
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Combined Static and Dynamic
Checking

Deliverable number: D17

Workpackage: Correctness in Pervasive Computing (WP6)

Preparation date: 1 November 2004

Due date: 1 November 2004

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Tech. Univ. of Madrid (UPM), Univ. of Southampton, Roskilde

Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

Correctness of programs can only be determined with respect to some expected properties,

specified for example by means of assertions to be checked. Such an assertion checking process

can be performed either at run-time (dynamic checking) or at compile-time (static checking).

Goals of Task 6.2. This deliverable is an outcome of task 6.2 Combined Static and Dynamic

Checking, whose goal is to study the use of abstract interpretation to validate assertions at com-

pile time, and identify properties that have to be checked at run-time. In this deliverable we focus

on static assertion checking (dynamic checking will be the focus of Deliverable D20, WP6).

Advances in compile-time checking of assertions leads on the one hand to performance im-

provements, since a run-time computation can be omitted if static analysis shows that it is redun-

dant. In addition, compile-time checking of assertions leads to increased reliability of software,

by compile-time checking of assertions related to avoidance of run-time errors. Both perfor-

mance and reliability are particularly important in the context of pervasive systems.

Broadly speaking we divide the work into two streams: the first is concerned with anno-

tating user-written programs with assertions, specifying desired properties that are supposed to

hold at certain program points. These assertions are checked statically. The second approach

seeks to validate properties by construction, by automatically deriving code that satisfies some

specification.

Introduction to the contents of Deliverable D17 .

Part I A self-contained description of the CiaoPP assertion language is given first in Part I.

Assertions capture a variety of properties of the computation state, including properties

that hold at success of a call and properties that are intended to hold at call time, as well

as properties of the computation itself such as termination, determinacy, and side-effect

freeness.

Recent improvements (as well as ongoing work) in assertion checking in CiaoPP are

reported in this section. The main emphasis has been put on increasing the accuracy of

assertion checking, thereby enabling more assertions to be checked at compile-time and

reducing the number of run-time tests. We have developed an assertion checking scheme

that exploits multivariant analysis information and is thus more precise. Moreover, an

improved method for checking “success with pre-condition” assertions is discussed.

Part II In Part II we consider the question of increasing the flexibility and applicability of asser-

tions. We consider the general problem of transforming assertions into different abstract

domains. The CiaoPP assertions are specified in a rich language, but in order to take

advantage of them it is necessary to perform one of a fixed number of analyses. It is not

practical to foresee each and every domain in which they should be incorporated. To over-

come this problem we define a procedure for transforming assertions from the CiaoPP

assertion database into abstract models of predicates over arbitrary domains based on pre-

interpretations.

The problem of obtaining abstractions of builtins is often a stumbling block to analysing

real application programs accurately. It requires considerable effort to specify the proper-

ties of builtins over each different abstract domain. Without such an effort though, once is

forced to make coarse over-approximations of the builtins.

The method described in Part II allows the existing, permanent assertions for the builtins

over a rich set of system types to be transported automatically to any given domain defined

as a pre-interpretation. Such domains can be constructed from arbitrary regular types.

The method is based on building a complete signature of the program and all its types.

Some of the types are contextual, that is, defined in terms of a particular signature. Once

the compete types are obtained, they are determinized and then the predicate models are

projected from the determinized type domain onto the types of interest.

Apart from abstractions of builtins, the method allows the analysis results for modules

that have been analysed over one domain to be imported into modules which are being

analysed over a different domain. This adds to the flexibility and practicability of module-

based analyses.

The method has been fully implemented and initial experiments are reported.

Part III In Part III we consider the application of backwards analysis for inferring conditions which

guarantee that given runtime assertions will be satisfied. A novel method for backwards

analysis in a standard abstract interpretation framework was developed in the ASAP project

during the first period. The deliverable shows how CiaoPP assertions on built-ins and

other imported predicates can be propagated backwards, deriving conditions on the entry

calls that guarantee satisfaction of the assertions.

The first experimental result reported in Part III show the flexibility of our approach com-

pared to other results reports in the literature, which discuss similar experiments but are

limited to simple Boolean domains like POS. In our approach, we can use arbitrary regular

types, mixing system types with user definitions.

2

Part IV The final contribution describes work in the second stream mentioned above - namely, to

satisfy program properties by construction. Here we make use of ASAP tools not to per-

form the checking, but rather to generate the code. Hence the tools employed are concerned

with program specialization rather than analysis.

Provably correct compilation is an important aspect in development of high assurance soft-

ware systems. We have thus explored approaches to provably correct code generation

based on programming language semantics, particularly Horn logical semantics, and par-

tial evaluation. We show that the definite clause grammar (DCG) notation can be used

for specifying both the syntax and semantics of imperative languages. We next show that

continuation semantics can also be expressed in the Horn logical framework, and we have

used the LOGEN partial evaluator, as developed in the ASAP project during the first period,

to automatically derive “provably correct” compilers from those semantic specifications.

A case study discussed in Part IV is the compilation of a domain specific language SCR

(Software Cost Reduction) requirements language, which is targetted at embedded sys-

tems.

Part IV was published in the Proceedings of Seventh International Symposium on Practi-

cal Aspects of Declarative Languages (PADL’05), Editors: Manuel Hermenegildo, Daniel

Cabeza, Springer LNCS, Volume 3350, 2005.

Conclusions: Results of Task 6.2. Static checking is a large area of research, potentially in-

cluding all of program analysis and verification. In this task we have focussed on two areas:

firstly, to enhance and exploit the foundation of assertions in the CiaoPP system, increasing the

accuracy, flexibility and range of applications of the assertions. This aspect relies on analysis

tools developed in the ASAP project. Secondly, we use ASAP specialization tools to generate

code from higher level specifications.

In both these areas this deliverable reports incremental progress. The existing assertion

checking tools are strengthened, and new ways of exploiting assertions are developed, by in-

corporating them in other abstract domains, and by performing backwards analysis. Preliminary

experimental results in these areas are promising and have contributed also to integration of the

ASAP tools. In the area of code generation, the results of Part IV show that the difficult prob-

lem of taking semantic specifications of a language as the starting point for a provably correct

compiler has yielded some promising results.

In an area as large as this it is important to identify problems and limitations. Consideration

could be given to the assertion language of CiaoPP, although rich, could be rationalised and

made more expressive in certain areas. The problem of mapping assertions to other domains

3

introduces complexity problems due to the potential explosion of disjoint types generated in the

procedure. Current research is investigating more compact representations of determinized types.

In backwards analysis, a key problem is to analyse with respect to sufficiently precise domains

to allow back-propagation of the relevant information. Otherwise the results are likely to be too

coarse to be useful. In code generation, the problems are of course to extend the method to more

complex languages, and to generate efficient code.

4

Attachments:

Part I (D17.1) —Some Improvement in Compile-Time Assertion Checking in CiaoPP.

Part II (D17.2) — Integrating CiaoPP Assertions into Abstract Interpretations.

Part III (D17.2) — Experiments with Backwards Analysis.

Part IV (D17.4) — Towards Provably Correct Code Generation via Horn Logic Continuation

Semantics. Appears in Proceedings of Seventh International Symposium on Practical Aspects

of Declarative Languages (PADL’05), Editors: Manuel Hermenegildo, Daniel Cabeza, Springer

LNCS, Volume 3350, 2005.

5

Contents

I Improved Compile-Time Assertion Checking in CiaoPP 4

1 Introduction 4

2 The Ciao assertion language 4

2.1 Assertions and program correctness . 4

2.2 Properties related to computation states . 5

2.2.1 An assertion schema for success states 6

2.2.2 Adding preconditions to the success schema 6

2.2.3 An assertion schema for call states . 7

2.2.4 An assertion schema for query states . 8

2.2.5 Program-point assertions . 9

2.3 Disjunctions in assertions . 9

2.4 Properties of computations . 11

2.5 Status of assertions . 12

3 Compile-time assertion checking 13

3.1 Evaluating assertions . 13

3.2 Basic compile-time checking . 15

3.3 Assertion checking using multivariant analysis 17

3.4 Improved checking for success-with-precondition scheme 21

4 Sample session 24

5 Conclusions 25

II Integrating Ciao-Prolog Assertions into Abstract Interpretations 26

6 Motivation 26

7 Analysis Domains Based on Regular Types 27

7.1 Regular Types and Pre-interpretations . 27

7.2 Approximations of success sets . 28

1

8 Overview of the Procedure 28

8.1 The Global Signature . 29

8.2 Constructing the primitive and contextual type definitions 29

8.3 The global type system . 30

8.4 Converting the models of external predicates . 30

8.5 Projecting a model onto user types . 31

9 Soundness 31

10 Implementation and Experiments 32

11 Detailed Example 32

11.1 Program Signature . 33

11.2 User Type Signature . 33

11.3 System Types . 34

11.3.1 System Type Signature . 34

11.4 Definitions of System Types . 34

11.5 Definitions of Primitive Types . 40

11.6 Contextual Type Definitions . 41

11.7 Success Model over System Types . 41

11.8 Success Model over User Types . 41

12 Conclusion 42

III Experiments with Backwards Analysis 43

13 Motivation 43

14 Outline of the backwards analysis method 44

15 Implementation 44

16 Experiments 45

17 Discussion 49

2

IV Towards Provably Correct Code Generation via Horn Logical Con-
tinuation Semantics 50

18 Introduction 50

19 Horn Logical Semantics 52

20 Definite Clause Semantics 55

21 Continuation Semantics 58

22 A Case Study in SCR 62

23 Related Work 63

24 Conclusions 64

V References 64

3

Part I

Improved Compile-Time Assertion

Checking in CiaoPP

1 Introduction

This work presents some aspects of static assertion checking in the CiaoPP (Ciao Prolog pre-

processor) system. In previous papers on this topic [47, 48], a flexible framework for assertion

checking has been introduced which allows assertion-based debugging of (constraint) logic pro-

grams.

Assertions are linguistic constructions for expressing properties of programs. In this work we

recall several assertion schemas for writing (partial) specifications for constraint logic programs

using quite general properties. The entire framework is aimed at detecting deviations of the

program behavior (symptoms) with respect to the given assertions, either at compile-time (i.e.,

statically) or run-time (i.e., dynamically). In general, it is desirable that the amount of run-time

checks is limited, as it produces an overhead during program execution. Reducing the number of

run-time checks means to perform them at compile-time, whenever feasible. This work concerns

static assertion checking and extends the existing framework in two directions:

• exploiting multivariant analysis information, including the special case which is multi-

success analysis;

• improving the accuracy of checking ’success-with-precondition’ assertions.

Thus, we are focused on increasing power of compile-time assertion checking.

2 The Ciao assertion language

Below we recall some basics of the Ciao assertion language (see [47] for more in-depth discus-

sion on the assertion language).

2.1 Assertions and program correctness

Assertions are statements about program’s properties. Every assertion A is conceptually com-

posed of two logic formulae which we refer to as appA and satA. Evaluation of these logic for-

4

mulae should return either the value true or the value false when evaluated on the corresponding

context (i.e., execution state, correct answer, computation, or whatever is the “semantic context”

which the assertion refers to) by using an appropriate inference system. The formula appA de-

termines the applicability set of the assertion: a context s is in the applicability set of A iff

appA takes the value true in s. Also, we say that an assertion A is applicable in context s iff

appA holds in s. The formula satA determines the satisfiability set of the assertion: a context s

is in the satisfiability set of A iff satA takes the value true in s. If we can prove that there is a

context which is in the applicability set of an assertion A but is not in its satisfiability set then the

program is definitely incorrect w.r.t. A. Conversely, if we can prove that every context in which

A is applicable is in the satisfiability set of A then the program is validated w.r.t. A. We consider

a program P correct only if it is correct w.r.t. all assertions for P .

2.2 Properties related to computation states

When considering the operational behaviour of a program, it is natural to associate (sets of)

execution states with certain syntactic elements of the program. As usually in CLP, a program

is composed of a set of predicates (also known as procedures). Also, a program can be seen, at

a finer-grained level, as composed of a set of program points. Thus, we first introduce several

assertion schemes whose applicability context is related to a given predicate. Then we introduce

an assertion schema whose applicability context is related to a particular program point. We

refer to the former kind of assertions as predicate assertions, and to the second one as program-

point assertions. Though a simple program transformation technique could be used to express

program-point assertions in terms of predicate assertions, we maintain both kinds of assertions

in our language for pragmatic reasons.

As a general rule, we restrict the properties expressible by means of assertions about execu-

tion states to those which refer to the values of certain variables in the store of the corresponding

execution state. This has the advantage that, in order to check whether the appA and satA logic

formulae hold or not, it suffices to inspect the store at the corresponding execution state. Also,

the variables (arguments) on whose value we may state properties are also restricted in some

way. In the case of predicate assertions, the arguments whose value we can inspect are those in

the head of the predicate. In the case of program-point assertions, they are the variables in the

clause to which the program point belongs.

Note that more than one predicate assertion may be given for the same predicate. In such a

case, all of them should hold for the program to be correct and composition of predicate asser-

tions should be interpreted as their conjunction.

5

2.2.1 An assertion schema for success states

This assertion schema is used in order to express properties which should hold on termination of

any successful computation of a given predicate. They are similar in nature to the postconditions

used in program verification. They can be expressed in our assertion language using the assertion

schema:

:- success Pred => Postcond.

This assertion schema has to be instantiated with suitable values for Pred and Postcond. Pred

is a predicate descriptor, i.e., it has a predicate symbol as main functor and all arguments are

distinct free variables, and Postcond is a logic formula about execution states, and which plays

the role of the satA formula. The resulting assertion should be interpreted as “in any activation

of Pred which succeeds, Postcond should hold in the success state.”

Example 2.1 We can use the following assertion in order to require that the output (second

argument) of procedure qsort for sorting lists be indeed sorted:

:- success qsort(L,R) => sorted(R).

Clearly, we are assuming that sorted(R) is interpreted in a suitable inference system, in which

it takes the value true iff R is bound to a sorted list. The assertion establishes that this (atomic)

formula is applicable to all execution states which correspond to a success of qsort.

An important thing to note is that in contrast to other programming paradigms, in (C)LP a

call to a predicate may generate zero (if the call fails), one, or several success states, in addition

to looping (or returning error). The postcondition stated in a success assertion refers to all the

success states (possibly none).

2.2.2 Adding preconditions to the success schema

The success schema can be used to consider only those successful states which correspond to

activations of the predicate which at the time of calling the predicate satisfy certain precondition.

The preconditions we consider are, in the same way as Postcond, logic formulae about states.

The success schema with precondition takes the form:

:- success Pred : Precond => Postcond.

and it should be interpreted as “in any invocation of Pred if Precond holds in the calling state

and the computation succeeds, then Postcond should also hold in the success state.” The Precond

6

formula should not be confused with the applicability condition appA. Note that ‘:- success

Pred => Postcond’ is equivalent to ‘:- success Pred : true => Postcond’.

It is important to also note that even though both Precond and Postcond are logic formulae

about execution states, they refer to different execution states. Precond must be evaluated w.r.t.

the store at the calling state to the predicate, whereas Postcond must be evaluated w.r.t. the store

at the success state of the predicate.

Example 2.2 The following assertion requires that if qsort is called with a list of integers in

the first argument position and the call succeeds, then on success the second argument position

should also be a list of integers:

:- success qsort(L,R) : list(L,int) => list(R,int).

where list(A,int) is an atomic formula which takes the value true iff A is bound to a list of

integers in the corresponding state.

2.2.3 An assertion schema for call states

We now introduce an assertion schema whose aim is to express properties which should hold in

any call to a given predicate. These properties are similar in nature to the classical preconditions

used in program verification. A typical situation in which this kind of assertions are of interest

is when the implementation of a predicate assumes certain restrictions on the values of the input

arguments to the predicate. Such implementation is often not guaranteed to produce correct

results unless such restrictions hold. Assertions built using this schema can be used to check

whether any of the calls for the predicate is not in the expected set of calls (i.e., the call is

“inadmissible” [46]). This schema has the form:

:- calls Pred : Precond.

