
ASAP
IST-2001-38059

Advanced Analysis and Specialization for
Pervasive Systems

Efficient Off-line Specialization

Deliverable number: D5

Workpackage: Basic Specialization Techniques (WP3)

Preparation date: 1 November 2003

Due date: 1 May 2003

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Univ. of Southampton, Roskilde Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998–2002).

Short description:

In the first part of this deliverable we give a gentle introduction to offline partial evaluation in

general and ourLOGEN system in particular. We then show how one can specialize interpreters

using offline specialization, starting from simple interpreters on to more complicated ones. Ex-

perimental results are also presented, highlighting that theLOGEN system can be a good basis

for generating compilers for high-level languages. Being able to deal with interpreters will be

of major importance later in the project, especially for workpackage 5. This part of the deliver-

able has been accepted for publication as a book chapter (Logic-Based Program Synthesis and

Transformation, LNCS, Springer-Verlag).

In the second part we describe how we have adapted theLOGEN partial evaluation system in

particular in order to specialize modular programs (and specializing them in a modular fashion,

i.e., allowing one to separately specialize different modules).Once the implementation of the

modular specialisation is finished, we will produce a full paper and submit it to a conference.

The third part demonstrates that thecogen approach is also applicable to the specialization of

constraint logic programs and leads to effective specializers. We present the basic specialization

technique for CLP(R) and CLP(Q) programs and show experimental results using theLOGEN

system. This part has been presented at the PSI’03 conference and the paper will appear in the

LNCS post-proceedings.

The fourth part shows how to derive a self-applicable partial evaluator from ourLOGEN com-

piler generator system. Apart from academic curiosity, this allows one to easily generate more

or less optimized specialized specializers, just by tuning the annotations. One can also eas-

ily generate debugging versions of the specialized specializers. It can also be used to obtain a

binding-time analysis, applying the CiaoPP system on purposely generated specializers (gener-

ated for analysis purposes and not intended to be run). This part of the deliverable is based on a

paper accepted for the FLOPS’04 symposium.

In the fifth part of the deliverable, we present the fully automatic BTA that will be part of

our integrated tool, and which makes use of the various technologies developed by the various

partners.

In the final part we present a polyvariant binding-time analysis for Mercury which is based

on constraint solving, and can deal with higher-order features. This part has been accepted

for publication as a book chapter (Logic-Based Program Synthesis and Transformation, LNCS,

Springer-Verlag).

Contents

I Introduction and Specialisation of Interpreters 6

1 Introduction 6

2 Offline Partial Evaluation and the Cogen Approach 8

2.1 The Futamura projections .8

2.2 Offline Specialisation and the Cogen Approach8

2.3 Overview ofLOGEN .10

3 Offline Partial Deduction of Logic Programs 11

3.1 Partial Deduction .11

3.2 An Offline Partial Deduction Algorithm .13

3.3 Local and global termination .16

4 Non-recursive Propositional Logic Interpreter 17

5 Specialising the Vanilla Self-Interpreter 20

5.1 Background .20

5.2 The nonvar binding time annotation .21

5.3 Jones-Optimality for Vanilla .22

5.3.1 Structuring conjunctions .23

5.3.2 Rewriting Vanilla .24

5.3.3 Reflections .25

6 Jones-Optimality for a Debugger 26

6.0.4 Some experimental results .28

6.0.5 Adding more functionality .28

7 More Sophisticated Binding-Types 29

7.1 Binding-Time improvements and bifurcation .30

7.2 Formal Definition of Binding-Types .31

7.3 Using binding-types .33

7.4 Revisiting Vanilla again .35

1

8 Lambda Interpreter 35

8.1 Handling the cut .37

8.2 Annotations .37

8.3 Experiments .38

9 Discussion and Conclusion 39

II Modular Specialisation 41

10 Introduction 41

11 Making specialisation modular 42

11.1 Generating extension .42

11.2 Structure of the gx file .43

11.3 The memo and spec files .43

11.4 Module driver .44

11.5 Example .44

12 Tracking changes in the source 46

12.1 Dead patterns .47

13 Future work 48

13.1 Unfolding .48

13.2 Related work .48

13.3 Conclusion .49

III CLP Specialisation 50

14 Introduction 50

14.1 Offline vs Online Specialisation .50

15 Logen 51

15.1 Logen for CLP(R) and CLP(Q) . 52

16 Specialisation of pure CLP(R) and CLP(Q) Programs 53

16.1 Unfolding and Simplification .53

16.2 Memoisation .53

2

16.3 Rounding Errors with CLP(R) . 54

17 Examples and Experiments 55

17.1 Unfolded Example .55

17.2 Memo Example .55

17.3 Summary of experimental results .56

18 Non-declarative Programs 57

19 Future, Related Work and Conclusions 58

IV Self-Application 60

20 Introduction and Summary 60

21 The Partial Evaluator 62

21.1 The Basic Annotations .63

21.2 The Source Code .63

21.3 Specialised Code .65

22 Towards Self-Application 65

22.1 The nonvar Binding-Type .66

22.2 Treatment of findall .66

22.3 Treatment of if .67

22.4 Handling the cut .68

23 Self-Application 68

23.1 Generating Extensions .68

23.2 Lix Compiler Generator .70

24 Comparison 70

24.1 Logen .70

24.2 Logimix and Sage .71

25 New Applications 71

25.1 Several Versions of the Cogen .71

25.2 Extensions for Deforestation/Tupling .72

25.3 A Non-Trivial Interpreter Example .73

3

26 Conclusions and Future Work 75

V Framework for A Fully Automatic Binding Time Analysis 76

27 Offline Partial Evaluation 76

28 Binding Types 78

28.1 Derivation of Filter Declarations .78

29 Clause Annotations 79

29.1 Example Annotation .79

29.2 Derivation of Filter Declarations in the Presence of Clause Annotations80

30 Termination Checking Based on Binary Clause Semantics 80

30.1 Checking For Local Termination .81

30.2 Checking for Global Termination .82

31 Outline of Algorithm 83

32 Generation of the Binary Clause Semantics 84

33 Worked Example 86

VI A Higher-Order Binding-Time Analysis for Mercury 88

34 Introduction 88

34.1 Binding-time Analysis and Logic Programming89

34.2 Mercury .91

35 A Domain of Binding-times 92

36 A Modular Binding-time Analysis for Mercury 98

36.1 Mercury’s module system .99

36.2 Mercury programs for analysis .100

36.3 A modular analysis .103

36.4 From constraints to annotations .114

36.5 On the modularity of the approach .117

4

37 Higher-order Binding-time Analysis 118

37.1 Representing closures .119

37.2 Higher-order binding-time analysis .120

37.3 On the modularity of the approach .123

38 Example 124

38.1 A simple interpreter .124

38.2 The Prolog case .128

39 Discussion 130

5

Part I

Introduction and Specialisation of

Interpreters
We present the latest version of theLOGEN partial evaluation system for logic programs. In

particular we present new binding-types, and show how they can be used to effectively specialise

a wide variety of interpreters. We show how to achieve Jones-optimality in a systematic way

for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small

functional programming language. Experimental results are also presented, highlighting that the

LOGEN system can be a good basis for generating compilers for high-level languages.

1 Introduction

Partial evaluation [59] is a source-to-source program transformation technique which specialises

programs by fixing part of the input of some source programP and then pre-computing those

parts ofP that only depend on the known part of the input. The so-obtained transformed pro-

grams are less general than the original but can be much more efficient. The part of the input that

is fixed is referred to as thestatic input, while the remainder of the input is called thedynamic

input.

Partial evaluation has been especially useful when applied to interpreters. In that setting the

static input is typically the object program being interpreted, while the actual call to the object

program is dynamic. Partial evaluation can then produce a more efficient, specialised version of

Source
Program

Self
Interpreter

Partial Evaluator

Input

Compiled
Program

≈
Source

Program

static
dynamic

Figure 1: Jones Optimality

6

Interpreter

Partial Evaluator (1)

Partial Evaluator (2)

Partial Evaluator (3)
Compiler
Generator
(cogen)

Compiler
(Generating
Extension)

Compiled
Program
(Specialised
Interpreter)

Object-Level
(Output)

Interpreter

Object
Program

Object-level
Input

Object
Program

Object-level
Input

Object
Program

Partial Evaluator (1)

Interpreter

= Program = Result

Figure 2: Illustrating the three Futamura projections

the interpreter, which is sometimes akin to a compiled version of the object program.

The ultimate goal in that setting is to achieve so-calledJones optimality[57, 59, 85], i.e.,

fully getting rid of a layer of interpretation (called the “optimality criterion” in [59]). More

precisely, if we have a self-interpreterI for a languageL, i.e., an interpreter forL written in

that same languageL, and then specialiseI for a particular object programO we would like to

obtain a specialised interpreter which is equivalent toO (or better of course). This is illustrated

in Figure 1.

In this work we study systematically how to specialise a wide variety of interpreters written

in Prolog using so-called offline partial evaluation. We will illustrate this using the partial evalua-

tion systemLOGEN starting from very simple interpreters progressing towards more complicated

interpreters. We will also show how we can actually achieve the goal of Jones optimality for a

logic programming self-interpreter, as well as for a debugger derived from it; i.e., when special-

ising the debugger for an object programO with none of its predicates being spyed on we will

always get a specialised debugger equivalent toO. We believe this to be the first result of its

kind in a logic programming setting. In fact, how to effectively specialise interpreters has been a

matter of ongoing research for many years, and has been of big interest in the logic programming

7

community, see e.g., [105, 117, 114, 13, 21, 67, 123, 72] to mention just a few. However, despite

these efforts, achieving Jones optimality in a systematic way has remained mainly a dream. To

our knowledge, Jones optimiality has been achieved only for a simple Vanilla self-interpreter in

[123], but the technique does not scale up to more involved interpreters. All of these works have

mainly tried to tackle the problem using fully automatic online partial evaluation techniques,

while here we are using the offline approach. Basically, anonline specialiser takes all of its

control decisions during the specialisation process itself, while anoffline specialiser is guided

by a preliminarybinding-time analysis, which in our case will be (partially) done by hand. The

basic reason we opt for the off-line approach is that it allows to steer the specialisation process

far better than on-line techniques. This steering is of particular importance in the current setting,

since all of the previous research using automatic on-line techniques has shown that specialising

interpreters (in general and especially Jones optimality) is hard to achieve.

2 Offline Partial Evaluation and the Cogen Approach

2.1 The Futamura projections

A partial evaluation or deduction system is calledself-applicableif it is able to effectively1 spe-

cialise itself. The practical interests of such a capability are manifold. The most well-known

lie with the so called second and thirdFutamura projections[30]. The general mechanism of

the Futamura projections is depicted in Figure 2. The first Futamura projection consists of spe-

cialising aninterpreterfor a particularobject program, thereby producing a specialised version

of the interpreter which can be seen as acompiledversion of the object program. If the partial

evaluator is self-applicable then one can specialise the partial evaluator for performing the first

Futamura projection, thereby obtaining acompilerfor the interpreter under consideration. This

process is called the second Futamura projection. The third Futamura projection now consists of

specialising the partial evaluator to perform the second Futamura projection. By this process we

obtain acompiler generator(cogen for short).

2.2 Offline Specialisation and the Cogen Approach

Guided by these Futamura projections a lot of effort, especially in the functional partial eval-

uation community, has been put into making systems self-applicable. First successful self-

application was reported in [61], and later refined in [62] (see also [59]). The main idea which

1This implies some efficiency considerations, e.g. the system has to terminate within reasonable time constrains,

using an appropriate amount of memory.

8

made this self-application possible was to separate the specialisation process into two phases, as

depicted in Figure 3:

– first abinding-time analysis(BTA for short) is performed which, given a program and an

approximation of the input available for specialisation, approximates all values within the

program and generates annotations that steer (or control) the specialisation process.

– a (simplified)specialisation phase, which is guided by the result of theBTA.

Such an approach isoff-line because most, control decisions are taken beforehand. The

interest for self-application lies with the fact that only the second, simplified phase has to be self-

applied. On a more technical level, such an approach also avoids the generation of overly general

compilers and compiler generators. We refer to [61, 62, 59] for further details. In the context of

logic programming languages the off-line approach was used in [94] and to some extent also in

[43].

Specialised
Program

Source
Program BTA

Annotated
Source
Program

Partial
Evaluator

Specialised
Program

Static
Input

Dynamic
Input Output

Figure 3: Offline Partial Evaluation

However, the actual creation of thecogen according to the third Futamura projection is not

of much interest to users sincecogen can be generated once and for all when a specialiser is

given. Therefore, from a user’s point of view, whether acogen is produced by self-application or

not is of little importance; what is important is that it exists and that it is efficient and produces

efficient, non-trivial specialised specialisers. This is the background behind the approach to

program specialisation called thecogen approach[50, 52, 9, 3, 40, 119] (as opposed to the

more traditionalmix approach): instead of trying to write a partial evaluation systemmix which

is neither too inefficient nor too difficult to self-apply one simply writes a compiler generator

directly.

9

2.3 Overview ofLOGEN

The application of the cogen approach in a logic programming setting was leading to theLOGEN

system [63, 78], which we describe in more detail in the next section.

Specialised
Program

Source
Program BTA

Annotated
Source

Program

Specialised
Partial Evaluator

(Generating
Extension)

Specialised
Program

Static
Input

Dynamic
Input Output

Logen
Emacs
Logen
Mode

User

Figure 4: Illustrating theLOGEN system and thecogen approach

Figure 4 highlights the way theLOGEN system works. Typically, a user would proceed as

follows:

– First the source program is annotated using the BTA, which produces an annotated source

program. This annotated source program can be further edited, by using theLOGEN Emacs

mode. This also allows an expert to inspect and manually refine the annotations to get

better specialisation.

The picture does not show thatLOGEN now also contains a term expansion package (for

SICStus and Ciao Prolog) that strips the annotations when loading the annotated source

program, allowing the annotated source program to be run directly. Together with the

Emacs mode, one can thus continue to develop, maintain and debug the source program

together with its annotation (and one can forget the original un-annotated source program).

– Second,LOGEN is run on the annotated source program and produces a specialised spe-

cialiser, called agenerating extension.

10

– This generating extension can now be used to specialise the source program for some static

input. Note that the same generating extension can be run many times for different static

inputs (i.e., there is no need to re-runLOGEN on the annotated source program unless the

annotated source program itself changes).

– When the remainder of the input is known, the specialised program can now be run and

will produce the same output as the original source program. Note again, that the same

specialised program can be run for different dynamic inputs; one only has to re-generate

the specialised program if the static input changes (or the original program itself changes).

3 Offline Partial Deduction of Logic Programs

We now try to formalise the process of offline partial evaluation of logic programs and give a

better understanding on howLOGEN specialises its source programs.

Throughout this part of the delivarable, we suppose familiarity with basic notions in logic

programming. We follow the notational conventions of [83]. In particular, in programs, we

denote variables through strings starting with an upper-case symbol, while the notations of con-

stants, functions and predicates begin with a lower-case character.

3.1 Partial Deduction

The term “partial deduction” has been introduced in [65] to replace the term partial evaluation

in the context of pure logic programs (no side effects, no cuts). Though in some parts we briefly

touch upon the consequences of impure language constructs, we adhere to this terminology be-

cause the word “deduction” places emphasis on the purely logical nature of most of the source

programs. Before presenting partial deduction, we first present some aspects of the logic pro-

gramming execution model.

Formally, executing a logic programP for an atomA consists of building a so-calledSLD-

treefor P∪{← A} and then extracting thecomputed answer substitutionsfrom every non-failing

branch of that tree. Take for example the well-known append program:

append([],L,L).

append([H|X],Y,[H|Z]) :- append(X,Y,Z).

For example, the SLD-tree forappend([a,b],[c],R) is presented on the left in Fig-

ure 5. The underlined atoms are called selected atoms. Here there is only one branch, and its

computed answer isR = [a,b,c] .

11

append([a,b],[c],R)

append([b],[c],R2)

append([],[c],R3)

R=[a|R2]

R2=[b|R3]

R3=[c]

append(X,[c],R)

append(X2,[c],R2)

X=[H|X2],
R=[H|R2]

X=[]
R=[c]

Figure 5: Complete and Incomplete SLD-trees for theappend program

Partial evaluation builds upon this approach with two major differences:

• it is possible tonot select a given atom, leading to so-calledincompleteSLD-trees where

the leaves are different from the empty goal. This is because the lack of the full input

may cause the SLD-tree to have extra branches, in particular infinite ones. For example,

in Figure 5 the rightmost tree is an incomplete SLD-tree forappend(X,[c],R) , whose

full SLD-tree would be infinite.

The partial evaluator should not only avoid constructing infinite branches, but also other

branches causing inefficiencies in the specialised program.

Building such a tree is calledunfolding. An unfolding ruletells us which atom to select at

which point. Every branch of an incomplete tree now does not produce a computed answer,

it rather produces a conditional answer which can be expressed as a program clause by

taking the resultant of that branch defined below.

• because of the point above, we may have to build a series of SLD-trees, to ensure that

every non-selected atom is covered by some root of some tree. The fact that every leaf is

an instance of a root is calledclosedness(or sometimes alsocoveredness).

In Figure 5 the leaf atomappend(X2,[c],R2) is already an instance of its root atom,

and so closedness is already ensured and there is for this example no need to build more

trees.

Definition 3.1 Let P be a program,G =← Q a goal,D a finite SLDNF-derivation ofP ∪ {G}
ending in← B, andθ the composition of themgus in the derivation steps. Then the formula

Qθ ← B is called theresultant of D.

E.g., the resultants of the derivations in the right tree of Figure 5 are:

12

append([],[c],[c]).

append([H|X2],[c],[H|R2]) :- append(X2,[c],R2).

Partial deduction starts from an initial set of atomsA provided by the user that is chosen in

such a way that all runtime queries of interest are closed, i.e., an instance of some atom inA. As

we have seen, constructing a specialised program requires to construct an SLDNF-tree for each

atom inA. Moreover, one can easily imagine that ensuring closedness may require revision of

the setA. Hence, when controlling partial deduction, it is natural to separate the control into two

components (as already pointed out in [33, 91]):

• The local controlcontrols the construction of the finite SLD-tree for each atom inA and

thus determineswhat the residual clauses for the atoms inA are.

• Theglobal controlcontrols the content ofA, it decideswhichatoms are ultimately partially

deduced (taking care thatA remains closed for the initial atoms provided by the user).

More details on exactly how to control partial deduction in general can be found, e.g., in [73].

In offline partial evaluation the local control is hardwired, in the form of annotations added to the

source program. The global control is also partially hard-wired, by specifying which arguments

to which predicate are dynamic and which ones are static.

3.2 An Offline Partial Deduction Algorithm

As already outlined earlier, an offline partial evaluator works on an annotated version of the

source program. For offline partial deduction of logic programs there are usually two kinds of

annotations:

– filter declarations, which indicate which arguments to which predicates are static and

which ones dynamic. This influences the global control only.

– clause annotations, which mark every call in the body indicating how that call should be

treated during unfolding. This thus influences the local control only. There is of course an

interplay between these two annotations, and we return to this below.

For example, one could annotate theappend example above by saying that the second

argument ofappend is static, while the others are dynamic and we could mark the recursive

call append(X,Y,Z) as not unfoldable. Given such annotations and a specialisation query

append(X,[c],Z) , offline partial deduction would unfold exactly as depicted in the right

tree of Figure 5 and produce the resultants above.

Based on such annotations, offline partial evaluation proceeds as follows:

13

Algorithm 3.2 (offline partial deduction)

Input: A programP and an atomA

M = {A}
repeat

select an unmarked atomA in M and mark it

unfoldA by following the annotations in the annotated source program

if a selected atomS is marked asmemothen

generaliseS into S ′ by replacing all arguments marked as dynamic (in the filter decla-

rations) with a fresh variable

if no variant ofS ′ is in M then add it toM

pretty print the specialised clauses ofA

until all atoms inM are marked

In practice, renaming transformations are also involved: Every atom inM is assigned a new

predicate name, whose arity is the number of arguments marked as dynamic (static arguments

do not need to be passed around; they have already been built into the specialised code). For

example, the resultants of the derivations in the right tree of Figure 5 would get transformed into

the following, where the second static argument has been removed:

append__0([],[c]).

append__0([H|X2],[H|R2]) :- append__0(X2,R2).

To give a better picture, we present a Prolog version of the above algorithm. The code is

runnable (using an implementation ofgensym , see [115], to generate new predicate names).

The full treatment inLOGEN is of course much more complicated, but this should give a good

idea of howLOGEN specialises programs.

An atomA is specialised by callingmemo(A,Res) in the code below. Thememo/2 and

memotable/2 predicates return in their second argument the call to the new specialised pred-

icate where the static arguments are removed and the dynamic ones generalised. This generalisa-

tion and filtering is performed by thegeneralise and filter/3 predicate that returns in

its second argument the generalised original call (to be unfolded) with fresh variables and in its

third argument the corresponding call to the specialised predicate. It uses the annotations as de-

fined by thefilter/2 predicate to perform its task. The callmemotable(X,ResX) within

the definition ofmemo/2 simply bindsResX to the residual version of the callX. Note thatResX

is different fromFX, which is the residual version of the generalised callGenXwhich has fresh

variables. For example, given the filter declaration forapp below and forX = app(X,[],X)

14

we would getGenX = app(Y,[],Z) , and something likeFX = app 0(Y,Z) andResX

= app 0(X,X) .

The predicateunfold/2 computes the bodies of the specialised predicates. A call annotated

asmemois replaced by a call to the specialised version. It is created, if it does not exist, by the

call to memo/2. A call annotated asunfoldedis further unfolded. To be able to deal with

built-ins, we also add two more annotations: a call annotated ascall is completely evaluated;

finally, a call annotated asrescallis added to the residual code without modification (for built-ins

that cannot be evaluated). These two annotations can also be useful for user-predicates (a user

predicate marked ascall is completely unfolded without further examination of the annotations,

while therescallannotation can be useful for predicates defined elsewhere or whose code is not

annotated). All clauses defining the new predicate are collected usingfindall/3 and pretty

printed.

