
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Prototype Simulation Tool

Deliverable number: D18

Workpackage: Semantics-Based Modelling in CLP (WP5)

Preparation date: 1 February 2005

Due date: 1 February 2005

Classification: Public

Lead participant: Roskilde Univ

Partners contributed: Univ. of BristolUniv. of Southampton, Roskilde Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).





Short description:

Aims of Work Package 5. This document is a short introduction to a software deliverable,

D18: Prototype Simulation Tool. It is an outcome related to all three tasks in WP5, Analysis of

Process Languages, Analysis and Specialization of Low Level Abstract Machines and Analysis

of High Level Specification Languages. We aim to highlight the main features of software tools

for simulation developed in the ASAP project, and give examples of some applications. As can

be seen below, we have performed experiments in each of the areas represented by the three

tasks, namely a process language (Petri nets), a low-level language (the PIC processor) and a

specification language (B).

The aims of this deliverable are not to demonstrate the analysis results, but to show how the

tools allow such languages to be simulated in CLP, allowing for further analysis by CLP tools.

WP5: Semantics-based Modelling in CLP has as its main aim the application of analysis and

specialization tools for CLP to a range of other formalisms. The general method of achieving

this consists of a number of stages. LetL be a target language. We speak ofL-programs, though

in generalL need not be a programming language, but could also be a specification language,

knowledge representation language, a formal logic, and so on.

1. Define abstract syntax forL and provide a systematic translation from concreteL-programs

or expressions into the abstract syntax. The abstract syntax consists of tree terms that can

then be straightforwardly mapped to CLP terms.

2. Provide semantics forL. A variety of semantic styles can be used: small-step (structural)

or large-step (natural) operational semantics, or denotational semantics, for example. Less

formal approaches to semantics, such as writing an interpreter and validating its behaviour

could also be used, but the ideal is to start from formal semantics.

3. Code the semantics as a CLP program. Emphasis should be on semantic clarity rather than

efficiency. Denote the CLP program capturingL’s semantics asML.

4. SpecializeML with respect to a particular object program inL, sayP . For the purposes

of simulation, the specialized program should satisfy a requirement: it should bear a struc-

tural resemblance toP , so that program points inP can be identified systematically with

program points in the specialized program. In order to achieve this, the specialization

process should completely specialize away the parsing of the abstract syntax [5].



5. The resulting specialized program can then be either run, in order to simulate concrete

execution ofP , or analysed, model-checked or further specialized.

The general rationale for this approach is thatgeneral-purposeanalysis and specialization

tools can be applied. If new versions of the tools had to be developed for each languageL, there

would little advantage in using CLP. Our aim is to put all the effort of developing tools into the

CLP tools. Applying them to different target languages via simulators ideally means that the only

extra effort to analyse a different target language is to map its syntax into CLP data structures and

to express its semantics as a CLP program. Both of these tasks can be done fairly systematically,

though it is a non-trivial effort for “real” languages, in our experience.

CLP support for simulating concrete computations. Using the specialized program to sim-

ulate concrete computations presents its own challenges, and again CLP provides appropriate as-

sistance. Semantics-based interpreters are often highly non-deterministic and sometimes would

not give results when run in a “naive” way. In Prolog, using a left-to-right depth-first strategy

could lead to looping or unfair preference for certain computation paths. Techniques such as

constraint-based execution and tabling can allow a wider range of language definitions to be

simulated.

Core Tools. In general, the analysis and specialization tools consist of the full range of analysis

and specialization tools developed in ASAP. We highlight the following tools are especially

relevant for obtaining the specialized program meeting the requirements stated above.

• The LOGENoffline partial evaluator [4]: Offline specialization is suited for specializing se-

mantic interpreters, since the interpreters tend to have a regular structure and it is relatively

easy (though still not trivial) to find the right annotations.

• The Binding Time Analysis tool associated with Logen [1]: The BTA tool can be used

either automatically, to generate annotations completely automatically, or else it can be

used just to propagate and check consistency of annotations provided by the user.

• Analysis tools based on regular types [3]. LOGEN provides a straightforward generalisa-

tion mechanism driven byfilters. These are efficient but can lose information that is vital

to detect control flow in certain interpreters. The use of regular approximation performed

after specialization by LOGEN has proved to be a useful technique for regaining this in-

formation and detecting unreachable parts of the flow-graph. A typical case where this

technique is required occurs in languages with procedure calls, where the return address is

pushed onto a stack. Upon encountering a return command, the stack has to be examined.

2



Figure 1: Displaying Annotations of a Program to Be Specialized

However, the stack is unbounded in the presence of recursive calls: over-abstraction of the

stack results in loss of the return address.

Web interface to LOGEN A web interface to LOGEN is under development. This will allow

the user to send their own files to be specialized via a web browser, examine the binding type

and control annotations, and then run the specializer. The residual program is then produced and

displayed. Two screen shots are shown in Figure 1 and Figure 2.

Experiments. We outline a number of experiments that we have carried out within the ASAP

project.

