a principled methodology for comparing quantitatively
the precision of different abstract interpretation-based analyses of a whole pro-50

gram (Sec. 4). This methodology is parametric on the distance in the underlying
abstract domain and only relies in a unified representation of those analysis re-
sults as AND-OR trees. Thus, it can be used to measure the precision of new
fixpoints, widenings, etc. within a given abstract interpretation framework, not
requiring knowledge of its implementation. To the extent of our knowledge, all55

previous principled attempts at
measuring the precision of different abstract interpretations have addressed

the precision of analysis operators, rather than providing a general methodology
for comparing the results obtained for particular programs. Finally, we also pro-
vide experimental evidence about the appropriateness of the proposed distances60

(Sec. 5).

2 Background and Notation

Lattices: A partial order on a set X is a binary relation v that is reflexive,
transitive, and antisymmetric. The greatest lower bound or meet of a and b,
denoted by a u b, is the greatest element in X that is still lower than both of65

them (a u b v a, a u b v b, (c v a ∧ c v b =⇒ c v a u b)). If it exists, it is
unique. The least upper bound or join of a and b, denoted by atb, is the smallest
element in X that is still greater than both of them (a v a t b, b v a t b, (a v
c∧b v c =⇒ atb v c)). If it exists, it is unique. A partially ordered set (poset)
is a couple (X,v) such that the first element X is a set and the second one is a70

partial order relation on X. A lattice is a poset for which any two elements have

4 Some of these attempts (and others) are further explained in the related work section
(Section 6).
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a meet and a join. A lattice L is complete if, extending in the natural way the
definition of supremum and infimum to subsets of L, every subset S of L has
both a supremum sup(S) and an infimum inf(S). The maximum element of a
complete lattice, sup(L) is called top or >, and the minimum, inf(L) is called75

bottom or ⊥.

Galois Connections: Let (L1,v1) and (L2,v2) be two posets. Let f : L1 −→ L2

and g : L2 −→ L1 be two applications such that:

∀x ∈ L1, y ∈ L2 : f(x) v2 y ⇐⇒ x v1 g(y)

Then the quadruple 〈L1, f, L2, g〉 is a Galois connection, written L1 −−−→←−−−
f

g
L2. If80

f ◦ g is the identity, then the quadruple is called a Galois insertion.

Abstract Interpretation and Abstract Domains: Abstract interpretation [8] is a
well-known static analysis technique that allows computing sound over-approx-
imations of the semantics of programs. The semantics of a program can be de-
scribed in terms of the concrete domain, whose values in the case of (C)LP are85

typically sets of variable substitutions that may occur at runtime. The idea be-
hind abstract interpretation is to interpret the program over a special abstract
domain, whose values, called abstract substitutions, are finite representations of
possibly infinite sets of actual substitutions in the concrete domain. We will de-
note the concrete domain as D, and the abstract domain as Dα. We will denote90

the functions that relate sets of concrete substitutions with abstract substitu-
tions as the abstraction function α : D −→ Dα and the concretization function
γ : Dα −→ D. The concrete domain is a complete lattice under the set inclusion
order, and that order induces an ordering relation in the abstract domain herein
represented by “v.” Under this relation the abstract domain is usually a com-95

plete lattice or cpo and (D,α,Dα, γ) is a Galois insertion. The abstract domain
is of finite height or alternatively it is equipped with a widening operator, which
allows for skipping over infinite ascending chains during analysis to a greater
fixpoint, achieving convergence in exchange forprecision.

Metric: A metric on a set S is a function d : S × S → R satisfying:100

– Non-negativity: ∀x, y ∈ S, d(x, y) ≥ 0.
– Identity of indiscernibles: ∀x, y ∈ S, d(x, y) = 0 ⇐⇒ x = y.
– Symmetry: ∀x, y ∈ S, d(x, y) = d(y, x).
– Triangle inequality: ∀x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

A set S in which a metric is defined is called a metric space. A pseudometric105

is a metric where two elements which are different are allowed to have distance
0. We call the left implication of the identity of indiscernibles, weak identity of
indiscernibles. A well-known method to extend a metric d : S × S −→ R to a
metric in ℘(S) is using the Hausdorff distance, defined as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
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3 Distances in Abstract Domains110

As anticipated in the introduction, our distances between abstract interpretation-
based analyses of a program will be parameterized by distance in the underlying
abstract domain, which we assume to be a complete lattice. In this section we
propose a few such distances for relevant logic programming abstract domains.
But first we review and extend some of the concepts that arise when working115

with lattices or abstract domains as metric spaces.