:- dynamic memo_table/2.

memo(X,ResX) :- (memo_table(X,ResX)

-> true /* nothing to be done: already specialised */

; (generalise_and_filter(X,GenX,FX),

assert(memo_table(GenX,FX)),

findall((FX:-B),unfold(GenX,B),XClauses),

pretty_print_clauses(XClauses),nl,

memo_table(X,ResX))).

unfold(X,Code) :- rule(X,B), body(B,Code).

body((A,B),(CA,CB)) :- body(A,CA), body(B,CB).

body(memo(X),ResX) :- memo(X,ResX).

body(unfold(X),ResCode) :- unfold(X,ResCode).

body(call(C),true) :- call(C).

body(rescall(C),C).

generalise_and_filter(Call,GCall,FCall) :- filter(Call,ArgTypes),

Call =.. [P|Args],

gen_filter(ArgTypes,Args,GenArgs,FiltArgs),

GCall =.. [P|GenArgs],

gensym(P,NewP), FCall =.. [NewP|FiltArgs].

gen_filter([],[],[],[]).

gen_filter([static|AT],[Arg|ArgT],[Arg|GT],FT) :-

gen_filter(AT,ArgT,GT,FT).

gen_filter([dynamic|AT],[_|ArgT],[GenArg|GT],[GenArg|FT]) :-

15

gen_filter(AT,ArgT,GT,FT).

/* the annotated source program: */

/* filter indicates how to generalise and filter */

filter(app(_,_,_),[dynamic,static,dynamic]).

/* rule annotates the source and indicates how to unfold */

rule(app([],L,L),call(true)).

rule(app([H|X],Y,[H|Z]),memo(app(X,Y,Z))).

Call: memo(app(X,[b],Y)) gives:

app__1([],[b]):-true

app__1([_12855|_12856],[_12855|_12854]) :- app__1(_12856,_12854).

3.3 Local and global termination

Without proper annotations of the source program, the above partial evaluator may fail to termi-

nate. There are essentially two reasons for nontermination.

• local termination The unfolding predicateunfold/2 may fail to terminate or provide

infinitely many answers.

• global termination Even if all calls tounfold/2 terminate, we may still run into prob-

lems because the partial evaluator may try to build infinitely many specialised versions of

some predicate for infinitely many different static values.2

To overcome the first problem, we may have to mark certain calls asmemorather than

unfold . In the worst case, every call is marked asmemo, which always ensures local ter-

mination (but means that little or no specialisation is performed).

To overcome global termination problems, we have to play with the filter declarations and

mark more arguments asdynamic rather thanstatic .

Another possible problem appears when built-ins lack enough input to behave as they do at

run-time (either by triggering an error or by giving a different result). When this appears, we

have to mark the offending call asrescall rather thancall .

2One often tries to ensure that a static argument is of so-calledbounded static variation[59], so that global

termination is guaranteed.

16

4 Non-recursive Propositional Logic Interpreter

We first introduce a simple propositional logic interpreter to demonstrate the basic annotations.

The interpreter will acceptand , or , not , implies and basic variables. Theint(Prog ,Env ,Result)

predicate takes two input arguments, the propositional formula and the environment containing

the variable mappings and produces the result. The environment is a list of values,var(i) indexes

theith element in the environment.

not(true,false).

not(false,true).

and(true,true ,true). or(true ,_ ,true).

and(false,_ ,false). or(false,true,true).

and(true,false,false). or(false,false,false).

int(true,_,true). int(false,_,false).

int(implies(X,Y),Env, Z) :- int(or(not(X),Y),Env,Z).

int(and(X,Y),Env, Z) :- int(X,Env,R1),int(Y,Env,R2),and(R1,R2,Z).

int(or(X,Y),Env, Z) :- int(X,Env,R1),int(Y,Env,R2),or(R1,R2,Z).

int(not(X),Env, Z) :- int(X,Env,R1),not(R1,Z).

int(var(X),Env, Z) :- lookup(X,Env,Z).

lookup(0,[X|_],X).

lookup(N,[X|T],Y) :- N>0, N1 is N-1, lookup(N1,T,Y).

To be able to useLOGEN, one must first define the entry points and annotate the variables for

the specialiser.

• filter annotates the arguments for residual predicates, using the following annotations

– static the value of the argument is known at specialisation time.

– dynamic the value of the argument is not necessarily known at specialisation time.

Top level predicates that one intends to specialise must be declared in this way, as well as

any subsidiary predicate which cannot be fully unfolded.

The syntax forLOGEN’s filter declarations is more user-friendly than in the previous section.

For example, for the above program we could declare:

:- filter int(static, dynamic, dynamic).

:- filter lookup(dynamic, dynamic, dynamic).

17

In other words, we assume that the propositional formula (the first argument ofint/3) is

known at specialisation time (static) but the environment will only be known at runtime (dy-

namic).

Next we must annotate the clauses in the original program to control the specialisation. The

following constructs can be used to annotate clauses in a program:

• unfold for reducible predicates, they will be unravelled during specialisation,

• memo for non-reducible predicates, they will be added to the memoisation table and re-

placed with a generalised residual predicate,

• call the call will be made during specialisation. This is useful for built-in’s or for user

predicates which should be fully evaluated (without further intervention of the specialiser).

• rescall the call will be kept and will appear in the final specialised code. In contrast to

the memo annotation, no specialised predicate definition is produced for the call. This

annotation is especially useful for built-ins, but can also be useful for user predicates (e.g.,

because the code is not available at specialisation time). The example below will show the

difference with thememoannotation.

As the propositional formula is known at specialisation time (static) all calls toint/3 can

be unfolded. As concerns the variable lookups, let us first be cautious and mark the call to

lookup as arescall:

int(var(X),Env, Z) :- lookup(X, Env, Z)︸ ︷︷ ︸
rescall

.

Let us specialise the interpreter for the logical formula:

((var(0)∨ (var(1)∧¬var(2)))∨ false)∧ true. The output from specialisation is a new version

of the program representing the truth table for the formula; as the call to lookup was marked as

rescall it appears in the specialised program:

int(and(or(or(var(0),and(not(var(1)),var(2))),false),true),Env,R) :-

int__0(Env,R).

int__0(A,true) :-

lookup(0,A,true),lookup(1,A,true),lookup(2,A,C).

int__0(A,false) :-

lookup(0,A,false),lookup(1,A,true),lookup(2,A,C).

int__0(A,true) :-

lookup(0,A,true),lookup(1,A,false),lookup(2,A,true).

int__0(A,true) :-

18

lookup(0,A,false),lookup(1,A,false),lookup(2,A,true).

int__0(A,true) :-

lookup(0,A,true),lookup(1,A,false),lookup(2,A,false).

int__0(A,false) :-

lookup(0,A,false),lookup(1,A,false),lookup(2,A,false).

Observe that no specialised predicate has been produced forlookup/3 , as we have used

therescallannotation. If we mark the call inint/3 to lookup/3 asmemorather thanrescall

and within the clauses oflookup/3 we mark the built-in’s asrescall and the recursive call as

memo, we obtain the following very similar result:

int__0(A,true) :-

lookup__1(0,A,true),lookup__1(1,A,true),lookup__1(2,A,B).

...

lookup__1(0,[B|C],B).

lookup__1(B,[C|D],E) :- B > 0, F is (B - 1), lookup__1(F,D,E).

The main difference is that the specialised program no-longer requires the original code of
lookup to run, but apart from that it is almost identical to the previous result. One may notice that
in all calls to lookup/3 the first argument is actually static. One may thus think of changing
the filter declaration forlookup/3 into:

:- filter lookup(static, dynamic, dynamic).

Unfortunately, if we now runLOGEN we get a specialisation time error. Indeed, in the recur-

sive calllookup(N1,T,Y) in second clause oflookup/3 the variableN1will be unbound at

specialisation time, and henceLOGEN will complain. The problem is that we have not evaluated

the callN1 is N-1 which bindsN1. Indeed, what we need to do is to annotate the clause as

follows:

lookup(N,[X|T],Y) :- N > 0︸ ︷︷ ︸
call

, N1 is N− 1︸ ︷︷ ︸
call

, lookup(N1, T, Y)︸ ︷︷ ︸
memo

.

There is actually no need tomemo the calls to lookup: given that we know the first argu-

ment we can annotate all calls tolookup/3 asunfold andLOGEN will produce the following

program:

int__0([true,true,B|C],true).

int__0([false,true,B|C],false).

int__0([true,false,true|B],true).

int__0([false,false,true|B],true).

int__0([true,false,false|B],true).

int__0([false,false,false|B],false).

19

It is actually possible to obtain an even better specialisation than this, by providing more

information about the structure of the environment. For that we need more sophisticated filter

annotations, which we introduce later in Section 7. As an indication and teaser, if we declare

:- filter int(static,list(dynamic), dynamic). thenLOGEN can now produce the

following specialised program:

int__0(true,true,B,true).

int__0(false,true,B,false).

int__0(true,false,true,true).

int__0(false,false,true,true).

int__0(true,false,false,true).

int__0(false,false,false,false).

for the call:

int(and(or(or(var(0),and(not(var(1)),var(2))),false),true), [A,B,C],D)}

This program is more efficient as the environment list has vanished and no longer needs to

be inspected.

5 Specialising the Vanilla Self-Interpreter

5.1 Background

A classical benchmark for partial evaluation has been the so-called (plain)vanilla meta-interpreter

(see, e.g., [49, 5]), described by the following piece of Prolog code:

solve(empty).

solve(and(A,B)) :- solve(A), solve(B).

solve(X) :- clause(X,Y), solve(Y).

clause(dapp(X,Y,Z,R),and(app(Y,Z,YZ),app(X,YZ,R))).

clause(app([],L,L),empty).

clause(app([H|X],Y,[H|Z]),app(X,Y,Z)).

Theclause/2 facts describe the object program to be interpreted, whilesolve/1 is the

meta-interpreter executing the object program. In practice,solve will often be instrumented so

as to provide extra functionality for, e.g., debugging, analysis (e.g., using abstract unifications

instead of concrete unification) or transformation. We will actually do so later in this section.

However, even without these extensions the vanilla interpreter provides enough challenges for

20

partial evaluation. Indeed, we would like to specialise the interpreter so as to obtain a residual

program equivalent to the object program being interpreted. For example, one would like to spe-

cialise our vanilla interpreter for the querysolve(dapp(X,Y,Z,R)) and obtain a specialised

interpreter equivalent to:

dapp(X,Y,Z,R) :- app(Y,Z,YZ),app(X,YZ,R).

app([],L,L).

app([H|X],Y,[H|Z]) :- app(X,Y,Z).

As we have seen in the introduction (cf. Figure 1), achieving such a feat for every object

program and query is called “Jones-optimality” [57, 85].

Online partial evaluators such asECCE[79] or MIXTUS [106] come close to achieving Jones-

optimality for many object programs. However, they will not do so forall object programs and

we refer the reader to [88] (discussing the parsing problem) and the more recent [123] and [72]

for more details. [123] presents a particular specialisation technique that can achieve Jones-

optimality for the vanilla interpreter, but the technique is very specific to that interpreter and as

far as we understand does not scale to extensions of it.

In the rest of this section we show howLOGEN canachieve Jones-optimality for the vanilla

interpreter, and we show how we can then handle extensions of the basic interpreter.

5.2 The nonvar binding time annotation

First, we have to present a new feature ofLOGEN which is useful when specialising interpreters.

In addition to marking arguments to predicates as static or dynamic,LOGEN also supports the

binding-typenonvar. This means that this argument is not a free variable and will have at least

a top-level function symbol, but it is not necessarily ground. For generalisation,LOGEN will

then keep the top-level function symbol but replace all its sub-arguments by fresh variables. For

filtering, every sub-argument becomes a new argument of the residual predicate.

A small example will help to illustrate this annotation:

:- filter p(nonvar).

p(f(X)) :- p(g(a)).

p(g(X)) :- p(h(X)).

p(h(a)).

p(h(X)) :- p(f(X)).

If we mark no call as unfoldable (i.e., every call is markedmemo), we get the following

specialised program for the call p(f(Z)):

21

%%% p(f(A)) :- p__0(A). p(g(A)) :- p__1(A). p(h(A)) :- p__2(A).

p__0(B) :- p__1(a).

p__1(B) :- p__2(B).

p__2(a).

p__2(B) :- p__0(B).

If we mark everything asunfold, except the last call, we obtain:

%%% p(f(A)) :- p__0(A).

p__0(B).

p__0(B) :- p__0(a).

5.3 Jones-Optimality for Vanilla

The vanilla interpreter as shown above, is actually a badly written program as it mixes the control

structuresand andempty with the actual calls to predicates of the object program. This means

that the vanilla interpreter will not behave correctly if the object program contains predicates

and/2 or empty/0 . This fact also poses problems typing the program. Even more importantly

for us, it also prevents one from annotating the program effectively forLOGEN. Indeed, statically

there is no way to know whether any of the three recursive calls tosolve/1 has a control

structure or a user call as its argument. ForLOGEN this means that we can only mark the call

clause(X,Y) asunfold. Indeed, if we mark any of thesolve/1 calls asunfold we may get

into trouble, i.e., non-termination of the specialisation process. This also means that we cannot

even mark the argument tosolve/1 asnonvar , as it may actually become a variable. Indeed,

take the callsolve(and(p,q)) : it will be generalised intosolve(and(X,Y)) and after

unfolding with the second clause we get the callssolve(X) andsolve(Y) . We thus only

obtain very little specialisation and we will not achieve Jones-optimality.

Two ways to solve this problem are as follows:

– assume that the control structures are used in a principled, predictable way that will allow

us to produce a better annotation.

– rewrite the interpreter so that it is clearly typed, allowing us to produce an effective anno-

tation as well as solving the problem with the name clashes between object program and

control structures.

We will pursue these solutions in the remainder of this section. A third possible solution is

to use more precise binding types which we introduce in later in Section 7. This will give some

improvements, but not full Jones optimality, due to the bad way in which solve is written.

22

5.3.1 Structuring conjunctions

The first solution is to enforce a standard way of writing down conjunctions withinclause/2

facts by requesting that every conjuctions is eitherempty or is anand whose left part is an atom

and the right hand a conjunction. For the example above, this means that we have to rewrite the

clause/2 facts as follows:

clause(dapp(X,Y,Z,R),and(app(Y,Z,YZ),and(app(X,YZ,R),empty))).

clause(app([],L,L),empty).

clause(app([H|X],Y,[H|Z]),and(app(X,Y,Z),empty)).

This allows us to predict what to find within the arguments of a conjunction and thus we can

now annotate the interpreter more effectively, without risking non-termination:

:- filter solve(nonvar).

solve(empty).

solve(and(A,B)) :- solve(A)︸ ︷︷ ︸
memo

, solve(B)︸ ︷︷ ︸
unfold

.

solve(X) :- clause(X,Y)︸ ︷︷ ︸
unfold

, solve(Y)︸ ︷︷ ︸
unfold

.

Given our assumption about the structure of conjunctions, the above annotation will still

ensure termination of the generating extension:

– local termination:

– the call toclause(X,Y) can be unfolded as before asclause/2 is definied by

facts

– the callssolve(B) and solve(Y) can be unfolded as we know thatB and Y

are conjunctions and we will only deconstruct theand/2 andempty/0 function

symbols but stop unfolding (possibly recursive) predicate calls.

– global termination: at the point when we memosolve(A) the variableA will be bound

to a predicate call. As we have marked the argument tosolve/1 asnonvar generaliza-

tion will just keep the top-level predicate symbol. As there are only finitely many predicate

symbols, global termination is ensured.

Specialising forsolve(dapp(X,Y,Z,R)) now gives a Jones-optimal output.

%%% solve(dapp(A,B,C,D)) :- solve__0(A,B,C,D).

%%% solve(app(A,B,C)) :- solve__1(A,B,C).

solve__0(B,C,D,E) :- solve__1(C,D,F), solve__1(B,F,E).

solve__1([],B,B).

solve__1([B|C],D,[B|E]) :- solve__1(C,D,E).

23

LOGEN will in general produce a specialised program which is slightly better than the original

program in the sense that it will generate code only for those predicates that are reachable in the

predicate dependency graph from the initial call. E.g., forsolve(app(X,Y,R)) only two

clauses forapp/3 will be produced, not a clause fordapp/4 .

It is relatively easy to see that Jones optimality will be achieved for any properly encoded ob-

ject program and any call to the object program. Indeed, any call of the formsolve(p(t1, . . . , tn)

will be generalised intosolve(p(, . . .,) keeping information about the predicate being

called; unfolding this will only match the clauses ofp as the callclause(X,Y) is marked

unfold and all of the parsing structure (and/2 andempty/0) will then be removed by fur-

ther unfolding, leaving only predicate calls to be memoised. These are then generalised and

specialised in the same manner.

5.3.2 Rewriting Vanilla

The more principled solution is to rewrite the vanilla interpreter, so that the conjunction encoding

and the object level atoms are clearly separated. The attentive reader may have noticed that above

we have actually enforced that conjunctions are encoded as lists, withempty/0 playing the role

of nil/0 and and/2 playing the role of ./2. The following vanilla interpreter makes this explicit

and thus properly enforces this encoding. It is also more efficient, as it no longer attempts to find

definitions ofempty andand within theclause facts.

solve([]).

solve([H|T]) :- solve_atom(H), solve(T).

solve_atom(H) :- clause(H,Bdy), solve(Bdy).

clause(dapp(X,Y,Z,R), [app(Y,Z,YZ), app(X,YZ,R)]).

clause(app([],R,R), []).

clause(app([H|X],Y,[H|Z]), [app(X,Y,Z)]).

We can now annotate all calls tosolve asunfold, knowing that this will only deconstruct

the conjunction represented as a list. However, the call tosolve atom cannot be unfolded,

as with recursive object programs we may perform infinite unfolding.LOGEN now produces

the following specialised program for the querysolve atom(dapp(X,Y,Z,R)) , having

marked the argument tosolve atom calls asnonvar .3

solve_atom__0(B,C,D,E) :- solve_atom__1(C,D,F), solve_atom__1(B,F,E).

3The predicatesolve does not have to be given a filter declaration as it is only unfolded and never residualised.

24

solve_atom__1([],B,B).

solve_atom__1([B|C],D,[B|E]) :- solve_atom__1(C,D,E).

We have again achieved Jones-Optimality, which holds for any object program and any

object-level query.

An almost equivalent solution would be to improve the original vanilla interpreter so that

atoms are tagged by a special function symbol, e.g., as follows:

solve(empty).

solve(and(A,B)) :- solve(A), solve(B).

solve(atom(X)) :- solve_atom(X).

solve_atom(H) :- clause(H,Bdy), solve(Bdy).

clause(dapp(X,Y,Z,R),and(atom(app(Y,Z,YZ)),atom(app(X,YZ,R)))).

clause(app([],L,L),empty).

clause(app([H|X],Y,[H|Z]),atom(app(X,Y,Z))).

We have again clearly separated the control structures from the predicate calls and we can

basically get the same result as above (by marking all calls to solve asunfold and the call to

solveatom asmemo).

5.3.3 Reflections

So, what are the essential ingredients that allowed us to achieve Jones optimality where others

have failed?

– First, the offline approach allows us to precisely steer the specialisation process in a pre-

dictable manner: we know exactly how the interpreter will be specialised independently of

the complexity of the object program. A problem with online techniques is that they may

work well for some object programs, but then be “fooled” by other (more or less contrived)

object programs; see [123, 72]. (On the other hand, online techniques can be capabable

for removing several layers of self-interpretation in one go. An offline approach in general

and our approach in particular will typically only be able to remove one layer at a time.)

– Second, it was also important to have refined enough annotations at our disposal. Without

thenonvar annotation we would not have been able to specialise the original vanilla self-

interpreter: we cannot mark the argument tosolve as static and marking it as dynamic

means that no specialisation will occur. Hence, considerable rewriting of the interpreter

would have been required if we just hadstatic anddynamic at our disposal.4

4We leave this as an exercise for the interested reader. See also Section 7.1 later in this part.

25

6 Jones-Optimality for a Debugger

Let us now try to extend the above interpreter, to do something more useful. The code below

implements a tracing version ofsolve which takes two extra arguments: a counter for the

current indentation level and a list of predicates to trace.

dsolve([],_,_).

dsolve([H|T],Level,ToTrace) :-

(debug(H,ToTrace)

-> (indent(Level),print(’Call: ’),print(H),nl,

dsolve_atom(H,s(Level),ToTrace),

indent(Level),print(’Exit: ’),print(H),nl)

; dsolve_atom(H,Level,ToTrace)

),

dsolve(T,Level,ToTrace).

debug(Call,ToTrace) :- Call=..[P|Args],

length(Args,Arity), member(P/Arity,ToTrace).

:- filter indent(dynamic).

indent(0).

indent(s(X)) :- print(’>’),indent(X).

:- filter dsolve_atom(nonvar,dynamic,static).

dsolve_atom(H,Level,TT) :-

clause(H,Bdy), dsolve(Bdy,Level,TT).

Basically, the annotation of dsolve and dsolveatom calls are exactly as before: calls to

dsolve are unfolded, calls todsolve atom are not. As the new predicates are concerned,

all calls to indent are markedmemo, and all calls toprint and nl are markedrescall.

Everything else is markedunfold or call.

Fordsolve atom(dapp([a,a,a],[b],[c],R),0,[]) we get the following almost

optimal code:

dsolve_atom__0(B,C,D,E,F) :-

dsolve_atom__1(C,D,G,F), dsolve_atom__1(B,G,E,F).

dsolve_atom__1([],B,B,C).

dsolve_atom__1([B|C],D,[B|E],F) :- dsolve_atom__1(C,D,E,F).

26

In fact, the extra last argument of both predicates can be easily removed by the FAR redundant

argument filtering post-processing of [81] which produces a Jones-optimal result:

dsolve_atom__0(A,B,C,D) :-

dsolve_atom__1(B,C,E),dsolve_atom__1(A,E,D).

dsolve_atom__1([],A,A).

dsolve_atom__1([A|B],C,[A|D]) :- dsolve_atom__1(B,C,D).

Again, is is not too difficult to see thatLOGEN together with the FAR post-processor [81]

produces a Jones-optimal result for every object programP and callC, provided that none of the

predicates reachable fromC are traced.

For dsolve atom(dapp([a,a,a],[b],[c],R),0,[app/3]) we get the follow-

ing very efficient tracing version of our object program, where the debugging statements have

been weaved into the code. This specialised code now runs with minimal overhead, and there is

no more runtime checking whether a call should be traced or not:

dsolve_atom__0(B,C,D,E,F) :-

indent__1(F),print(’Call: ’),print(app(C,D,G)),nl,

dsolve_atom__2(C,D,G,s(F)),

indent__1(F),print(’Exit: ’),print(app(C,D,G)),nl,

indent__1(F),print(’Call: ’),print(app(B,G,E)),nl,

dsolve_atom__2(B,G,E,s(F)),

indent__1(F),print(’Exit: ’),print(app(B,G,E)),nl.

indent__1(0).

indent__1(s(B)) :- print(’>’),indent__1(B).

dsolve_atom__2([],B,B,C).

dsolve_atom__2([B|C],D,[B|E],F) :-

indent__1(F),print(’Call: ’),print(app(C,D,E)),nl,

dsolve_atom__2(C,D,E,s(F)),

indent__1(F),print(’Exit: ’),print(app(C,D,E)),nl.