This assertion schema has to be instantiated with a predicate descriptor Pred and a logic formula

about execution states Precond. The resulting assertion should be interpreted as “in all activations

of Pred the formula Precond should hold in the calling state.”

Example 2.3 The following assertion built using the calls schema expresses that in all calls

to predicate qsort the first argument should be bound to a list:

:- calls qsort(L,R) : list(L).

7

2.2.4 An assertion schema for query states

It is often the case that one wants to describe the exported uses of a given predicate, i.e., its

valid queries. Thus, in addition to describing calling and success states, we also consider using

assertions to describe query states, i.e., valid input data. In terms of the operational semantics,

in which program executions are sequences of states, query states are the initial states in such

sequences. These can be described in our assertion language using the entry schema, which

has the form:

:- entry Pred : Precond.

where, as usual, Pred is a predicate descriptor and Precond is a logic formula about execution

states. It should be interpreted as “Precond should hold in all initial queries to Pred.”

Example 2.4 The following assertion indicates that the predicate qsort/2 can be subject to

top-level queries provided that such queries have a list of numbers in the first argument position:

:- entry qsort(L,R) : list(L,num).

The set of all entry assertions is considered closed in the sense that they must cover all valid

initial queries. This is equivalent to considering that an assertion of the form ‘:- entry Pred

: false.’ exists for all predicates Pred for which no entry assertion has been provided.

It can be noted that entry and calls schemes are syntactically (and semantically) similar.

However, their applicability set is different. The assertion in the example above only applies

to the initial calls to qsort, whereas, for example, the assertion ‘:- calls qsort(L,R) :

list(L,num).’ applies to any call to qsort, including all recursive (internal) calls. Thus,

entry assertions allow providing more precise descriptions of initial calls, as the properties

expressed do not need to hold for the internal calls.

Example 2.5 Consider the following program with an entry assertion:

:- entry p(A) : ground(A).

p(a).

p(X):- p(Y).

If instead of the entry above we had written ‘:- calls p(A) : ground(A).’ then such

assertion would not hold in the given program. For example, the execution of p(b) produces

calls to p with the argument being a free variable. However, the execution of p(b) satisfies the

entry assertion since the internal calls to p are not in the applicability context of the assertion.

8

2.2.5 Program-point assertions

As already mentioned, usually, when considering operational semantics of a program, in addition

to predicates we also have the notion of program points. The program points that we will consider

are the places in a program in which a new literal may be added, i.e., before the first literal (if any)

of a clause, between two literals, and after the last literal (if any) of a clause. For simplicity, we

add program-point assertions to a program by adding a new literal at the corresponding program

point. This literal is of the form:

check(Cond).

an it should be interpreted as “whenever execution reaches a state originated at the program

point in which the assertion is, Cond should hold.” Intuitively, each execution state can be seen

as originated at a given program point.

Example 2.6 Consider the following clause ‘p(X):- q(X,Y), r(Y).’ Imagine for example

that whenever the clause is reached by execution, after the successful execution of the literal

q(X,Y), X should be greater than Y and Y should be positive. This can be expressed by re-

placing the previous clause by the following one in which a program-point assertion has been

added:

p(X):- q(X,Y), check((X>Y,Y>=0)), r(Y).

An important difference between program-point assertions and predicate assertions is that
while the latter are not part of the program, program-point assertions are, as they have been
introduced as new literals in some program clauses. In order to avoid program-point assertions
from altering the behaviour of the program (at least if dynamic checking has not been enabled),
we assume that the predicate check/1 is defined as

check(_Prop).

i.e., any call to check trivially succeeds. If dynamic checking is being performed, this definition

is overridden by another one which actually performs the (run-time) checking. This topic is

beyond scope of this work.

2.3 Disjunctions in assertions

In this section we advocate using a limited form of disjunctions in assertions related to computa-

tion states. The need for disjunctions in assertions becomes clear when we employ multivariant

analysis and assertion checking as discussed in Section 3.3, below. Consider the following pro-

gram:

9

:- entry p(_,_).

p(a,a).

p(b,b).

Assume that we want to precisely describe the success set of p/2 by means of assertions. An
assertion1

:- check success p(A,B) => (t_ab(A), t_ab(B)).

:- regtype t_ab/1.

t_ab(a). t_ab(b).

is not precise enough, since the description also includes successes p(a,b) and p(b,a). Hav-
ing two separate assertions:

:- check success p(A,B) => (t_a(A), t_a(B)).

:- check success p(A,B) => (t_b(A), t_b(B)).

:- regtype t_a/1.

t_a(a).

:- regtype t_b/1.

t_b(b).

does not improve the situation; the success scheme reads “for every success the property
holds”, so the two assertions cannot hold at the same time. It seems that the only option is to
allow disjunctions:

:- check success p(A,B) => ((t_a(A), t_a(B)) ; (t_b(A), t_b(B))).

Clearly, disjunctions in postconditions do increase expressive power of the assertion language.

However, they are not needed in precondition of success assertions, as a disjunction in a precon-

dition can be replaced by a pair of assertions.

Disjunctions in calls assertions should be admitted as well, in order to express multiple

way of using a predicate (for example a classical append/3 can be used either for list concate-

nation or list decomposition and thus it is called in two different ways).

We believe also that in order to keep the right balance between expressive power and effi-

ciency, nested disjunctions should not be allowed.

1A tag regtype indicates a property predicate that defines a regular type.

10

2.4 Properties of computations

We have seen properties and corresponding assertions which refer to computation states. Another

kind of properties consider whole computations. They can be expressed in the assertion language

by the comp schema.

The comp schema is, in the same way as success and calls schemes, associated to

predicates and is inherently operational. The success and calls schemes allow expressing

properties about the execution states both when the predicate is called and when it terminates its

execution with success. However, as we mentioned above, many other properties which refer to

the computation of the predicate (rather than the input-output behaviour) are not expressible with

such schemes. In particular, no property which refers to (a sequence of) intermediate states in

the computation of the predicate can be (easily) expressed using calls and success predicate

assertions only. Examples of properties of the computation which we may be interested in are:

determinacy [44], non-failure [27], computational cost [32, 33], termination, etc.

In our language, this sort of properties are expressed using the schema:

:- comp Pred [: Precond] + Comp-prop.

where Pred is a predicate descriptor, Precond is a logic formula on execution states, and Comp-prop

is a logic formula on computations. As in the case of success assertions, the field ‘: Precond’

is optional. An assertion built using the comp schema should be interpreted as “in any activation

of Pred if Precond holds in the calling state then Comp-prop should also hold for the computa-

tion of Pred.” Alternatively, it can be interpreted as “the applicability set of the assertion is the

set of computations of Pred in which the logic formula on states Precond holds at the calling

state, and its satisfiability set has all computations in which the logic formula on computations

Comp-prop holds.”

Example 2.7 The following assertion could be used to express that all computations of predicate

qsort with the first argument being a list of numbers and the second an unconstrained variable

at the calling state should produce at least one solution in finite time.

:- comp qsort(L,R) : (list(L,num), var(R)) + succeeds.

where the atom succeeds is implicitly interpreted as succeeds(qsort(L,R)), with an

extra argument, i.e., it is the execution of qsort(L,R) that has to succeed.

11

2.5 Status of assertions

Assertions can be used in different tools for different purposes. In some of them we may be

interested in expressing expected properties of the program if it were correct, i.e., intended prop-

erties, whereas in other contexts we may also be interested in expressing properties of the actual

program in hand, i.e., actual properties, which may or may not correspond to the user’s intention.

For example, we can use program analysis techniques to infer properties of the program in hand

and then use assertions in order to express the results of analysis. Thus, the assertion language

should be able to express both intended and actual properties of programs. However, all the

assertions presented in the examples in previous sections relate to intended properties. We have

delayed the other uses of assertions until now for clarity of the presentation.

In our assertion language we allow adding in front of an assertion a flag which clearly iden-

tifies the status of the assertion. The status indicates whether the assertion refers to intended or

actual properties, and possibly some additional information. Five different status are considered.

We list them below, grouped according to who is usually the generator of such assertions:

• For assertions written by the user:

check The assertion expresses an intended property. Note that the assertion may hold or

not in the current version of the program.

trust The assertion expresses a property which analysis can trust, i.e., it is taken as an

actual property at compile-time. In contrast to status true introduced below, this

information is given by the user and it may not be possible to infer it automatically.

As a result, it makes sense to check them at run-time.

• For assertions which are results of static analyses:

true The assertion expresses an actual property of the current version of the program.

Such property has been automatically inferred.

• For assertions which are the result of static checking:

checked A check assertion which expresses an intended property is rewritten with the

status checked during compile-time checking (see Section 3.2) when such property

is proved to actually hold in the current version of the program for any valid initial

query.

false Similarly, a check assertion is rewritten with the status false during compile-

time checking when such property is proved not to hold in the current version of the

12

program for some valid initial query. In addition, an error message will be issued by

the preprocessor.

As already mentioned, all the assertions presented in the previous sections express intended

properties and are assumed to be written by the user. Thus, they should have the status check.

However, for pragmatic reasons, the status check is considered optional and if no status is

given, check is assumed by default. For example, the assertion:

:- check success p(X) : ground(X).

can also be written “:- success p(X) : ground(X).”

Note also that the program-point assertions seen in Section 2.2.5 were introduced in the

program as literals of the check/1 predicate. This is because their status is check. If, however,

we would like to add a program-point assertion with a different status we simply replace check

by the corresponding status (true, trust, checked or false).

3 Compile-time assertion checking

In this section we recall basic compile-time assertion checking techniques, as well as discuss the

recent improvements.

3.1 Evaluating assertions

As we have seen, schemes for predicate assertions have to be instantiated with a predicate de-

scriptor Pred and one or two logic formulae on execution states, and the schema for program-

point assertions also has to be instantiated with a logic formula about execution states.

We allow conjunctions and disjunctions in the formulae, and choose to write them down, for

simplicity, in the usual CLP syntax. Such formulae have to be evaluated as part of the checking

of an assertion. Evaluation of an assertion can be seen as composed of three steps. First, an

appropriate inference system IS must be used to evaluate each of the atomic formulae AF of the

assertion on the appropriate store θ. This presents a technical difficulty in the case of predicate

assertions, since the formula is referred to the variables of the predicate descriptor Pred in the

assertion, whereas it has to be evaluated on a store θ which refers to variables different from

those in Pred. We assume that a consistent renaming has been applied on the assertion, and thus

on AF , so that it refers to the corresponding variables of θ. We denote by eval(AF, θ, P, IS)

the result of the evaluation of AF in θ by IS w.r.t. the definitions of property predicates P (i.e.

the predicates that define abstract properties to be verified, see [47]). The inference system must

13

be correct in the sense that if eval(AF, θ, P, IS) = true then AF must actually hold in θ and

if eval(AF, θ, P, IS) = false then AF must actually do not hold in θ. However, we also allow

incompleteness of IS, i.e., eval(AF, θ, P, IS) does not necessarily return either true or false. If

IS is not able to guarantee that AF holds nor that it does not hold in θ then it can return AF

itself. Thus, if eval(AF, θ, P, IS) = AF it can be interpreted as a “don’t know” result.

The second step involves obtaining the truth value of the logic formulae appA and satA as a

whole from the results of the evaluation of each atomic formula. For this, standard simplification

techniques for boolean expressions can be used. We denote by simp(F) the result of simplifying

a logic formula F . Since eval(AF, θ, P, IS) may take the value AF for some atomic formulae

in F , simp(F) may take values different from true and false, which are not simplified further.

The third step corresponds to obtaining the truth value of the assertion as a whole from

the values obtained for simp(appA) and simp(satA). The assertion is proved to hold either if

simp(appA) = false or simp(satA) = true. The assertion is proved not to hold if simp(appA) =

true and simp(satA) = false. Once again, we may not be able to prove not to disprove the as-

sertion if simp(appA) and/or simp(satA) are not either true nor false. A program is correct

for given valid queries if all its assertions have been proved for all the states that may appear

in the computation of the program with the given queries (see [48] for a formal presentation of

correctness and completeness w.r.t. these kinds of assertions).

In order to compute the value of eval(p(t1, . . . , tn), θ, P, IS) three cases are considered. The

first one is that IS is complete w.r.t. p/n, i.e., it can always return either true or false for any

store θ and any terms t1, . . . , tn. The second case is when IS can return the value true or the

value false for some store θ and terms t1, . . . , tn but not for all. In this case we say that IS

partially captures the predicate p/n. This is usually based on sufficient conditions. The third

case is when IS cannot return the value true nor the value false for any θ, i.e., IS does not

capture (or it does not “understand”) p/n.

Usually, given an inference system IS, there is a set of property predicates for which IS is

complete. In addition, the user can often define other predicates for which IS is also complete

by using some fixed and restricted syntax (consider, for example, defining a new type). The

assertion language has to provide means to do this. Similarly, we call a predicate provable (resp.

disprovable) in IS if IS can sometimes evaluate it to true (resp. false).

The previous discussion assumes that the store on which the logic formulae are evaluated

is given. This is feasible when assertions, and thus logic formulae, are evaluated at run-time,

since the store θ is available. However, if static checking is being performed, only descriptions

of stores and execution states rather than exact knowledge on such stores is available. There are

two reasons for this. One is that at compile-time the actual values of the (valid) input data to the

program are usually not available. The second one is that in order to ensure termination of static

14

checking, some approximation of the actual computation must be performed which loses part of

the information on the actual execution states.

In return for the loss of information introduced by static checking, static analysis systems

often compute safe approximations of the stores reached during computation. This makes it

possible under certain conditions to validate the program w.r.t. the assertions [26], since the

results of analysis include all valid executions of the program. Thus, if a property can be proved

in a safe approximation of a store θ then it is also proved to hold in θ; if it can be proved that it

does not hold in the approximation of θ then it does not hold either in θ. This is done for example

in the compile-time checking technique presented in Section 3.2.

3.2 Basic compile-time checking

We now show informally how the actual checking of the assertions at compile-time is performed

by means of an example. Then, we briefly discuss on the technique used in the preprocessor

for “reducing” (i.e., validating and detecting violations of) assertions. Details on how to reduce

assertions at compile-time can be found in [48].

Example 3.1 Assume that we have the following user-provided assertions:

:- check calls p(X,Y): ground(X).

:- check success p(X,Y) => (list(X,int), list(Y,int)).

:- check comp p(X,Y): (list(X,int), var(Y)) + (does_not_fail,terminates).

The preprocessor is provided with links between specific properties and inference systems that

can handle them. For example, it is known that ground/1 and var/1 are captured by shfr

(see [45] for the shfr sharing-freeness abstract domain), and list/2 by eterms (see [52]).

Assertion checking can be seen as computing the truth value of assertions by composing the

value eval(AF, θ, P, IS) of the atomic properties AF at the corresponding stores θ reachable

during execution. In the case of compile-time checking we must consider all possible stores

reachable from any valid query. The abstract interpretation-based inference systems shfr and

eterms compute a description (abstract substitution) for the calls and success states of each

predicate (in fact they also do so for every program point). In compile-time checking we con-

sider an abstract evaluation function evalα(AF, λ, P, IS) in which the concrete store θ has been

replaced by an abstract description λ. We denote by γ(λ) the set of stores which a description λ

represents. Correctness of abstract interpretation guarantees that γ(λ) is a safe approximation of

the set of all possible stores reached from valid initial queries, i.e., all such states are in γ(λ).

15

Example 3.2 After performing static analysis of the program (whose text we do not show as the

discussion is independent of it) using shfr and eterms we obtain a description of the calls

and success states for predicate p/2. For readability, we now show the results of such analyses

in terms of assertions:

:- true pred p(X,Y):(ground(X),var(Y)) => (ground(X),ground(Y)).

:- true pred p(X,Y):(list(X,int),term(Y)) => (list(X,int),int(Y)).