3.1 Distances in lattices and abstract domains

When defining a distance in a partially ordered set, it is necessary to consider
the compatibility between the metric and the structure of the lattice. This re-
lationship will suggest new properties that a metric in a lattice should sat-120

isfy. For example, a distance in a lattice should be order-preserving, that is,
∀a, b, c ∈ D with a v b v c, then d(a, b), d(b, c) ≤ d(a, c). It is also reasonable
to expect that it fulfills what we have called the diamond inequality, that is,
∀a, b, c, d ∈ D with c u d @ a u b, a t b @ c t d, then d(a, b) ≤ d(c, d). But more
importantly, this relationship will suggest insights for constructing such metrics.125

One such insight is precisely defining a partial metric dv only between el-
ements which are related in the lattice, which is arguably easier, and to ex-
tend it later to a distance between arbitrary elements x, y, as a function of
dv(x, xuy), dv(y, xuy), dv(x, xty), dv(x, xty) and dv(xuy, xty). Jan Ramon
et al. [36] show under which circumstances dv(x, xty)+dv(y, xty) is a distance,130

that is, when dv is order-preserving and fulfills dv(x, x t y) + dv(y, x t y) ≤
dv(x, x u y) + dv(y, x u y).

In particular, one could define a monotonic size size : L → R in the lattice
and define dv(a, b) as size(b)−size(a). Gratzer [18] shows that if the size fullfills
size(x)+size(y) = size(xuy)+size(xty), then d(x, y) = size(xty)−size(xuy)135

is a metric. De Raedt [11] shows that d(x, y) = size(x)+ size(y)− 2 · size(xt y)
is a metric iff size(x) + size(y) ≤ size(x u y) + size(x t y), and an analogous
result with d(x, y) = size(x)+ size(y)− 2 · size(xt y) and ≥ instead of ≤. Note
that the first distance is the equivalent of the symmetric difference distance in
finite sets, with v instead of ⊆ and size instead of the cardinal of a set. Similar140

distances for finite sets, such as the Jaccard distance, can be translated to lattices
in the same way. Another approach to defining dv that follows from the idea
of using the lattice structure, is counting the steps between two elements (i.e.,
the number of edges between both elements in the Hasse diagram of the lattice).
This was used by Logozzo [27].145

When defining a distance not just in any lattice, but in an actual abstract do-
main (abstract distance from now on), it is also necessary to consider the relation
of the abstract domain with the concrete domain (i.e., the Galois connection),
and how an abstract distance is interpreted under that relation. In that sense, we
can observe that a distance dDα : Dα → Dα in an abstract domain will induce150

a distance dαD : D → D in the concrete one, as dαD(A,B) = dDα(α(A), α(B)),
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and the other way around: a distance dD : D → D in the concrete domain in-
duces an abstract distance dγDα : Dα → Dα in the abstract one, as dγDα(a, b) =
dD(γ(a), γ(b)). Thus, an abstract distance can be interpreted as an abstraction
of a distance in the concrete domain, or as a way to define a distance in it, and155

it is clear that it is when interpreted that way that an abstract distance makes
most sense from a program semantics point of view.

It is straightforward to see (and we show in the appendix) that these induced
distances inherit most metric and order-related properties. In particular, if a
distance dD in the concrete domain is a metric, its abstraction dDα is a pseudo-160

metric in the abstract domain, and a full metric if the Galois connection between
D and Dα is a Galois insertion. This allows us to define distances dα in the ab-
stract domain from distances d the concrete domain, as dα(a, b) = d(γ(a), γ(b)).
This approach might seem of little applicability, due to the fact that concretiza-
tions will most likely be infinite and we still need metrics in the concrete domain.165

But in the case of logic programs, such metrics for Herbrand terms already ex-
ist (e.g., [22,34,36]), and in fact we show later a distance for the regular types
domain that can be interpreted as an extension of this kind, of the distance
proposed by Nienhuys-Cheng [34] for sets of terms.

Finally, we note that a metric in the Cartesian product of lattices can be170

easily derived from existing distances in each lattice, for example as the 2-norm
or any other norm of the vector of distances component to component. This is
relevant because many abstract domains, such as those that are combinations
of two different abstract domains, or non-relational domains which provide an
abstract value from a lattice for each variable in the substitution, are of such175

form. However, although this is a well-known result, it is not clear whether the
resulting distance will fulfill other lattice-related properties if the distances for
each component do. It is straightforward to see that that is the case for the order-
preserving property, but not for the diamond inequality, due to the fact that for
abstract domains, all elements of the lattice (a1, . . . , an) for which ∃i s.t. ai = ⊥180

are identified as the bottom element of the cartesian product lattice, since their
concretization is ∅.