Running the specialised program fordsolve atom 0([a,b,c],[],[d],R,0) , corre-

sponding to the calldsolve atom(dapp([a,b,c],[],[d],R),0,[app/3]) to the

original program, prints the following trace:

| ?- dsolve_atom__0([a,b,c],[],[d],R,0).

Call: app([],[d],_837)

Exit: app([],[d],[d])

27

Call: app([a,b,c],[d],_525)

>Call: app([b,c],[d],_1341)

>>Call: app([c],[d],_1601)

>>>Call: app([],[d],_1891)

>>>Exit: app([],[d],[d])

>>Exit: app([c],[d],[c,d])

>Exit: app([b,c],[d],[b,c,d])

Exit: app([a,b,c],[d],[a,b,c,d])

R = [a,b,c,d] ?

yes

6.0.4 Some experimental results

We now present some experimental results for specialising thesolve anddsolve interpeters.

The results are summarised in Table 1. The results were obtained on a Powerbook G4 running at

1 Ghz with 1Gb RAM and using SICStus Prolog 3.10.1.

The partition4 object program calls append to partition a list into 4 identical sublists,

and has been run for a list of 1552 elements. Thefibonacci object program computes the

Fibonacci numbers in the naive way using peano arithmetic. This program was benchmarked for

computing the 24th Fibonacci numbers. Exact queries can be found in the DPPD library [71].

The FAR filtering [81] has not been applied to the specialised programs. The time needed to

generate and run the generating extensions was negligible (more results, with full times can be

found later, for more involved interpreters where this time is more significant).

Table 1: Specialisingsolve anddsolve usingLOGEN

object program solve specialised speedup dsolve specialised speedup

partition4 350 ms 200 ms 1.75 1590 ms 220 ms 7.23

fibonacci 890 ms 170 ms 5.24 4670 ms 180 ms 25.94

6.0.5 Adding more functionality

It should be clear how one can extend the above logic program interpreters. A good exercise is to

add more logical connectives, such as disjunction and implication, to the debugging interpreter

dsolve and then see whether one can obtain something similar to the Lloyd-Topor transfor-

mations [84] automatically by specialisation (with the added benefit that debugging can still be

28

performed at the source level).

We will now show how one can handle interpreters for other programming paradigms. In

such a setting variables and their values may have to be stored in some environment structure

rather than relying on the Prolog variable model. This will raise a new challenge, which we

tackle next.

7 More Sophisticated Binding-Types

So far we have come by with just three binding types for arguments: static, dynamic, and non-

var. The latter denotes a simple kind of so-calledpartially static data [59]. For more realistic

programs, however, it is often essential to be able to deal with more sophisticated partially static

data. For example, interpreters often have an environment, and at specialisation time we may

know the actual variables store in the environment but not their value. Take the following sim-

ple interpreter for arithmetic expressions using addition, constants and variables whose value is

stored in an environment:

int(cst(C),_E,C).

int(var(V),E,R) :- lookup(V,E,R).

int(+(A,B),E,R) :- int(A,E,Ra), int(B,E,Rb), R is Ra+Rb.

lookup(V,[(V,Val)|_T],Val).

lookup(V,[(_Var,_)|T],Res) :- lookup(V,T,Res).

A typical query to the above program would be

| ?- int(+(var(a),var(b)),[(a,1),(b,3),(c,5)],Res).

Res = 4 ?

yes

Now, if at specialisation time we know the variables of the environment list but not their

value, this would be represented by an atom to specialise:

int(+(var(a),var(b)),[(a,),(b,),(c,)],R) .
We cannot declare the environment as static and the best we can do, given the binding types

we have seen so far, is to declare the environment as nonvar:

:- filter int(static,nonvar,dynamic).

Unfortunately, this means thatLOGEN will replace [(a,),(b,),(c,)] by [|] ,

hence leading to suboptimal specialisation. For example, we cannot unfoldlookup because

we now no longer know the length of the environment.

29

7.1 Binding-Time improvements and bifurcation

One way to overcome such limitations is often to rewrite the program to be specialised into

a semantically equivalent program which specialises better, i.e., in which more arguments can

be classified as static and/or more calls can be unfolded. This process is calledbinding-time

improvement, see, e.g., Chapter 12 of [59].

One simple binding-time improvement for this particular problem is to define an auxilary

predicate as follows:

aux(Expr,A,B,C,Res) :- int(Expr,[(a,A),(b,B),(c,C)],Res).

We can now fully unfold all calls toint andlookup and declare the arguments ofaux as

follows:

:- filter aux(static,dynamic,dynamic,dynamic,dynamic).

However, this solution is rather ad-hoc and only works because the above interpreter is non-

recursive and hence no calls toint have to be memoised. Hence, this solution can only work in

special circumstances.

A more principled solution, is to apply a binding-time improvement sometimes calledbi-

furcation [23, 96]. This consists of splitting the environment into two parts (the static and the

dynamic part) and then rewriting the interpreter accordingly. Here, a solution is to split the envi-

ronment into two lists: a static one containing the variable names and a dynamic list containing

the actual values. We would then rewrite our interpreter as follows:

:- filter int(static,static,dynamic,dynamic).

int(cst(C),_E,_E2,C).

int(var(V),E,E2,R) :- lookup(V,E,E2,R).

int(+(A,B),E,E2,R) :- int(A,E,E2,Ra), int(B,E,E2,Rb), R is Ra+Rb.

:- filter lookup(static,static,dynamic,dynamic).

lookup(V,[V|_],[Val|_],Val).

lookup(V,[_|T],[_|ValT],Res) :- lookup(V,T,ValT,Res).

We can now fully unfold all calls toint and lookup . One could also decide not to un-

fold the calls toint or to lookup(V,E,E2,R) without much loss of specialisation, and the

technique would also work for a recursive interpreter.

There are however several problems with this approach:

– it can be very cumbersome and errorprone to rewrite the program

30

– for every different annotation we may have to rewrite the program in a different way

– if the dynamic and static data are not as neatly separated as above, it can be non-trivial to

find a proper separation

– the final result is not always “optimal”. E.g., in the example above the information that the

variable list and the value list must be of the same length is no longer explicit, resulting in

a suboptimal residual program.
For example, specialising forlookup(b,[a,b,c],[1,X,Y],Res) gives:

%%% lookup(b,[a,b,c],[1,X,Y],Res) :- lookup__0([1,X,Y],Res).

%%% lookup(b,[a,b,c],A,B) :- lookup__0(A,B).

lookup__0([B,C|D],C).

This is less efficient than the result we will obtain later below, mainly because the value list

has still to be deconstructed and examined at runtime (via the unification with[B,C|D]).

Luckily, LOGEN provides a better way of solving this problem by allowing the user to define

their own binding-types. For the interpreter above we would like to be able to define a custom

binding-type describing a list of pairs whose first element is static and the second dynamic. In

the rest of this section we formalise and describe how this can be achieved.

7.2 Formal Definition of Binding-Types

In what follows, we introduce the notion of abinding-typeto characterise partially instantiated

specialisation-time values in a more precise way. Like a traditional type in logic programming

[4], a binding-type is conceptually defined as a set of terms closed under substitution and repre-

sented by a term constructed fromtype variablesandtype constructorsin the same way that a

data term is constructed from ordinary variables and function symbols. However, to characterise

specialisation-time values rather than run-time values, we assume three predefined, atomic types,

i.e. static, dynamicandnonvar(∈ C).
Formally, atypeis thus

– either atype variable,

– a term of the formstatic , dynamic , or nonvar ,

– a term of the formterm(σ) whereσ = f(τ1, . . . , τn) andf is a function symbol of arity

n ≥ 0 andτi are types,

– or a term of the formtype(τ) whereτ consists of atype constructorof arity n ≥ 0

applied ton types.

31

The use of theterm andtype tags allows the set of function symbols and type constructors

to overlap and avoids cumbersome renamings. We will introduce some shorthand notations

below. Formally, new types can now be defined as follows:

Definition 7.1 A type definitionfor a type constructorc of arity n is of the form:

:- type c(V1, . . . , Vn) ---> (τ1 ; . . . ; τk).

with k ≥ 1, n and whereV1, . . . , Vn are distinct type variables, andτi are types which only

contain type variables in{V1, . . . , Vn}.
A type systemΓ is a set of type definitions, exactly one for every type constructorc different

from static , dynamic , andnonvar . We will refer to the type definition forc in Γ by Def Γ(c).

For convenience,LOGEN also accepts the following shorthand notations as types:

– a function symbolf of arity n ≥ 0 applied ton types, provided thatn = 0 ⇒ f 6∈
{static, dynamic, nonvar} andn = 1⇒ f 6∈ {type, list, term}. This is then equivalent

to the typeterm(f (τ1, . . . , τn)) .
– or a term of the formlist(τ) whereτ is a type. This is equivalent totype(list(τ)) ,

where the type constructorlist is pre-defined as follows:
:- type list(T) ---> [] ; [T | list(T)].

We will refer to the type definition forc in Γ by Def Γ(c).

We definetype substitutionsto be finite sets of the form{V1/τ1, . . . , Vk/τk}, where everyVi

is a type variable andτi a type. Type substitutions can be applied to types (and type definitions) to

produceinstancesin exactly the same way as substitutions can be applied to terms. For example,

list(V){V/static} = list(static). A type or type definition is calledgroundif it contains no type

variables.

In general, a specialisation-time value (or data term) can be characterised by a number of

binding-types. This relation is made explicit by atype judgment.

Definition 7.2 We now definetype judgementsrelating terms to types in the type systemΓ.

– t : dynamic holds for any termt

– t : static holds for any ground termt

– t : nonvar holds for any non-variable termt

– t : type (c(τ ′1, . . . , τ
′
k)) if there exists a ground instance of the type definitionDef Γ(c)

which has the form:- type c(τ ′1, . . . , τ
′
k)--> (. . . ; τ ; . . .) and wheret : τ

– f(t1, . . . , tn) : term (f(τ1, . . . , τn)) if ti : τi for 1 ≤ i ≤ n.

32

Note that our definitions guarantee that types are downwards-closed (i.e.,t : τ ⇒ tθ : τ).

A few examples are as follows:[] : static, [] : struct([]), [] : list(static), [] : list(dynamic),

s(0) : static hence[s(0)] : list(static), X : dynamic and Y : dynamic hence[X, Y] :

list(dynamic).

7.3 Using binding-types

Basically, the three basic binding types are now used to control generalisation and filtering within

the offline partial deduction algorithm of Section 3.2 as follows:

– an argument marked asdynamicis replaced by a fresh variable and there will be an argu-

ment for it in the residual predicate;

– an argument marked asstatic is not generalised, and there will be no argument for it in the

residual predicate;

– an argument marked asnonvar the top-level function symbol willl be kept, but all of its

arguments replaced by fresh variables. There will be one argument in the residual predicate

per argument of the top-level function symbol.

– an argument marked asterm(f(τ1, . . . , τn)) will basically be dealt with like thenonvar

case, except that the top-level function symbol has to bef and every sub-argument off

will be recursively generalised and filtered according to the binding-typesτi.

– for an argument marked astype(t(τ1, . . . , τn)) the type definition oft will be looked at and

the argument will be treated according to the body of the definition. For disjunctions like

τ1 ; τ2 the algorithm will first attempt to applyτ1, and if that is not successful it will apply

τ2.

For example, given the declaration:- filter p(static,dynamic,nonvar). the call

p(a,[b],f(c,d)) will be generalised intop(a, ,f(,)) and the residual version of the call

will be something likep 1([b],c,d) .

Given the declaration:- filter p(static,dynamic,term(f(static,dynamic))).

the call will be generalised intop(a, ,f(c,)) and the residual version will be something like

p 2([b],d) .

Finally, using:- filter p(static,list(dynamic),static). as filter declaration,

this call will be generalised intop(a,[],f(c,d)) with the residual version beingp 3(b) .

Let us now try to tackle the original arithmeticint/3 interpreter using the more refined

binding-types. First, we define a new type, describing a list of pairs whose first element is static

and whose second element is given by a parameter of the type constructor (so as to show how

parameters can be used):

33

:- type bind_list(X) ---> list((static,X)).

For the interpreter we can now simply provide the following filter declarations:

:- filter int(static,type(bind_list(dynamic)),dynamic).

:- filter lookup(static,type(bind_list(dynamic)),dynamic).

While these annotations and types were derived by hand, we believe that it is possible to

derive them by adapting the polymorphic binding-time analysis for Mercury presented in a com-

panion paper [122]. For more details see [122].

Let us now useLOGEN to specialise the originalint/3 interpreter for the query

lookup(b,[(a,1),(b,X),(c,Y)],Res) . This gives the following specialised code:

%%% lookup(b,[(a,A),(b,B),(c,C)],D) :- lookup__0(A,B,C,D).

lookup__0(B,C,D,C).

This code is much more efficient, as linear time lookup of variable bindings has been replaced

by basically constant time lookup in the argument list.

Let us now specialise the interpreter for a full-fledged query:

int(+(cst(3),+(+(cst(2),cst(5)),+(var(y),+(var(x),var(y))))),

[(a,1),(b,2),(x,3),(y,4)],X) . This produces the following satisfactory result, where the

arithmetic expression has been fully compiled into Prolog code.

int__0(B,C,D,E,F) :- G is (2 + 5), H is (D + E),

I is (E + H), J is (G + I), F is (3 + J).

One can see that the reductionG is (2+5) has not been performed by the specialiser. This

shows an aspect where an online specialiser could have fared better, as it could have realised that,

for this particular instruction, the right hand side of theis/2 was actually known (even though

it is in general dynamic). Still, it is possible to instructLOGEN to try to perform calls using the

so-calledsemicallannotation [78]. Another alternative is to binding-time improve the program

by inserting an explicit if-statement, changing the 3rd clause of the interpreter as follows:

int(+(A,B),E,E2,R) :- int(A, E, E2, Ra)︸ ︷︷ ︸
unfold

, int(B, E, E2, Ra)︸ ︷︷ ︸
unfold

,

(ground((Ra, Rb))︸ ︷︷ ︸
call

-> R is Ra + Rb︸ ︷︷ ︸
call

; R is Ra + Rb︸ ︷︷ ︸
rescall

).

where the if-statement itself is marked static and performed at specialisation time. The re-

sulting specialised interpreter is then:

int__0(B,C,D,E,F) :- G is (D + E), H is (E + G),

I is (7 + H), F is (3 + I).

34

7.4 Revisiting Vanilla again

Finally, let us present a third solution for specialisng the Vanilla self-interpreter from Section 5.3.
Indeed, we can now use the following more precise binding types on the original interpreter, thus
ensuring that relevant information will be kept by the generalisation:

:- type vexp ---> (empty ; and(type(vexp),type(vexp))

; type(predcall)).

:- type predcall ---> (app(dynamic,dynamic,dynamic)

; dapp(dynamic,dynamic,dynamic,dynamic)).

:- filter solve(type(vexp)).

This will not give full Jones optimality, due to the bad way in which the originalsolve is

written, but it will at least give much better specialisation than was possible using juststatic,

dynamic, andnonvar.

8 Lambda Interpreter

Based on the insights of the previous section, we now tackle a more substantial example. We

will present an interpreter for a small functional language. The interpreter still leaves much to be

desired from a functional programming language perspective, but the main purpose is to show

how to specialise a non-trivial interpreter for another programming paradigm. The interpreter

will use an environment, very much like the one in the previous section, to store values for

variables and function arguments. The full annotated source code is available with theLOGEN

distribution athttp://www.ecs.soton.ac.uk/˜mal/systems/logen.html .

To keep things simple, we will not use a parser but simply use Prolog’s operator declarations

to encode the functional programs. The following shows how to encode the fibonacci function

for our interpreter:

:- op(150,fx,$). /* to indicate variables */

:- op(150,fx,&). /* to indicate constants */

:- op(150,yfx,’===’). /* to define functions */

:- op(150,yfx,@). /* to do calls to defined functions */

:- op(250,yfx,’->’). /* for sequential composition */

fib === lambda(x,if($x = &0, &1,

if($x = &1, &1,

(fib @ ($x - &1) + fib @ ($x - &2))))).

35

The source code of the interpreter is as follows. As usual in functional programming, one

distinguishes between constructors (encoded usingconstr/2) and functions (encoded using

lambda/2). Functions can be defined statically using the=== declarations which can then be

extracted using thefun/1 expression. One can use@as a shorthand to call such defined func-

tions. One can introduce local variables using thelet/3 expression. The predicateeval/3

computes the normal form of an expression. The rest of the code should be pretty much self-

explanatory. To keep the code simpler, we have not handled renaming of the arguments of lambda

expressions (it is not required for the examples we will deal with).

eval(’&’(C),_Env,constr(C,[])). /* 0-ary constructor */

eval(constr(C,Args),Env,constr(C,EArgs)) :- l_eval(Args,Env,EArgs).

eval(’$’(VKey),Env,Val) :- /* variable */ lookup(VKey,Env,Val).

eval(’+’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),

eval(Y,Env,constr(VY,[])), XY is VX+VY.

eval(’-’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),

eval(Y,Env,constr(VY,[])), XY is VX-VY.

eval(’*’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),

eval(Y,Env,constr(VY,[])), XY is VX*VY.

eval(let(VKey,VExpr,InExpr),Env,Result) :- eval(VExpr,Env,VVal),

store(Env,VKey,VVal,InEnv), eval(InExpr,InEnv,Result).

eval(if(Test,Then,Else),Env,Res) :- eval_if(Test,Then,Else,Env,Res).

eval(lambda(X,Expr),_Env,lambda(X,Expr)).

eval(apply(Arg,F),Env,Res) :- eval(F,Env,FVal),

eval(Arg,Env,ArgVal), eval_apply(ArgVal,FVal,Env,Res).

eval(fun(F),_,FunDef) :- ’===’(F,FunDef).

eval(’@’(F,Args),E,R) :- eval(apply(Args,fun(F)),E,R).

eval(print(X),Env,FVal) :- eval(X,Env,FVal),print(FVal),nl.

eval(’->’(X,Y),Env,Res) :- /* seq. composition */

eval(X,Env,_), eval(Y,Env,Res).

eval_apply(ArgVal,FVal,Env,Res) :- rename(FVal,Env,lambda(X,Expr)),

store(Env,X,ArgVal,NewEnv), eval(Expr,NewEnv,Res).

rename(Expr,_Env,RenExpr) :- RenExpr=Expr. /* sufficient for now */

l_eval([],_E,[]).

l_eval([H|T],E,[EH|ET]) :- eval(H,E,EH), l_eval(T,E,ET).

36

eval_if(Test,Then,_Else,Env,Res) :- test(Test,Env), !, eval(Then,Env,Res).

eval_if(_Test,_Then,Else,Env,Res)) :- eval(Else,Env,Res).

test(’=’(X,Y),Env) :- eval(X,Env,VX),eval(Y,Env,VX).

store([],Key,Value,[Key/Value]).

store([Key/_Value2|T],Key,Value,[Key/Value|T]).

store([Key2/Value2|T],Key,Value,[Key2/Value2|BT]) :-

Key\==Key2,store(T,Key,Value,BT).

lookup(Key,[Key/Value|_T],Value).

lookup(Key,[Key2/_Value2|T],Value) :-

Key\==Key2,lookup(Key,T,Value).

8.1 Handling the cut

One may notice that the above program does use a cut in the code foreval if . Previous version

of LOGEN did not support the cut, but it turns out that specialising the cut is actually very easy

to do: basically all one has to do is to simply mark the cuts using either thecall or rescall

annotations we have already encountered. It is of course up to the annotator to ensure that this is

sound, i.e., one has to ensure that:

– if a cut is markedcall , then whenever it is reached and executed at specialisation time

the calls to the left of the cut will never fail at runtime.

– if a cut is marked asrescall within a predicatep, then no calls top are unfolded. One

can relax this condition somewhat, e.g., one may to be able to unfold such a predicatep

if all computations are deterministic (like in our functional interpreter) but one has to be

very careful when doing that.

These conditions are sufficient to handle the cut in a sound, but still useful manner.

8.2 Annotations

To be able to specialise this interpreter we need the power ofLOGEN’s binding types. The struc-

ture of the environment is much like in the previous section, but here we have more information

about the structure of values that the interpreter manipulates and stores. Basically, values are

encoded usingconstr/2 , whose first argument is the symbol of the constructor being encoded

and the second argument is a list containing the encoding of the arguments. A lambda expression

is also a valid value.

37

:- type value_expression =

(constr(dynamic,list(type(value_expression))) ;

lambda(static,static)).

:- type env = list(static / type(value_expression)).

We can now annotate the calls of our program. Basically, all built-ins have to be marked

rescallbut all user calls can be marked asunfold except for the call:

eval apply(ArgVal,FVal,Env,Res) .
We thus supply the following filter declaration:

:- type result = (type(value_expression) ; dynamic).

:- filter eval_apply(type(result),type(result),type(env),dynamic).

Note that we use a union type forresult , because often (but not always) we will have

partial information about the result types. Union types are thus a way to allowLOGEN to make

some online decisions: during specialisation it will check whether the first and second argument

of eval apply match thevalue expression type and only if they do not will it treat the

arguments as dynamic.

8.3 Experiments

When specialising this program for, e.g., calling thefib function we get something very similar

to the (naive) fibonacci program one would have written in Prolog in the first place:

%% eval_apply(constr(A,[]),lambda(x,if($x= &0,&1,if($x= &1,&1,

%% fib@($x- &1)+fib@($x- &2)))),[x/constr(B,[])],C) :-

%% eval_apply__2(A,B,C).

eval_apply__2(0,B,constr(1,[])) :- !.

eval_apply__2(1,B,constr(1,[])) :- !.

eval_apply__2(B,C,constr(D,[])) :-

E is (B - 1), eval_apply__2(E,B,constr(F,[])),

G is (B - 2), eval_apply__2(G,B,constr(H,[])), D is (F + H).

This specialised code runs about 14 times faster than the original, and even running all of

LOGEN, the generating extension and then the specialised program is still 7 times faster than

running the original program. Full details of this experiment can be found in Table 2.
Furthermore, speedups are likely to get much bigger for more complicated programs, with

more functions and more arguments and variables. Indeed, in Table 2 we have also specialised
the interpreter for the following slightly bigger functional programloop fib which has extra
loop variables, already resulting in a bigger speedup:

38

loop_fib === lambda(cur,let(cur1,$cur + &1, let(cur2, $cur1 + &1,

let(cur3, $cur2 + &1, if(($cur = &22),

(fib @ ($cur)),

(print(constr(fibonacci,[$cur,fib @ ($cur)]))

-> (loop_fib @ ($cur1)))))))).