3



Figure 2: Displaying Specialized Program

4



PROB The aim of this work is to simulate B machines in CLP, and perform model-checking us-

ing CLP analysis and specialization tools. In previous work we have presented the PROB

animator and model checker. Based on Prolog, the PROB tool supports automated con-

sistency checking of B machines viamodel checking. For exhaustive model checking, the

given sets must be restricted to small finite sets, and integer variables must be restricted to

small numeric ranges. This allows the checking to traverse all the reachable states of the

machine. PROB can also be used to explore the state space non-exhaustively and find po-

tential problems. The user can set an upper bound on the number of states to be traversed

or can interrupt the checking at any stage. PROB will generate and graphically display

counter-examples when it discovers a violation of the invariant. PROB can also be used as

an animator of a B specification. So, the model checking facilities are still useful for infi-

nite state machines, not as a verification tool, but as a sophisticated debugging and testing

tool.

OPNs Object Petri nets (OPNs) provide a natural and modular method for modelling many real-

world systems. We give a structure-preserving translation of OPNs to Prolog by encoding

the OPN semantics, avoiding the need for an unfolding to a flat Petri net. The translation

provides support for reference and value semantics, and even allows different objects to

be treated as copyable or non-copyable. The method is developed for OPNs with arbitrary

nesting. We then apply logic programming tools to animate, compile and model check

OPNs. In particular, we use the partial evaluation systemLOGEN to produce an OPN com-

piler, and we use the model checkerXTL to verify CTL formulae. We also useLOGEN to

produce special purpose model checkers. We present two case studies, along with exper-

imental results. A comparison of OPN translations to MAUDE specifications and model

checking is given, showing that our approach is roughly twice as fast for larger systems.

We also tackle infinite state model checking using theECCEsystem. A full description of

this work is published [2].

CPNs Coloured Petri Nets (CPNs) are widely used for specifying aspects of embedded systems.

We defined an interpreter for CPNs, and succeeded in specializing it with respect to spe-

cific CPNs. An ongoing case-study is a CPN model of a Stack-Based Ceiling Priority

protocol in a real time kernel for embedded systems, called Hartexµ, and verify certain

key properties. we usedLogento specialize the CPN interpreter for this application.

PIC The functionality of a classic PIC processor, commonly used in applications such as wear-

able computing, has been modeled as an emulator written in Prolog. The PIC emulator can

be specialised using an online or offline partial evaluator, which are part of an analysis and

5



specialisation toolset for logic programs developed in the ASAP project. The PIC emulator

is described as one of the case studies in the ASAP project (deliverable D14).

The program is specialised with respect to a given program. Analysis techniques can be

applied to the specialised emulator in an attempt to discover properties of the PIC program,

such as constant or undefined register values, timing and synchronization when connecting

more than one PIC processor running concurrently and communicating - and detection of

dead code and other forms of redundancy.

Summary The ASAP tools have been demonstrated as being capable of generating CLP pro-

grams semantically equivalent to programs in a variety of languages, both high- and low-level.

Indeed, gaining experience with different languages has been one of the most useful results of

these tasks.

The aims of this work package, using a general purpose meta-language to implement other

languages, via partial evaluation of interpreters, have been put forward in one form or another for

at least 20 years. We do not claim to have solved the problems in this field. However, note that

we are not tackling the full problem of automatic generation of language implementations from

semantic definitions. This goal remains some way off. The immediate challenge is to show that

we have tools to produce workable CLP representations of a variety of sophisticated languages,

and perform non-trivial analyses on the specialized programs.

6





Attachments:

The software delivered consists of the LOGEN specialization tool, and its associated Binding

Time Analysis system, and the regular approximation tool. These tools may be downloaded

from the ASAP Project web site.

1



References

[1] S.J. Craig, John P. Gallagher, M. Leuschel, and Kim S. Henriksen. Fully automatic bind-

ing time analysis for Prolog. In Sandro Etalle, editor,Pre-Proceedings, 14th International

Workshop on Logic-Based Program Synthesis and Transformation, LOPSTR 2004, Verona,

August 2004, pages 61–70, 2004.

[2] Berndt Farwer and Michael Leuschel. Model checking Object Petri Nets in Prolog. In

Eugenio Moggi and David Scott Warren, editors,PPDP, pages 20–31. ACM, 2004.

[3] J. P. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite Tree

Automata for Set-Based Analysis of Logic Programs. InFourth International Symposium

on Practical Aspects of Declarative Languages (PADL’02), LNCS, January 2002.

[4] M. Leuschel and J. Jørgensen. Efficient specialisation in Prolog using the hand-written com-

piler generator LOGEN.Elec. Notes Theor. Comp. Sci., 30(2), 1999.

[5] Michael Leuschel, Stephen-John Craig, Maurice Bruynooghe, and Wim Vanhoof. Specialis-

ing interpreters using offline partial deduction. In Maurice Bruynooghe and Kung-Kiu Lau,

editors,Program Development in Computational Logic, volume 3049 ofLecture Notes in

Computer Science, pages 340–375. Springer, 2004.

2