3.2 Distances in Logic Programming Domains

We now propose some distances for two well-known abstract domains used in
(C)LP, following the considerations presented in the previous section.185

Sharing domain: The sharing domain [23,30] is a well-known domain for an-
alyzing the sharing (aliasing) relationships between variables and grounding in
logic programs. It is defined as ℘(℘(Pvar)), that is, an abstract substitution for
a clause is defined to be a set of sets of program variables in that clause, where
each set indicates that the terms to which those variables are instantiated at run-190

time might share a free variable. More formally, we define Occ(θ, U) = {X|X ∈
dom(θ), U ∈ vars(Xθ)}, the set of all program variables X ∈ Pvar in the clause
such that the variable U ∈ Uvar appears in Xθ. We define the abstraction of
a substitution θ as Asharing(θ) = {Occ(θ, U) | U ∈ Uvar}, and extend it to
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sets of substitutions. The order induced by this abstraction in ℘(℘(Pvar)) is the195

set inclusion, the join, the set union, and the meet, the set intersection. As an
example, a program variable that does not appear in any set is guaranteed to be
ground, two variables that never appear in the same set are guaranteed to not
share, or > = ℘(Pvar). The complete definition can be found in [23,30]).

Following the approach of previous section, we define this monotone size in200

the domain: size(a) = |a| + 1, size(⊥) = 0. It is straightforward to check that
∀a, b ∈ Sh, size(a) + size(b) = size(au b) + size(at b). Therefore the following
distance is a metric and order-preserving:
dshare(Sh1, Sh2) = size(Sh1∪Sh2)−size(Sh1∩Sh2) = |(Sh1∪Sh2)|−|size(Sh1∩Sh2)|

We would like our distance to be in a normalized range [0, 1], and for that we
divide it between d(⊥,>) = 2n, where n = |V | denotes the number of variables205

in the domain of the substitutions. This yields the following final distance, which
is a metric by construction:

dshare(Sh1, Sh2) = (|(Sh1 ∪ Sh2)| − |size(Sh1 ∩ Sh2)|)/2n

Regular-type domain: Another well-known domain for logic programs is the reg-
ular types domain [9], which abstracts the shape or type of the terms to which
variables are assigned on runtime. It associates each variable with a determin-210

istic context free grammar that describes its shape, with the possible functors
and atoms of the program as terminal symbols. A more formal definition can be
found in [9]. We will write abstract substitutions as tuples 〈T1, . . . , Tn〉, where
Ti = (Si, Ti,Fi,Ri) is the grammar that describes the term associated to the i-th
variable in the substitution. We propose to use as a basis the Hausdorff distance215

in the concrete domain, using the distance between terms proposed in [34], i.e.,

dterm(f(x1, . . . , xn), g(y1, . . . , ym)) =

{
if f/n 6= g/m then 1
else p

∑n
i=1

1
ndterm(xi, yi)

As the derived abstract version, we propose the following distance between220

two types or grammars S1, S2, defined recursively and with a little abuse of
notation:

d′(S1, S2) =


if ∃ (S1 → f(T1, . . . , Tn)) ∈ R1 ∧ @(S2 → f(T ′

1, . . . , T
′
n)) ∈ R2 then 1

if ∃ (S2 → f(T1, . . . , Tn)) ∈ R2 ∧ @(S1 → f(T ′
1, . . . , T

′
n)) ∈ R1 then 1

else max{p
∑n
i=1

1
nd

′(Ti, T
′
i ) | (S1 → f(T1, . . . , Tn)) ∈ R1∧

(S2 → f(T ′
1, . . . , T

′
n)) ∈ R2}225

We also extend this distance between types to distance between substitutions
in the abstract domain as follows: d(〈T1, . . . , Tn〉, 〈T ′

1, . . . , T
′
n〉) =

√
d′(T1, T ′

1)
2 + . . .+ d′(Tn, T ′

n)
2.

Since d′ is the abstraction of the Hausdorff distance with dterm, which it is proved
to be a metric in [34], d′ is a metric too, as seen in the previous section. Therefore
d is also a metric, since it is its extension to the cartesian product.230

4 Distances between analyses

We now attempt to extend a distance in an abstract domain to distances between
results of different abstract interpretation-based analyses of the same program
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(1) quicksort/2

(2) qsort/3

1/1

(5) qsort/3

1/3

(4) qsort/3

1/2

(3) partition/4

1/1

1/3

1/2

1/1

1/3

1/2

1/1

:-
module(quicksort ,[quicksort /2],[assertions]).

:- use_module(partition ,[partition /4]).

:- entry quicksort(Xs ,Ys) : (ground(Xs),
var(Ys)).

quicksort(Xs,Ys) :-
qsort(Xs ,Ys,[]).

qsort([],Ys,Ys).
qsort([X|Xs],Ys,TailYs) :-

partition(Xs ,X,L,R),
qsort(R,R2,TailYs),
qsort(L,Ys,[X|R2]).