Note thatLOGEN has only to be run once for theeval interpreter; the same generating

extension can then be used for any functional programs. Similarly, the specialised code can then

be used for any call to the functional program and the generating extension only has to be run

once per functional program that is compiled.5

Table 2: Specialisingeval usingLOGEN

function eval cogen genex specialised speedup speedup speedup

call runtime time time runtime (incl. gx) (incl. gx,cogen)

fib(24) 1050 ms 60 ms 15ms 75 ms 14.0 11.7 7

loop fib(0) 2030 ms 60 ms 20ms 90 ms 22.6 18.5 11.9

9 Discussion and Conclusion

Probably the most closely related work is [58] which treats untype first-order functional lan-

guages, and gives a list of recommendations on how to write interpreters that specialise well.

Even though [58] does of course not address the specific issues that arise when specialising logic

programming interpreters, many points raised in [58] are also valid in the logic programming

setting. For example, [58] suggests to “Write your interpreter compositionally” which is exactly

what we have done for our lambda interpreter in Section 8 and which makes it much easier to

ensure termination of the specialisation process. [58] also warns of “data structures that contain

static data, but can grow unboundedly under dynamic control” (such as a stack). The environ-

ment in the lambda interpreter contained static data but its length was fixed and so caused no

problem; however if we were to add an activation stack to our interpreter in Section 8 we would

have to resort to the recipes suggested in [58].

5In the speedup figures we suppose that the time needed for consulting is the same for the original and specialised

program. In our experiments consulting the specialised program was actually slightly faster, but this may not always

be the case.

39

We have already discuss related work in the logic programming community [105, 117, 114,

13, 21, 67, 123, 72]. In the functional community there has been a lot of recent interest in Jones

optimality; see [57, 85, 116, 38]. For example, [38] shows theoretically the interest of having a

Jones-optimal specialiser and the results should also be relevant for logic programming.

As far as future work is concerned, the most challenging topic is probably to provide a fully

automatic binding-time analysis. As already mentioned, the binding-time analysis in [122] may

prove to be a good starting point. Still, it is likely that at least some user intervention will be

required in the foreseeable future to specialise more complicated interpreters.

Another avenue for further investigation is to move from interpreters to program transformers

and analysers. A particular kind of program transformer is of course a partial evaluator, and one

may wonder whether we can specialise, e.g., the code from Section 3. Actually, it turns out we

can now do this and, surprisingly or not, the specialised specialisers we obtain in this way are

quite similar to the one generated byLOGEN directly. This issue is investigated in [22], proving

some first encouraging results.

In conclusion, we have shown how to use offline specialisation in general andLOGEN in

particular to specialise logic programming interpreters. We have shown how to obtain Jones-

optimality for simple self-interpreters, as well as for more involved interpreter such as a debug-

ger. We have also shown how to specialise interpreters for other programming paradigms, using

more sophisticated binding-types. We have also presented some experimental results, highlight-

ing the speedups that can be obtained, and showing that theLOGEN system can be useful basis for

generating compilers for high-level languages. Indeed, we soon hope to be able to applyLOGEN

to derive a compiler from the interpreter in [74], and then compiling high-level B specifications

into Prolog code for fast animation and verification.

40

Part II

Modular Specialisation
In this part of the deliverable, we describe how we have adapted theLOGEN partial evaluation

system in particular in order to specialise modular programs (and specialising them in a modular

fashion, i.e., allowing one to seperately specialise different modules).

10 Introduction

Making a specialisation tool suite modular poses interesting challenges. In traditional compi-

lation, modules are divided into a public part (interface) and a private part (implementation).

If user code changes in the implementation part, no other module needs recompilation. If the

interface part of a module changes, only the modules that imported the modified interface need

recompilation. On the other hand, in most approaches to specialisation, even with no change of

any interface, implementation changes can have two non-local influence:

• they can influence the compilation of codecalledby the modified code. This is typical to

specialisation: adding or changing calls will change the way the called code needs to be

specialised.

• they can also influence the compilation of code thatcalls the modified code. This is only

the case if cross-module unfolding is performed; it is similar to cross-module inlining of

function calls in traditional compilers.

We will not study the second case in detail in the sequel because it is relatively well-known. It

influences recompilation in the same direction as interface changes does, i.e. from callee to caller

modules. It can theoretically be accounted for by considering the whole inlined predicate body

as part of the interface for the module. In practice it can be implemented by explicit dependency

tracking.

The first case is more interesting because it means that simply compiling each module sep-

arately in some correct order is not sufficient. In the sequel we describe howLOGEN has been

extended to support this kind of modular compilation.

41

11 Making specialisation modular

We have adapted theLOGEN partial evaluation system to specialise modular programs incremen-

tally. In analogy with modular compilation, we have designed a scheme that allows specialisation

to be performed one module at a time, while tracking sufficient dependency information to know

which modules need respecialisation after some of the source files have been modified.

11.1 Generating extension

LOGEN works by translating each source module (pl file) into agenerating extension(gx file)

containing the definition of specialising predicates: for each predicate for the source module,

the gx file has a corresponding predicate whose role is to generate a specialised version of the

original predicate. The predicate in the gx file has its name suffixed with “u” and an extra

argument “Code” that gets bound to the specialised Prolog code.

Consider, for example, the predicatemap(Goal, List1, List2) . LOGEN will pro-

duce in the generating extension a predicatemap_u(Goal, List1, List2, Code) . Its

role is to produce residual code: the call, say,map_u(q, [A,B,C], [d,e,f], Code)

will produceCode = (q(A,d), q(B,e), q(C,f)) . This code is then used to define a

specialised predicatemap__0(A,B,C) . (Specialised predicates get arbitrarily mangled names.)

The specialised code typically contains calls to other specialised predicates, for example

when specialising a predicatep that callsmap. This triggers a chain of specialisations that can

potentially sweep through the entire program, across modules, in an uncontrollable way.

However, if we disregard unfolding, then the specialised code should only contain acall to
specialised version of the predicates it uses, not actual code coming from these other predicates.
For example, the specialisation of

p(Goal, List) :- map(Goal, List, [hel,lo,world]).

for the call patternp(q, [A,B,C]) might beCode = map__0(A,B,C) , wheremap__0

is the predicate of the above example.

Thus, to build the specialised version of a predicate it is sufficient to know thenameof the

specialised predicates that we must call. The definition ofp__0 containing a call tomap__0

can be generated before the definition ofmap__0 itself.

So, to make specialisation modular, during the specialisation of a predicate we must limit

ourselves to looking up names of other predicates, or inventing new names if needed. A different

tool is used to control the process globally and specialise the called predicates.

42

11.2 Structure of the gx file

In the non-modular implementation ofLOGEN, the predicatefoo_u in the generating extension

was responsible for looking up the specialisation pattern in a memo table, and generating and

storing the corresponding code if it was not found in the memo.

These bookkeeping aspects have been dissociated from the specialisation process itself in the

module-aware version ofLOGEN. Each source code predicatefoo triggers the creation of three

predicates in the gx file:

• foo_request looks up the specialisation pattern in the memo table. If it is not found

there, a new mangled name is invented using a counter (e.g.foo__2) and saved for future

reference. No specialisation is actually performed.

• foo_u is the specialiser proper.

• foo_spec generates the code for a particular specialisation pattern by callingfoo_u

and writing the result at the proper location.

11.3 The memo and spec files

For bookkeeping,LOGEN creates for each pl source module two extra files: a memo file acting

as look-up table matching specialisation patterns to mangled names, and a spec file containing

the actual specialised predicates. The set of all spec files (and only them) constitutes the final,

fully specialised program.

foo(X,b) « foo__2(X)

foo/1
foo/2
:

bar/1
bar/2
:

M.memo

M.specM.pl

foo(a,X) « foo__1(X)

bar(a) « bar__1

:
:

:
:
:

:

foo__1(X):-
:
:

foo__2(X):-
:
:

Figure 6: Specialisation viamemoandspecfiles

For example, suppose we have a predicatefoo in a module M that calls predicatebar in

module N. To specialise it with a given pattern, we usefoo_spec in file M.gx . This call

requires the following information:

43

• theM.gx file, for foo_u , called byfoo_spec ;

• theN.gx file, for bar_request , called byfoo_u ;

• theN.memofile, wherebar_request looks up and possibly adds a mangled name for

the specific call pattern ofbar .

The actual specialisation ofbar is not performed, but the call tobar_request has recorded

this pattern inN.memo. The basic idea is thus to specialise predicates one module at a time. The

memo file records, besides the mangled names, which call patterns have been requested and

which ones have been done.

11.4 Module driver

Given that specialising a predicate in module M only requires the gx and memo files for the

modules directly used by M, it makes sense to specialise all predicates of M before proceeding

to another module. An external loop called the “module driver” loads theM.memofile and

enumerates all specialisation patterns that are marked as requested and not done. For each of

them, the procedure described in 11.3 is applied.

This may create new requested entries in the memo table of both M and other modules that

M directly depends on. The whole operation must thus be repeated until M reaches a fixed point

with only “done” entries left inM.memo. Then the procedure must be repeated for all modules

(which might sometimes create new entries inM.memoas well), until we reach a global fixed

point with only “done” entries left in all the memo files.

The entry points for this process are specified by the user. Specialisation propagates recur-

sively through the whole program, though the process is now modular: only one module and its

direct dependencies need to be loaded in memory and processed at a time, including a small set

of short memo files.

11.5 Example

This section expands the example of 11.3 with real code. It shows all the steps and the generated

Prolog code. Assume the source files of figures 7 and 8, which together define a matcher that

looks for a substringPat inside of a stringT.
Assume that the user (or some other part of the program) requests the specialisation pattern

match("xy", T) . A line similar to the following one is entered intom.memo:

memo_table(m, match("xy", T), match__0(T), requested).

44

:- use_module(n).

:- residual match/2.

:- filter match(static,dynamic):match.

logen(match, match(Pat,T)) :-

logen(memo, match1(Pat,T,Pat,T)).

Figure 7: Them.pl source file

:- residual match1/4.

:- filter match1(static,dynamic,static,dynamic):match1.

logen(match1, match1([],Ts,P,T)).

logen(match1, match1([A|Ps],[B|Ts],P,[X|T])) :-

logen(rescall, A\==B),

logen(memo, match1(P,T,P,T)).

logen(match1, match1([A|Ps],[A|Ts],P,T)) :-

logen(unfold, match1(Ps,Ts,P,T)).

Figure 8: Then.pl source file

LOGEN starts by generating gx files for all the involved source modules. These files are

a static translation of their corresponding source files; they do not depend on other modules.

Figure 9 shows the generated source ofmatch_u . Note the pattern of variables in the call to

match1_request , which corresponds to the call found in the originalmatch .

match_u(B,C,Code) :-

match1_request(B,C,B,C,Code).

Figure 9: Thematch u predicate inm.gx

We then specialise the modulem: we load the filesm.gx , m.memo, n.gx andn.memo (the

latter is currently empty) and iterate through the entries of thememo_table for the modulem

that are marked asrequested . This triggers a call tomatch_spec :

1. match_spec callsmatch_u to generate the residual code;

2. match_u callsmatch1_request defined inn.gx ;

3. match1_request invents a mangled name formatch1 , saymatch1__42 , and inserts

the following line inn.memo:

45

memo_table(n, match1("xy",T,"xy",U), match1__42(T,U), requested).

The residual code generated bymatch1_request is a call to this newly created predicate,

which match_spec writes into them.spec file. It finally marks the originally requested

specialisation pattern as “done”.

match__0(T) :-

match1_42(T,T).

Figure 10: The generated filem.spec

Becausen.memo contains a “requested” entry, specialisation must now proceed to module
n. This time we only need to loadn.gx and n.memo. The requested entry triggers a call
to match1_spec . The corresponding residual code will now be completely generated by re-
cursive calls tomatch1_u , which does not depend on external modules any more. Finally,
match1_spec generates the code of figure 11 and updates then.memo file to:

memo_table(n, match1("xy",T,"xy",U), match1__42(T,U), done).

which completes the specialisation.

match1__42([A|_], [_|B]) :-

x \== A,

match1__42(B, B).

match1__42([x,A|_], [_|B]) :-

y \== A,

match1__42(B, B).

match1__42([x,y|_], _).

Figure 11: The generated filen.spec

12 Tracking changes in the source

If the source code of a module M is modified, the following files are invalid:

• M.gx , which can easily be regenerated;

• M.spec , which must be thrown away;

46

• M.memo, which mustnotbe discarded: instead, we just mark all the entries as “requested”

again.

The purpose of keeping the memo file is to keep track of which predicates, and which spe-

cialisation patterns, the modules using M are asking for. All these patterns are still present in

M.memo.

After having invalidated as above all the files corresponding to changes in the source files,

then we can restart the specialisation process described in 11.4. This will only respecialise M,

unless M now asks for new specialisation patterns for predicates from other modules. This case

which is taken care of as above, without clearing any more gx, spec or memo file. For example,

say we change the definition ofmatch (see above) so that it now prints debugging information

when it is called. Then them.gx file will be regenerated, andmatch_spec will again call

match_u . This puts thewrite in the residual code, and then callsmatch1_request as

previously. This has the effect of generating a residual call to the samematch1__42 , because

the pattern did not change. The files for the modulen are not modified, andn will not have to be

specialised again.

12.1 Dead patterns

The process described above is robust in the sense that the set of spec files after respecialisation

is guaranteed to contain the optimal specialised code. However, it can contain dead code as well,

because no entry is ever removed from the memo files.

To continue the example of the previous section, if we had modifiedm.pl to change the call

pattern tomatch1 , then a newmatch1__43 would have been invented, and then implemented

in n.spec . Butn.memo andn.spec still mentionmatch1__42 , though it is no longer used.

In other words, with time, while the source undergoes modification, the set of specialisation

patterns only grows. It is likely that some of these patterns were requested by source code long

gone. The easier solution is from time to time to completely clean up all the spec and memo files

and start specialisation from scratch again.

The current implementation marks each memo file entry with an additional flag (“user” or

“internal”) to distinguish between entries explicitely requested by the user and entries merely

generated by the specialisation of other predicates. This allows the memo file to be cleaned up

without removing the “user” requested patterns.

47

13 Future work

We presented an approach to modular specialisation, which still has to be validated by large-

scale tests. Its implementation inLOGEN is not complete at the moment. The missing piece is

the module driver (11.4).

13.1 Unfolding

We outline below a possible technique to allow unfolding, i.e. inlining code across modules

during specialisation.

Each module can record (e.g. in the memo file) which other modules it contains code from.

More precisely, a module N is listed in M.memo exactly if a predicate from module N was

(directly or indirectly) unfolded into a specialised predicate written in M.spec.

This information is easy to collect at specialisation time, by adding to eachfoo_u predicate

in the gx files an additional argument through which it can return, in addition to the specialised

Prolog code, a list of modules of which this code contains specialised bits. Each predicatebar_u

in module N only has to make sure that N is indeed in the list. Thus iffoo_u directly calls

bar_u and sticks the code produced bybar_u into a larger piece of code, the module depen-

dency list will contain both M (byfoo_u) and N (bybar_u). Then a reference to M and N are

recorded intoM.memowhen the resulting code is written toM.spec .

When the user modifies the source of a module M, we can simply clear the spec files of all

the modules whole memo file contains a reference to M, instead of justM.spec .

While causing potentially large-scale respecialisation, this approach is probably acceptable

because unfolding across modules is expected to be limited.

13.2 Related work

Modular specialisation presents no particular theoretical challenge; the practical challenge is to

manage the dependencies correctly, using appropriate internal data. While modularisation can

be seen as a nice and useful programming language feature, it is common to use it to minimize,

for large programs, the increasingly large amount of time needed to perform static analysis like

specialisation or compilation.

There is no general recipe to make a given static analyser modular. The solution presented

here is specific to theLOGEN system. Many other kinds of systems (compilers, specialisers, type

inferencers...) are capable of modular analysis.

48

13.3 Conclusion

We expect to be able to validate the approach presented in the present chapter on large applica-

tions. Our solution is purely practical; it has no theoretical draw-backs like loss of precision. The

currently implemented part limits unfolding to intra-module calls, but we hope to be able to lift

even this restriction.

49

Part III

CLP Specialisation
This part of the delivarable demonstrates that thecogen approach is also applicable to the spe-

cialisation of constraint logic programs and leads to effective specialisers. We present the basic

specialisation technique for CLP(R) and CLP(Q) programs and show experimental results using

theLOGEN system.

14 Introduction

Program specialisation, also called partial evaluation (see, e.g., [59]), is an automatic technique

for program optimization. Specialisation optimises programs by distinguishing between static

and dynamic input data. Using the static data, parts of the original program can be evaluated

at specialisation time, resulting in a hopefully more efficient residual program. The residual

program is only dependent on the dynamic data (Fig. 12(a)) and can offer a substantial speed

increase.

Despite some recent interest, there has been surprisingly little work on specialization of con-

straint logic programs. Indeed after some work in the early 90s [108, 107] there has been a long

period of relative inactivity, especially compared to the success that constraint logic program-

ming has encountered for practical applications. Only very recently, new research is emerging

[27, 28, 100, 118] which is trying to tackle this difficult but practically relevant problem.

This paper presents an introduction to program specialisation of Constraint Logic Programs

(CLP) and presents our newly developed technique and its implementation. We illustrate our

technique and implementation on several examples and we also present experiments which eval-

uate the power and efficiency of our implementation. Our work presents the first offline spe-

cialiser for CLP, and it is also the first compiler generator for CLP. Our goal was to develop a

system with fast and predictable specialisation times, and plan to integrate the tool into the Ciao

Prolog system. To ensure wide applicability we also cater for non-declarative features.

14.1 Offline vs Online Specialisation

In an offline specialiser almost all the control decisions are taken before the actual specialisa-

tion phase in a preliminary analysis phase referred to asbinding-time analysis(BTA). Online

partial evaluators typically do not make use of such a preliminary phase phase but instead take

their decisions on the fly, using the actual values of the static data. Note, however, that offline

50

Data

P

P’

Output

Static
Data

Dynamic

(a) The specialised program P’ is only de-

pendent on the dynamic input

Annotation

Data
Specialised
Program P’

Cogen

Genex (P)

Program P

Static

(b) Overview of the Cogen approach.

Given a program and an annotation the

Cogen produces a Genex, or specialised

specialiser

Figure 12: Program Specialisation

partial evaluators maintain — during specialisation — a list of calls that have been previously

specialised or are pending [59]. This is calledmemoisation.

Online partial evaluators are in principle more powerful, as they base their control decisions

on more precise information. However, one of the big advantages of the offline approach is the

efficiency of the specialisation process itself: indeed, once the annotations have actually been

derived, the specialiser is relatively simple, and can be made to be very efficient, since all deci-

sions concerning local control are made before and not during specialisation. Other advantages

of the offline approach is the better predictability of the output, i.e., it is easier to predict be-

forehand (based on the outcome of the BTA) what will happen during the specialisation phase.

The simplicity of the specialiser also means that it is much easier to achieveself-application,

i.e., specialise the specialiser itself using partial evaluation. Self-application enables a partial

evaluator to generate so-called “compilers” from interpreters using the second Futamura pro-

jection and a compiler generator (cogen) using the third Futamura projection (see, e.g., [59]).

However, the actual creation of thecogen according to the third Futamura projection is not of

much interest to users sincecogen can be generated once and for all when a specialiser is given.

This is known as thecogen-approachand has been successfully applied in many programming

paradigms [8, 104, 50, 52, 9, 3, 78].

15 Logen

LOGEN [78] is an offline specialiser for logic programs which uses thecogen approach. Given

an annotated version of program P, a(P), specifying for example which inputs will be static

and dynamic,LOGEN produces a specialised specialiser, or Genex (generating extension) for the

51

program P. Running the Genex with particular values for the static inputs produces the specialised

program (Fig. 12(b)). As the Genex is not dependent on actual data values it can be reused to

produce different specialised programs. Using this approach the efficiency of the specialisation

process is greatly improved in situations where the same program is specialised multiple times.

The annotated version a(P) employed byLOGEN contains:

1. for every predicate, a description of which arguments will bestaticor dynamic. It is also

possible to only annotate certain parts of arguments as static.

2. for every predicate call in the program, whether this call should beunfoldedor memoised,

i.e., whether it should be performed within the specialiser or whether the call should be

performed at runtime. In the former case, the Genex generated byLOGEN will replace

(during specialisation) this predicate call in the body by its definition, performing all the

needed substitutions. In the latter case, the predicate call will begeneralisedby replacing

all parts which are marked asdynamicby a fresh variable. It will then be checked whether

the generalised call has been encountered before. If it has not been encountered before, the

original program will be specialised for this generalised call.

15.1 Logen for CLP(R) and CLP(Q)

Constraint Logic Programming over the real domain, CLP(R) , and the rational domain, CLP(Q)

, offer a powerful mathematical solver for the domains of real and rational numbers. The CLP(R)

and CLP(Q) schemes used in this document and related tool are instances of the general Con-

straint Logic Programming Scheme introduced by Jaffaret al. [55].

Specialisation of CLP(R) or CLP(Q) programs using existing offline specialisation tech-

niques causes problems as the program state is not limited to the goal stack but also populates

a constraint store. This means thatLOGEN [78] cannot properly handle CLP programs. Indeed,

LOGEN either performsall the constraint processing at specialisation time, orall the constraint

processing at runtime — it is not possible topartially evaluateconstraints. This is obviously a

serious limitation and with the increasing adoption of CLP languages by industry it is important

that tools allow for efficient specialisation of CLP programs.

Based upon the currentLOGEN system we have thus developed a new version ofLOGEN that

can handle full CLP(R) or CLP(Q) programs. It supports constraint specialisation across pred-

icates by memoising constraints and retains the full power of the originalLOGEN to specialise

ordinary logic programming constructs. In the next section we show how this is achieved.

52

16 Specialisation of pure CLP(R) and CLP(Q) Programs

In this section we explain how the two main operations ofLOGEN, unfolding and memoisation,

are adapted in order to handle CLP.

16.1 Unfolding and Simplification

The classical unfold transformation replaces a predicate call with the predicate body, perform-

ing all the needed substitutions. In CLP(R) the state of uninstantiated variables is held in the

constraint store, after unfolding the residual constraints have to be extracted from the constraint

store, projected and simplified and then added back into the residual program.