We denote by λc(p/2) and λs(p/2) the description of the calling and success states, respec-

tively, of p/2. In our example, the static inference system shfr allows us to conclude that the

evaluation of the three atomic properties evalα(ground(X), λc(p/2), P, shfr), evalα(ground(Y), λs(p/2), P, shfr),

and evalα(var(Y), λc(p/2), P, shfr) take the value true. Additionally, the eterms analysis

determines that on success of p/2, i.e., in λs(p/2), the type of argument Y is int, which is

a predefined type in eterms. This type is incompatible with Y being a list of integers, which

is what was expected. Thus, evalα(list(Y,int), λc(p/2), P, eterms) takes the value false.

The implementation of evalα in the preprocessor is based on the notion of abstract executabil-

ity [50, 49].

Regarding the non failure inference system, we assume it is implemented (as in [31]) as

a program analysis which uses the results of the shfr and eterms analyses for approximating

the calling patterns to each predicate, and then infers whether the program predicates with the

given calling patterns might fail or not based on whether the type is recursively “covered”.

The next step consists of composing and simplifying the truth value of each logic formula

from the truth value computed by evalα.

Example 3.3 After composing the results of evaluating each atomic property in the assertion

formulae we obtain:

:- check calls p(X,Y) : true.

:- check success p(X,Y) => (true, false).

:- check comp p(X,Y) : (true, true) + (true, terminates).

We can now apply typical simplification of logical expressions and obtain:

:- check calls p(X,Y): true.

:- check success p(X,Y) => false.

:- check comp p(X,Y) : true + terminates.

16

The third and last step is to obtain, if possible, the truth value of the assertion as a whole.

As assertion takes the value true, i.e., it is validated if either its precondition (more formally,

the appA formula of [47]) takes the value false (i.e., the assertion is never applicable) or if its

postcondition (more formally, the satA formula of [47]) takes the value true. The postcondition

of the first assertion of our example takes the value true. Thus, there is no need to consider such

an assertion in run-time checking, and we can rewrite it with the tag checked. An assertion is

violated if its precondition takes the value true and its postcondition takes the value false.2 This

happens to the second assertion in our example. Thus, we can rewrite it with the tag false.

Whenever an assertion is detected to be false at compile-time, in addition to being rewritten with

the false tag, the preprocessor also issues an error message. This allows the user to be aware of

an incorrectness problem without looking at the assertions obtained by compile-time checking.

If it is not possible to modify the tag of an assertion, then such assertion is left as a check

assertion, for which run-time checks might be generated. However, as the assertion may have

been simplified, this allows reducing the number of properties which have to be checked at run-

time.

Example 3.4 The final result of compile-time checking of assertions is:

:- checked calls p(X,Y) : ground(X).

:- false success p(X,Y) => (list(X,int), list(Y,int)).

:- check comp p(X,Y) + terminates.

where the third assertion still has the tag check since it is not guaranteed to hold nor to be vio-

lated. Note also that the two assertions whose tag has changed appear as in the original version

rather than the simplified one. The preprocessor does so as we believe it is more informative.

3.3 Assertion checking using multivariant analysis

CiaoPP facilitates static multivariant analysis, which means that (as opposed to monovariant

analysis) different call patterns for a given predicate can be analyzed separately. A goal depen-

dent analysis (based on abstract interpretation) takes as input a program P , a predicate symbol p

2There is a caveat in this case due to the use of over-approximations in program analysis. It may be the case

that a compile-time error is issued which does not occur at run-time for any valid input data. This is because though

any activation of the predicate would be erroneous, it may also be the case that the predicate is never reached in any

valid execution but analysis is not able to notice this. However, we believe that such situations do not happen so

often and also the error flagged is actually an error of the program code. Though it can never show up in the current

program it could do so if the erroneous part of the program is used in another context (in which it is actually used)

in another program.

17

(denoting the entry point), and, optionally, a restriction of the run-time bindings of p expressed as

an abstract substitution λ in the abstract domain Dα. Such an abstract interpretation computes a

set of triples Analysis(P, p, λ,Dα) = {〈p1, λ
c
1
, λs

1
〉, . . . , 〈pn, λ

c
n, λs

n〉}. In each triple 〈pi, λ
c
i , λ

s
i 〉,

pi is an atom and λc
i and λc

i are, respectively, the abstract call and success substitutions.

An analysis is said to be multivariant on calls if more than one triple 〈p, λc
1
, λs

1
〉, . . . , 〈p, λc

n, λ
s
n〉

n ≥ 0 with λc
i 6= λc

j for some i, j may be computed for the same predicate. Note that if n = 0

then the corresponding predicate is not needed for solving any goal in the considered class (p, λ)

and is thus dead code and may be eliminated. An analysis is said to be multivariant on successes

if more than one triple 〈p, λc, λs
1
〉, . . . , 〈p, λc, λs

n〉 n ≥ 0 with λs
i 6= λs

j for some i, j may be

computed for the same predicate p and call substitution λc.
Let us illustrate the idea of multivariant analysis on the following trivial example.

:- entry r.

r :- q(a,X), q(b,Y).

q(X,X).

The monovariant type analysis returns:

:- true pred q(A,B): (rt6(A), term(B)) => (rt6(A), rt6(B)).

:- regtype rt6/1.

rt6(a). rt6(b).

Observe that both call patterns of q/2 have been collapsed into a single one. The same has
happened to the corresponding success patterns. In contrast to that, multivariant analysis makes
distinction between the calls and successes and gives the following output:

:- true pred q(b,A): term(A) => tb(A).

:- true pred q(a,A): term(A) => ta(A).

:- regtype ta/1.

ta(a).

:- regtype tb/1.

tb(b).

Assertion checking for the multivariant case is performed in a quite similar way to the mono-

variant case. Finding the truth value of atomic properties must be now replaced by computing

this value w.r.t. each and every triple containing a given atom p, in the analysis results. Let us use

eval′α to denote a new function, i.e. a function that evaluates AF w.r.t. all the triples including p.

18

Let Ap denote a set of all such triples. Thus evaluation of a atomic property AF is replaced by

evaluating

eval′α(AF, P, IS) =
∧

〈p,λc,λs〉∈Ap

evalα(AF, λc, P, IS) (1)

for a call assertion or

eval′α(AF, P, IS) =
∧

〈p,λc,λs〉∈Ap

evalα(AF, λs, P, IS) (2)

for a success assertion.

where λ is either a call or success substitution, (depending whether we are interested in prov-

ing a call or success assertion) and evalαabstractly executes AF w.r.t. a single abstract substitu-

tion (likewise in the monovariant case). I.e. if evalαevaluates to true in every abstract substitution

then the atomic property AF holds. If (1) (or (2)) becomes false then the property does not hold

as we know for sure that at least one variant does not satisfy AF . Otherwise, the status of the

assertion cannot be determined to be true nor false at compile time, and the value AF is

returned by eval′α to the assertion simplifier.
Assertion checking that uses multivariant analysis results is more accurate. This follows

from the basic fact that the lub (least upper bound) operation in the abstract domain typically
looses some precision, i.e. for any two abstract substitutions λ1 and λ2 we have γ(λ1 t λ2) ⊇

γ(λ1) ∪ γ(λ2). In order to demonstrate the advantage of using multivariant assertion checking
we allow disjunctions in assertions. Consider the program from the previous example. and the
assertion

:- check success q(A,B) => (ta(A),ta(B); tb(A),tb(B)).

:- regtype ta/1.

ta(a).

:- regtype tb/1.

tb(b).

With the monovariant analysis, as shown above, the assertion cannot be proven true (nor dis-

proven). On the other hand applying multivariant analysis makes it possible to prove the asser-

tion, as every disjunct becomes true wrt. different variant.

Multi-success case

Yet another form of multivariant analysis takes place when there are several success patterns
assigned to a single call pattern. (There might be several call patterns to the same predicate, each
of them generating multiple successes.) Consider the following program:

19

:- entry r.

r :- p(X,Y), q(X,Y).

p(a,b).

p(b,a).

:-check success p(A,B) => (ta(A), ta(B)).

q(X,X).

:- regtype ta/1.

ta(a).

The type analysis without a multiple success feature would collapse the two possible success
patterns and produce the following output:

:- true pred p(A,B): (term(A), term(B)) => (rt6(A), rt6(B)).

:- regtype rt6/1.

rt6(a). rt6(b).

whereas taking into account multiple successes results in:

:- true pred p(A,B): (term(A), term(B)) => (ta(A), tb(B)).

:- true pred p(A,B): (term(A), term(B)) => (tb(A), ta(B)).

:- regtype ta/1.

ta(a).

:- regtype tb/1.

tb(b).

Consequently, the multiple success analysis and corresponding assertion checking are able to
detect that the assertion

:-check success p(A,B) => (ta(A), ta(B)).

is false. Formally, Whenever the expression

∧

〈p,λc
i
,λs

i
〉∈Ap

∧

〈p,λc
j
,λs

j
〉∈Ap∧λc

j
=λc

i

evalα(AF, λs
j , P, IS) (3)

evaluates to true, the atomic property AF is found to hold. Observe that in order to decide if the

property is true, it has to be proven wrt. each and every abstract success within every complete.

Disproving the atomic property wrt. multiple success information is a bit different. It has to

be demonstrated that the property does not hold for any of the abstract successes within triples

20

with the same call pattern. Thus, the evaluation of AF returns false if the expression
∧

〈p,λc
i
,λs

i
〉∈Ap

∨

〈p,λc
j
,λs

j
〉∈Ap∧λc

i
=λc

j

evalα(AF, λs
j , P, IS) (4)

evaluates to false. In summary:

eval′α(AF, P, IS) =















true iff
∧

〈p,λc
i
,λs

i
〉∈Ap

∧

〈p,λc
j
,λs

j
〉∈Ap∧λc

j
=λc

i
evalα(AF, λs

j , P, IS) = true

false iff
∧

〈p,λc
i
,λs

i
〉∈Ap

∨

〈p,λc
j
,λs

j
〉∈Ap∧λc

j
=λc

i
evalα(AF, λs

j , P, IS) = false

AF otherwise

3.4 Improved checking for success-with-precondition scheme

Assertions with the scheme: :- success A: Pre => Post, have the meaning: “whenever a call
to the predicate A satisfies the precondition Pre, and A successfully terminates the postcondition
Post holds”. So it is desirable to limit checking the postcondition to successes that follow calls
satisfying the precondition, i.e. not any successes. A motivating example to make this case of
assertion checking more expressive is the following program (assume shfr [45] as an analysis
domain):

:- entry q(A,B).

:- success q(A,B): ground(A) => ground(B).

q(X,X).

with the intention to get the assertion checked, even though we do not know anything specific

about arguments in the entry point. The key idea is to exploit the information contained in the

precondition.

For simplicity of the presentation we assume that post- and precondtions are atomic. The

description can be easily extended to the non-atomic case. In order to evaluate the assertion we

abstractly unify Pre and λs

Θ = unifyα(Pre, λs)

and then evaluate

evalα(Post, λsΘ, P, IS)

The idea is to evaluate Post not wrt. abstract success λs alone, but also with some information
incorporated from the precondition Pre. In this way the checking can be more precise. There
is however one problems with this approach. Namely, it works correctly only for properties
which are downwards closed3. Otherwise wrong results might be obtained, as illustrated by the
assertion

3A property is downwards closed iff whenever it holds for an atom it also holds for all its instances.

21

:- success q(A,B): var(A) => var(B).

Applying the above (naive) method would result in changing the assertion status to checked,

which is incorrect as in the execution there might appear a call like q(X,foo) which satisfies

the precondition and makes the postcondition not to hold for the corresponding success. To

overcome this problem we have to compose the call substitution (the Θ substitution in our case)

with the topmost substitution substitution (see [25]). We call an abstract substitution topmost wrt.

a set of variables V iff vars(α) = V , and α′ v α for any other substitution α′, s.t. vars(α′) = V .

So, the correct way to handle assertion :- success A: Pre => Post, is find an abstract

substitution Θ as following:

Θ = unifyα(Pre, λs) ◦ α>

where α> is a topmost substitution for vars(A) and ◦ is a substitution composition. Then we

can proceed as before, that is, whenever we have to evaluate an atomic property in postcondition

we apply evalαas the following:

evalα(Post, λsΘ, P, IS)

Let us return to the example. Now the applying the topmost substitution enforces variable B to

take an abstract value “non-free”, rather than “free” (“free” corresponds to var property in the

assertion), and thus the assertion remains not proven, i.e. it holds status check.
Let us illustrate the new assertion checking scheme with the two examples.

:- entry switch(A,B).

:- success switch(A,B): t_off(A) => t_on(B).

:- success switch(A,B): t_on(A) => t_off(B).

switch(on,off).

switch(off,on).

:- regtype t_on/1.

t_on(on).

:- regtype t_off/1.

t_off(off).

When running the type analysis (for instance eterms, see: [52]) with the multi-success option

turned on (otherwise the two possible successes would collapse into one), as discussed in Section

3.3, we are able to verify both assertions to be checked. In fact, if the first argument of

switch/2 holds off on call, the second argument will take the value on upon success. This

conditional cannot be easily verified otherwise.

22

The next program is to be analyzed with multivariant option, not necessarily the multi success
one.

:- entry p(A,B).

:- success p(A,B): ta(A) => ta(B).

:- success p(A,B) => ta(B).

r :- p(a,X), p(b,Y).

p(a,a).

p(b,b).

:- regtype ta/1.

ta(a).

:- regtype tb/1.

tb(b).

First assertion becomes checked, as indeed second argument of p/2 takes value a on success,

if the first one does so on call. The second assertion is found to be false, as the analysis finds one

variant (a call - success pair) which does not satisfy the assertion.
An alternative way to deal with :- success A: Pre => Post assertions is to start a new

analysis for a atom A and Pre as an entry point pattern. This option could be even more precise
than our approach. Consider the standard append/3 predicate:

append([],Ys,Ys).

append([H|Xs],Ys,[H|Zs]) :- append(Xs,Ys,Zs).

With our approach we are able to prove the following assertions:

:- success append(A,B,C): (ground(A),ground(B)) => ground(C).

:- success append(A,B,C): ground(C) => (ground(A),ground(B)).

but not the two ones below:

:- success app(A,B,C): (list(A),list(B)) => list(C).

:- success app(A,B,C): list(C) => (list(A),list(B)).

On the other hand, these assertions are shown true, if we run a type analysis with two entries that
correspond to the preconditions in the assertions:

:- entry app(A,B,C) : (list(A), list(B)).

:- entry app(A,B,C) : list(C).

23

4 Sample session

Consider the following erroneous program that implements deletion elements from the list of
numbers, using the predicate app/3 in two different modes.

:- entry del(A,B,C) : numlist(A).

:- pred del(A,B,C) : list(A) => list(C). % A1

del(L,E,R) :- app(L1,[L2|E],L), app(L1,L2,R). % <-- a bug

:- calls app(A,B,C) : ((numlist(A), numlist(B)) ; numlist(C)). % A2

:- success app(A,B,C) => (numlist(A), numlist(B), numlist(C)). % A3

app([],Ys,Ys).

app([H|Xs],Ys,[H|Zs]) :- app(Xs,Ys,Zs).

:- regtype numlist/1.

numlist([]).

numlist([N|Ns]) :-

num(N),

numlist(Ns).