(1) 〈quicksort(Xs, Y s), {Xs/g, Y s/ng}, {Xs/g, Y s/g}〉

(2) 〈qsort(Xs, Y s, []), {Xs/g, Y s/ng}, {Xs/g, Y s/g}〉

(3) 〈partition(Xs,X,L,R), {Xs/g,X/g, L/ng,R/ng}, {Xs/g,X/g, L/g,R/g}〉

(4) 〈qsort(Xs, Y s, Zs), {Xs/g, Y s/ng, Zs/g}, {Xs/g, Y s/g, Zs/g}〉

(5) 〈qsort(Xs, Y s, [Z|Zs]), {Xs/g, Y s/ng, Z/g, Zs/g}, {Xs/g, Y s/g, Z/g, Zs/g}〉

Fig. 1. Analysis of quicksort/2 (using difference lists).

over that domain. In the following we will assume (following most “top-down”
analyzers for (C)LP programs [30,5,16,25]) that the result of an analysis for a235

given entry (i.e., an initial predicate P, and an initial call pattern or abstract
query λc), is an AND-OR tree, with root the OR-node 〈P, λc, λs〉∨, where λs is
the abstract substitution computed by the analysis for that predicate given that
initial call pattern. An AND-OR tree alternates AND-nodes, which correspond
to clauses in the program, and OR-nodes, which correspond to literals in those240

clauses. An OR-node is a triplet 〈L, λc, λs〉∨, with L a call to a predicate P and
λc, λs the abstract call and success substitutions for that goal. It has one AND-
node 〈Cj , βjentry, β

j
exit〉∧ as child for each clause Cj in the definition of P, where

βjentry = λc ∀j and λs =
⊔
βjexit. An AND-node is a triplet 〈C, βentry, βexit〉∧,

with C a clause Head : −L1, ..., Ln and with βentry, βexit the abstract entry245

and exit substitutions for that clause. It has an OR-node 〈Li, λic, λis〉∨ for each
literal Li in the clause, where βentry = λ1c , λ

i
s = λi+1

c , λns = βexit. This tree
is the abstract counterpart of the resolution trees that represent concrete top-
down executions, and represents a possibly infinite set of those resolution trees
at once. The tree will most likely be infinite, but can be represented as a finite250

cyclic tree. We denote the children of a node T as ch(T ).

Example 1. Let us consider as an example the simple quick-sort program (using
difference lists) in Fig. 1, which uses an entry assertion to specify the initial
abstract query of the analysis [35]. If we analyze it with a simple groundness
domain (with just two values g and ng, plus > and ⊥), the result can be repre-255

sented with the graph shown in Fig. 1. That graph is a finite representation of
an infinite abstract and-or tree. The nodes in the graph correspond to or-nodes
〈L, λc, λs〉 in the analysis tree, where the literals L, abstract call substitutions
λc and abstract success substitutions λs are specified below the graph. The la-
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bels in the edge indicate to which program point each node corresponds: if one260

node is connected to its predecessor by an arrow with label i/j, then that node
corresponds to the j-th literal of the i-th clause of the predicate indicated by
the predecessor. The and-nodes are left implicit. �

We propose three distances between AND-OR trees S1, S2 for the same entry,
in increasing order of complexity, and parameterized by a distance dα in the un-265

derlying abstract domain. We also discuss which metric properties are inherited
by these distances from dα. Note that a good distance for measuring precision
should fulfill the identity of indiscernibles.

Top distance. The first consists in considering only the roots of the top trees,
〈P, λc, λ1s〉∨ and 〈P, λc, λ2s〉∨, and defining our new distance as d(S1, S2) = dα(λ

1
s, λ

2
s).270

This distance ignores too much information (e.g., if the entry point is a pred-
icate main/0, the distance would only distinguish analyses that detect failure
from analysis which do not), so it is not appropriate for measuring analysis pre-
cision, but it is still interesting as a baseline. It is straightforward to see that it
is a pseudometric if dα is, but will not fulfill the identity of indiscernibles even275

if dα does.

Flat distance. The second distance considers all the information inferred by the
analysis for each program point, but forgetting about its context in the AND-OR
tree. In fact, analysis information is often used this way, i.e., considering only
the substitutions with which a program point can be called or succeeds, and
not which traces lead to those calls (path insensitivity). We define a distance
between program points

dPP (S1, S2) =
1

2
(dα(

⊔
λ∈PP 1

c

λ,
⊔

λ∈PP 2
c

λ) + dα(
⊔

λ∈PP 1
s

λ,
⊔

λ∈PP 2
s

λ))

where PP ic = {λc | 〈PP, λc, λs〉∨ ∈ Si}, PP is = {λs | 〈PP, λc, λs〉∨ ∈ Si}.
If we denote P as the set of all program points in the program, that dis-
tance can later be extended to a distance between analyses as d(S1, S2) =
1
|P |
∑
PP∈P dPP (S1, S2), or any other combination of the distances dPP (S1, S2)280

(e.g, weighted average, || · ||2). This distance is more appropriate for measur-
ing precision than the previous one, but it will still inherit all metric properties
except the identity of indiscernibles.