Let us examine the trivial CLP(R) program in Fig. 13, which multipliesX by an integerY to

giveR. Fig. 14 demonstrates how to unfold this program for the callmultiply(X,2,R) . After

each recursive call to multiply, a new constraint is added to the constraint store (C1..3). After the

unfolding has completed the final constraints in C3 and variable assignments can be extracted.

These are then projected onto the variablesX, R of the top-level query and simplified to produce

the following residual program:

multiply(X,2.0,R) :- {R = 2.0 * X).

Careful attention must be paid to the simplification of the residual constraints. During un-

folding an entailment check ensures that redundant clauses are removed from the specialised

program. [87] demonstrates the optimizations available through constraint reordering and re-

moval when the removal does not effect control flow. If a constraint is likely to fail and hence

cause backtracking then it should be added to the constraint store as early as possible to ensure

less time is wasted in unneeded calculations.

multiply(_,Y,R) :- {Y = 0.0, R = 0.0}.

multiply(X,Y,R) :- {Y > 0 ,Y1 = Y -1, R = X + R1},

multiply(X,Y1,R1).

Figure 13: Trivial CLP(R) Multiplication predicate

16.2 Memoisation

In the originalLOGEN, when a callc is memoised it is first generalised, by replacing any parts

of the call that are marked as dynamic by a fresh variable. For example, ifc = p(2, 3) and if the

53

multiply(X,2,R)

 R1 = X + R2}

{R = X + R1,

 R2 = 0 }

 R1 = X + R2

{R = X + R1,

3

2

1

C

C

C

{Y2 = 0, R2 = 0}

multiply(X,0,R2)

{Y2 = 1 − 1, R1 = X + R2} , multiply(X,Y2,R2)

multiply(X,1,R1)

{Y1 = 2 − 1 , R = X + R1} , multiply(X,Y1,R1)
{R = X + R1}

Figure 14: The multiply predicate is unfolded, producing the residual constraints C3

second argument top is marked dynamic, we obtain a generalised callc′ = p(2, V). LOGEN (or

rather the generating extension generated byLOGEN) then searches its memo table for a variant

of c′. If c′ is a variant of any previously memoised call,c will be replaced with the residual call

from the memo table (this might e.g. bep 2(V)). Otherwisec′ has to be specialised on its own,

and residual code has to be generated for it.

In the CLP setting the original LOGENmemoisation must be extended to take into account the

constraint store. As a CLP variable may be uninstantiated but still bound to constraints it can not

always be clearly marked as static or dynamic. A new variable type, constraint, was introduced

so that the constraints can be propagated throughout the specialised program. A variable can still

be marked as dynamic to limit constraint propagation.

When a call,c, is memoised for the first time the current constraints, projected onto the argu-

ments ofc, must also be stored. During subsequent specialisation, constraints can be discarded

if they are already entailed by the system. Therefore a memoised call can only be reused if the

current constraints are at least as restrictive as the constraints stored for the memoised call.

16.3 Rounding Errors with CLP(R)

Currently the specialisation phase uses the Rational domain, CLP(Q), to generate specialised

code for the CLP(R) engine. During the specialisation phase the residual constraint store be-

comes part of the specialised program. Fig. 15 demonstrates it is not always possible to retrieve

exact numbers from the CLP(R) engine and therefore truncation errors can be introduced into

54

the specialised program.

| ?- {21/20 * Y > X},{21/20*X > Y}.

{Y-1.05*X<-0.0},

{Y-0.9523809523809523*X>0.0} ?

yes

Figure 15: Demonstration of CLP(R) rounding problems. The output from the CLP engine is

dependent on the ordering of the variables.

17 Examples and Experiments

In this section we illustrate our technique on a non-trivial example. Fig. 16 calculates the balance

of a loan overN periods.Balances is a list of lengthN . The interest rate is controlled by the

loan scheme and decided by the amount of the initial loan. The map predicate is used to apply

the loan scheme over the list of balances.

17.1 Unfolded Example

In Fig. 17 the loan predicate has been specialised to calculate the balances over two periods for

a principal loan over 4000. As the length of the list is known all of the recursive calls can be

executed at specialisation time. The map, scheme, and calcLoan calls have been unfolded and

the resultant code has been inlined in the specialised code. The two redundant loan schemes have

been removed from the final code. The specialised predicate (Fig. 17) runs 68% faster than the

original predicate in Fig. 16.

17.2 Memo Example

In Fig. 18 the map predicate from the loan program has been specialised to use either scheme1

or scheme2. The length of the list has not been specified so the recursive call must be memoised.

The calls in the body of map have been unfolded and the residual code inlined in the specialised

code. The removal of the overhead from the univ and call operators combined with the simpli-

fication of the loan calculation to include the hard coded interest rate produces a 57% speed up

over the original predicate.

55

loan(Principal, Balances, Repay) :- {Principal>=7000},

Term = [Principal|Balances], map(scheme1, Term, Repay).

loan(Principal, Balances, Repay) :- {Principal >= 4000, Principal<7000},

Term = [Principal|Balances], map(scheme2, Term, Repay).

loan(Principal, Balances, Repay) :- {Principal >= 1000, Principal<4000},

Term = [Principal|Balances], map(scheme3, Term, Repay).

loan(Principal, Balances, Repay) :- {Principal >= 0, Principal<1000},

Term = [Principal|Balances], map(scheme4, Term, Repay).

scheme1(Amount, NewAmount, Repayment) :-

{Interest = 0.005}, calcLoan(Amount, NewAmount, Interest,Repayment).

scheme2(Amount, NewAmount, Repayment) :-

{Interest = 0.01}, calcLoan(Amount, NewAmount, Interest,Repayment).

scheme3(Amount, NewAmount, Repayment) :-

{Interest = 0.015}, calcLoan(Amount, NewAmount, Interest,Repayment).

scheme4(Amount, NewAmount, Repayment) :-

{Interest = 0.02}, calcLoan(Amount, NewAmount, Interest,Repayment).

map(_,[_],_).

map(SCHEME,[H1,H2|Tail], Repayment) :- Call =.. [SCHEME,H1,H2, Repayment],

call(Call), map(SCHEME,[H2|Tail], Repayment).

calcLoan(Amount,NewTotal, Interest, Repayment) :-

{NewTotal = Amount + (Amount * Interest) - Repayment}.

Figure 16: Loan.pl, calculates the balance of a loan overN periods for a given loan scheme and

repayment.

17.3 Summary of experimental results

Table 3 summarises our experimental results. The timings were obtained by using SICStus Pro-

log 3.10 on a 2.4 GHz Pentium 4. The second column contains the time spent by cogen to

produce the generating extension. The third column contains the time that the generating exten-

sion needed to specialise the original program for a particular specialisation query. The fourth

column contains the time the specialised program took for a series of runtime queries and the fifth

column contains the results from the original programs. The final column contains the speedup

of the specialised program as compared to the original. Full details of the experiments (source

code, queries,...) can be found at [71].

56

loan__1(Principal,C,D,E) :-

{ Principal >= (7000), Principal = (((200/201)*C) + ((200/201)*E)),

D = (((201/200) * C) - E) }.

loan__1(Principal,G,H,I) :-

{ Principal < (7000),

Principal = (((100/101)*G) + ((100/101)*I)), H = (((11/10)*G) - I) }.

loan(Principal,[B,C],D) :- { Principal > (4000) }, loan__1(A,B,C,D).

Figure 17: Specialised version of the loan predicate for loan(X,[P1,P2], R) where X> 4000

map(scheme1,A,B) :- map__1(A,B).

map(scheme2,A,B) :- map__2(A,B).

map__1([B],C).

map__1([D,E|F],G) :- {E = ((201/200) * D) - G }, map__1([E|F],G).

map__2([B],C).

map__2([D,E|F],G) :- { E = ((101/100) * D) - G }, map__2([E|F],G).

Figure 18: Specialised version of the loan example for calls map(scheme1, T, R) and

map(scheme2,T,R). In this example the recursive call to map1 is memoed as the length of

the list is not known at specialisation time

18 Non-declarative Programs

It is well known that to properly handle Prolog programs with non-declarative features one has

to pay special attention to the left-propagation of bindings and of failure [106, 102]. Indeed, for

callsc to predicates with side-effects (such asnl/0) “c, fail ” is not equivalent to “fail , c”. Other

predicates are called “propagation sensitive” [106]. For callsc to such predicates, even though

c, fail ≡ fail may hold, the equivalence(c, X = t) ≡ (X = t, c) does not. One such predicate

is var/1 : we have, e.g.,(var(X),X=a) 6≡ (X=a,var(X)) . Predicates can both be propagation

sensitive and have side-effects (such asprint/1). The way this problem is overcome in the

Program Cogen Time Genex Time Runtime Original Speedup

multiply 0 ms 20 ms 10 ms 3780 ms 37800 %

loan unfold 0 ms 0 ms 385 ms 647 ms 68 %

loan map 0 ms 0 ms 411 ms 647 ms 57 %

ctl clp 0 ms 100 ms 17946 ms 24245 ms 35 %

Table 3: Experimental results

57

LOGEN system [78] is via special annotations which selectively prevent the left-propagation of

bindings and failure. This allows theLOGEN system to handle almost full Prolog6, while still

being able to left-propagate bindings whenever this is guaranteed to be safe. In a CLP setting,

the whole issue gets more complicated in that one also has to worry about the left-propagation of

constraints. Take for instance the clausep(X) :- var(X),{X=<2} and suppose we transform

it into p_1(X) :- {X=<2},var(X) . The problem is now that the query{X>=2},p_1(X) to

the specialised program fails while the original query{X>=2},p(X) succeeds with a computed

answerX=2.0 . To overcome this problem we have extended the scheme from [78] to enable

us to selectively prevent the left-propagation of constraints. Using our new system we are now

in a position to handle full CLP programs with non-declarative features. Take for example the

following simple CLP(R) program:

p(X,Y) :- {X>Y}, print(Y), {X=2}.

Using our system we can specialise this program for, e.g., the queryp(3,Z) yielding the

following, correct specialised program:

p__0(Y) :- {3>Y}, print(Y), fail.

19 Future, Related Work and Conclusions

There has been some early work on specialization of CLP programs [108, 107] and optimization

[86]. There has been some recent interest in online specialisation techniques for constraint logic

programs [27, 28, 100, 118, 99]. To the best of our knowledge there is no work on offline

specialisation of CLP programs, and to our knowledge none of the above techniques can handle

non-declarative programs.

The binding-time analysis of [78], based on a termination analysis for logic programs needs

to be adapted to take the constraints into account. At this stage it is not clear whether existing

termination analysis techniques for constraint logic programs such as [92] can be used to that

end.

There is still scope to improve the code generator of our system, e.g., by using more sophis-

ticated reordering as advocated in [86] Other possibilities might be to convert CLP operations

into standard Prolog arithmetic (e.g., usingis/2) when this is safe. Extension to other domains,

such as CLP(FD) are being investigated. Finally, we plan to integrateLOGEN into the Ciao

Prolog system, making the use of our system more transparent.

6Predicates which inspect and modify the clause database of the program being specialised, such asassert/1

andretract/1 are not supported; although it is possible to treat a limited form of them.

58

The specialisation of CLP programs is an important research area for partial evaluation.

We have implemented a working version of an offline CLP(R) specialiser and first results look

promising.

59

Part IV

Self-Application
In this part we show how to derive a self-applicable partial evaluator from ourLOGEN compiler

generator system. Apart from academic curiosity, this allows one to easily generate more or less

optimised specialised specialisers, just by tuning the annotations. One can also easily generate

debugging versions of the specialised specialisers. It can also be used to obtain a binding-time

analysis, applying the CiaoPP system on purposely generated specialisers (generated for analysis

purposes and not intended to be run).

20 Introduction and Summary

Partial evaluationhas received considerable attention over the past decade both in functional

(e.g. [59]), imperative (e.g. [3]) and logic programming (e.g. [33, 65, 101]). In the context of

pure logic programs, partial evaluation is often referred to aspartial deduction, the term partial

evaluation being reserved for the treatment of impure logic programs. We will adhere to this

convention in this paper.

Guided by theFutamura projections(see e.g. [59]) a lot of effort, especially in the functional

partial evaluation community, has been put into making systems self-applicable. A partial eval-

uation or deduction system is calledself-applicableif it is able to effectively7 specialise itself.

The practical interests of such a capability are manifold. The most well-known are related to the

second and thirdFutamura projections[30].

History of self-application for logic programming

Not surprisingly, writing an effectively self-applicable specialiser is a non-trivial task — the

more features one uses in writing the specialiser the more complex the specialisation process

becomes, as the specialiser then has to handle these features as well. For a long time it was

believed that in order to develop a self-applicable specialiser for logic programs one needed to

write a clean, pure and simple specialiser. In practice, this meant using few (or even no) impure

features in the implementation of the specialiser. For this theground representation[49] was

believed to be key, in which variables of the source program are represented by ground constants

within the specialiser. Indeed, the ground representation allows one to freely manipulate the

7This implies some efficiency considerations, e.g. the system has to terminate within reasonable time constrains,

using an appropriate amount of memory.

60

source program to be specialised in a declarative manner. Thenon-ground representation, where

source-level variables are represented as variables in the program specialiser, suffers from some

semantical problems [90] and requires some non-declarative features (such asfindall/3) in

order to perform the specialisation.

Some early attempts at self-application [29] used the non-ground representation, but the self-

applying led to incorrect results as the specialiser did not properly handle the non-declarative

constructs that were employed in its implementation8. Other specialisers likeMIXTUS [106],

PADDY [102] andECCE [79] use the non-ground representation, but none of them are able to

effectively specialise themselves.

The ground representation approach towards self-application was pursued in [11], [70], [94],

and [13, 44, 43] leading to some self-applicable specialisers:

– SAGE [43], a self-applicable partial evaluator for Gödel. While the speedups obtained by

self-application are respectable, the process takes a very long time (several hours) and the

obtained specialised specialisers are still extremely slow. This is probably due to the ex-

plicit unification algorithm required by the ground representation. To effectively specialise

this much more powerful specialisation techniques would be required to obtain reasonably

efficient specialisers. Similar performance problems were encountered in the earlier work

[11].

– LOGIMIX [94, 59], a self-applicable partial evaluator for a subset of Prolog, includingif-

then-else, side-effects and some built-ins. LOGIMIX uses a meta-interpreter (sometimes

calledInstanceDemo) for the ground representation in which the goals are “lifted” to the

non-ground representation for resolution. This avoids the use of an explicit unification

algorithm, at the expense of some power9. Unfortunately,LOGIMIX gives only modest

speedups (when compared to results for functional programming languages, see [94]),

but it was probably the first practical self-applicable specialiser for a logic programming

language.

Given the problem in developing a truly practical self-applicable specialiser for logic pro-

grams, the attention shifted to thecogen approach[50]: instead of trying to write a partial eval-

uation system which is neither too inefficient nor too difficult to self-apply, one simply writes

a compiler generator directly. Indeed, the actual creation of the cogen according to the third

Futamura projection is in general not of much interest to users since the cogen can be generated

once and for all when a specialiser is given. This approach was pursued in [63, 78] leading to

the LOGEN system, which can produce specialised specialisers much more efficiently than any

8A problem mentioned in [11], see also [94, 70].
9This idea was first used by Gallagher in [32, 33] and then later in [75] to write a declarative meta-interpreter for

integrity checking in databases.

61

of the self-applicable systems mentioned above. The resulting specialisers themselves are also

much more efficient.

A new attempt at self-application

In a sense the cogen approach has closed the practical debate on self-application for logic pro-

gramming languages: one can get most of the benefits of self-application without writing a self-

applicable specialiser. Still, there is the question of academic curiosity: is it really impossible to

derive the cogen written by hand in [63, 78] by self-application? Also, having a self-applicable

specialiser is sometimes more flexible as we may generate different cogens for different pur-

poses (such as one with debugging enabled). One may produce more or less optimised cogens

by tweaking the specialisation process, and better control the tradeoff between specialisation

time and quality of the optimised code. Maybe there are other situations where a self-applicable

partial evaluation system is preferrable to a cogen: Glück’s specialiser projections [39] and the

semantic modifiers of Abramov and Glück [1] may be such a setting.

This paper aims to answer some of these questions. Indeed, after the development ofLOGEN

we realised that one could translateLOGEN into a classical partial evaluator without too much

difficulty. Furthermore, using new annotation facilities developed for the second version ofLO-

GEN [78], one can actually make this partial evaluator (henceforth calledLIX) self-applicable. By

self-applyingLIX we obtain generating extensions via the second Futamura projection which are

very similar to the ones produced byLOGEN and the cogen obtained via the third Futamura pro-

jection also has lot of similarities to the code ofLOGEN. The performance of this self-applicable

partial evaluator is (after self-application) on par withLOGEN, and is thus much faster than any

of the previous self-applicable logic programming specialisers. In the paper we also show some

potential practical applications of this self-applicable specialiser.

The code of the specialiser itself is also surprisingly simple, but uses a few non-declarative

features and does not use the ground representation. So, contrary to earlier belief, declarativeness

and the ground representation were not the best way to climb the mountain of self-application.

In summary, Futamura’s insight was that a cogen could be derived by a self-applicable spe-

cialiser. The insight in [50] was that a cogen is just a simple extension of a binding-time analysis,

while our insight is that an effective self-applicable specialiser can be derived by transforming a

cogen.

21 The Partial Evaluator

LOGEN and LIX are both offline partial evaluators. An offline partial evaluator works on an

62

annotated version of the source program, these annotations are used to guide the specialisation

process. There are two kinds of annotations:

– filter declarations, indicating whether arguments to predicates arestatic or dynamic.

This influences the global control.

– clause annotations, indicating how every call in the body should be treated during unfold-

ing. These influence the local control.

21.1 The Basic Annotations

A common annotation format is used for both theLIX and LOGEN systems. Each call in the

program is annotated usinglogen/2 and arguments are annotated using filter declarations. The

head of a clause is annotated with an identifier. The format of the annotations is demonstrated in

the following append example:

:- filter append(static,dynamic,dynamic).

logen(app, append([],L,L)).

logen(app, append([H|T], L, [H|T1])) :- logen(unfold, append(T,L,T1).

The first argument to append has been marked asstatic, it will be known at specialisation

time, and the other arguments have been markeddynamic. The recursive call to append is anno-

tated for unfolding, the first argument is known thus guaranteeing termination at specialisation

time. Some of the basic annotations are:

– unfold for reducible predicates, they will be unravelled during specialisation.

– memo for non-reducible predicates, they will be added to the memoisation table and re-

placed with a generalised residual predicate.

– call the call will be made during specialisation.

– rescall the call will be kept and will appear in the final specialised code.

21.2 The Source Code

We now present the main body of theLIX partial evaluator10. An atomA is specialised by calling
lix(A,Res) . Thememo/2 andmemotable/2 predicates return in their second argument a
call to a new specialised predicate where static arguments have been removed and dynamic ones
generalised. Generalisation and filtering are performed bygeneralise and filter/3 . It
returns in its second argument the generalised call (to be unfolded) and in its third argument
the call to the specialised predicate. It uses the annotations defined byfilter/2 to perform its

10TheLIX system can be downloaded from:

http://www.ecs.soton.ac.uk/˜sjc02r/lix/lix.html .

63

task. The predicategensym/2 is used to create unique names for the specialised predicates. The
predicateunfold/2 computes the bodies of specialised predicates. A call annotated asmemois
replaced by a call to the specialised version. If it does not already exist it is created bymemo/2.
A call annotated asunfold is further unfolded; a call annotated ascall is completely evaluated;
finally, a call annotated asrescall is added to the residual code without modification (for
built-ins that cannot be evaluated or code that is defined elsewhere). All clauses defining the new
predicate are collected usingfindall/3 and pretty printed. To save space the definition of
pretty print clauses/1 is not given.

:- dynamic memo_table/2,flag/2.

lix(CallToSpecialise, ResidualCall) :-

print(’:- dynamic flag/2, memo_table/2.\n’),

print(’:- use_module(library(lists)).\n’),

memo(CallToSpecialise, ResidualCall).

memo(Call, Residual) :-

(memo_table(Call, Residual) -> true

; generalise_and_filter(Call, GenCall, ResidualPred),

assert(memo_table(GenCall,ResidualPred)),

findall((ResidualPred:-Body), unfold(GenCall,Body), Clauses),

format(’/*˜k=˜k*/˜n’, [ResidualPred,GenCall]),

pretty_print_clauses(Clauses),

memo_table(Call, Residual)

).

unfold(Head, Residual) :- ann_clause(_, Head, Body),body(Body, Residual).

body(true, true).

body((A,B), (ResA,ResB)) :- body(A, ResA), body(B, ResB).

body(logen(call,Call), true) :- call(Call).

body(logen(rescall,Call), Call).

body(logen(memo,Call), Residual) :- memo(Call, Residual).

body(logen(unfold,Call), Residual) :- unfold(Call, Residual).

generalise_and_filter(Call, GenCall, ResidualPred) :-

filter(Call, Filter), Call=..[Head|Args],

gen_filter(Filter, Args, GenArgs, ResArgs), GenCall=..[Head|GenArgs],

gensym(Head, ResHead), ResidualPred =..[ResHead|ResArgs].

gen_filter([], [], [], []).

gen_filter([static|A], [B|C], [B|D], E) :-

gen_filter(A, C, D, E).

gen_filter([dynamic|A], [_|B], [C|D], [C|E]) :-

gen_filter(A, B, D, E).

/* code for unique symbol generation, using dynamic flag/2 */

oldvalue(Sym, Value) :- flag(gensym(Sym), Value), !.

oldvalue(_, 0).

64

set_flag(Sym, Value) :-

nonvar(Sym), retract(flag(Sym,_)), !, asserta(flag(Sym,Value)).

set_flag(Sym, Value) :- nonvar(Sym), asserta(flag(Sym,Value)).

gensym(Head, ResidualHead) :-

var(ResidualHead), atom(Head),

oldvalue(Head, OldVal), NewVal is OldVal+1,

set_flag(gensym(Head), NewVal), name(A__, "__"),

string_concat(Head, A__, Head__),

string_concat(Head__, NewVal, ResidualHead).

append([], A, A).

append([A|B], C, [A|D]) :- append(B, C, D).

string_concat(A, B, C) :- name(A, D), name(B, E),

append(D, E, F), name(C, F).

/* Printing and Flatten Clauses removed to save space */

/* Clause Database: automatically created from annoated file */

ann_clause(1, app([],A,A), true).

ann_clause(2, app([A|B],C,[A|D]), logen(memo,app(B,C,D))).

filter(app(_,_,_), [dynamic,static,dynamic]).