The definition of regular type numlist “list of numbers” is also included. There is a bug in the
marked line; the first call to app/3 should be app(L1,[E|L2],L). For sake of simplicity
we shall consider only assertion A3, and static checking at the predicate level. Let us first take a
look on the output of assertion checking w.r.t. monovariant type analysis:

{WARNING (ctchecks_pred): Cannot verify assertion:

:- check success app(A,B,C)

=> (del:numlist(A), del:numlist(B), del:numlist(C)).

because on success del:app(A,B,C) :

[eterms] : del:numlist(A),rt32(B),rt33(C)

with: rt33 ::= num;[rt24|rt34]

rt34 ::= [];num;[rt24|rt34]

rt24 ::= num;[rt24|rt24]

rt32 ::= num;[num|del:numlist]

Left to prove: del:numlist(B),del:numlist(C)

}

24

The assertion cannot be proven (verified). The user is also informed about the abstract suc-

cess pattern found by the analyzer, and is given necessary type definitions. As it is shown, the

numlist(A) part of the assertion has been proven. The rest is left to be proven. However,

there is no incompatibility between types rt32 and numlist (and rt33 and numlist), i.e.

corresponding type intersections are not empty. This is the reason why the assertion is not dis-

proven.
Applying multivariant analysis gives more accurate answer:

{ERROR (ctchecks_pred): False assertion:

:- check success app(A,B,C)

=> (del:numlist(A), del:numlist(B), del:numlist(C)).

because on success del:app(A,B,C) :

[eterms] : del:numlist(A),basic_props:num(B),rt24(C) OR

del:numlist(A),rt37(B),rt37(C) OR

del:numlist(A),rt37(B),rt37(C)

with: rt37 ::= [num|del:numlist]

rt24 ::= num;[rt24|rt24]

}

CiaoPP shows multivariant analysis output, where completes are separated by OR. The assertion

is clearly disproven, as the variable B takes type num in the first complete, which is incompatible

with the expected type numlist.

5 Conclusions

In this work we have described recent advances in Compile-time assertion checking in CiaoPP.

We focused on improving (in terms of precision) predicate-level assertion checking. The pro-

posed enhancements include exploiting multivariant analysis information and propagating infor-

mation from precondition to postcondition in the “success-with-precodition” assertions. Both

techniques are implemented in the recent version of CiaoPP. Our improvements require further

evaluation and comparisons with other techniques. For example, exploiting multivariant analy-

sis at the predicate-level assertion checking has to be carefully compared against program-point

assertion checking and the monovariant analysis, in order to determine which one can capture

more errors. Also, “success-with-precondition” assertions can be verified in the more accurate

manner, as it is briefly discussed in the end of Section 3.4.

25

Part II

Integrating Ciao-Prolog Assertions into

Abstract Interpretations

6 Motivation

When analysing a logic program, the source code for some parts of it may be inaccessible for

some reason (external modules, builtin system predicates, foreign-language code, and so on).

Thus there is a need to represent properties of external code, and incorporate the information in a

static analysis. In this paper, an established notation for representing properties of logic program

predicates is taken, namely the Ciao-Prolog assertion language.

The problem to be solved is to interpret assertions in that language in the context of a given

specific abstract interpretation, rather than have to rewrite the assertions for each analysis do-

main. It usually requires considerable effort to specify the properties of builtins over each differ-

ent abstract domain. However, without an abstract description of builtins one is forced to make

coarse over-approximations.

The method described in this paper allows us to take any given assertions about a module’s

imported predicates and translate them safely into the domain under consideration. We use do-

mains based on regular types, realised as pre-interpretations [40].

For instance, assertions about arithmetic predicates are provided in Ciao-Prolog. These as-

sertions are given in terms of arithmetic objects such as integers and arithmetic expressions. If

the analysis of interest concerns modes such as ground, non-ground and variable then a relation

has to be established between arithmetic assertions and mode information.

An alternative approach is to define relationships between analysis domains in advance (a

type lattice). This approach is currently followed in the Ciao assertion language. For example,

the fact that arithmetic expressions are ground can be pre-defined. Once that is done, an assertion

that the predicate < succeeds with both arguments bound to arithmetic expressions can safely be

translated into the modes domain as an assertion that both arguments are ground.

In contrast, the approach defined here allows arbitrary relationships to be derived automat-

ically, for user-defined domains as well as pre-defined ones. We focus here on transforming

assertions about success, but the same approach can be followed for assertions on calls.

26

7 Analysis Domains Based on Regular Types

The method described below covers the integration of assertions with abstract domains based on

regular types. As summary of the main concepts is given here; a full account of such domains is

available elsewhere [40].

7.1 Regular Types and Pre-interpretations

A regular type is defined by rules specifying a set of terms over some signature Σ. The rules are

of the form f(d1, . . . , dn)→ d, where f/n ∈ Σ and d, d1, . . . , dn are type symbols. For example

the type of lists is defined by the rules [] → list, [dynamic|list] → list (where dynamic is the

type of all terms). A (set of) regular type definitions can be regarded as a finite tree automaton

(FTA). For our purposes we regard the two notions as interchangeable, and speak of the states of

an FTA as “types”. It is known [29] that an arbitrary FTA can be transformed to an equivalent

bottom-up deterministic FTA (or DFTA). An arbitrary FTA can also be completed, meaning that

it is extended with rules that handle any term over Σ.

A pre-interpretation J of a signature Σ is defined by a domain DJ and a mapping IJ mapping

each n-ary function symbol f/n ∈ Σ to a function Dn
J → DJ , denoted fJ . IJ is extended to

interpret terms in TermΣ, such that for a ground term f(t1, . . . , tn) ∈ TermΣ, IJ(f(t1, . . . , tn)) =

fJ(IJ(t1), . . . , IJ(tn)).

An element d ∈ DJ denotes a set of terms γ(d) ⊆ TermΣ, namely γ(d) = {t | IJ(t) = d}.

The mapping γ extends to atoms whose arguments are elements of Dj , and to sets of atoms,

where γ(p(d1, . . . , dn)) = {p(t1, . . . , tn) | ti ∈ γ(di), 1 ≤ i ≤ n}, and γ(S) =
⋃

{γ(s) | s ∈ S}.

It was shown in [40] that a completed DFTA is equivalent to a pre-interpretation of Σ. Thus

when we speak of a pre-interpretation we could equally well refer to a completed DFTA and vice

versa. Each rule f(d1, . . . , dn)→ d in the DFTA corresponds to an equation fJ(d1, . . . , dn) = d

in the pre-interpretation J . The set of rules with the same function f/n on the left defines the

function fJ onto which f/n is mapped by IJ . The DFTA is complete, hence the function fJ is

completely defined.

Each state d in an FTA is split into a set of disjoint states {d′
1
, . . . , d′

k} in the corresponding

DFTA. Hence we can define γ(d) where d is a state in an arbitrary FTA, as
⋃

{γ(d′
1
), . . . , γ(d′

k)},

and thus also extend γ to to atoms and to sets of atoms as above.

The least model of a program P over a pre-interpretation J can be obtained by a fixpoint

computation. The obtained model MJ [P] is an abstraction of the least Herbrand model M [P], in

the sense that γ(MJ [P]) ⊇M [P].

27

7.2 Approximations of success sets

The model of a predicate p/n over an FTA with states (types) D is a set Mp of “domain facts” of

the form p(d1, . . . , dn), where d1, . . . , dn ∈ D. Given a program P containing some externally

defined predicates, we can specify a model for an external predicate for a pre-interpretation J .

A model for a predicate p/n should be an abstraction of the intended interpretation of p/n.

That is, γ(Mp) should include the intended interpretation of p/n.

Example 7.1 Let the domain of a pre-interpretation be {g, ng} standing for ground terms and

non-ground terms respectively. Suitable models for the predicates < and =.. are {g < g} and

{g =.. g, ng =.. ng} respectively.

Let the domain of a pre-interpretation be {l, nl} standing for list terms and non-list terms

respectively. Suitable models for the same predicates are {nl < nl} and {l =.. l, nl =..

l} respectively.

8 Overview of the Procedure

The procedure described below takes as input the following, of which the first two are program-

specific and the rest are a permanent part of the Ciao assertion database. This information is

extracted automatically in our implementation.

1. a program module P , having a set EP of zero or more external predicates;

2. a set of user types Tu, specified as an NFTA Fu;

3. a set of defined system types Ts, specified as an NFTA Fs;

4. a set of primitive types Tprim;

5. a set of contextual types Tcntxt;

6. a model of the success set for each predicate in EP , over the system types Tsys = Ts ∪

Tprim ∪ Tcntxt.

The output of the procedure is a model of the predicates in EP , over the set of types defined

in Tu.

We define the set of types T = TP ∪ Tu ∪ Ts ∪ Tprim ∪ Tcntxt ∪ {dynamic}. The extra type

dynamic is assumed not to occur in the other sets of types. An example of a defined system

type in Ts is arithexpr defining the set of arithmetic expressions. Examples of primitive types

28

in Tprim are int, nnegint, string and such like. We assume that primitive types define constants

(that is, no compound term has a primitive type). Such types cannot conveniently be written

down as NFTAs because they contain an infinite (or very large) number of constants. Instead,

there are procedures for checking whether a given constant is of a given primitive type.

The contextual types Tcntxt depend on the signature of the program under consideration; such

types are gnd (ground terms), term (all terms) and struct (all non-atomic terms). The details

of Ts, Fs and Σs are given in Section 11.3. Tprim is given in Section 11.5, and Tcntxt in Section

11.6.

The same type is allowed to occur in different components of T . So for example a system

type such as list might also be one of the user types.

8.1 The Global Signature

Let ΣP be the set of function symbols occurring in P , Σu be the set of function symbols occurring

in Fu, and Σs be the set of function symbols occurring in Fs. In addition there is a primitive

signature Σprim, disjoint from ΣP , Σu and Σs, which contains sufficient constants to distinguish

each of the primitive types Tprim. More precisely, for each non-empty subset D = {d1, . . . , dk}

of Tprim, let ΣD be the set of constants that are of type di for all di ∈ D, and are not of any other

type. Then Σprim contains at least one constant from each non-empty set ΣD.

For instance, if there are primitive types nat and number such that all constants of type nat

are of type number but not vice versa, then Σprim contains at least one constant that is both nat

and number, and one that is of type number but not nat.

We also assume that Σprim contains a constant, say v, that is not of any primitive type and

does not appear in any of the other signatures. The full definition of Tprim and Σprim is given in

Section 11.5.

Let the global signature Σ = ΣP ∪ Σu ∪ Σs ∪ Σprim.

8.2 Constructing the primitive and contextual type definitions

We assume that the Prolog system provides some procedure, such as a builtin predicate, for

testing whether a given constant is of a given primitive type. Hence given a signature Σ we can

enumerate the set of rules Fprimof the form c→ d where c ∈ Σ is a constant, d ∈ Tprim and c is

of type d.

The types in Tcntxt are those whose definitions depend on the signature, such as gnd (ground

terms). Given the global signature Σ the NFTA Fcntxt is a set of rules defining each type in Tcntxt

in terms of Σ \ {v}. For instance, the type gnd is defined by the set of rules f(gnd, . . . , gnd)→

29

gnd, for each n-ary function f ∈ Σ \ {v}. In Section 11.6 the detailed specifications of the

contextual types are shown.

We define Fdyn to consist of the rules f(dynamic, . . . , dynamic) → dynamic, for each n-

ary function f ∈ Σ. Note that the extra constant v is of type dynamic, but not of any other type

except the system type term.

Having constructed the primitive and contextual types, the global NFTA F = Fu ∪ Fs ∪

Fprim ∪ Fcntxt ∪ Fdyn.

8.3 The global type system

The global signature Σ, the complete set of types T and their definitions F , together define the

global type system. We can then apply the determinization algorithm on finite tree automata

[29]. The output is a DFTA, in which the set of states T ′ is a subset of 2T . In the worst case, the

set of states in the determinized automaton explodes, but in practice the size of T ′ is usually of

the same order of magnitude as the size of T (and can even be smaller).

In the following procedure we do not need to consider the set of determinized rules; we need

only use the determinized types T ′.

8.4 Converting the models of external predicates

As mentioned, we are supplied with a model of the success set of each of the external predicates

in EP . (If no model is supplied for some predicate p/n, we assume that its success set contains

all possible atoms p(d1, . . . , dn), where d1, . . . , dn ∈ T .)

We first define dettypes(d), the set of determinized types in T ′ corresponding to a type d ∈ T .

Recall that elements of T ′ are sets of elements of T . Define dettypes(d) = {d′ | d ∈ T ′, d ∈ d′},

which is the set of all the determinized types that comprise d. In other words, dettypes(d) is a

partition of d into non-empty disjoint types in T ′.

Let p/n ∈ EP and let its model over Ts be Mp. Then the corresponding model, defined over

the set of determinized types T ′, is defined as M ′
p = {p(d′

1
, . . . , d′

n) | p(d1, . . . , dn) ∈Mp ∧ ∀i :

1 ≤ i ≤ n[di ∈ dettypes(di)]}.

That is, the model of p over the global types contains an atom p(d′
1
, . . . , d′

n) iff there exists

an atom p(d1, . . . , dn) ∈ Mp such that each of the arguments d′
i is a deteminized component of

di.

Example 8.1 Given the model of < as {gng < gnd}, and the set of determinized types T ′,

30

namely
{{gnd, list, nonvar, dynamic}, {gnd, nonvar, dynamic},

{nonvar, dynamic}, {list, nonvar, dynamic}}

then the model of < over T ′ is

{{gnd, list, nonvar, dynamic} < {gnd, list, nonvar, dynamic},

{gnd, list, nonvar, dynamic} < {gnd, nonvar, dynamic},

{gnd, nonvar, dynamic} < {gnd, list, nonvar, dynamic},

{gnd, nonvar, dynamic} < {gnd, nonvar, dynamic}}

8.5 Projecting a model onto user types

The next stage is to project the model over the determinized types onto the user types. Let

p ∈ EP be an external predicate and let M ′
p be the model of p over the determinized types T ′.

Then the projection of M ′
p onto the user types Tu is defined as Mu

p = {p((d′
1
∩ T d

u), . . . , (d′
n ∩

T d
u)) | p(d′

1
, . . . , d′

n) ∈ M ′
p}, where T d

u = Tu ∪ {dynamic}. Note that each argument d′
1
∩ T d

u is

non-empty since dynamic is in every element of d′
i and of T d

u .

Note that the arguments of atoms in M u
p are not in general elements of T ′; rather, they are

subsets of Tu.

Example 8.2 Let M ′
< be the model of < over T ′ as in the previous example. Let Tu = {list}.

Then the projection of M ′
< onto Tu is

{{list, dynamic} < {list, dynamic},

{list, dynamic} < {dynamic},

{dynamic} < {list, dynamic},

{dynamic} < {dynamic}}

The projected model is not expressed directly in the set of user types Tu but rather in the

disjoint types resulting from determinizing Tu ∪ {dynamic}. The model expressed in this form

is exactly what is required for computing a model of the program P over the user types.

9 Soundness

The projected models are safe approximations of the models over the system types.

Proposition 9.1 Let P be a program and let p be an externally defined predicate occurring in P .

Let Mp be the model of p over the system types Ts and Mu
p be the model projected onto the user

types Tu ∪ {dynamic}. Then γ(Mp) ⊆ γ(Mu
p), where γ is evaluated over the global signature

31

Proof 1 (Sketch.) γ(Mp) = γ(M ′
p) by definition of γ. Let p(t1, . . . , tn) ∈ γ(M ′

p). Then there

exists some p(d′
1
, . . . , d′

n) ∈ M ′
p such that ti ∈ γ(d′

i) for all 1 ≤ i ≤ n. For all 1 ≤ i ≤ n,

d′
i ∩ T d

u 6= ∅ since dynamic is in every element of T ′ and of T d
u . Hence p((d′

1
∩ T d

u), . . . , (d′
n ∩

T d
u)) ∈Mu

p and hence p(t1, . . . , tn) ∈ γ(Mu
p). Hence γ(Mp) ⊆ γ(Mu

p).

10 Implementation and Experiments

The procedure was implemented in the context of the Ciao-Prolog assertion language. The input

to the procedure is a Ciao-Prolog module and a set of user type definitions. The Ciao-Prolog

Preprocessor ciaopp provides an interface to the assertions stored for each imported predicate.

The implementation picks out the success assertions (from among the many different kinds of

assertion in ciaopp).