Tree distance. For the third distance, we propose the following recursive defini-
tion, which can easily be translated into an algorithm:285

d(T1, T2) =

{
µ 1

2 (dα(λ
1
c , λ

2
c) + dα(λ

1
s, λ

2
s)) + (1− µ) 1

|C|
∑

(c1,c2)∈C d(c1, c2) if C 6= ∅
else 1

2 (dα(λ
1
c , λ

2
c) + dα(λ

1
s, λ

2
s))

where T1 = 〈P, λ1c , λ1s〉, T2 = 〈P, λ2c , λ2s〉, µ ∈ (0, 1], C1 = ch(T1), C2 =
ch(T2) and290

C = {(c1, c2) | c1 ∈ ch(T1), c2 ∈ ch(T2), val(c1) = 〈X,_,_〉, val(c2) = 〈Y,_,_〉, X =
Y } This definition is possible because the two AND-OR trees will necessarily
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have the same shape, and therefore we are always comparing a node with its
correspondent node in the other tree. Also, this distance is well defined, even if
the trees, and therefore the recursions, are infinite, since the expression above295

always converges. Furthermore, the distance to which the expression converges
can be easily computed in finite time. Since the AND-OR trees always have a
finite representation as cyclic trees with n and m nodes respectively, there are
at most n ∗m different pairs of nodes to visit during the recursion. Assigning a
variable to each pair that is actually visited, the recursive expression can be ex-300

pressed as a linear system of equations. That system has a unique solution since
the original expression had, but also because there is an equation for each vari-
able and the associated matrix, which is therefore squared, has strictly dominant
diagonal. An example can be found in the appendix B.2.

The idea of this distance is that we consider more relevant the distance305

between the upper nodes than the distance between the deeper ones, but we still
consider all of them and do not miss any of the analysis information. As a result,
this distance will directly inherit the identity of indiscernibles (apart from all
other metric properties) from dα.

5 Experimental Evaluation310

To evaluate the usefulness of the program analysis distances, we set up a practical
scenario in which we study quantitatively the cost and precision tradeoff for
several abstract domains. In order to do it we need to overcome two technical
problems described below.

Base domain. Recall that in the distances defined so far, we assume that we315

compare two analyses using the same abstract domain. We relax this requirement
by translating each analysis to a common base domain, rich enough to reflect
a particular program property of interest. An abstract substitution λ over a
domain Dα is translated to a new domain Dα′ as λ′ = α′(γ(λ)), and the AND-
OR tree is translated by just translating any abstract substitution occurring in320

it. The results still over-approximates concrete executions, but this time all over
the same abstract domain.

Program analysis intersection. Ideally we would compare each analysis with the
actual semantics of a program for a given abstract query, represented also as an
AND-OR tree. However, this semantics is undecidable in general, and we are325

seeking an automated process. Instead, we approximated it as the intersection
of all the computed analyses. The intersection between two trees, which can be
easily generalized to n trees, is defined as inter(T1, T2) = T , with

val(T1) = 〈X,λ1c , λ2s〉, val(T2) = 〈X,λ2c , λ2s〉, val(T ) = 〈X,λ1c u λ2c , λ1s u λ2s〉

ch(T ) = {inter(c1, c2) | c1 ∈ ch(T1), c2 ∈ ch(T2), val(c1) = 〈X,_,_〉, val(c2) = 〈Y,_,_〉, X = Y }

That is, a new AND-OR tree with the same shape as those computed by the
analyses, but where each abstract substitution is the greatest lower bound of330
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the corresponding abstract substitutions in the other trees. The resulting tree is
the least general AND-OR tree we can obtain that still over-approximates every
concrete execution.
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Fig. 2. (a) Precision using flat distance and (b) tree distance (micro-benchmarks)
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Fig. 3. (a) Precision using top distance and (b) Analysis time (micro-benchmarks)

Case study: variable sharing domains. We have applied the method above on a
well known set of (micro-)benchmarks for CLP analysis, and a number of mod-335

ules from a real application (the LPdoc documentation generator). The pro-
grams are analyzed using the CiaoPP framework [20] and the domains shfr [31],
share [23,30], def [15,2], and sharefree_clique [32] with different widenings. All
these domains express sharing between variables among other things, and we
compare them with respect to the base share domain. All experiments are run340

on a Linux machine with Intel Core i5 CPU and 8GB of RAM.
Fig. 2 and Fig. 3 show the results for the micro-benchmarks. Fig. 4 and