21.3 Specialised Code

To specialise code we use thelix/2 entry point. Callinglix(app(A,[b],C),Res) spe-

cialises the append predicate to append[b] to the end of a list:

app__1([], [b]).

app__1([A|B], [A|C]) :- app__1(B, C).

The generation of the above code took0.318 ms11 This is a very simple example to demonstrate

the partial evaluator. The specialisation of a non-trivial Vanilla debugging interpreter is given in

appendix 25.3.

22 Towards Self-Application

We have presented the main body of the code for theLIX system. For a partial evaluator to be

self-applicable it must be able to effectively handle all of the features it uses. The system we have

presented so far uses a few non-declarative features and does not use the ground representation.

In this section will shall introduce the required extension to makeLIX self-applicable.

11Benchmarks performed using SICStus Prolog 3.10.1 for Linux on a Pentium 2.4GHz with 512MB RAM.

65

22.1 The nonvar Binding-Type

We now present a new feature derived fromLOGEN which is useful when specialising inter-

preters. This annotation will be the key for effective self-application.

In addition to marking arguments to predicates asstatic or dynamic, it is also possible to

use the binding-typenonvar. This means that this argument is not a free variable and will have

at least a top-level function symbol, but it is not necessarily ground. During generalisation, the

top level function symbol is kept but all its sub-arguments are replaced by fresh variables. For

filtering, every sub-argument becomes a new argument of the residual predicate.
A small example will help to illustrate this annotation:

:- filter p(nonvar).

p(f(X)) :- p(g(a)).

p(g(X)) :- p(h(X)).

p(h(a)).

p(h(X)) :- p(f(X)).

If we mark no calls as unfoldable, we get the following specialised program for the call

p(f(Z)):

%%% entry point: p(f(Z)) :- p__0(Z)

p__0(B) :- p__1(a).

p__1(B) :- p__2(B).

p__2(a).

p__2(B) :- p__0(B).

If we mark everything except the last call as unfoldable we obtain:

p__0(B).

p__0(B) :- p__0(a).

The gen filter/2 predicate in theLIX source code is extended to handle thenonvar

annotation:

gen_filter([nonvar|A], [B|C], [D|E], F) :-

B=..[G|H], length(H, I), length(J, I),

D=..[G|J], gen_filter(A, C, E, K), append(J, K, F).

22.2 Treatment of findall

In LIX findall is used to collect the clauses when unfolding a call; hence we have to be able

to treat this feature during specialisation.

66

Handlingfindall is actually not much different from handling negation in [78]. There is
a static version (findall), in which the call is executed at specialisation time, and a dynamic
version (resfindall), where it is executed at runtime. In both cases, the second argument
must be annotated. Forresfindall , much like resnot in [78], the annotated argument
should be deterministic and should not fail (which can be ensured by wrapping the argument into
ahide nf annotation, see [78]). Also, if afindall is marked as static then the call should be
sufficiently instantiated to fully determine the list of solutions. The following code is used in the
subsequent examples:

:- filter all_p(static,dynamic).

all_p(X,Y) :- findall(X,p(X),Y).

:- filter p(static).

p(a). p(b).

If the findall is marked as residual and wememo p(X) inside it then the specialised program

for all p(a,Y) is:

all_p__0(A) :- findall(a,p__1,A).

p__1.

If we markp(X) asunfold we get:

all_p__0(A) :- findall(a,true,A).

For self-application, onlyresfindall is actually required. Thebody/2 predicate is extended

as follows:

body(resfindall(Vars,G2,Sols), findall(Vars,VS2,Sols)) :-

body(G2,VS2).

22.3 Treatment of if

In the LIX code anif-then-else is used inmemo/2. In this case theif is dynamic, the
body of the conditional will be computed, along with those of the branches and anif statement
will be constructed in the residual code. LIX is also extended to handle a staticif which is
performed at specialisation time.

body(resif(A,B,C), (D->E;F)) :-

body(A, D), body(B, E), body(C, F).

body(if(A,B,C), D) :-

(body(A, _) -> body(B, D) ; body(C, D)).

67

22.4 Handling the cut

This is actually very easy to do, as with careful annotation the cut can be treated as a normal

built-in call. The cut must be annotated usingcall, where it is performed at specialisation time,

or rescall, where it is included in the residual code. It is up to the annotator to ensure that this is

sound, i.e.LIX assumes that:

– if a cut markedcall is reached during specialisation then the calls to the left of the cut will

never fail at runtime.

– if a cut is marked asrescallwithin a predicatep, then no calls top are unfolded.

These conditions are sufficient to handle the cut in a sound, but still useful manner.

23 Self-Application

Using the features introduced in Section 22 and the basic annotations from Section 21.1,LIX can

be successfully annotated for self-application. Self-application allows us to achieve the Futamura

projections as depicted in Fig. 2.

23.1 Generating Extensions

In Section 21.3 we specialisedapp/3 for the callapp(A,[b],C) . If a partial evaluator is fully

self-applicable then it can specialise itself for performing a particular specialisation, producing

a generating extension. This process is the second Futamura projection. When specialising an

interpreter the generating extension is a compiler.

A generating extension for the append predicate can be created by calling:

lix(lix(app(A,B,C),R),R1)

which creates a specialised specialiser for the append predicate.

/*Generated by Lix*/

:- dynamic flag/2, memo_table/2.

/* oldvalue__1(_5557,_5586) = oldvalue(_5557,_5586) */

oldvalue__1(A, B) :- flag(gensym(A), B), !.

oldvalue__1(_, 0).

/* set_flag__1(_7128,_7153) = set_flag(gensym(_7128),_7153) */

set_flag__1(A, B) :- retract(flag(gensym(A),_)), !,

asserta(flag(gensym(A),B)).

set_flag__1(A, B) :- asserta(flag(gensym(A),B)).

/* gensym__1(_4392) = gensym(app,_4392) */

68

gensym__1(A) :- var(A), oldvalue__1(app, B),

C is B+1,set_flag__1(app, C),

name(C, D), name(A, [97,112,112,95,95|D]).

/* Printing and Flatten Clauses removed to save space */

/* unfold__1(_6925,_6927,_6929,_6956) = unfold(app(_6925,_6927,_6929),_6956) */

unfold__1([], A, A, true).

unfold__1([A|B], C, [A|D], E) :- memo__1(B, C, D, E).

/* memo__1(_2453,_2455,_2457,_2484) = memo(app(_2453,_2455,_2457),_2484) */

memo__1(A, B, C, D) :-

(memo_table(app(A,B,C), D) -> true

; gensym__1(E), F=..[E,G,H],

assert(memo_table(app(G,B,H),F)),

findall((F:-I), unfold__1(G,B,H,I), J),

format(’/*˜k=˜k*/˜n’, [F,app(G,B,H)]),

pretty_print_clauses__1(J),

memo_table(app(A,B,C), D)

).

/* lix__1(_1288,_1290,_1292,_1319) = lix(app(_1288,_1290,_1292),_1319) */

lix__1(A, B, C, D) :- print(’/*Generated by Lix*/\n’),

memo__1(A, B, C, D).

This is almost entirely equivalent to the proposed specialised unfolders in [63, 76]. It is

actually slightly better as it will do flow analysis and only generate unfolders for those predicates

that are reachable from the query to be specialised. Note thegensym/2 predicate is specialised

to produce only symbols of the formapp N. Generation of the above took3.3 ms.
The generating extension for append can be used to specialise the append predicate for dif-

ferent sets of static data. Calling the generating extension withlix__1(A,[b],C,R) creates
the same specialised version of the append predicate as in Section 21.3:

app__1([], [b]).

app__1([A|B], [A|C]) :- app__1(B, C).

However using the generating extension is faster, for this small example0.212 ms instead of

0.318 ms. Using a larger benchmark, unfolding (as opposed to memoising) the append predicate

for a10, 000 item list produces more dramatic results. To generate the same code the generating

extension takes40 ms compared to990 ms for LIX . The overhead of creating the generating

extension for the larger benchmark is only10 ms. Generating extensions can be very efficient

when a program is to be specialised multiple times with different static data.

69

23.2 Lix Compiler Generator

The third Futamura projection is realised by specialising the partial evaluator to perform the

second Futamura projection. By this process we obtain acompiler generator(cogenfor short),

a program that transforms interpreters into compilers. By specialisingLIX to create generating

extensions we createLIX -COGEN, a self-applied compiler generator. This can be achieved with

the querylix(lix(lix(Call,R),R1),R2) . An extract from the produced code is now given:

/*unfold__13(Annotation, Generated Code, Specialisation Time) */

unfold__13(true, true, true).

unfold__13((A,B), (C,D), (E,F)) :-

unfold__13(A, C, E),

unfold__13(B, D, F).

unfold__13(logen(call,A), true, call(A)).

unfold__13(logen(rescall,A), A, true).

...

This has basically re-generated the 3-level cogen described in [63, 76]. In therescall anno-

tation for example, the call (A) will become part of the residual program, and nothing (true) is

performed at specialisation time.

The generatedLIX -COGEN will transform an annotated program directly into a generating

extension, like the one found in section 23.1. HoweverLIX -COGEN is faster: to create the same

generating extension from an input program of1, 000 predicatesLIX -COGEN takes only3.9 s

compared to100.9 s for LIX .

24 Comparison

24.1 Logen

The LOGEN system is an offline partial evaluation system using the cogen approach. Instead of

using self-application to achieve the third Futamura projection, theLOGEN compiler generator

is hand written. LIX was derived fromLOGEN by rewriting it into a classical partial evaluation

system. Using the second Futamura projection and self-applyingLIX produces almost identi-

cal generating extensions to those produced byLOGEN. Apart from the predicate names the

specialised unfolders generated by the two systems are the same:

.

app__u([],A,A,true). unfold__1([], A, A, true).

app__u([A|B],C,[A|D],E) :- unfold__1([A|B], C, [A|D], E) :-

app__m(B,C,D,E). memo__1(B, C, D, E).

.

LOGEN Generating Extension L IX -COGENGenerating Extension

70

While LOGEN is a hand written compiler generator,LIX must be self-applied to produce

the same result as in Section 23.2. If we compare theLOGEN source code to the output in

Section 23.2 we find very similar clauses in the form ofbody/3 (note however, that the order

of the last two arguments is reversed).

body(true,true,true). unfold__13(true, true, true).

body((G,GS),(G1,GS1),(V,VS)) :- unfold__13((A,B), (C,D), (E,F)) :-

body(G,G1,V), unfold__13(A, C, E),

body(GS,GS1,VS). unfold__13(B, D, F).

body(logen(call,Call),Call,true). unfold__13(logen(call,A), true, call(A)).

body(logen(rescall,Call),true,Call). unfold__13(logen(rescall,A), A, true).

LOGEN L IX -COGEN

Unlike LIX , LOGEN does not perform flow analysis. It produces unfolders for all predicates in

the program, regardless of whether or not they are reachable.

24.2 Logimix and Sage

Comparisons of the initialcogen with other systems such asLOGIMIX , PADDY, andSP can be

found in [63]. The time taken to produce the generating extensions was 50 times faster using

LOGEN (0.02 s instead of 1.10 s or 0.02 s instead of 0.98 s) and the specialisation times were

about 2 times faster. It is likely that a similar relationship holds betweenLIX and LOGIMIX .

Self-applyingSAGE is not possible for normal users, so we had to take the timings from [43]:

generating the compiler generator takes about100 hours (including garbage collection), creating

a generating extension for the examples in [43] took at least7.9 hours (11.8 hours with garbage

collection). The speedups from using the generating extension instead of the partial evaluator

range from2.7 to 3.6 but the execution times for the system (including pre- and post-processing)

still range from113 s to447 s.

25 New Applications

Apart from the academic satisfaction of building a self-applicable specialiser, we think that there

will be practical applications as well. We elaborate on a few in this section.

25.1 Several Versions of the Cogen

In the development of new annotation and specialisation techniques it is often useful to have

a debugging specialisation environment without incurring any additonal overhead when it is

not required. UsingLIX we can produce a debugging or non-debugging specialiser from the

71

same base code, the overhead of debugging being specialised away when it is not required. By

augmentingLIX with extra options we can produce several versions of the cogen depending on

the requirements:

– a debugging cogen, useful if the specialisation does not work as expected

– a profiling cogen

– a simple cogen, whose generating extensions produce no code but which can be fed into

termination analysers or abstract interpreters to obtain information to check the annota-

tions.

We could also play with the annotations ofLIX to produce more or less aggressive specialis-

ers, depending on the desired tradeoff between specialisation time, size of the specialised code

and the generating extensions, and quality of the specialised code. This would be more flexible

and maintainable than re-writingLOGEN to accomodate various tradeoffs.

25.2 Extensions for Deforestation/Tupling

L IX is more flexible thanLOGEN: we do not have to know beforehand which predicates are

susceptible to being unfolded or memoised. Hence,LIX can handle a potentially unbounded

number of predicates. Using this allowsLIX to perform a simple form of conjunctive partial

deduction [24].

For example, the following is the well known double append example where conjunctive par-

tial deduction can remove the unnecessary intermediate datastructureXY (this isdeforestation):

doubleapp(X,Y,Z,XYZ) :- append(X,Y,XY), append(XY,Z,XYZ).

append([],L,L).

append([H|X],Y,[H|Z]) :- append(X,Y,Z).

When annotating this example forLIX we can now simply annotate a conjunction asmemo

(which is not allowed inLOGEN):

ann_clause(1,doubleapp(A,B,C,D), (memo((append(A,B,E),append(E,C,D))))).

...

Running LIX on this will produce a result where the intermediate datastructure has been

removed (after post-processing, as in [24]):

/* atom specialised: doubleapp(A,B,C,D), benchmark info: 0 ms */

doubleapp(A,B,C,D) :- doubleapp__0(A,B,C,D).

append__2([],B,B).

append__2([C|D],E,[C|F]) :- append__2(D,E,F).

72

conj__1([],[],B,B).

conj__1([],[C|D],E,[C|F]) :- append__2(D,E,F).

conj__1([G|H],I,J,[G|K]) :- conj__1(H,I,J,K).

doubleapp__0(B,C,D,E) :- conj__1(B,C,D,E).

For this example to work inLOGEN we would need to declare every possible conjunction

skeleton beforehand, as a specialised unfolder predicate has to be generated for every such con-

junction. LIX is more flexible in that respect, as it can unfold a conjunction even if it has not been

declared before.

We have also managed to deal with the rotate-prune example from [24], but more research

will be needed into the extent that the extra flexibility ofLIX can be used to do deforestation or

tupling in practice. It should be possible, for example, to find out whether there is a bounded

number of conjunction skeletons simply by self-application.

25.3 A Non-Trivial Interpreter Example

We now demonstrate thatLIX can handle more complicated examples by introducing a Vanilla

debugging interpreter using structured conjunctions, where every conjunction is eitherempty

or is anand and the left part is an atom and the right handside a conjunction. The code below

implements a tracing version ofsolve which takes two extra arguments: a counter for the

indentation level and a list of predicates to trace.

/* Clause DB */

dclause(app([],L,L), empty).

dclause(app([H|X], Y, [H|Z]), and(app(X,Y,Z),empty)).

dclause(rev(A,B), and(rev(A,[],B),empty)).

dclause(rev([],A,A), empty).

dclause(rev([A|B],C,D), and(rev(B,[A|C],D),empty)).

dclause(rev_app(A,B,C), and(rev(A,D),and(app(D,B,C),empty))).

/* Vanilla Debugging Interpreter */

dsolve(empty,_,_).

dsolve(and(A,B), Level,ToTrace) :-

(debug(A,ToTrace) ->

(indent(Level), print(’Call: ’), print(A), nl,

dsolve(A,s(Level), ToTrace),

indent(Level), print(’Exit: ’), print(A), nl)

;

dsolve(A,Level, ToTrace)),

dsolve(B,Level,ToTrace).

73

dsolve(X,Level, ToTrace) :-

dclause(X,Y),

dsolve(Y,Level, ToTrace).

indent(0).

indent(s(A)) :- print(’>’), indent(A).

debug(Call,ToTrace) :-

Call =.. [P|Args],

length(Args, Arity), member(P/Arity, ToTrace).

Fordsolve(rev_app(A,B,C), L, [app/3]) we get the following efficient tracing

version of our object program, where the debugging statements have been weaved into the code.

This specialised code now runs with minimal overhead, and there is no more runtime checking

for whether a call should be traced or not.

/* indent/1 */

indent__1(0).

indent__1(s(A)) :- print(>), indent__1(A).

/* rev/3 */

dsolve__3([], A, A, _).

dsolve__3([A|B], C, D, E) :- dsolve__3(B, [A|C], D, E).

/* rev/2 */

dsolve__2(A, B, C) :- dsolve__3(A, [], B, C).

/* app/3 */

dsolve__4([], A, A, _).

dsolve__4([A|B], C, [A|D], E) :-

indent__1(E),print(’Call: ’),print(app(B,C,D)),nl,

dsolve__4(B, C, D, s(E)),

indent__1(E),print(’Exit: ’),print(app(B,C,D)),nl.

/* rev_app/3 */

dsolve__1(A, B, C, D) :-

dsolve__2(A, E, D),

indent__1(D),print(’Call: ’),print(app(E,B,C)),nl,

dsolve__4(E, B, C, s(D)),

indent__1(D),print(’Exit: ’),print(app(E,B,C)),nl.

Running the specialised code fordsolve__1([a,b,c],[d,e,f],C,0) , the same as

running dsolve(rev_app([a,b,c],[d,e,f],C),0,[app/3]) in the original, pro-

duces the following trace:

| ?- dsolve__1([a,b,c],[d,e,f],C,0).

Call: app([c,b,a],[d,e,f],_555)

74

>Call: app([b,a],[d,e,f],_1056)

>>Call: app([a],[d,e,f],_1228)

>>>Call: app([],[d,e,f],_1436)

>>>Exit: app([],[d,e,f],[d,e,f])

>>Exit: app([a],[d,e,f],[a,d,e,f])

>Exit: app([b,a],[d,e,f],[b,a,d,e,f])

Exit: app([c,b,a],[d,e,f],[c,b,a,d,e,f])

C = [c,b,a,d,e,f] ?

yes

26 Conclusions and Future Work

We have presented an implemented, effective and surprisingly simple, self-applicable partial

evaluation system for Prolog and have demonstrated that the ground representation is not re-

quired for a partial evaluation system to be self-applicable. TheLIX system can be used for the

specialisation of non-trivial interpreters, and we hope to extend the system to use more sophisti-

cated binding types developed forLOGEN.

While LIX andLOGEN essentially perform the same task, there are some situations where a

self-applicable partial evaluation system is preferrable. LIX can potentially produce better gen-

erating extensions, using specialised versions ofgensym and performing some of the generali-

sation and filtering beforehand. We have shown the potential for the use ofLIX in deforestation,

and in producing multiple cogens from the same code. The overhead of a debugging cogen can

be specialised away when it is not required or a more aggressive specialiser can be generated by

tweaking the annotations.

75

Part V

Framework for A Fully Automatic Binding

Time Analysis
In this part of the deliverable, we link the previously formalised binding-types with binary clause

semantics. Offline partial evaluation techniques rely on an annotated version of the source pro-

gram to control the specialisation process. These annotations are required to ensure termination

of the partial evaluation. We present an outline of the algorithm for generating these annotations

automatically. The process is made up from indenpendent components which if missing could

be replaced by a manual procedure or oracle, making the procedure semi-automatic. Finally, a

draft of a worked example is being presented. This represents work in progress and further work

needs to be carried out.

27 Offline Partial Evaluation

Most off-line approaches perform what is called abinding-time analysisprior to the special-

ization phase. In essence, abinding-time analysis(BTA for short) does the following: given a

program and an approximation of the input available for specialization, it approximates all values

within the program and generates annotations that steer (or control) the specialization process.

The partial evaluator (or the compiler generator generating the specialised partial evaluator) then

uses the generated annotated program to guide the specialization process. This process is illus-

trated in Figure 19.

Within the annotated program there are two types of annotations.

• Filter declarations: these give each argument of a predicate abinding-type. A binding-type

indicates something about the structure of an argument, For example, it could indicate

which parts of the argument aredynamic(possibly unbound at specialization time) and

which parts are known (static) at specialization time. (Other more precise binding types

are possible). These annotations influence theglobal control, in that dynamic parts are

generalised away (i.e., replaced by fresh variables) and known parts are kept unchanged.

• Clause annotations: these indicate how every call in the body should be treated during

specialization, Essentially, the annotations determine whether a call is unfolded at special-

ization time or at run time. These influence thelocal control[91].

76

Specialised
Program

Source
Program BTA

Annotated
Source

Program

Offline
Partial

Evaluator

Specialised
Program

Static
Input

Dynamic
Input Output

Emacs
Logen
Mode

User

re-analyse after changes

Description
of static inputs

Figure 19: The role of the BTA

In this paper we outline a procedure for generating these annotations automatically. There are

several independent components of the procedure. Hence, if one of these components is missing

it could be replaced by a manual procedure or oracle, making the whole process semi-automatic.

The input to the procedure is (i) a program to be specialized, (ii) a set of types, and (iii) a

goal whose arguments are typed with respect to the given types. Note that the program need not

be a typed program in the usual sense. The types simply define sets of terms which form the

basis for the binding type annotations, and the types do not have to be associated with particular

arguments of predicates.

The independent components that are part of the overall automatic BTA procedure are (i) a

type determinization algorithm, (ii) an abstract interpreter over a domain of determinized (dis-

joint) types, and (iii) a termination analyser, incorporating for example an abstract interpreter

over a domain of convex hulls.

77

28 Binding Types

The basis of the BTA is a classification of arguments using abstract values. Abstract values can

be chosen in different ways. The BTA procedure described here is independent of the particular

choice of abstraction; the only essential aspect of the abstraction is that it must be possible to

determine whether an argument is possibly unbound (that is, it is could be a variable). In this

case, the argument is calleddynamic.

The simplest approach is to classify arguments within the program to be specialised as either

staticor dynamic. The value of a static argument will bedefinitely ground. A dynamic argument

can be either ground or not ground, that is, it can be any term. The use of static-dynamic binding

types was introduced for functional programs, and has been used in logic program BTAs [94].

While often sufficient for functional programs, it sometimes proves to be too weak for logic

programs: in logic programming partially instantiated data structures appear naturally even at

runtime. A simple classification of arguments into “fully known” or “totally unknown” is there-

fore unsatisfactory and would prevent specializing a lot of “natural” logic programs such as the

vanilla metainterpreter [49, 89] or most of the benchmarks from theDPPD library [71].