The initial uses of the procedure are to generate tables of builtin assertions for mode and

binding type analyses, and backwards analyses. The implemented procedure is used off-line,

generating a table which is then incorporated into analysis tools based on pre-interpretations

[40].

We have successfully generated assertions on builtin success over the domain of binding types

used in the LOGEN automatic Binding Time Analysis [30]. The standard BTA domain consists

of the types static, dynamic, var, nonvar, list. Note that the builtin models obtained from

the Ciao-Prolog assertions are not necessarily the most precise possible for the given domain.

This can be either because the stored assertions are not precise enough, or because information

was lost when projecting onto the user types. In some cases the derivation of the success model

suggests improvements in the assertions stored for builtins.

11 Detailed Example

In this section we illustrate the process by showing the various components of the analysis for

an example. For the purposes of illustration we show a small module containing various external

predicates ==, \==, =.., var, atomic and nonvar.

:- module(vars, [vars/2]).

vars(T,Vs) :-

vars3(T,[],Vs).

vars3(X,Vs,Vs1) :-

32

var(X),

insertvar(X,Vs,Vs1).

vars3(X,Vs,Vs) :-

atomic(X).

vars3(X,Vs,Vs1) :-

nonvar(X),

X =.. [_|Args],

argvars(Args,Vs,Vs1).

argvars([],Q,Q).

argvars([X|Xs],Vs,Vs2) :-

vars3(X,Vs,Vs1),

argvars(Xs,Vs1,Vs2).

insertvar(X,[],[X]).

insertvar(X,[Y|Vs],[Y|Vs]) :-

X == Y.

insertvar(X,[Y|Vs],[Y|Vs1]) :-

X \== Y,

insertvar(X,Vs,Vs1).

11.1 Program Signature

The program manipulates only list structures and its signature is

./2, []/0

11.2 User Type Signature

We first analyse with respect to the binding types static and dynamic. The user type signature

for these types is empty, since these types are defined contextually over the global signature.

Secondly we analyse over the user type list, for which the signature is

./2, []/0

33

11.3 System Types

11.3.1 System Type Signature

The following functors appear in the system type definitions from the Ciao-Prolog assertion

database. In practice only those system types that depend on some type in the model of the

predicates appearing in the module need to be used, but the complete list is shown here.

no/0,yes/0,datime/6,$stream/2,user/0,user_error/0,

user_output/0, user_input/0, lock_nb/1,lock/1,

lock_nb/0,lock/0,exclusive/0, shared/0,append/0,

write/0,read/0, dictionary/1,lines/2,singletons/1,

variable_names/1,variables/1,walltime/0,

systemtime/0,usertime/0, runtime/0,choice/0,

trail/0,local_stack/0,global_stack/0, program/0,

symbols/0,memory/0,stack_shifts/0,

garbage_collection/0, wallclockfreq/0,

systemclockfreq/0,userclockfreq/0,wallclick/0,

systemclick/0,userclick/0,runclick/0,$ref/2,xf/0,

yf/0,xfx/0,xfy/0,yfx/0, fx/0,fy/0,gcd/2,atan/1,cos/1,

sin/1,sqrt/1,log/1,exp/1,# /2,(\)/1,\/ /2,/\ /2, << /2,

>> /2,** /2,ceiling/1,round/1,floor/1,float/1,truncate/1,

integer/1, float_fractional_part/1,float_integer_part/1,

sign/1,abs/1,mod/2,rem/2, / /2,// /2,* /2,(-)/2,(+)/2,

(++)/1,(--)/1,(+)/1,(-)/1

11.4 Definitions of System Types

The module names of the types have been omitted here to make the definitions more readable.

For example, arithexpr should actually be written in full as arithmetic:arithexpr.

(basictype(num)->arithexpression),

(-arithexpression->arithexpression),

(+arithexpression->arithexpression),

(--arithexpression->arithexpression),

(++arithexpression->arithexpression),

(arithexpression+arithexpression->arithexpression),

(arithexpression-arithexpression->arithexpression),

34

(arithexpression*arithexpression->arithexpression),

(arithexpression//arithexpression->arithexpression),

(arithexpression/arithexpression->arithexpression),

(arithexpression rem arithexpression->arithexpression),

(arithexpression mod arithexpression->arithexpression),

(abs(arithexpression)->arithexpression),

(sign(arithexpression)->arithexpression),

(float_integer_part(arithexpression)->arithexpression),

(float_fractional_part(arithexpression)->arithexpression),

(integer(arithexpression)->arithexpression),

(truncate(arithexpression)->arithexpression),

(float(arithexpression)->arithexpression),

(floor(arithexpression)->arithexpression),

(round(arithexpression)->arithexpression),

(ceiling(arithexpression)->arithexpression),

(arithexpression**arithexpression->arithexpression),

(arithexpression>>arithexpression->arithexpression),

(arithexpression<<arithexpression->arithexpression),

(arithexpression/\arithexpression->arithexpression),

(arithexpression\/arithexpression->arithexpression),

(arithexpression->arithexpression),

(arithexpression\#arithexpression->arithexpression),

(exp(arithexpression)->arithexpression),

(log(arithexpression)->arithexpression),

(sqrt(arithexpression)->arithexpression),

(sin(arithexpression)->arithexpression),

(cos(arithexpression)->arithexpression),

(atan(arithexpression)->arithexpression),

(gcd(arithexpression,arithexpression)->arithexpression),

([num|niltype]->arithexpression),

([]->niltype),

(basictype(atm)->atm),

(basictype(atm)->atm_or_atm_list),

([atm|pt2]->atm_or_atm_list),

35

([]->pt2),

([atm|pt2]->pt2),

(basictype(atm)->callable),

(basictype(struct)->callable),

(basictype(int)->character_code),

(basictype(atm)->constant),

(basictype(num)->constant),

(basictype(flt)->flt),

(basictype(gnd)->gnd),

(basictype(int)->int),

([]->list),

([term|list]->list),

(basictype(nnegint)->nnegint),

(basictype(num)->num),

(fy->operator_specifier),

(fx->operator_specifier),

(yfx->operator_specifier)

(xfy->operator_specifier),

(xfx->operator_specifier),

(yf->operator_specifier),

(xf->operator_specifier),

(atm/nnegint->predname)

([]->string),

36

([character_code|pt1]->string),

([]->pt1),

([character_code|pt1]->pt1),

(basictype(struct)->struct),

(basictype(term)->term),

($ref(term,term)->reference),

([character_code|pt1]->format_control),

(basictype(atm)->format_control),

(runclick->click_option),

(userclick->click_option),

(systemclick->click_option),

(wallclick->click_option),

([num|newtype0]->click_result),

([num|niltype]->newtype0),

([]->niltype),

(userclockfreq->clockfreq_option),

(systemclockfreq->clockfreq_option),

(wallclockfreq->clockfreq_option),

(basictype(num)->clockfreq_result),

(garbage_collection->garbage_collection_option),

(stack_shifts->garbage_collection_option),

([int|newtype1]->gc_result),

([int|newtype2]->newtype1),

([int|niltype]->newtype2),

37

([]->niltype),

(memory->memory_option),

(symbols->memory_option),

(program->memory_option),

(global_stack->memory_option),

(local_stack->memory_option),

(trail->memory_option),

(choice->memory_option),

([int|newtype3]->memory_result),

([int|niltype]->newtype3),

([]->niltype),

(symbols->symbol_option),

([int|newtype4]->symbol_result),

([int|niltype]->newtype4),

([]->niltype),

(runtime->time_option),

(usertime->time_option),

(systemtime->time_option),

(walltime->time_option),

([num|newtype5]->time_result),

([num|niltype]->newtype5),

([]->niltype),

(variables(term)->read_option),

(variable_names(term)->read_option),

(singletons(term)->read_option),

(lines(term,term)->read_option),

38

(dictionary(term)->read_option),

([]->keylist),

([newtype6|keylist]->keylist),

(term-term->newtype6),

(term-term->keypair),

(read->io_mode),

(write->io_mode),

(append->io_mode),

(read->lock_mode),

(shared->lock_mode),

(write->lock_mode),

(exclusive->lock_mode),

(lock->open_option),

(lock_nb->open_option),

(lock(lock_mode)->open_option),

(lock_nb(lock_mode)->open_option),

([]->open_option_list),

([open_option|pt0]->open_option_list),

([]->pt0),

([open_option|pt0]->pt0),

(basictype(atm)->sourcename),

(basictype(struct)->sourcename),

(user_input->stream),

(user_output->stream),

(user_error->stream),

(user->stream),

39

($stream(int,int)->stream),

(user_input->stream_alias),

(user_output->stream_alias),

(user_error->stream_alias),

(datime(int,int,int,int,int,int)->datime_struct),

(read->popen_mode),

(write->popen_mode),

(yes->yesno),

(no->yesno),

11.5 Definitions of Primitive Types

The following primitive types are defined in the Ciao assertion language.

nnegint, flt, int, atm, num.

Each 0-ary functor in the global signature is tested against the primitive types, and a rule

(c -> primitive_type) is produced whenever a constant c is of type primitive_type.

(no->atm),(yes->atm),(user->atm),(user_error->atm),

(user_output->atm),(user_input->atm),(lock_nb->atm),

(lock->atm), (exclusive->atm),(shared->atm),

(append->atm),(write->atm), (read->atm),(walltime->atm),

(systemtime->atm),(usertime->atm), (runtime->atm),

(choice->atm),(trail->atm),(local_stack->atm),

(global_stack->atm),(program->atm),

(symbols->atm), (memory->atm),(stack_shifts->atm),

(garbage_collection->atm), (wallclockfreq->atm),

(systemclockfreq->atm),(userclockfreq->atm), (wallclick->atm),

(systemclick->atm),(userclick->atm),(runclick->atm), (xf->atm),

(yf->atm),(xfx->atm),(xfy->atm),(yfx->atm),(fx->atm),

(fy->atm),(0->nnegint),(0->int),(0->num),(1->nnegint),

40

(1->int),(1->num), (1.0->flt),(1.0->num),(-1->int),

(-1->num),($CONST->atm),([]->atm)

11.6 Contextual Type Definitions

The following contextual types are defined in the system: struct, term, gnd. In addition the

type dynamic is added to the set of types.

term is defined by a set of rules of form f(term,...,term) -> term for each func-

tion symbol f (including the special constant v) in the signature.

struct is defined by a set of rules of form f(term,...,term) -> struct for each

function symbol f of arity greater than zero in the signature.

gnd is defined by a set of rules of form f(gnd,...,gnd) -> gnd for each function

symbol f (except the special constant v) in the signature.

dynamic is equivalent to term. dynamic is included only to ensure completeness.

User-defined contextual types, like static or nonvar, can be defined. Note that identical

types are merged during determinzation, so redundant results do not arise.

11.7 Success Model over System Types

Now consider the projection of the external predicates in the vars module shown at the start of

Section 11.

The builtin predicates ==, \==, =.., var, atomic and nonvar have the following success

model over the system types.

term\==term, term==term, term=..list,

dynamic, atomic(atom_or_number), var(term)

11.8 Success Model over User Types

First suppose that the user types are static and dynamic. The derived success model is then

as follows.

var(_), atomic([dynamic,static]), nonvar(_), _=..[dynamic],

_=..[dynamic,static]), _==_, _\==_

Note that here [dynamic,static] means static and [dynamic] means non-static. The

anonymous argument _ stands for either of the types [dynamic] or [dynamic,static].

41

When analysed over the domain list and dynamic, the derived success model is the

following.

var(_), atomic([dynamic,list]), atomic([dynamic]), nonvar(_),

_=..[dynamic,list], _==_, _\==_

Note that here [dynamic,list] means list and [dynamic] means non-list. As before, the

anonymous argument _ stands for either type.

Finally consider projecting onto a user-defined type given as follows:

[] -> niltype.

[dynamic|niltype] -> nonemptylist.

[dynamic|nonemptylist] -> nonemptylist.

The following projected model is then derived.

var(_), atomic([dynamic,niltype]), atomic([dynamic]), nonvar(_),

_=..[dynamic,niltype], _=..[dynamic,nonemptylist], _==_, _\==_

Note that, for example, that atomic cannot succeed with a nonemptylist.

12 Conclusion

The problem of obtaining abstractions of builtins is often a stumbling block to analysing real ap-

plication programs accurately. It requires considerable effort to specify the properties of builtins

over each different abstract domain. Without such an effort though, one is forced to make coarse

over-approximations of the builtins.

The method described above allows the existing, permanent assertions for the builtins over

a rich set of system types to be transported automatically to any given domain defined as a pre-

interpretation. Such domains can be constructed from arbitrary regular types.

The method was based on building a complete signature of the program and all its types.

Some of the types are contextual, that is, defined in terms of a particular signature. Once the

compete types are obtained, they are determinized and then the predicate models are projected

from the determinized type domain onto the types of interest.

Apart from abstractions of builtins, the method allows the analysis results for modules that

have been analysed over one domain to be imported into modules which are being analysed over

a different domain. This adds to the flexibility and practicability of module-based analyses.

The method has been fully implemented and run on modules including those used to imple-

ment the procedure itself.

42

Part III

Experiments with Backwards Analysis

13 Motivation

In this work we report an implementation of a novel backwards analysis technique [38] and

experiments using the analysis in the context of the Ciao-Prolog module system.

The specific problem tackled in our experiments is to analyse a module, which might contain

one or more calls to predicates that can potentially produce runtime errors. Such predicates are

usually system predicates, or “builtins”, which are required to be called with their arguments

instantiated in certain ways.

Other uses of backwards analysis, discussed by King and Lu [42] and Genaim and Codish

[41], include deriving conditions that guarantee termination of calls to given predicates.

The range of applications of backwards analysis has a common core: the input to backwards

analysis in general is a program together with properties that are required to hold at given pro-

gram points. The purpose of the analysis is to derive initial goals that guarantee that, when those

goals are executed, the given properties hold.

Thus the experiments reported here can be seen as a component in a more general setting

where arbitrary assertions can be stated at given program points, and we wish to derive condi-

tions that guarantee that they hold at execution time. Stated in this general way, the problem is

clearly an old one in computing; the weakest precondition calculus can be seen as the original

backwards analysis framework, since the aim there is to derive preconditions that guarantee that

given assertions hold at given program points. The key feature in our approach is the fact that

we use approximation semantics to derive the preconditions. The aim of our experiments is to

confirm the practicality of the method for deriving conditions that guarantee avoidance of run-

time errors, with the longer term aim of using the method to tackle a range of properties related

to security and reliability of software.

The works [42, 41] cited above require special abstract interpretation frameworks. The ap-

proach described in our method [38], by contrast, uses a standard abstract interpretation frame-

work that computes over-approximations of the semantics.

This might be surprising in view of the fact that the final result of a backwards analysis,

namely (a description of) the set of initial goals that guarantee the establishment of the given

properties, should be an under approximation of the actual set of goals that satisfy the require-

ments. This is what has led investigators to develop special abstract interpretations that give an

43

under approximation.

14 Outline of the backwards analysis method

A number of properties that are required to hold at body atoms at specific program points are

identified. A meta-program is then automatically constructed, which captures the dependencies

between initial goals and the specified program points. This meta-program is based on the resul-

tants semantics of logic programs [36, 35], in which the meaning of a program is the set of all

pairs (A,R) where A = A′θ and there is an LD derivation from← A′ to← R with computed

answer θ. An abstraction of the resultants semantics is then defined, containing all pairs (A,B)

such that A = A′θ and there is an LD derivation from← A′ to← B,B1, . . . , Bm with computed

answer θ, where B corresponds to one of the specified program points. (This semantics is closely

related to the binary clause semantics defined by Codish and Taboch [28]). The semantics is cap-

tured by a meta-program defining a meta-predicate d/2, such that d(A,B) is a consequence of

the meta-program whenever a pair (A,B) as defined above exists. Standard abstract interpre-

tation techniques are applied to the meta-program; from the results of the analysis, conditions

on initial goals can be derived which guarantee that all the given properties hold whenever the

specified program points are reached.