Fig. 5 show the same experiment on LPdoc modules. In both experiments we
measure the precision using the flat distance, tree distance, and top distance.
In general, the results align with our a priori knowledge: that shfr is strictly345

more precise than all other domains, but also generally slower; while gr is less
precise and faster. As expected, the flat and tree distances show that share is
in all cases less precise than shfr, and not significantly cheaper (sometimes even
more costly). The tree distance shows a more pronounced variation of precision
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when comparing share and widenings. While this can also be appreciated in the350

top distance, the top distance fails to show the difference between share and
shfr. Thus, the tree distance seems to offer a good balance. For small programs
where analysis requires less than 100ms in shfr, there seems to be no advantage
in using less precise domains. Also as expected, for large programs widenings
provide significant speedups with moderate precision lose. Small programs do355

not benefit in general from widenings. Finally, the def domain shows very good
precision w.r.t. the top distance, representing that the domain is good enough
to capture the behavior of predicates at the module interface for the selected
benchmarks.

Fig. 6 reflects the size of the AND-OR tree and experimentally it is correlated360

with the analysis time. The size This sentence has some missing word measures
of represeting abstract substitutions as Prolog terms (roughly as the number of
functor and constant symbols).

6 Related Work

Distances in lattices: Lattices and other structures that arise from order relations365

are common in many areas of computer science and mathematics, so it is not
surprising that there have been already some attempts at proposing metrics in
them. E.g., [18] has a dedicated chapter for metrics in lattices. Distances among
terms: Hutch [22], Nienhuys-Cheng [34] and Jan Ramon [36] all propose dis-
tances in the space of terms and extend them to distances between sets of terms370

or clauses. Our proposed distance for regular types can be interpreted as the ab-
straction of the distance proposed by Nienhuys-Cheng. Furthermore, [36] develop
some theory of metrics in partial orders, as also does De Raedt [11]. Distances
among abstract elements and operators: Logozzo [27] proposes defining metrics
in partially ordered sets and applying them to quantifying the relative loss of375

precision induced by numeric abstract domains. Our work is similar in that we
also propose a notion of distance in abstract domains. However, they restrict
their proposed distances to finite or numeric domains, while we focus instead
on logic programming-oriented, possible infinite, domains. Also, our approach to
quantifying the precision of abstract interpretations follows quite different ideas.380

They use their distances to define a notion of error induced by an abstract value,
and then a notion of error induced by a finite abstract domain and its abstract
operators, with respect to the concrete domain and concrete operators. Instead,
we work in the context of given programs, and quantify the difference of preci-
sion between the results of different analyses for those programs, by extending385

our metrics in abstract domains to metrics in the space of abstract executions
of a program and comparing those results. Sotin [37] defines measures in Rn
that allow quantifying the difference in precision between two abstract values of
a numeric domain, by comparing the size of their concretizations. This is ap-
plied to guessing the most appropriate domain to analyse a program, by under-390

approximating the potentially visited states via random testing and comparing
the precision with which different domains would approximate those states. Di
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Pierro [13] proposes a notion of probabilistic abstract interpretation, which al-
lows measuring the precision of an abstract domain and its operators. In their
proposed framework, abstract domains are vector spaces instead of partially or-395

dered sets, and it is not clear whether every domain, and in particular those used
in logic programming, can be reinterpreted within that framework. Cortesi [7]
proposes a formal methodology to compare qualitatively the precision of two
abstract domains with respect to some of the information they express, that is,
to know if one is strictly more precise that the other according to only part400

of the properties they abstract. In our experiments, we compare the precision
of different analyses with respect to some of the information they express. For
some, we know that one is qualitatively more precise than the other in Cortesi’s
paper’s sense, and that is reflected in our results.

7 Conclusions405

We have proposed a new approach for measuring and comparing precision across
different analyses, based on defining distances in abstract domains and extend-
ing them to distances between whole analyses. We have surveyed and extended
previous proposals for distances and metrics in lattices or abstract domains,
and proposed metrics for some common (C)LP domains. We have also proposed410

extensions of those metrics to the space of whole program analysis. We have im-
plemented those metrics and applied them to measuring the precision of different
sharing-related (C)LP analyses on both benchmarks and a realistic program. We
believe that this application of distances is promising for debugging the preci-
sion of analyses and calibrating heuristics for combining different domains in415

portfolio approaches, without prior knowledge and treating domains as black
boxes (except for the translation to the base domain). In the future we plan to
apply the proposed concepts in other applications beyond measuring precision
in analysis, such as studying how programming methodologies or optimizations
affect the analyses, comparing obfuscated programs, giving approximate results420

in semantic code browsing [14], program synthesis, software metrics, etc.
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A Theory of Section 3

A.1 Properties inherited by abstraction or concretization of
distances

Proposition 1. Let us consider an abstract domain Dα, that abstracts the con-
crete domain D, with abstraction function α : D → Dα and concretization535

function γ : Dα → D. Both domains are complete lattices and α and γ form a
Galois connection. Then:

(1) If dα : Dα×Dα → R is a metric in the abstract domain, then d : D×D →
R, d(A,B) = dα(α(A), α(B)) is a pseudometric in the concrete domain. If dα
is order-preserving, so it is d.540

(2) If d : D×D → R is a metric in the concrete domain, then dα : Dα×Dα →
R, dα(a, b) = d(γ(a), γ(b)) is a pseudometric in the abstract domain. If the
Galois connection is a Galois insertion, then d is a full metric. If d is order-
preserving, so it is dα.