Other more expressive binding types can be based on lists or other data-types. Using typi-

cal notation for defining types, one can define lists (or trees etc.) whose elements are ground,

dynamic, numbers, nested structures and so on. These types must be representable as a set of

regular types rules. The sets of ground and non-ground terms can also be defined as regular

types. Examples are given in [34].

28.1 Derivation of Filter Declarations

The given set of types is first transformed into a set of disjoint regular types. This process is

calleddeterminizationand is described in detail in another report [34]. The disjoint types define

an abstract domain, which is input, along with the typed goal, to an abstract interpreter over that

domain. The details of the abstract interpretation algorithm are also given in [34].

For example, the simple binding typesstatic anddynamicare determinized to the disjoint

typesstaticandnon-static. Note thatdynamicis the union ofstaticandnon-static.

The output of the abstract interpreter is an assignment of a set of disjoint types to each

argument. Letp/n be a predicate in the program. Then the analyser assigns a binding type

p(S1, . . . , Sn) to p, whereSj (1 ≤ j ≤ n) is a set of disjoint types{tj1 , . . . , tjk
}. The meaning of

the assignment is that, wheneverp/n is called during specialization, itsjth argument is contained

in of the types{tj1 , . . . , tjk
} and is not contained in any type other than{tj1 , . . . , tjk

}.
The assignment of types to arguments for a predicatep is called afilter for p. The filter

78

is used in the generalization operation dueing partial evalaution. We assume that there is a

generalization operation, which takes as input an atom for predicatep and a filter forp, and

returns another, more general atom forp. The LOGEN generalization procedure was modified to

handle the disjoint determinized types described above.

29 Clause Annotations

Each clause is annotated indicating how every call in the body should be treated during special-

ization. This is needed to ensure local termination. Some of the basic annotations are:

• unfold: for reducible predicates: they will be unfolded during specialization.

• memo: for non-reducible predicates: they will be added to the memoisation table and

replaced with a generalized residual predicate (using the filter for that predicate).

• call: for reducible predicates; they will be completely evaluated during specialization.

• rescall: for builtins and imported predicates; the call will be kept and will appear in the

final specialised code.

29.1 Example Annotation

The simple annotations are demonstrated using the LOGEN annotation syntax:

:- filter append(static, dynamic, dynamic).

append([],L,L).

append([H|T],L,[H|T1]) :- logen(unfold, append(T,L,T1).

The first argument to append has been marked asstatic ; it will be known at specialization

time. The other arguments have been markeddynamic , so they may or may not be known at

specialization time.

The filter declaration above could be derived automatically from the append program, the in-

put typesstatic anddynamic , and the typed goalappend(static, dynamic, dynamic) .

After determinizing the input types, the filter would be represented in the following equivalent

form.

:-filter append([static],[static,nonstatic],[static,nonstatic]).

79

In other words, the second and third argument can be either static or non-static, which is the same

as dynamic. The fact that a type such as[static, nonstatic] is dynamic can easily be

detected [34].

Note that the analysis guarantees correct filters. In a manually written filter, it is not guaran-

teed that calls toappend would actually satisfy the given binding types (e.g. thatappend would

always be called with a ground first argument).

Examining the clause annotation in the example, the recursive call to append is annotated for

unfolding. The first argument is static and this is sufficient to guarantee termination at specializa-

tion time (this will be formally checked by the termination analysis component of our algorithm).

If we could not guarantee the termination of the recursive call then it would have to be marked

asmemo.

29.2 Derivation of Filter Declarations in the Presence of Clause Annota-

tions

In the derivation of filter declarations mentioned above it was stated that wheneverp/n is called

during specialization, itsjth argument has a value given by one of the types{tj1 , . . . , tjk
}. It

was not explained what is meant by “wheneverp/n is called during specialization”. In fact, this

depends on the clause annotations, since the decision of whether to memo or call an atom affects

the propagation of binding types.

Standard abstract interpretation, which assumes a complete computation, is modified to allow

for memo-ing of calls. Memo-ed called are simply ignored when propagating binding types. The

same holds forrescallannotations. Note that we still derive filters for memo-ed calls: it is only

for propagation of binding types that they are ignored.

30 Termination Checking Based on Binary Clause Semantics

There are two separate termination requirements during partial evaluation.Local termination

concerns the avoidance of infinite derivations in which atoms annotated asunfold or call are

selected. Global terminationconcerns the set of calls that are unfolded in the course of the

partial evaluation, which should be finite. Finiteness of the set is ensured by a generalization

operation driven by the filter declarations.

Both of these termination questions are approached via thebinary clause semantics[17], a

representation of a program’s computations that makes possible reasoning about loops, and hence

termination analysis. Informally, the binary clause semantics of a programP is the set of all pairs

80

of atoms (called binary clauses)p(X̄)θ ← q(t̄) such thatp is a predicate,p(X̄) is a most general

atom forp, and there is a finite derivation (with leftmost selection rule)← p(X̄), . . . ,← (q(t̄), Q)

with computed answer substitutionθ. In other words a call top(X̄) is followed some time later

by a call toq(t̄), computing a substitutionθ. We can thus use this information to reason about

the set of calls that follow any initial call (by taking appropriate instances of the binary clauses).

In particular, loops are represented by binary clauses with the same predicate occurring in head

and body.

The binary semantics is in general infinite, but we can make safe approximations of the set

of binary clauses using standard abstract interpretation. The relevant abstraction is based on the

size of terms (i.e. we abstract an argument by its size with respect to some measure). We use a

domain of convex hulls to abstract the set of binary clauses with respect to a given measure.

Using such an abstraction, we aim to obtain a finite set of binary clauses of formp(X̄) ←
π(X̄, Ȳ), q(Ȳ), whereπ(X̄, Ȳ) is a linear relation between argumentsX̄ andȲ which represent

the sizes of the respective concrete arguments. Termination proofs (for calls to a predicatep)

require us to prove that for every abstract binary clausep(X̄)← π(X̄, Ȳ), p(Ȳ), π(X̄, Ȳ) entails

a strict reduction in size for some bounded (rigid) component ofX̄. Boundedness (rigidity)

of the arguments is established by another abstract interpretation very similar to binding type

propagation. The details are not discussed here, except to say that a size measure can be derived

for each binding type. A term is rigid with respect to a measure if all its instances have the same

size.

As we did for for binding type propagation, we need to modify binary clauses to take account

of the annotations, since selection of atoms annotatedmemoor rescallare not allowed.

Given an annotated programP , the binary program is generated by a transformation devel-

oped for backwards analysis [35], and modified for annotated programs. The transformation is

carried out inLOGEN itself, by partial evaluation of the interpreter shown in Section 32.

30.1 Checking For Local Termination

Given the binary clause program, we compute an abstraction using convex hulls (currently we use

a convex hull analyser kindly supplied by Samir Genaim and Mike Codish [36]). The specialized

binary clause program represents a binary clausep(t̄) ← q(s̄) as bin solve(p(t̄), q(s̄)). We

examine the binary clauses and look for unfold loops, which are abstract binary clauses of the

form:

bin solve(p(s1 , . . . , sn), unfold(p(t1 , . . . , tn)))← C(s1, . . . , sn, t1, . . . , tn)

81

whereC(s1, . . . , sn, t1, . . . , tn) is some linear constraint. We then check whether for some argu-

mentj there is a decrease fromsj to tj. If so, we check whether thejth argument is rigid with

respect to the current filter forp. If so, termination is ensured, and otherwise not.

30.2 Checking for Global Termination

An annotated program output from the algorithm described above is then examined for global

termination properties. Again, an analysis based on binary clauses is used, but this time, we seek

abstract binary clauses of the following form:

bin solve(p(s1 , . . . , sn),memo(p(t1 , . . . , tn)))← C(s1, . . . , sn, t1, . . . , tn)

Such clauses represent recursive introduction of memo-ed calls. The binary clause trans-

formation incorporates the generalization operator, as can be seen in the interpreter shown in

Section 32, since the actual memo-ed call is produced by the generalization ofp(t1, . . . , tn) into

memo(p(t1, . . . , tn)), with respect to the filter forp.

In global termination checking, the conditions on the constraintC(s1, . . . , sn, t1, . . . , tn) are

more relaxed compared to local termination conditions. We are willing to generate an infinite

number of memo-ed calls, as long as the set of those calls is finite (up to variable renaming).

Indeed, if we encounter a memo-ed call that has already been treated before, no new processing

will arise. This situation is similar to termination of tabled logic programs and hence the tech-

niques for ensuringquasi-terminationof [25, 80] form a good starting point. There are in fact

two conditions that will ensure global termination:

• Either we can use the same condition as for local termination and require a strictdecrease

in size for some rigid argument.

• or we are satisfied if the arguments are notincreasingin size, provided that the norms are

so-calledfinitely partitioning[25, 80], meaning that only finitely many terms (up to vari-

able renaming) have the same size. For instance, the term size norm is finitely partitioning

but the list length is not (e.g.,[0], [s(0)], [s(s(0))],... all have the same

size 1).

Supposing we have finitely partitioning norms, our BTA will, for each binary clause as shown

above, seek arguments which increase in size. If such arguments exist, then global termination is

not ensured, and we must perform some further generalisation during partial evaluation in order

to ensure termination. This can be achieved by changing the filter for the increasing argument to

dynamic .

82

31 Outline of Algorithm

We now outline the main operations and steps in the algorithm. The core of the algorithm is a

loop which propagates the binding types with respect to the current clause annotations, generated

the binary program and checks the current filters for termination conditions, and modifies the

clause annotations accordingly. Initially, all body atoms are annotated asunfoldor call, except

for imported predicates which are annotatedrescall. Annotations can be changed tomemoor

rescall, until termination is established.

The algorithm below does not check for global termination. This is discussed in the next

section.

Initialization:

Get program types and determinize them;

Initialize all clause annotations to

- unfold for defined user predicates,

- call for builtins

- rescall for imported predicates;

Compute filters w.r.t. current clause annotations

and initial filter-annotation for the query;

Repeat:

Finished := True;

Bin := binary program for local unfolding, w.r.t. current

clause annotations;

ConvexBin := convex hull abstraction of Bin;

For each clause annotation unfold(A)

Let Filter(A) := the current filter for A;

If

Filter(A) does not terminate w.r.t. ConvexBin

Then

change unfold(A) to memo(A); Finished := False;

EndIf

EndFor

For each clause annotation call(A)

Let Filter(A) := the current filter for A;

If

Filter(A) is insufficiently instantiated to call A

Then

83

change call(A) to rescall(A); Finished := False;

EndIf

EndFor

Compute new filters w.r.t. current clause annotations;

If

global non-termination is indicated in ConvexBin

Then

change the increasing arguments in the filters

for memo-ed predicates to dynamic

Until Finished;

Return current filters and current clause annotations;

Termination of the main loop is ensured since there is initially only a finite number ofunfold

or call clause annotations, and each iteration of the loop eliminates one or moreunfoldor call

annotations.

32 Generation of the Binary Clause Semantics

To determine the binary clause semantics needed for the termination analysis, we can actually

leverage our ASAP tools and obtain it by specializing an interpreter (calledBin solve) using

LOGEN. Bin solve is a binary clause interpreter based on the simple vanilla interpreter solve.

Specializing binsolve with respect to the filter goals and annotated programs we wish to analyse

produces a program whose semantics is the binary clause semantics for either local unfolding or

memoed calls.

:- filter solve(type(list(nonvar))):solve.

bin_solve([unfold(H)|_T],unfold(H)).

bin_solve([memo(H)|_T],memo(H1)) :- filter(H.,F), generalise(H,F,H1).

bin_solve([unfold(H)|_T],RecCall) :-

bin_solve_atom(H,RecCall).

bin_solve([unfold(H)|T],RecCall) :-

solve_atom(H),

bin_solve(T,RecCall).

bin_solve([memo(_)|T],RecCall) :-

bin_solve(T,RecCall).

84

:- filter bin_solve_atom(nonvar_nf,dynamic).

bin_solve_atom(H,Rec) :-

rule(H,Bdy),

bin_solve(Bdy,Rec).

:- filter test(dynamic,dynamic).

test(H,Rec) :-

filtered(H),

bin_solve([unfold(H)],Rec).

filtered(ann_dapp(_,_,_,_)).

filtered(ann_app(_,_,_)).

:- module(’˜/cvs_root/cogen2/logen_examples/bta_test/bin_solve.pl.memo’,

[test__0/2,bin_solve_atom__1/2,solve_atom__2/4,

bin_solve_atom__3/2,solve_atom__4/3]).

gensym(num__num,5).

memo_table(0,test(A,B),test__0(A,B),done(user),[]).

memo_table(1,bin_solve_atom(ann_dapp(A,B,C,D),E),

bin_solve_atom__1(ann_dapp(A,B,C,D),E),

done(internal),[]).

memo_table(2,solve_atom(ann_dapp(A,B,C,D)),

solve_atom__2(A,B,C,D),

done(internal),[]).

memo_table(3,bin_solve_atom(ann_app(A,B,C),D),

bin_solve_atom__3(ann_app(A,B,C),D),

done(internal),[]).

memo_table(4,solve_atom(ann_app(A,B,C)),

solve_atom__4(A,B,C),

done(internal),[]).

test__0(ann_dapp(B,C,D,E),ann_dapp(B,C,D,E)).

test__0(ann_dapp(B,C,D,E),F) :-

bin_solve_atom__1(ann_dapp(B,C,D,E),F).

test__0(ann_app(B,C,D),ann_app(B,C,D)).

test__0(ann_app(B,C,D),E) :-

bin_solve_atom__3(ann_app(B,C,D),E).

bin_solve_atom__1(ann_dapp(B,C,D,E),ann_app(C,D,F)).

85

bin_solve_atom__1(ann_dapp(B,C,D,E),F) :-

bin_solve_atom__3(ann_app(C,D,G),F).

bin_solve_atom__1(ann_dapp(B,C,D,E),memo(app(B,F,E))) :-

solve_atom__4(C,D,F).

solve_atom__2(B,C,D,E) :-

solve_atom__4(C,D,F).

bin_solve_atom__3(ann_app([B|C],D,[B|E]),memo(ann_app(C,D,E))).

solve_atom__4([],B,B).

solve_atom__4([B|C],D,[B|E]).

33 Worked Example

We demonstrate the algorithm using a worked example of a pattern matching program.
Thematch predicate identifies a patternPat in a stringT.

match(Pat,T) :-

match1(Pat,T,Pat,T).

match1([],Ts,P,T).

match1([A|Ps],[B|Ts],P,[X|T]) :-

A\==B,

match1(P,T,P,T).

match1([A|Ps],[A|Ts],P,T) :-

match1(Ps,Ts,P,T).

Initialise the annotations to all unfold and call.

:- filter match(list, dynamic).

match(Pat,T) :-

unfold(match1(Pat,T,Pat,T)).

match1([],Ts,P,T).

match1([A|Ps],[B|Ts],P,[X|T]) :-

call(A\==B),

unfold(match1(P,T,P,T)).

match1([A|Ps],[A|Ts],P,T) :-

unfold(match1(Ps,Ts,P,T)).

Specializing through binsolve to obtain the abstract clause semantics:

bin_solve_atom__0(match(B,C),unfold(match1(B,C,B,C))).

bin_solve_atom__1(match1([B|C],[D|E],F,[G|H]),unfold(match1(F,H,F,H))).

bin_solve_atom__1(match1([B|C],[B|D],E,F),unfold(match1(C,D,E,F))).

86

Abstracting the programming with respect to list length norm

:- filter match(list,dynamic).

:- filter match1(list,dynamic,list,dynamic).

bin_solve_atom__0(match(B,_),unfold(match1(B,_,B,_))).

bin_solve_atom__1(match1(1+C,_,F,_),unfold(match1(F,_,F,_))).

bin_solve_atom__1(match1(1+C,_,E,_),unfold(match1(C,_,E,_))).

For each binary clause of the form:bin solve atom(p(--),unfold(p(--)) :

bin_solve_atom__1(match1(1+C,_,F,_),unfold(match1(F,_,F,_))).

Argument 1 does not show decrease 1+C→ F

Argument 3 does not show decrease F→ F

Offending call must be marked as memo.

:- filter match(list, dynamic).

match(Pat,T) :-

unfold(match1(Pat,T,Pat,T)).

match1([],Ts,P,T).

match1([A|Ps],[B|Ts],P,[X|T]) :-

call(A\==B),

memo(match1(P,T,P,T)).

match1([A|Ps],[A|Ts],P,T) :-

unfold(match1(Ps,Ts,P,T)).

bin_solve_atom__0(match(B,C),unfold(match1(B,C,B,C))).

bin_solve_atom__1(match1([B|C],[B|D],E,F),unfold(match1(C,D,E,F))).

Abstract program again . . .

bin_solve_atom__0(match(B,C),unfold(match1(B,C,B,C))).

bin_solve_atom__1(match1(1 +C,_,E,_),unfold(match1(C,_,E,_))).

For each binary clause of the form:bin solve atom(p(--),unfold(p(--)) :

bin_solve_atom__1(match1(1 +C,_,E,_),unfold(match1(C,_,E,_))).

Argument 1 does show decrease 1+C→ C, and is rigid with respect to the size measure.

Hence, local termination is ensured.

87

Part VI

A Higher-Order Binding-Time Analysis for

Mercury
In this work, we develop a binding-time analysis for the logic programming language Mercury.

We introduce a precise domain of binding-times, based on the type information available in Mer-

cury programs, that allows to represent partially static data structures for specialisation. The

analysis is polyvariant, and deals with the module structure and higher-order capabilities of Mer-

cury programs.

34 Introduction

Program specialisation is a technique that transforms a program into another program, by pre-

computing some of its operations. Assume we have a programP of which the input can be

divided in two parts, says andd. If one of the input parts, says, is known at some point in

the computation, we canspecialiseP with respect to the available inputs. This specialisation

process comprises performing those computations ofP that depend only ons, and recording

their resultsin a new program, together with thecodefor those computations that could not be

performed (because they rely on the input partd – unknown at this point in the computation).

The result of the specialisation is a new program,Ps that computes, when provided with the

remaining input partd, thesameresult asP does when provided with the complete inputs + d.

Comprising a mixture of program evaluation and code generation, the program specialisation

process is also often referred to by the namespartial evaluation, mixed computationor staged

computation.

Staging the computations of a program can be useful (usually in terms of efficiency) when

different parts of a program’s input become known at different times during the computation.

The best benefit can be obtained when a single program must be run a number of times while a

part of its input remains constant over the different runs. In this case, the program can first be

specialised with respect to the constant part of the input, while afterwards the resulting program

can be run a number of times, once for each of the remaining (different) input parts. In such

a staged approach, the computations that depend only on the constant input part are performed

only once – during specialisation. In the non-staged approach,all computations – including those

depending on the constant part – are performed over and over again in each run of the program.

88

When using program specialisation to stage the computations of a program, the basic prob-

lem is deciding what computations can be safely performed during the specialisation process.

The driving force behind this decision is twofold. Firstly, the specialisation process itself must

terminate; that is, the specialiser may not to get into a loop when evaluating a sequence of

computations from the program that is to be specialised. Secondly, the obtained degree of spe-

cialisation should be “as good as possible”, meaning that a fair amount of computations thatcan

be performed during specialisationareeffectively performed during specialisation.

The key factor determining whether a computation can be performed during specialisation is

the fact whether enough input values are available to compute a result. If that is the case, the

specialiser can perform the computation; if not, it should generate code to perform this com-

putation at a later stage. Binding-time analysis is a static analysis that, given the program and a

description about the available partial input with respect to which the program will be specialised,

computes for every statement in the program what input values will be known when that state-

ment is reached during specialisation. In addition, the analysis computes — according to some

control strategy — whether or not the statement should be evaluated during specialisation.

Once the programP and its available partial inputs has been analysed by binding-time ana-

lysis, specialisation ofP with respect tos boils down to evaluating those statements inP that are

annotated as such by the binding-time analysis. This specialisation technique is calledoff-line,

the reason being that most of the control decisions have been taken by the binding-time analysis.

This in contrast with the so-calledon-line specialisation technique in which the program to be

specialised is not analysed by any binding-time analysis, but is directly evaluated with respect

to its partial input under the supervision of a control system that decides – for every statement

under consideration – on the fly whether or not it can safely be evaluated. Both approaches to-

wards specialisation have their advantages and disadvantages. In this work, we concentrate on

off-linespecialisation and construct a binding-time analysis for the logic programming language

Mercury.

34.1 Binding-time Analysis and Logic Programming

Using binding-time analysis to control the behaviour of the specialisation has been thoroughly

investigated in a number of programming paradigms. Breaking work on off-line program spe-

cialisation of imperative languages include C-mix by Andersen [2] and more recently Tempo

[19, 53] by Consel and his group. Also in the context of functional language specialisation,

most work focusses on binding-time analysis and off-line specialisation, originally motivated to

achieve better self-application [31, 56]. Whereas initial analysis dealt with first-order languages

[56], more recently developed analyses deal with higher-order aspects [42, 10], polymorphism

89

[93, 48] and partially static data structures [69].

In the field of logic programming, however, only little attention has been paid to off-line

program specialisation. Known exceptions areLOGIMIX [95] andLOGEN [64] that develop dif-

ferent approaches to off-line program specialisation for Prolog. Both cited works, however, lack

an automatic binding-time analysis and rely on the user to provide the specialiser with suitable

annotations of the program. To the best of our knowledge, the only attempt to construct an

automatic binding-time analysis for logic programming is [14] and our own work about which

we report in [77]. The approach of [14] is particular, in the sense that it obtains the required

annotations not by analysing the subject program directly but rather by analysing the behaviour

of an on-line program specialiser on the subject program. Although conceptually interesting,

the latter approach is overly conservative and restricts the number of computations that can be

performed during specialisation. Indeed, [14] decides whether to unfold a call or not based on

the original program, not taking current annotations into account. This means that call can ei-

ther be completely unfolded or not at all. The binding-time analysis first described in [120] and

employed in [77] is also particular in the sense that it obtains its annotations by repeatedly ap-

pyling an automatic termination analysis. If the termination analysis identifies a call as possibly

non-terminating, that call is marked such that it will not be reduced by the specialiser. Then the

termination analysis is rerun to prove termination of the program under the assumption that each

call that is marked as non-reducible is not evaluated. The process is repeated until termination of

the (annotated) program can be proven.