15 Implementation

Our backwards analysis tool has the following components.

1. A module for extracting assertions from the Ciao-Prolog assertion database, and identify-

ing the program points at which they should hold.

2. A transformation to the meta-program form outlined above and specified precisely in [38].

3. Conversion of the stated assertions into a given pre-interpretation, as described in Part

II. This conversion also transforms any success assertions on external predicates into the

given pre-interpretation.

4. Analysis of the meta-program over the domain specified by the pre-interpretation. This is

a general-purpose abstract interpretation using the approach defined in our previous work

[40].

5. Processing of the abstract model of the meta-program, in order to obtain the preconditions

that guarantee the program-point assertions. This step is fully described in [38].

44

Steps 3 and 4 are performed by standard tools that apply to both forwards and backwards

analysis. The analysis becomes “backwards” due to the use of the meta-program that expresses

the dependencies between initial goals and program points, and the final inspection of the model

of the meta-program.

16 Experiments

We focus in our initial experiments on arithmetic predicates. Success models for predicates

is, >, <, >=, =< are obtained from the Ciao-Prolog database, in terms of the system type

arithmetic:arithexpr. The definition of this type is also obtained from the assertion

database, and is as follows.

0->’arithmetic:arithexpression’.

1->’arithmetic:arithexpression’.

1.0->’arithmetic:arithexpression’.

-1->’arithmetic:arithexpression’.

-’arithmetic:arithexpression’->’arithmetic:arithexpression’.

+’arithmetic:arithexpression’->’arithmetic:arithexpression’.

--’arithmetic:arithexpression’->’arithmetic:arithexpression’.

++’arithmetic:arithexpression’->’arithmetic:arithexpression’.

’arithmetic:arithexpression’+’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’-’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’*’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’//’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’/’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’ rem ’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’ mod ’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

abs(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

45

sign(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

float_integer_part(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

float_fractional_part(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

integer(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

truncate(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

float(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

floor(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

round(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

ceiling(’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’**’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’>>’arithmetic:arithexpression’ ->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’<<’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’/\’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

’arithmetic:arithexpression’\/’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

\’arithmetic:arithexpression’->’arithmetic:arithexpression’.

’arithmetic:arithexpression’#’arithmetic:arithexpression’->

’arithmetic:arithexpression’.

exp(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

log(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

sqrt(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

sin(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

cos(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

atan(’arithmetic:arithexpression’)->’arithmetic:arithexpression’.

46

gcd(’arithmetic:arithexpression’,’arithmetic:arithexpression’)->

’arithmetic:arithexpression’.

[’basic_props:num’|niltype]->’arithmetic:arithexpression’.

[]->niltype.

We then write a user type, defining lists of arithmetic expressions, in which we can refer to

the system type.

[]->listnum.

[’arithmetic:arithexpression’|listnum] ->listnum.

To illustrate the process we analyse the quicksort module given below.

:- module(qsort1,_).

qs(X,Y) :- qs(X,Y,[]).

qs([],Y,Y).

qs([X|Xs],Ys,Zs) :-

partition(X,Xs,Xs1,Xs2),

qs(Xs1,Ys,[X|U]),

qs(Xs2,U,Zs).

partition(X,[],[],[]) :- true.

partition(X,[Y|Ys],Ys1,[Y|Ys2]) :-

X =< Y,

partition(X,Ys,Ys1,Ys2).

partition(X,[Y|Ys],[Y|Ys1],Ys2) :-

X > Y,

partition(X,Ys,Ys1,Ys2).

The meta program expressing the dependencies is shown below. The predicates $dqs2, $dqs3

and $dpartition4 are the predicates capturing the dependencies. In each of these predicates,

the first argument is a call (to the respective program predicate) and the second is a subequent

call to a builtin predicate.

qs(A,B) :-

qs(A,B,[]).

47

qs([],A,A) :-

true.

qs([A|B],C,D) :-

partition(A,B,E,F),

qs(E,C,[A|G]),

qs(F,G,D).

partition(A,[],[],[]) :-

true.

partition(A,[B|C],D,[B|E]) :-

’arithmetic:=<’(A,B),

partition(A,C,D,E).

partition(A,[B|C],[B|D],E) :-

’arithmetic:>’(A,B),

partition(A,C,D,E).

’$dqs2’(atom(qs(A,B)),Q) :-

’$dqs3’(atom(qs(A,B,[])),Q).

’$dqs3’(atom(qs([A|B],C,D)),Q) :-

partition(A,B,E,F),qs(E,C,[A|G]),

’$dqs3’(atom(qs(F,G,D)),Q).

’$dqs3’(atom(qs([A|B],C,D)),Q) :-

partition(A,B,E,F),

’$dqs3’(atom(qs(E,C,[A|G])),Q).

’$dqs3’(atom(qs([A|B],C,D)),Q) :-

’$dpartition4’(atom(partition(A,B,E,F)),Q).

’$dpartition4’(atom(partition(A,[B|C],D,[B|E])),Q) :-

’arithmetic:=<’(A,B),

’$dpartition4’(atom(partition(A,C,D,E)),Q).

’$dpartition4’(atom(partition(A,[B|C],D,[B|E])),

atom(’arithmetic:=<’(A,B))) :-

true.

’$dpartition4’(atom(partition(A,[B|C],[B|D],E)),Q) :-

’arithmetic:>’(A,B),

’$dpartition4’(atom(partition(A,C,D,E)),Q).

’$dpartition4’(atom(partition(A,[B|C],[B|D],E)),

atom(’arithmetic:>’(A,B))) :-

true.

48

The analysis results, analysing the above program over the types given above, supplemented

with the type dynamic to ensure completeness, yields the following analysis for the meta-

predicate expressing the dependence of builtins on the entry predicate qs/2. In the notation

below the value q4 in the determinized domain is the element denoting arithmetic expressions,

q1 denotes lists of arithmetic expressions, and q3 denotes other terms.

[$dqs2(A,B) :

[$dqs2(qs(q1,A),arithmetic:>(q4,q4)),

$dqs2(qs(q1,A),arithmetic:=<(q4,q4)),

$dqs2(qs(q3,A),arithmetic:>(B,C)),

$dqs2(qs(q3,A),arithmetic:=<(B,C))].

Inspecting these results, it can be seen that unsafe calls to arithmetic predicates can occur only

when the first argument of qs is q3. When the first argument is a list of arithmetic expressions,

the calls to the arithmetic predicates contain arithmetic expressions in both arguments.

17 Discussion

The results above show the flexibility of our approach w.r.t. other results reports in the literature.

King and Lu [42] discuss similar experiments but are limited to simple Boolean domains like

POS. In our approach, as shown, we can use arbitrary regular types, mixing system types with

user definitions. For arithmetic predicates, groundness alone of the first argument is insufficient

to guarantee absence pf runtime errors, since calling say, X is a, results in a runtime error

although the second argument is ground. We are able to analyse with respect to the more precise

type of arithmetic expressions.

A second point is that, in order to obtain useful results for the qsort program, we needed

to introduce a user type, namely lists of arithmetic expressions. This raises a general issue: what

types are needed in order to propagate the conditions on builtins back to the entry goals accurately

enough? This is a topic for future research, but we believe that automatic type inference using

approaches such as regular approximations [39] and [37] can suggest appropriate types.

49

Part IV

Towards Provably Correct Code

Generation via Horn Logical Continuation

Semantics

18 Introduction

Provably correct compilation is an important aspect in development of high assurance software

systems. In this work we explore approaches to provably correct code generation based on

programming language semantics, particularly Horn logical semantics, and partial evaluation.

We show that the definite clause grammar (DCG) notation can be used for specifying both the

syntax and semantics of imperative languages. We next show that continuation semantics can

also be expressed in the Horn logical framework.

Ensuring the correctness of the compilation process is an important consideration in con-

struction of reliable software. If the compiler generates code that is not faithful to the original

program code of a system, then all our efforts spent in proving the correctness of the system

could be futile. Proving that target code is correct w.r.t. the program source is especially impor-

tant for high assurance systems, as unfaithful target code can lead to loss of life and/or property.

Considerable research has been done in this area, starting from the work of McCarthy [16]. Most

efforts directed at proving compiler correctness fall into three categories:

• Those that treat the compiler as just another program and use standard verification tech-

niques to manually or semi-automatically establish its correctness (e.g., [3]). However,

even with semi-automation this is a very labour intensive and expensive undertaking, which

has to be repeated for every new language, or if the compiler is changed.

• Those that generate the compiler automatically from the mathematical semantics of the

language. Typically the semantics used is denotational (see for example Chapter 10 of

[20]). The automatically generated compilers, however, have not been used in practice due

to their slowness and/or inefficiency/poor quality of the code generated.

• Those that use program transformation systems to transform source code into target code

[15, 18]. The disadvantage in this approach is that specifying the compiler operationally

can be quite a lengthy process. Also, the compilation time can be quite large.

50

In [5] we developed an approach for generating code for imperative languages in a provably

correct manner based on partial evaluation and a type of semantics called Horn logical semantics.

This approach is similar in spirit to semantics-based approaches, however, its basis is Horn-

logical semantics [5] which possesses both an operational as well as a denotational (declarative)

flavor. In the Horn logical semantics approach, both the syntax and semantics of a language is

specified using Horn logic statements (or pure Prolog).

Taking an operational view, one immediately obtains an interpreter of the language L from

the Horn-logical semantic description of the language L. The semantics can be viewed dually as

operational or denotational. Given a program P written in language L, the interpreter obtained

for L can be used to execute the program. Moreover, given a partial evaluator for pure Prolog,

the interpreter can be partially evaluated w.r.t. the program P to obtain compiled code for P .

Since the compiled code is obtained automatically via partial evaluation of the interpreter, it is

faithful to the source of P , provided the partial evaluator is correct. The correctness of the partial

evaluator, however, has to be proven only once. The correctness of the code generation process

for any language can be certified, provided the compiled code is obtained via partial evaluation.

Given that efficient execution engines have been developed for Horn Logic (pure Prolog), partial

evaluation is relatively fast. Also, the declarative nature of the Horn logical semantics allows for

language semantics to be rapidly obtained.

In this contribution, we further develop our approach and show that in Horn logical semantics

not only the syntax but also the semantics can be expressed using the definite clause grammar

notation. The semantics expressed in the DCG notation allows for the store argument to be

naturally (syntactically) hidden. We show that continuation semantics can also be expressed in

Horn logic. Continuation semantics model the semantics of imperative constructs such as goto

statements, exception handling mechanisms, abort, and catch/throw constructs more naturally.

We also show that continuation semantics expressed as DCGs can be partially evaluated w.r.t. a

source program to obtain “good quality” target code.

In this work we use partial evaluation to generate target code. Partial evaluation is especially

useful when applied to interpreters; in this setting the static input is typically the object program

being interpreted, while the actual call to the object program is dynamic. Partial evaluation can

then produce a more efficient, specialized version of the interpreter, which can be viewed as a

compiled version of the object program [34].

In our work we have used the LOGEN system [13]. Much like MIXTUS, LOGEN can handle

many non-declarative aspects of Prolog. LOGEN also supports partially static data by allowing

the user to declare custom “binding types.” More details on the LOGEN system can be found

elsewhere [13]. Unlike MIXTUS, LOGEN is a so-called offline partial evaluator, i.e., specialization

is divided into two phases: (i) A binding-time analysis (BTA for short) phase which, given a

51

program and an approximation of the input available for specialization, approximates all values

within the program and generates annotations that steer (or control) the specialization process.

(ii) A (simplified) specialization phase, which is guided by the result of the BTA.

Because of the preliminary BTA, the specialization process itself can be performed very effi-

ciently, with predictable results (which is important for our application). Moreover, due to its

simplicity it is much easier to establish correctness of the specialization process.

Finally, while our work is motivated by provably correct code generation, we believe our

approach to be useful to develop “ordinary” compilers for domain specific languages in general

[7].

19 Horn Logical Semantics

The denotational semantics of a language L has three components: (i) syntax specification: maps

sentences of L to parse trees; it is commonly specified as a grammar in the BNF format; (ii)

semantic algebra: represents the mathematical objects whose elements are used for expressing

the meaning of a program written in the language L; these mathematical objects typically are sets

or domains (partially ordered sets, lattices, etc.) along with associated operations to manipulate

the elements of the sets; (iii) valuation functions: these are functions mapping parse trees to

elements of the semantic algebras.

Traditional denotational definitions express syntax as BNF grammars, and the semantic alge-

bras and valuation functions using λ-calculus. In Horn Logical semantics, Horn-clauses (or pure

Prolog) and constraints4 are used instead to specify all the components of the denotational se-

mantics of programming languages [5]. There are three major advantages of using Horn clauses

and constraints for coding denotational semantics.

First, the syntax specification trivially and naturally yields an executable parser. The BNF

specification of a language L can be quite easily transformed to a Definite Clause Grammar

(DCG) [21]. The syntax specification5 written in the DCG notation serves as a parser for L. This

parser can be used to parse programs written in L and obtain their parse trees (or syntax trees).

Thus, the syntactic BNF specification of a language is easily turned into executable syntax (i.e.,

a parser). Note that the syntax of even context sensitive languages can be specified using DCGs

[5].

4Constraints may be used, for example, to specify semantics of languages for real-time systems [6].
5A grammar coded as a DCG is syntax specification in the sense that various operational semantics of logic

programming (standard Prolog order, tabled execution, etc.) can be used for execution during actual parsing. Differ-

ent operational semantics will result in different parsing algorithms (e.g., Prolog in recursive descent parsing with

backtracking, tabled execution in chart parsing, etc.).

52

Second, the semantic algebra and valuation functions of L can also be coded in Horn-clause

Logic. Since Horn-clause Logic or pure Prolog is a declarative programming notation, just like

the λ-calculus, the mathematical properties of denotational semantics are preserved. Since both

the syntax and semantic part of the denotational specification are expressed as logic programs,

they are both executable. These syntax and semantic specifications can be loaded in a logic

programming system and executed, given a program written in L. This provides us with an

interpreter for the language L. In other words, the denotation6 of a program written in L is exe-

cutable. This executable denotation can also be used for many applications, including automated

generation of compiled code.

Third, non-deterministic7 semantics can be given to a language w.r.t. resources (e.g., time,

space, battery power) consumed during execution. For example, some operations in the semantic

algebra may be specified in multiple ways (say in software or in hardware) with each type of

specification resulting in different resource consumption. Given a program and bounds on the

resources that can be consumed, only some of the many possible semantics may be viable for that

program. Resource bounded partial evaluation [2] can be used to formalize resource conscious

compilation (e.g., energy aware compilation) [23] via Horn Logical semantics.

Horn-logical semantics can also be used for automatic verification and consistency checking

[5, 6]. We do not elaborate any further since we are not concerned with verification in this work.

The disadvantage of Horn logical semantics is that it is not denotational in the strict sense

of the word because the semantics given for looping constructs is not compositional. The fix

operator used to give compositional semantics of looping constructs in λ-calculus cannot be nat-

urally coded in Horn logic due to lack of higher order functions. This, for example, precludes the

use of structural induction to prove properties of programs. However, note that even though the

semantics is not truly compositional, it is declarative, and thus the fix-point of the logic program

representing the semantics can be computed via the standard TP operator [43]. Structural/fix-

point induction can then be performed over this TP operator to prove properties of programs.

Note that even in the traditional λ-calculus approach, the declarative meaning of the fix operator

(defined as computing the limit of a series of functions) is given outside the operational frame-

work of the λ-calculus, just as the computation of the fix(TP) in logic programming is outside the

operational framework of Horn Clause logic. For partial evaluation, the operational definition of

fix, i.e., fix(F) = F(fix F), is used.