Proof (Proof).545

– (1)

• d is a pseudometric:
∗ Non-negativity: d(A,B) = dα(α(A), α(B)) ≥ 0, since dα is non-
negative

550 ∗ Weak identity of indiscernibles : d(A,A) = dα(α(A), α(A)) = 0, since
dα fulfills the identity of indiscernibles

∗ Symmetry: d(A,B) = dα(α(A), α(B)) = dα(α(B), α(A)) = d(B,A),
since dα is symmetric555

∗ Triangle inequality: d(A,C) = dα(α(A), α(C)) ≤ dα(α(A), α(B)) +
dα(α(B), α(C)) = d(A,B) + d(B,C), since dα fulfills the triangle
inequality

560

• d is order-preserving :
If A ⊆ B ⊆ C, then α(A) v α(B) v α(C), since α is monotonic. But
then d(A,B) = dα(α(A), α(B)) ≤ dα(α(A), α(C)) = d(A,C), since dα is
order-preserving.

– (2)565

• dα is a pseudometric: analogous. Besides, if the Galois connection is a
Galois insertion, then γ is injective (otherwise, ∃ a 6= b ∈ Dα s.t. γ(a) =
γ(b) =⇒ α(γ(a)) = α(γ(b)) =⇒ a = b, which is absurd). But then
dα(a, b) = 0 =⇒ d(γ(a), γ(b)) = 0 =⇒ γ(a) = γ(b) =⇒ a = b, and
therefore dα is a full metric570

• dα is order-preserving : Analogous
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B Examples for section 4

B.1 Example of program-points distance

The analysis shown in Fig. 1 has only one triple 〈L, λc, λs〉 for each program
point. Let us consider a different analysis for the same program, in which there575

is no information about the imported predicate partition/4, and therefore the
analysis needs to assume the most general abstract substitution on success for
calls to that predicate. Fig. 7 shows the result of the analysis in the same man-
ner as Fig. 1 does. We observe that this time there are program points which
have more that one triple in the analysis. Let us denote each program point as580

P/A/N/M, where that represents the M-th literal of the N-th clause of the predi-
cate P/A. The correspondence between program points and analysis nodes is the
following:

quicksort/2/0 (entry) quicksort/2/1/1 qsort/3/1/1 qsort/3/1/2 qsort/3/1/3
(1) (2) (3), (5) (4), (6) (7), (8)585

The resulting single triples 〈L, λc, λs〉 for each program point will be the fol-
lowing:

quicksort/2/0 (entry) (1) 〈quicksort(Xs, Y s), {Xs/g, Y s/ng}, {Xs/g, Y s/any}〉

quicksort/2/1/1 (2) 〈qsort(Xs, Y s, []), {Xs/g, Y s/ng}, {Xs/g, Y s/any}〉

qsort/3/1/1 (3) ’t’ (5) 〈partition(Xs,X,L,R), {Xs/any,X/any, L/ng,R/ng}), {Xs/any,X/any, L/any,R/any})〉

qsort/3/1/2 (4) ’t’ (6) 〈qsort(Xs, Y s, Zs), {Xs/any, Y s/ng, Zs/any}, {Xs/any, Y s/any, Zs/any}〉

qsort/3/1/3 (7) ’t’ (8) 〈qsort(Xs, Y s, [Z|Zs]), {Xs/any, Y s/ng, Z/any, Zs/any}, {Xs/any, Y s/any, Z/g, Zs/any}〉

590

Let us compare the two analyses shown in Figs. 1 and 7. We already have their
representation as one triple 〈L, λc, λs〉 for each program point. The distances for
each program point, computed as the average of the distance between its abstract
call substitution and the distance between its abstract success substitution, is595

the following:
quicksort/2/0 (entry) quicksort/2/1/1 qsort/3/1/1 qsort/3/1/2 qsort/3/1/3

0.354 0.354 0.427 0.454 0.467
The final distance between the analysis could be the average of all of them,

0.411. Alternatively, we could assign different weights to each program point
taking into account the structure of the program, and use a weighted average600

as final distance. For example, we could assign the weights of the table below,
which would yield the final distance 0.378.