In [5] we show how both the syntax and semantics of a simple imperative language (a simple

subset of Pascal whose grammar is shown in Figure 1) can be given in Horn Logic. The Horn

logical semantics, viewed operationally, automatically yields an interpreter. Given a program P ,

6We refer to the denotation of a program under the Horn-logical semantics as its Horn logical denotation.
7Non-deterministic in the logic programming sense.

53

Program ::= C.

C ::= C1;C2 |

loop while B C end while |

if B then C1 else C2 endif |

I := E

E ::= N | Identifier | E1 + E2 |

E1 - E2 | E1 * E2 | (E)

B ::= E1 = E2 | E1 > E2 | E1 < E2

N ::= 0 | 1 | 2 | ... | 9

Identifier ::= w | x | y | z

Figure 1: BNF grammar

the interpreter can be partially evaluated w.r.t.

P to obtain P ’s compiled code.

A program and its corresponding code gener-

ated via partial evaluation using the LOGEN

system [13] is shown below. The specializa-

tion time is insignificant (i.e., less than 10

ms). Note that the semantics is written un-

der the assumption that the program takes ex-

actly two inputs (found in variables x and y)

and produces exactly one output (placed in

variable z). The definitions of the semantic

algebra operations are removed, so that unfolding during partial evaluation will stop when a

semantic algebra operation is encountered. The semantic algebra operations are also shown

below.

z = 1; main(A, B, C) :- while_eval__1(A, B) :-

w = x; initialize_store(D), access(w, A, C),

loop while w > 0 update(x, A, D, E), (C>0 ->

z = z * y ; update(y, B, E, F), access(z, A, D),

w = w - 1 update(z, 1, F, G), access(y, A, E),

end while. access(x, G, H), F is D*E,

update(w, H, G, I), update(z, F, A, G),

while_eval__1(I, J), access(w, G, H),

K=J, I is H-1,

access(z, K, C). update(w, I, G, J),

while_eval__1(J, B),

; B=A).

SEMANTIC ALGEBRA:

initialize_store([(x,0),(y,0),(z,0),(w,0)]).

access(Id,[(Id,Val)|_],Val). update(Id,NV,[(Id,_)|R],[(Id,NV)|R]).

access(Id,[_|R],Val) :- update(Id,NewV,[P|R],[P|R1]) :-

access(Id,R,Val). update(Id,NewV,R,R1).

Notice that in the program that results from partial evaluation, only a series of memory

access, memory update, arithmetic and comparison operations are left, that correspond to

load, store, arithmetic, and comparison operations of a machine language. The while-loop,

whose meaning was expressed using recursion, will partially evaluate to a tail-recursive pro-

54

gram. These tail-recursive calls are easily converted to iterative structures using jumps in the

target code.

Though the compiled code generated is in Prolog syntax, it looks a lot like machine code.

A few simple transformation steps will produce actual machine code. These transformations

include replacing variable names by register/memory locations, replacing a Prolog function call

by a jump (using a goto) to the code for that function, etc. The code generation process is

provably correct, since target code is obtained automatically via partial evaluation. Of course,

we need to ensure that the partial evaluator works correctly. However, this needs to be done

only once. Note that once we prove the correctness of the partial evaluator, compiled code for

programs written in any language can be generated as long as the Horn-logical semantics of the

language is given.

It is easy to see that valuation predicate for an iterative structure will always be tail-recursive.

This is because the operational meaning of a looping construct can be given by first iterating

through the body of the loop once, and then recursively re-processing the loop after the state

has been appropriately changed to reflect the new values of the loop control parameters. The

valuation predicate for expressing this operational meaning will be inherently tail recursive.

Note also that if a predicate definition is tail recursive, a folding/unfolding based partial

evaluation of the predicate will preserve its tail-recursiveness. This allows us to replace a tail

recursive call with a simple jump while producing the final assembly code. The fact that tail-

recursiveness is preserved follows from the fact that folding/unfolding based partial evaluation

can be viewed as algebraic simplification, given the definitions of various predicates. Thus, given

a tail recursive definition, the calls in its body will be expanded in-place during partial evalua-

tion. Expanding a tail-recursive call will result in either the tail-recursion being eliminated or

being replaced again by its definition. Since the original definition is tail-recursive, the unfolded

definition will stay tail recursive. (A formal proof via structural induction can be given [22] but

is omitted due to lack of space.)

20 Definite Clause Semantics

Note that in the code generated, the update and access operations are parameterized on

the memory store (i.e., they take an input store and produce an output store). Of course, real

machine instructions are not parameterized on store. This store parameter can be (syntactically)

eliminated by using the DCG notation for expressing the valuation predicates as well.

All valuation predicates take a store argument as input, modify it per the semantics of the

command under consideration and produce the modified store as output [5]. Because the se-

55

mantic rules are stated declaratively, the store argument “weaves” through the semantic sub-

predicates called in the rule. This suggests that we can express the semantic rules in the DCG

notation. Thus, we can view the semantic rules as computing the difference between the output

and the input stores. This difference reflects the effect of the command whose semantics is being

given. Expressed in the DCG notation, the store argument is (syntactically) hidden away. For

example, in the DCG notation the valuation predicate

command(comb(C1, C2), Store, Outstore) :-

command(C1, Store, Nstore),

command(C2, Nstore, Outstore).

is written as:

command(comb(C1, C2)) --> command(C1), command(C2).

In terms of difference structures, this rules states that the difference of stores produced by C1;

C2 is the “sum” of differences of stores produced by the command C1 and C2. The rest of the

semantic predicates can be rewritten in this DCG notation in a similar way.

main(U,V,A) -->

update(x,U),

update(y,V),

update(z,1),

access(x,F),

update(w,F),

while eval 1,

access(z,A).

while eval 1 -->

(access(w,C),

{0<C} ->

access(z,D),

access(y,E),

{F is D*E},

update(z,F),

access(w,H),

{I is H-1},

update(w,I),

while eval 1

; []).

main: while:

store x U load w C

store y V skipgtz C

store z 1 jump else

load x F load z D

store w F load y E

jump while mul D E F

end: store z F

load z W load w H

sub1 H I

store w I

jump while

else:

noop

jump end

Figure 2: Partially evaluated semantics and its assembly code

56

Expressed in the DCG notation, the semantic rules become more intuitively obvious. In fact,

these rules have more natural reading; they can be read as simple rewrite rules. Additionally,

now we can partially evaluate this DCG w.r.t. an input program, and obtain compiled code

that has the store argument syntactically hidden. The result of partially evaluating this DCG-

formatted semantics is shown to the left in Figure 2. Notice that the store argument weaving

through the generated code shown in the original partially evaluated code is hidden away. Notice

also that the basic operations (such as comparisons, arithmetic, etc.) that appear in the target

code are placed in braces in definite clause semantics, so that the two store arguments are not

added during expansion to Prolog. The constructs appearing within braces can be regarded as

the “terminal” symbols in this semantic evaluation, similar to terminal symbols appearing in

square brackets in the syntax specification. In fact, the operations enclosed within braces are

the primitive operations left in the residual target code after partial evaluation. Note, however,

that these braces can be eliminated by putting wrappers around the primitive operations; these

wrappers will have two redundant store arguments that are identical, per the requirements of the

DCG notation. Note also that since the LOGEN partial evaluator is oblivious of the DCG notation,

the final generated code was cast into the DCG notation manually.

Now that the store argument that was threading through the code has been eliminated, the

access/update instructions can be replaced by load/store instructions, tail recursive call can be

replaced by a jump, etc., to yield proper assembly code. The assembly code that results in shown

to the right in figure 2. We assume that inputs will be found in registers U and V, and the output

will be placed in register W. Note that x, y, z, w refer to the memory locations allocated

for the respective variables. Uppercase letters denote registers. The instruction load x Y

moves the value of memory location x into register Y, likewise store x Y moves the value

of register Y in memory location x (on a modern microprocessor, both load and store will

be replaced by the mov instruction); the instruction jump label performs an unconditional

jump, mul D E F multiplies the operands D and E and puts the result in register F, sub1 A

B subtracts 1 from register A and puts the result in register B, while skipgtz C instruction

realizes a conditional expression (it checks if register C is greater than zero, and if so, skips the

immediately following instruction).

Note that we have claimed the semantics (e.g., the one given in section 20) to be denota-

tional. However, there are two problems: (i) First, we use the (p->q;r) construct of logic

programming which has a hidden cut, which means that the semantics predicates are not even

declarative. (ii) second, the semantics is not truly compositional, because the semantics of the

while command is given in terms of the while command itself. This non-compositionality means

that structural induction cannot be applied.

W.r.t. (i) note that the condition in the -> always involves a relational operator with ground

57

arguments (e.g., Bval = true). The negation of such relational expressions can always be

computed and the clause expanded to eliminate the cut. Thus, a clause of the form

p(..) :- (Bval = true -> q(...); r(...))

can be re-written as

p(..) :- Bval = true, q(...).

p(..) :- Bval = false, r(...).

Note that this does not adversely affect the quality of code produced via partial evaluation.

W.r.t. (ii), as noted earlier, program properties can still be proved via structural induction on

the TP operator, where P represents the Horn logical semantic definition.

Another issue that needs to be addressed is the ease of proving a partial evaluator correct

given that a partial evaluator such as LOGEN [13] or Mixtus [51] are complex pieces of software.

However, as already mentioned, because of the offline approach the actual specialization phase

of LOGEN is quite straightforward and should be much easier to prove correct. Also, because of

the predictability of the offline approach, it should also be possible to formally establish that the

output of LOGEN corresponds to proper target code.8

Note that because partial evaluation is done until only the calls to the semantic algebra opera-

tion remain, the person defining the semantics can control the type of code generated by suitably

defining the semantic algebra. Thus, for example, one can first define the semantics of a language

in terms of semantic algebra operations that correspond to operations in an abstract machine. Ab-

stract machine code for a program can be generated by partial evaluation w.r.t. this semantics.

This code can be further refined by giving a lower level semantics for abstract machine code

programs. Partial evaluation w.r.t. this lower level semantics will yield the lower level (native)

code.

21 Continuation Semantics

So far we have modeled only direct semantics [20] using Horn logic. It is well known that di-

rect semantics cannot naturally model exception mechanisms and goto statements of imperative

programming languages. To express such constructs naturally, one has to resort to continuation

semantics. We next show how continuation semantics can be naturally expressed in Horn Clause

logics using the DCG notation. In the definite clause continuation semantics, semantics of con-

structs is given in terms of the differences of parse trees (i.e., difference of the input parse tree

and the continuation’s parse tree) [22]. Each semantic predicate thus relates an individual con-

8E.g., for looping constructs, the unfolding of the (tail) recursive call has to be done only once through the

recursive call to obtain proper target code.

58

struct (difference of two parse trees) to a fragment of the store (difference of two stores). Thus,

semantic rules are of the form:

command(C1, C2, Program, S1, S2) :- ...

where the difference of C1 and C2 (say ∆C) represents the command whose semantics is being

given, and the difference of S1 and S2 represents the store which reflects the incremental change

(∆S) brought about to the store by the command ∆C. Note that the Program parameter is

needed to carry the mapping between labels and the corresponding command. Each semantic

rule thus is a stand alone rule relating the difference of command lists, ∆C, to difference of

stores, ∆S. If we view a program as a sequence of difference of command lists then its semantics

can simply be obtained by “summing” the difference of stores for each command. That is, if we

view a program P as consisting of sequence of commands:

P = ∆C1 + ∆C2 + . . . + ∆Cn

then its semantics S is viewed as a “sum” of the corresponding differences of stores:

S = ∆S1 ⊕∆S2 ⊕ . . .⊕∆Sn

and the continuation semantics simply maps each ∆Ci to the corresponding ∆Si. Note that ⊕

is a non-commutative operator, and its exact definition depends on how the store is modeled.

Additionally, continuation semantics allow for cleaner, more intuitive declarative semantics for

imperative constructs such as exceptions, catch/throw, goto, etc. [20].

Finally, note that the above continuation semantics rules can also be written in the DCG

notation causing the arguments S1 and S2 to become syntactically hidden:

command(C1, C2, Program) --> ...

Below, we give the continuation semantics of the subset of Pascal considered earlier after extend-

ing it with statement labels and a goto statement. Note that the syntax trees are now represented

as a list of commands. Each command is represented in the syntax tree as a pair, whose first ele-

ment is a label (possibly null) and the second element is the command itself. Only the valuation

functions for commands are shown (those for expressions, etc., are similar to the one shown

earlier).

prog_eval([], _, _, 0) --> []

prog_eval(CommList, Val_x, Val_y, Output) -->

update(x, Val_x), update(y, Val_y),

command_eval(CommList,cont([],[]), CommList), access(z, Output).

command_eval([],[],_Program) --> [].

command_eval([],cont(CommList,Cont),Program)-->

command_eval(CommList,Cont,Program).

command_eval([Comm|CommList],Cont,Program)-->

59

comm_eval(Comm,CommList,Cont,NCommList,NCont,Program),

command_eval(NCommList,NCont,Program).

comm_eval([(_,abort)|_],_Comm,_Cont,[],[],_Program) --> [].

comm_eval((Label,while(B,LoopBody)),OldRest,OldCont,[],[],Program)

--> bool_while_eval(B,LoopBody,

cont([(Label,while(B,LoopBody))|OldRest],

OldCont), OldRest,OldCont,Program).

comm_eval((_,ce(B,C1,C2)),OldRest,OldCont,[],[],Program) -->

bool_eval(B,C1,cont(OldRest,OldCont),C2,cont(OldRest,OldCont),Program).

comm_eval((_,ce(B,C1)),OldRest,OldCont,[],[],Program) -->

bool_eval(B,C1,cont(OldRest,OldCont),OldRest,OldCont,Program).

comm_eval((_,jmp(ID)),_OldRest,_OldCont,JumpList,cont([],[]),Program)-->

{find_label(ID,Program,JumpList)}.

comm_eval((_,assign(id(I), E)),OldRest,OldCont,OldRest,OldCont,_Program)

--> expr(E, Val), update(I, Val).

bool_while_eval(Cond,C1,C1Cont,C2,C2Cont,Program) -->

bool_eval(Cond,C1,C1Cont,C2,C2Cont,Program).

bool_eval(greater(E1, E2),C1,C1Cont,C2,C2Cont,Program)

--> expr(E1, Eval1), expr(E2, Eval2),

({Eval1 > Eval2} -> command_eval(C1,C1Cont,Program) ;

command_eval(C2,C2Cont,Program)).

/*the code for lesser(E1,E2) and equal(E1,E2) is very similar*/

The code above is self-explanatory. Semantic predicates pass command continuations as argu-

ments. The code for find label/3 predicate is not shown. It looks for the program segment

that is a target of a goto and changes the current continuation to that part of the code.

Consider the program shown below to the left in Figure 3. In this program segment, control

jumps from outside the loop to inside via the goto statement. The result of partially evaluating

the interpreter (after removing the definitions of semantic algebra operations) obtained from the

semantics w.r.t. this program (containing a goto) is shown in the figure 3 to the right. Figures

4 shows another instance of a program involving goto’s and the code generated by the LOGEN

partial evaluator by specialization of the definite clause continuation semantics shown above.

Note that a Horn logical continuation semantics can be given for any imperative language

in such a way that its partial evaluation w.r.t. a program will yield target code in terms of ac-

cess/update operation. This follows from the fact that programs written in imperative languages

60

//source code

z = 1;

w = x;

goto label;

loop while w > 0

z = z * y ;

label: w = w - 1

endloop while;

z = 8;

z = 7.

//generated code

interpreter(A, B, C) -->

update(x, A),

update(y, B),

update(z, 1),

access(x, D),

update(w, D),

access(w, E),

{F is E-1},

update(w, F),

fix1,

access(z, C).

fix1 -->

(access(w, A),

{0<A} ->

access(z, B),

access(y, C),

{D is B*C},

update(z, D),

access(w, E),

{F is E-1},

update(w, F),

fix1

; update(z, 8),

update(z, 7)

).