quicksort/2/0 (entry) quicksort/2/1/1 qsort/3/1/1 qsort/3/1/2 qsort/3/1/3
1
2

1
4

1
12

1
12

1
12

605

B.2 Example of the tree distance

Let us compute the tree distance between the two analyses shown in Figs. 1
and 7. Fig. 8 shows the tree with distances between both analysis node to
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node. The and-nodes are omitted for simplicity. Each or-node is a quintuple
(P, Id1, Id2, D,W ): P is the predicate corresponding to that program point, I1610

is the identifier of the node in analysis 1 corresponding to that or-node, I2 is the
analogous in analysis 7, D is the distance between the two nodes, and W is the
corresponding weight to the distance in that node when we apply the definition
of the tree distance. We use a factor µ = 1

5 , and the average of the distance
between the call substitutions and the distance between the success substitu-615

tions as distance between nodes, using an abstract distance in the underlying
groundness domain.

If we follow the tree through the edges labelled 1,2,3..., we observe that we are
visiting the same node over and over with decreasing weights 0.043, 0.011, 0.003 . . . =
w 1

5 +w
4
5
1
3
1
5 +w

4
5
1
3
4
5
1
3
1
5 + . . ., where w = 1 4

5
1
1
4
5
1
3 . The sum of those weights con-620

verges ( 15w
∑∞
i=0 (

4
5
1
3 )
i = 1

5w
15
11 ), but it is not trivial to compute in the general

case and for all cases.
However, we can compute the final sum solving the following systems of

equations, where the variable Xi,j corresponds to the node (P, i, j,D,W ):
625 

X1,1 = 1
5 ∗ 0.177 +

4
5X2,2

X2,2 = 1
5 ∗ 0.177 +

4
5
1
3X3,3 +

4
5
1
3X4,4 +

4
5
1
3X5,8

X3,3 = 0.177
X4,4 = 1

5 ∗ 0.348 +
4
5
1
3X3,5 +

4
5
1
3X4,4 +

4
5
1
3X5,7

X5,8 = 1
5 ∗ 0.177 +

4
5
1
3X3,5 +

4
5
1
3X4,6 +

4
5
1
3X5,7

X3,5 = 0.427
X5,7 = 1

5 ∗ 0.177 +
4
5
1
3X3,5 +

4
5
1
3X4,6 +

4
5
1
3X5,7

X4,6 = 1
5 ∗ 0.177 +

4
5
1
3X3,5 +

4
5
1
3X4,6 +

4
5
1
3X5,7
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(1) quicksort/2

(2) qsort/3

1/1

(8) qsort/3

1/3

(4) qsort/3

1/2

(3) partition/4

1/1

(7) qsort/3

1/3

(6) qsort/3

1/2

(5) partition/4

1/1

1/3

1/2

1/1

1/3

1/2

1/1

1/3

1/2

1/1

(1) 〈quicksort(Xs, Y s), {Xs/g, Y s/ng}, {Xs/g, Y s/any}〉

(2) 〈qsort(Xs, Y s, []), {Xs/g, Y s/ng}, {Xs/g, Y s/any}〉

(3) 〈partition(Xs,X,L,R), {Xs/g,X/g, L/ng,R/ng}), {Xs/g,X/g, L/any,R/any})〉

(4) 〈qsort(Xs, Y s, Zs), {Xs/any, Y s/ng, Zs/g}), {Xs/any, Y s/any, Zs/g})〉

(5) 〈partition(Xs,X,L,R), {Xs/any,X/any, L/ng,R/ng}), {Xs/any,X/any, L/any,R/any})〉

(6) 〈qsort(Xs, Y s, Zs), {Xs/any, Y s/ng, Zs/any}, {Xs/any, Y s/any, Zs/any}〉

(7) 〈qsort(Xs, Y s, [Z|Zs]), {Xs/any, Y s/ng, Z/any, Zs/any}), {Xs/any, Y s/any, Z/any, Zs/any})〉

(8) 〈qsort(Xs, Y s, [Z|Zs]), {Xs/any, Y s/ng, Z/g, Zs/any}, {Xs/any, Y s/any, Z/g, Zs/any}〉

Fig. 7. Analysis of quicksort/2.
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(quicksort/2,1,1,0.177,0.2)

(qsort/3,2,2,0.177,0.16)

(partition/4,3,3,0.177,0.043) (qsort/3,4,4,0.348,0.043)

1

(qsort/3,5,8,0.393,0.043)

(partition/4,3,5,0.427,0.011) (qsort/3,4,4,0.348,0.011)

2

... ... ... (qsort/3,5,7,0.467,0.011)

(partition/4,3,5,0.427,0.003) ...

3

(qsort/3,5,7,0.467,0.003) ... (qsort/3,4,6,0.454,0.003) (qsort/3,5,7,0.467,0.003)

... ... ... ...

Fig. 8. 3rd approach: whole abstract execution tree
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