Figure 3: Example with a jump from outside to inside a while loop

consist of a series of commands executed under a control that is explicitly supplied by the pro-

grammer. Control is required to be specified to a degree that the continuation of each command

can be uniquely determined. Each command (possibly) modifies the store. Continuation seman-

tics of a command is based on modeling the change brought about to the store by the continuation

of this command. Looking at the structure of the continuation semantics shown above, one notes

that programs are represented as lists of commands. The continuation of each command may

be the (syntactically) next command or it might be some other command explicitly specified by

a control construct (such as a goto or a loop). The continuation is modeled in the semantics

explicitly, and can be explicitly set depending on the control construct. The semantics rule for

each individual command computes the changes made to the store as well as the new continua-

tion. Thus, as long as the control of an imperative language is such that the continuation of each

command can be explicitly determined, its Horn logical continuation semantics can be written

in the DCG syntax. Further, since the semantics is executable, given a program written in the

imperative language, it can be executed under this semantics. The execution can be viewed as

unfolding the top-level call, until all goals are solved. If the definitions of the semantic algebra

operations are removed, then the top-level call can be simplified via unfolding (partial evalua-

tion) to a resolvent which only contains calls to the semantic algebra operations; this resolvent

will correspond to the target code of the program.

It should also be noted that the LOGEN system allows users to control the partial evalua-

tion process via annotations. Annotations are generated by the BTA and then can be modified

manually. This feature of the LOGEN system gives considerable control of the partial evalua-

61

//source code

z = 1;

w = x;

loop while w > 0

z = z * y ;

w = w - 1;

goto label

endloop while;

label: z = 8

z = 7.

//generated code

interpreter(A, B, C) -->

update(x, A), update(y, B),

update(z, 1),

access(x, D), update(w, D),

(access(w, E),

{0<E} ->

access(z, F), access(y, G),

{H is F*G},

update(z, H),

access(w, I),

{J is I-1},

update(w, J),

update(z, 8), update(z, 7)

; update(z, 8), update(z, 7)

),

access(z, C).

Figure 4: Example with a jump from inside to outside a while loop

tion process—and hence of the code generation process—to the user. The interpreter has to be

annotated only once by the user, to ensure that good quality code will be generated.

22 A Case Study in SCR

We have applied our approach to a number of practical applications. These include generating

code for parallelizing compilers in a provably correct manner [5], generating code for controllers

specified in Ada [12] and for domain specific languages [7] in a provably correct manner, and

most recently generating code in a provably correct manner for the Software Cost Reduction

(SCR) framework.

The SCR (Software Cost Reduction) requirements method is a software development method-

ology introduced in the 80s [8] for engineering reliable software systems. The target domain for

SCR is real-time embedded systems. SCR has been applied to a number of practical systems,

including avionics system (the A-7 Operational flight Program), a submarine communication

system, and safety-critical components of a nuclear power plant [9].

We have developed the Horn logical continuation semantics for the complete SCR language.

This Horn logical semantics immediately provides us with an interpreter on which the program

62

above can be executed. Further, the interpreter was partially evaluated and compiled code was

obtained. The time taken to obtain compile code using definite clause continuation semantics of

SCR was an order of magnitude faster than a program transformation based strategy described in

[15] that uses the APTS system [18], and more than 40 times faster than a strategy that associates

C code as attributes of parse tree nodes and synthesizes the overall code from it [15].

23 Related Work

Considerable work has been done on manually or semi-mechanically proving compilers correct.

Most of these efforts are based on taking a specific compiler and showing its implementation

to be correct. A number of tools (e.g., a theorem prover) may be used to semi-mechanize the

proof. Example of such efforts range from McCarthy’s work in 1967 [16] to more recent ones

[3]. As mentioned earlier, these approaches are either manual or semi-mechanical, requiring

human intervention, and therefore not completely reliable enough for engineering high-assurance

systems. “Verifying Compilers” have also been considered as one of the grand challenge for

computing research [10], although the emphasis in [10] is more on developing a compiler that

can verify the assertions inserted in programs (of course, such a compiler has to be proven correct

first).

Considerable work has also been done on generating compilers automatically from language

semantics [20]. However, because the syntax is specified as a (non-executable) BNF and se-

mantics is specified using λ-calculus, the automatic generation process is very cumbersome. The

approach outlined in this work falls in this class, except that it uses Horn logical semantics which,

we believe and experience suggests, can be manipulated more efficiently. Also, because Horn

logical semantics has more of an operational flavor, code generation via partial evaluation can be

done quite efficiently.

Considerable work has also been done in using term rewriting systems for transforming

source code to target code. In fact, this approach has been applied by researchers at NRL to

automatically generate C code from SCR specification using the APTS [18] program transfor-

mation system. As noted earlier, the time taken is considerably more than in our approach. Other

approaches that fall in this category include the HATS system [24] that use tree rewriting to

accomplish transformations. Other transformation based approaches are mentioned in [15].

Recently, Pnueli et al have taken the approach of verifying a given run of the compiler rather

than a compiler itself [19]. This removes the burden of maintaining the compiler’s correctness

proof; instead each run is proved correct by establishing a refinement relationship. However, this

approach is limited to very simple languages. As the authors themselves mention, their approach

63

“seems to work in all cases that the source and target programs each consist of a repeated exe-

cution of a single loop body ..,” and as such is limited. For such simple languages, we believe

that a Horn logical semantics based solution will perform much better and will be far easier to

develop. Development of the refinement relation is also not a trivial task. For general programs

and general languages, it is unlikely that the approach will work.

Note that considerable work has been done in partially evaluating meta-interpreters for declar-

ative languages, in order to eliminate the interpretation overhead (see, for example, [17, 1]).

However, in this work our goal is to generate assembly-like target code for imperative languages.

24 Conclusions

In this work we presented an approach based on formal semantics, Horn logic, and partial eval-

uation for obtaining provably correct compiled code. We showed that not only the syntax speci-

fication, but also the semantic specification can be coded in the DCG notation. We also showed

that continuation semantics of an imperative language can also be coded in Horn clause logic.

We applied our approach to a real world language—the SCR language for specifying real-time

embedded system. The complete syntax and semantic specification for SCR was developed and

used for automatically generating code for SCR specifications. Our method produces executable

code considerably faster than other transformation based methods for automatically generating

code for SCR specifications.

Acknowledgments

We are grateful to Constance Heitmeyer and Elizabeth Leonard of the Naval Research Labs for

providing us with the BNF grammar of SCR and the safety injection program as well as for

discussions, and to the anonymous referees. Work in Part IV was done jointly with Qian Wang

and Gopal Gupta of the University of Texas at Dallas, who were partially supported by NSF

grants CCR 9900320, INT 9904063, and EIA 0130847, by the Department of Education and the

Environmental Protection Agency.

64

Part V

References

References

[1] A. Brogi and S. Contiero. Specializing Meta-Level Compositions of Logic Programs. Pro-

ceedings LOPSTR’96, J. Gallagher. Springer-Verlag, LNCS 1207.

[2] S. Debray. Resource bounded partial evaluation. PEPM 1997. pp. 179-192.

[3] A. Dold, T. Gaul, W. Zimmermann Mechanized Verification of Compiler Backends Proc.

Software Tools for Technology Transfer, Denmark, 1998.

[4] S. R. Faulk. State Determination in Hard-Embedded Systems. Ph.D. Thesis, Univ. of NC,

Chapel Hill, NC, 1989.

[5] G. Gupta “Horn Logic Denotations and Their Applications,” The Logic Programming

Paradigm: A 25 year perspective. Springer Verlag. 1999:127-160.

[6] G. Gupta, E. Pontelli. A Constraint-based Denotational Approach to Specification and Ver-

ification of Real-time Systems. In Proc. IEEE Real-time Systems Symposium, pp. 230-239.

Dec. 1997.

[7] G. Gupta, E. Pontelli. A Logic Programming Framework for Specification and Implementa-

tion of Domain Specific Languages. In Essays in Honor of Robert Kowalski, 2003, Springer

Verlag LNAI,

[8] K. L. Henninger. Specifying software requirements for complex systems: New techniques

and their application. IEEE Trans. on Software Engg. 5(1):2-13.

[9] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated Consistency Checking of

Requirements Specifications. ACM TOSEM 5(3). 1996.

[10] C. A. R. Hoare. The Verifying Compiler: A Grand Challenge for Computing Research.

J.ACM, 50(1):63-69. Jan 2003.

[11] N. Jones. Introduction to Partial Evaluation. In ACM Computing Surveys. 28(3):480-503.

[12] L. King, G. Gupta, E. Pontelli. Verification of BART Controller. In High Integrity Software,

Kluwer Academic, 2001.

65

[13] M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in Pro-

log using a hand-written compiler generator. Theory and Practice of Logic Programming,

4(1):139–191, 2004.

[14] M. Leuschel, B. Martens, and D. De Schreye. Controlling Generalization and Polyvari-

ance in Partial Deduction of Normal Logic Programs. ACM Transactions on Programming

Languages and Systems (TOPLAS), 20(1):208-258.

[15] E. I. Leonard and C. L. Heitmeyer. Program Synthesis from Requirements Specifications

Using APTS. Kluwer Academic Publishers, 2002.

[16] J. McCarthy and J. Painter. Correctness of a Compiler for Arithmetic Expressions. MIT AI

Lab Memo, 1967.

[17] S. Owen. Issues in the Partial Evaluation of Meta-Interpreters. Proceedings Meta’88. MIT

Press. pp. 319–339. 1989.

[18] R. Paige. Viewing a Program Transformation System at Work. Proc. Programming Lan-

guage Implementation and Logic Programming, Springer, LNCS 844. 1994.

[19] A. Pnueli, M. Siegel, E. Singerman. Translation Validation. Proc TACAS’98, Springer Ver-

lag LNCS, 1998.

[20] D. Schmidt. Denotational Semantics: a Methodology for Language Development. W.C.

Brown Publishers, 1986.

[21] L. Sterling & S. Shapiro. The Art of Prolog. MIT Press, ’94.

[22] Q. Wang, G. Gupta, M. Leuschel. Horn Logical Continuation Semantics. UT Dallas Tech-

nical Report. 2004.

[23] Q. Wang, G. Gupta. Resource Bounded Compilation via Constrained Partial Evaluation.

UTD Technical Report. Forthcoming.

[24] V. L. Winter. Program Transformation in HATS. Software Transformation Systems Work-

shop, ’99.

[25] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard Prolog

Programs. In European Symposium on Programming, number 1058 in LNCS, pages 108–

124, Sweden, April 1996. Springer-Verlag.

66

[26] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and

G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of Con-

straint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Automated Debugging–

AADEBUG’97, pages 155–170, Linköping, Sweden, May 1997. U. of Linköping Press.

[27] F. Bueno, P. López-Garcı́a, and M. Hermenegildo. Multivariant Non-Failure Analysis via

Standard Abstract Interpretation. In 7th International Symposium on Functional and Logic

Programming (FLOPS 2004), number 2998 in LNCS, pages 100–116, Heidelberg, Ger-

many, April 2004. Springer-Verlag.

[28] Michael Codish and Cohavit Taboch. A semantic basic for the termination analysis of logic

programs. The Journal of Logic Programming, 41(1):103–123, 1999.

[29] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree Automata Techniques and Applications. http://www.grappa.univ-lille3.fr/tata, 1999.

[30] S.J. Craig, John P. Gallagher, M. Leuschel, and Kim S. Henriksen. Fully automatic binding

time analysis for Prolog. In Sandro Etalle, editor, Pre-Proceedings, 14th International

Workshop on Logic-Based Program Synthesis and Transformation, LOPSTR 2004, Verona,

August 2004, pages 61–70, 2004.

[31] S.K. Debray, P. López-Garcı́a, and M. Hermenegildo. Non-Failure Analysis for Logic Pro-

grams. In 1997 International Conference on Logic Programming, pages 48–62, Cambridge,

MA, June 1997. MIT Press, Cambridge, MA.

[32] S.K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin. Estimating the Compu-

tational Cost of Logic Programs. In Static Analysis Symposium, SAS’94, number 864 in

LNCS, pages 255–265, Namur, Belgium, September 1994. Springer-Verlag.

[33] S.K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Esti-

mation for Logic Programs. In 1997 International Logic Programming Symposium, pages

291–305. MIT Press, Cambridge, MA, October 1997.

[34] Y. Futamura. Partial evaluation of computation process - an approach to a compiler-

compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

[35] Maurizio Gabbrielli and Roberto Giacobazzi. Goal independency and call patterns in the

analysis of logic programs. In Proceedings of the 1994 ACM Symposium on Applied Com-

puting, SAC 1994, pages 394 – 399, 1994.

67

[36] Maurizio Gabbrielli, Giorgio Levi, and Maria Chiara Meo. Resultants semantics for Prolog.

Journal of Logic and Computation, 6(4):491–521, 1996.

[37] J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite Tree

Automata for Set-Based Analysis of Logic Programs. In Shriram Krishnamurthi and C. R.

Ramakrishnan, editors, Fourth International Symposium on Practical BAspects of Declar-

ative Languages (PADL’02), LNCS, pages 243–261, January 2002.

[38] J. P. Gallagher. A Program Transformation for Backwards Analysis of Logic Programs.

In M. Bruynooghe, editor, Proceedings of the International Symposium on Logic Based

Program Synthesis and Transformation (LOPSTR 2003), volume 3018 of LNCS, pages 92–

105, 2003.

[39] J. P. Gallagher and D.A. de Waal. Fast and precise regular approximation of logic pro-

grams. In P. Van Hentenryck, editor, Proceedings of the International Conference on Logic

Programming (ICLP’94), Santa Margherita Ligure, Italy. MIT Press, 1994.

[40] J. P. Gallagher and K. S. Henriksen. Abstract domains based on regular types. In V. Lifs-

chitz and B. Demoen, editors, Proceedings of the International Conference on Logic Pro-

gramming (ICLP’2004), volume 3132 of Springer-Verlag Lecture Notes in Computer Sci-

ence, pages 27–42, 2004.

[41] S. Genaim and M. Codish. Inferring termination conditions of logic programs by backwards

analysis. In International Conference on Logic for Programming, Artificial intelligence and

reasoning, volume 2250 of Springer Lecture Notes in Artificial Intelligence, pages 681–

690, 2001.

[42] Andy King and Lunjin Lu. A backward analysis for constraint logic programs. Theory and

Practice of Logic Programming, 2(4-5):514–547, 2002.

[43] J. W. Lloyd. Logic Programming. Springer-Verlag, 1987.

[44] P. López-Garcı́a, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic Pro-

grams Using Mode and Type Information. In Proceedings of the 14th International

Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’04), LNCS.

Springer-Verlag, August 2004.

[45] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness

of Program Variables Through Abstract Interpretation. In 1991 International Conference

on Logic Programming, pages 49–63. MIT Press, June 1991.

68

[46] L. Naish. A three-valued declarative debugging scheme. In 8th Workshop on Logic Pro-

gramming Environments, July 1997. ICLP Post-Conference Workshop.

[47] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic

Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and

Visualization Tools for Constraint Programming, number 1870 in LNCS, pages 23–61.

Springer-Verlag, September 2000.

[48] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-

Based Debugging of Constraint Logic Programs. In Logic-based Program Synthesis and

Transformation (LOPSTR’99), number 1817 in LNCS, pages 273–292. Springer-Verlag,

2000.

[49] G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in Logic Pro-

grams. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based

Program Manipulation, pages 77–87. ACM Press, June 1995.

[50] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Application to

Program Parallelization. J. of Logic Programming. Special Issue on Synthesis, Transforma-

tion and Analysis of Logic Programs, 41(2&3):279–316, November 1999.

[51] D. Sahlin. The mixtus approach to the automatic evaluation of full prolog. In Proceedings

of the North American Conference on Logic Programming, pages 377–398. MIT Press,

October 1990.

[52] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic programs. In

International Static Analysis Symposium, number 2477 in LNCS, pages 102–116. Springer-

Verlag, September 2002.

69