Both the approach of [14] and [77] have been designed towards dealing with untyped and

unmoded logic programming languages. The fact that most logic programming languages are

untyped makes it hard – if not impossible – to represent the availability ofpartial input in a

sufficiently precise way during the analysis. More importantly, the lack of control flow infor-

mation in the program makes it nearly impossible to approximate the data flow in a sufficiently

precise way and renders the derivation of a binding-time analysis by ”classic” abstract interpre-

tation techniques not straightforward, hence the approaches of [14] and [77]. In this work, we

construct a completely automatic binding-time analysis for the recently introduced logic pro-

gramming language Mercury. Being a strongly typed and moded language, it lifts the obstacles

encountered with more traditional logic programming languages and allows to construct a “tradi-

tional” binding-time analysis along the lines of [42, 60] based on data flow analysis. Yet, its more

involved data- and control flow features – inherent to a logic programming language – render the

derivation of an automatic binding-time analysis a daunting and not straightforward task.

90

34.2 Mercury

The design of Mercury was started in October 1993 by researchers at the University of Mel-

bourne. While logic programming languages had been around for quite some time, no one

seemed to fully realise the theoretical advantages such a language would have over more tra-

ditional, imperative languages. These advantages are widely known, and are summarised for

example in [111]: a higher level of expressivity (enabling the programmer to concentrate on

what has to be done rather than onhow to do it), the availability of a useful formal semantics

(required for the – relatively – straightforward design of analysis and transformation tools), a

semantics that is independent of any order of evaluation (useful for parallelising the code), and a

potential for declarative debugging [82]. While a language like Prolog does offer some of these

advantages, others are destroyed by the impure features of the language.

The main objective of the Mercury designers was to create a logic programming language

that would bepureand useful for the implementation of a large number ofreal-world applica-

tions. To achieve this goal, the main design objectives of Mercury can be summarised as follows

[111]: Support for the creation of reliable programs. This involves a language that allows to

detect some classes of bugs at compile-time.Support for programming in teams. Large software

systems are usually build by a number of programmers. The language must provide good sup-

port for creating a single application from multiple parts that are build (sometimes in isolation)

by different programmers. These two objectives form a major departure from Prolog which, at

the time, had basically no support for programming in the large, and which does not allow a lot of

type-, mode- and determinism errors to be caught at compile-time. Another important objective

wassupport for the creation of efficient programs. The efficiency of the language implementation

had to be at least comparative with (but preferably better than) comparable languages.

To meet these design objectives, Mercury was fitted with a strong system of type-, mode-

and determinism declarations. Apart from providing excellent comments on how the data used

in a predicate should look and how the code is supposed to be used, these declarations enable the

compiler to perform a number of analyses and to spot a substantial number of bugs at compile

time, rather than producing a program that shows some unexpected behaviour at run-time as is

often the case with Prolog. Also, the availability of declarations allows to fix the evaluation

order of the body atoms in a predicate and provides as such the basis for an efficient execution

mechanism of the language [20, 110, 112]. Mercury is equipped with a modern module system

that enables to hide some data definitions and to encapsulate both data and code, and provides as

such support for programming-in-the-large activities.

91

35 A Domain of Binding-times

Binding-time analysis can be seen as an application of abstract interpretation over a domain of

binding-times. A binding-time abstracts a value by specifying at what time during a 2-stage

computation12 the value becomes known. In their most basic form, the binding-time of a value

is eitherstatic or dynamic, denoting a value that is known early, during specialisation, or late,

during evaluation of the residual program, respectively.

It is recognised [60] that for a logic programming language, approximating values by either

static or dynamicis too coarse grained in general. Indeed, most logic programs use a lot of

structureddata, where data values are represented by structured terms. Consequently, the input

to the specialiser usually consists of a partially instantiated term: a term that is less instantiated

than it would be at run-time. Approximating a partially instantiated term bydynamicusually

results in too much information loss, possibly resulting in missed specialisation opportunities.

Therefore, we use the structural information from the type system of Mercury to represent more

detailed binding-times, capable of distinguishing between the computation stages in whichparts

of a value (according to that value’s type) become known.

Mercury’s type system is based on a polymorphic many-sorted logic, and corresponds to the

Mycroft-O‘Keefe type system [97]. Basically, the types are discriminated union types and sup-

port parametric polymorphism: a type definition can be parametrised with some type variables,

as the following example in Mercury syntax shows.

Example 1 :- type list(T) ---> [] ; [T | list(T)].

The above defines a polymorphic typelist(T) : it defines values of this type to be terms that

are either[] (the empty list) or of the form[A|B] whereA is a value of typeT andB is a value

of type list(T) .

Formally, if we denote withΣT the set of type constructors and withVT the set of type

variables of a languageL, the set oftypesassociated toL is represented byT (ΣT , VT); that is

the set of terms that can be constructed fromΣT andVT . A type containing variables is said to

bepolymorphic, otherwise it is amonomorphictype. A type substitutionis a substitution from

type variables to types. The application of a type substitution to a polymorphic type results in a

new type, which is aninstanceof the original type.

As usual, the set of program values is denoted byT (V , Σ); that is the set of terms that can be

constructed from a setΣ of function symbols and a setV of program variables.

12Generalisations exist in which computations are staged over more than2 stages (see e.g. [41]). In this work,

we focus on a traditional 2-stage process, dividing the computations in a program overspecialisation-timeversus

run-time.

92

The relation between a type and the values (terms) that constitute the type is made explicit by

a type definitionthat consists of a number oftype rules, one for every type constructor. Example 1

shows the type rule associated to thelist/1 type constructor. Formally, a type rule is defined

as follows:

Definition 35.1 The type ruleassociated to a type constructorh/n ∈ ΣT is a definition of the

form

h(T)→ f1(τ 1) ; . . . ; fk(τ k).

whereT is a sequence ofn type variables fromVT and for1 ≤ i ≤ k, fi/m ∈ Σ with τ i a

sequence ofm types fromT (ΣT , VT) and all of the type variables occurring in the right hand side

occur in the left hand side as well. The function symbols{f1, . . . , fk} are said to be associated

with the type constructorh. A finite set of type rules is called a type definition.

Given a type substitution, we define the notion of an instance of a type rule in a straight-

forward way. In theory, every type (constructor) can be defined by a type rule as above. In

practice, however, it is useful to have some types builtin in the system. For Mercury, the types

int , float , char , string are builtin types whose denotation is predefined and is the set of

integers, floating point numbers, characters and strings respectively.

Mercury is a statically typed language, in which the (possibly polymorphic) type of every

term occurring in the program text is known at compile-time. In what follows, we use the type

definition to construct, for every type occurring in the program, a finite description of thestruc-

ture that values belonging to the denotation of a particular type can take. The relevance of such

a description is in the fact that it can be used to abstract the values belonging to the denotation of

the type according to their structure, allowing the construction of a precise abstract domain for

program analysis, in particular binding-time analysis.

To extract a structural description of a type from a type definition, we introduce the notion

of a type-path being a sequence of functor/argument position pairs that is meant to denote a path

through the type definition from a type to an occurrence of one of its subtypes. In fact, a type

itself can be represented as a (possibly infinite) set of such paths, one for every path from the

type that is being defined to some subtype occurring at a particular position within some term

belonging to the denotation of that type. More formally, we denote the set of all such sequences

overΣ × N by TPath. The empty sequence is denoted by〈〉, and givenδ, ε ∈ TPath, we denote

with δ • ε the sequence obtained by concatenatingε to δ. A type treefor a particular type can

then be defined as follows:

Definition 35.2 Given a typeτ ∈ T (ΣT , VT), the type treeof τ , denoted byLτ , is a set of

sequences fromTPathand is recursively defined as:

93

• 〈〉 ∈ Lτ

• if t = h(T)θ with h(T) → f1(τ 1); . . . ; fk(τ k) a type rule andθ a type substitution, then

for all i ∈ {1 . . . k}, and if fi/m ∈ Σ, for eachj ∈ {1 . . . m}, 〈(fi, j)〉 • δ ∈ Lτ where

δ ∈ L(τij
)θ andτij denotes thej-th type inτ i.

Example 2 Reconsider the typelist(T) from Example 1. The type tree oflist(T) is the infinte

set of type paths

Llist(T) =



〈〉
〈([|], 1)〉
〈([|], 2)〉
〈([|], 2), ([|], 1)〉
〈([|], 2), ([|], 2)〉
〈([|], 2), ([|], 2), ([|], 1)〉
〈([|], 2), ([|], 2), ([|], 2)〉
〈([|], 2), ([|], 2), ([|], 2), ([|], 1)〉
. . .


The general idea now is to define, for any typeτ , a finite approximation ofLτ that provides

a good characterisation of the structure of terms of typeτ . First we introduce the following

notation that formally defines the type that is identified by a type-path within another type.

Definition 35.3Let τ be a type of the formτ = h(T)θ, h ∈ ΣT defined byh(T)→ f1(τ11 , . . . , τ1k1
); . . . ; fn(τn1 , . . . , τnkn

)

andδ ∈ TPathof the formδ = 〈(f, i)〉 • ε. Then we have thatτ δ = τ ε
ji

if f = fj for somej.

Moreover,τ 〈〉 = τ for any typeτ .

Note that forτ ∈ T (ΣT , VT) andδ ∈ TPath, τ δ is only defined in caseδ ∈ Lτ . Also note that

a type pathδ ∈ Lτ can also be used to identify a particular subterm in a termt : τ , if it exists.

Indeed, ifδ ∈ TPathis of the formδ = 〈(f, i)〉 • ε andt = f(t1, . . . , tn) we definetδ = tεi .

Example 3 If τ = list(T) we have for example that

τ 〈〉 = list(T), τ 〈([|],1)〉 = T andτ 〈([|],2)〉 = τ 〈([|],2),([|],2)〉 = list(T).

Similarily for a termt = [1, 2] we have for example that

t〈〉 = [1, 2], t〈([|],1)〉 = 1 andt〈([|],2)([|],1)〉 = 2.

94

Given the definition of a type tree, we introduce the following equivalence relation on the

paths in a type treeLτ . We define≡ (in Lτ) as the least transitive relation such that for any

δ, α ∈ Lτ : if δ = α • ε andτ δ = τα thenα ≡ δ. Informally, two type paths in a type tree are

equivalent if either one of the paths is an extension of the other while both identify the same type,

or the paths share a common initial subpath that identifies the same type as both paths inLτ . In

what follows, we restrict our attention to (possibly polymorphic) types that are not defined in

terms of a strict instance of itself. That is, we assume for any typeτ andδ ∈ Lτ that τ 6< τ δ

(where< denotes the strict instance relation). This is a natural condition and is related to the

polymorphism discipline of definitional genericity [68]. For any such typeτ , the equivalence

relation≡ partitions the (possibly infinite set)Lτ into a finite number of equivalence classes. For

anyδ ∈ Lτ , the equivalence class ofδ is defined as

[δ] = {γ ∈ Lτ | δ ≡ γ}.

The least element of an equivalence class[δ] exists and is defined as follows.

[δ] = α ∈ [δ] such that∀β ∈ [δ] : β = α • ε for someε ∈ TPath

Next, we define, for a typeτ , its type graphas the finite set of minimal elements of the equiva-

lence classes ofLτ :

Definition 35.4For a typeτ ∈ T (ΣT , VT), we denoteτ ’s type graph byL≡τ which is defined as

L≡τ = {[δ] | δ ∈ Lτ}.

A type graphL≡τ provides a finite approximation of the structure of terms of typeτ : every

path inL≡τ abstracts a number of subterms of the term according to their typeánd position in

the term. For thelist(T) type from above,L≡list(T) = {〈〉, 〈([|], 1)〉}. The path〈〉 represents all

subterms of typelist(T) in a term of typelist(T), whereas〈([|], 1)〉 represents all subterms of

typeT occurring in the first argument position of a functor[|]. In other words,〈〉 can be seen

as identifying the skeleton of the list, whereas〈([|], 1)〉 as identifying the elements of the list.

Note that due to the particular definition of≡, two subterms of a same type are not necessarily

abstracted by the same node inL≡τ . This is the case whenLτ contains two type paths identifying

the same type without them being equivalent, as in the next example.

Example 4 Consider the typepair(T) defined as

pair(T) −→ (T − T).

95

A term of the typepair(T) is a term(A − B) whereA and B are terms of typeT . For τ =

pair(T),

typetreeτ = L≡τ =


〈〉

〈(−), 1〉
〈(−), 2〉


Although〈(−), 1〉 and 〈(−), 2〉 identify subterms of the same typeT , they are not equivalent

according to the definition of equivalence.

The ability to distinguish between two occurrences of the same type inL≡τ allows a more precise

characterisation of terms of typeτ . This is illustrated with Example 4, in which it allows to

distinguish between both elements of a pair. Type based analyses [121, 15, 66] have a coarser

granularity. All paths leading to nodes of the type tree of the same type are placed in the same

equivalence class.

Now, one can obtain an abstract characterisation of terms of typeτ , based on the structure of

the term (or at least the type it belongs to), by associating an abstract value to each of the paths in

L≡τ . For binding-time analysis, we are interested in the time a (part of a) value becomes known

in the computation process. We use the abstract valuesB = {static, dynamic}. static denotes

that the binding certainly occurs at specialisation time;dynamic that it is not known when (and

in case of logic programs “if”) the binding occurs. A binding-time associates a value fromB to

each of the paths in a type graph.

Definition 35.5A binding-timefor a typet ∈ T (ΣT , VT) is a function

β : L≡t 7→ B

such that∀δ ∈ dom(β) holds thatβ(δ) = dynamicimplies thatβ(δ′) = dynamicfor all δ′ ∈
dom(β) with δ′ = δ • ε for someε ∈ TPath. The set of all binding-times (independent of the

type) is denoted byBT .

The relation between terms and the binding-times that approximate them is given by the

following abstraction function.

Definition 35.6Thebinding-time abstractionis a functionα : T (Σ,V) 7→ BT and is defined as

follows:

α(t : τ) =

 (δ, v)

δ ∈ L≡τ andv = dynamicif ∃θ and a subtermtδ
′
in tθ

such thattδ
′
is a variable andδ ≡ δ′

v = staticotherwise


96

If a termt : τ contains a subtermtδ
′
that is a variable, then the binding-time abstraction associates

the valuedynamicto the path inL≡τ that identifies this subterm and to all its extensions inL≡τ .

Example 5 Given the following terms of typelist(T) as defined in Example 1, their binding-time

abstraction is:
α([]) = {(〈〉, static), (〈([|], 1)〉, static)}
α([X1, X2] = {(〈〉, static), (〈([|], 1)〉, dynamic)}
α(X) = {(〈〉, dynamic), (〈([|], 1)〉, dynamic)}
α([X|Y]) = {(〈〉, dynamic), (〈([|], 1)〉, dynamic)}

Since the term[] does not contain any variable, it is abstracted by a binding-time specifying

that the list’s skeleton as well as its elements are static. A term[X1, X2] is approximated by a

binding-time specifying that the list’s skeleton is static, but its elements are dynamic. A variable

is abstracted by a binding-time specifying that the list’s skeleton as well as its elements are

dynamic. Also a term[X|Y] is approximated by a binding-time stating that its list skeleton as

well as its elements are dynamic due to the presence of the variable subtermY : list(T).

The following example shows why, if the valuedynamicis associated to a pathδ in a binding-

time for a typeτ , dynamicis also associated to all extensions ofδ in L≡τ .

Example 6 Consider a type definition for a tree of integers:

inttree ---> nil ; t(int, inttree, inttree).

The type graph ofτ = inttree,L≡τ contains only two paths:〈〉 denoting the tree’s skeleton, and

〈t, 1〉 denoting the integer elements in the tree. We have

α(t(0, X, t(1, nil, nil))) = {(〈〉, dynamic), (〈t, 1〉, dynamic)}.

Although all subterms of type int in the termt(0, X, t(1, nil, nil)) are non-variable terms, we

cannot abstract them to static. Indeed, the variableX in the term, being of type inttree, possibly

represents some unknown integer elements.

To make our approximations suitable for a binding-time analysis, we define a partial order rela-

tion onBT :

Definition 35.7 Let β, β′ ∈ BT such thatdom(β) ⊆ dom(β′) or dom(β′) ⊆ dom(β). We

say thatβ coversβ′, denoted byβ � β′ if and only if ∀δ ∈ dom(β) ∩ dom(β′) holds that

β′(δ) = dynamicimpliesβ(δ) = dynamic.

97

If a binding-timeβ covers another binding-timeβ′, thenβ is “at least as dynamic” asβ′.

Note that the relationship betweendom(β) anddom(β′) implies that thecoversrelation is only

defined between two binding-times that are derived from typesτ andτ ′ such that eitherτ is an

instance ofτ ′ or τ ′ is an instance ofτ .

Example 7 Recall the binding-times obtained by abstracting the terms in Example 5. We have

that

α(X) � α([X1, X2]) � α([])

In what follows, we extend the notion of the� relation to include the elements{>,⊥} such

that> � β andβ � ⊥ for all β ∈ BT . If we denote withBT + the setBT + = BT ∪ {>,⊥},
(BT +,�) forms a complete lattice. Wherever appropriate, we use⊥ and> to denote, for a

particular type, a binding-time in which all paths are mapped tostatic, respectively a binding-

time in which all paths are mapped todynamic. Occasionally we will also call such binding-times

completely static and completely dynamic, respectively.

We conclude this section by introducing some more notation. First, ifβ denotes a binding-

time for a typeτ andδ ∈ dom(β), thenβδ denotes the binding-time for a typeτ δ that is obtained

as follows:

βδ =
{

(γ, β([δ • γ])) γ ∈ L≡
τδ

}
.

In other words, ifβ = α(t) thenβδ = α(tδ). Finally, letτ, τ1, . . . , τn be types andf ∈ Σ such

thatf(t1 : τ1, . . . , tn : τn) is a term in the denotation ofτ . If β1, . . . , βn are binding-times for the

typesτ1, . . . , τn, we denote withf(β1, . . . , βn) the least dynamicbinding-time for typeτ such

thatβ[〈(f,i)〉] � βi for all i.

36 A Modular Binding-time Analysis for Mercury

In what follows, we develop a polyvariant binding-time analysis. The final output of the analysis

is an annotated program in which each of the original procedures may occur in several anno-

tated versions, depending on the binding-times of the (input) arguments with respect to which

the procedure was called. Each such version contains the binding-times of the local variables

and output arguments as well as instructions stating for each subgoal of the procedure’s body

whether or not it should be evaluated during specialisation. Correctness of the analysis ensures

that if a particular callp(t1, . . . , tn) occurs during specialisation, the analysis has created a ver-

sion of the called procedure that is annotated with respect to the particular call’s binding-time

abstractionp(α(t1), . . . , α(tn)). Before we define the actual analysis, we introduce Mercury’s

module system and define some necessary machinery to base the analysis upon.

98

36.1 Mercury’s module system

A Mercury program is defined as a set of Mercury modules. The basic module system of Mer-

cury is simple. A module consists of aninterfacepart and animplementationpart. The interface

part contains those type definitions and procedure declarations that the module provides (orex-

ports) towards other modules. In other words, the types and procedures declared in the interface

part of a module are visible and can be used (orimported) by other modules. Apart from the

implementation of the procedures that are declared in the module’s interface, its implementation

part possibly contains additional type definitions and the declaration and implementation of ad-

ditional procedures. These types and procedures are only visible in the implementation part of

this module, and can not be used by other modules.

Note that the way in which the modules import each other impose a hierarchy on the modules

that constitute a program. Following the terminology of [103], we use the notationimports(M, M ′)

to indicate that the moduleM imports the interface ofM ′ andimported(M) to denote the set of

modules that are imported byM , that is: imported(M) = {M ′ | imports(M, M ′)}. Figure 20

shows an example of a module hierarchy in Mercury in which we graphically represent a module

by a box, and denoteimports(M, M ′) by an arrow fromM towardsM ′. In the example, we have

M1

M3M2

M4 5M

Figure 20: A sample module hierarchy.

thatimported(M1) = {M2, M3, M5}. Note that in Mercury, theimportsrelation is not transitive;

when a moduleM imports the interface of a moduleM ′, it becomes dependent on the interfaces

imported byM ′ (and those imported therein) but it does not import these itself. While in Mer-

cury modules may depend on each other in a circular way, we restrict our attention to programs in

which no circular dependencies exist between the modules. We discuss circular dependencies in

Section 39. The module system described above is to some extent a simplification of Mercury’s

real module system, in which modules can be constructed from submodules. While submodules

do provide extra means to the programmer to control encapsulation and visibility of declarations,

99

they do not pose additional conceptual difficulties and we do not consider them in the remainder

of this work.

In this work, we aim at developing a binding-time analysis that is as modular as possible.

Ultimately, a modular analysis deals with each module of a program in isolation. We will discuss

throughout the text to what extent our binding-time analysis is modular in this respect.

36.2 Mercury programs for analysis

Mercury is an expressive language, in which programs can be composed of predicates and func-

tions, one can use DCG notation, etc. However, if we consider only programs that are type

correct and well-moded – which is natural, since the compiler should reject programs that are

not [112] – such a program can be translated intosuperhomogeneous form[112]. Translation to

superhomogeneous form involves a number of analysis and transformation steps. These include

translating ann-ary function definition into ann + 1 ary predicate definition [113], making the

implicit arguments in DCG-predicate definitions and calls explicit, and copying and renaming

predicate definitions and calls such that every remaining predicate definition has a single mode

declaration associated with it [112] that specifies for each argument whether it is an input or out-

put argument. As such, every predicate definition is transformed in a set of so-calledprocedure

definitions, with one procedure for every mode in which the original predicate is used.

For our analysis purposes, we assume that a Mercury program is given in superhomogeneous

form. This does not involve any loss of generality, as the transformation from a plain Mercury

program into superhomogeneous form is completely defined and automated [112]. Formally,

the syntax of Mercury programs in superhomogeneous form can be defined as follows. We use

the symbolΠ to refer to the set ofproceduresymbols underlying the language associated to

the program. As such, we consider two procedures that are derived from the same predicate as

having different procedure symbols.

Definition 36.1

Proc ::= p(X) : −G.

Goal := Atom | not(G) | (G1 , G2) | (G1 ; G2) | if G1 thenG2 elseG3

Atom ::= X := Y |X == Y |X ⇒ f(Y) |X ⇐ f(Y) | p(X)

wherep/n ∈ Π andX is a sequence ofn distinct variables ofV, f/m ∈ Σ, Y a sequence ofm

distinct variables ofV, andG, G1, G2, G3 ∈ Goal.

The definition of a procedurep in superhomogeneous form consists of a single clause. The

sequence of arguments in the head of the clause, denoted byArgs(p), are distinct variables,

100

explicit unifications are created for these variables in the body goal – denoted byBody(p) – and

complex unifications are broken down in several simpler ones. The arguments of a procedurep

are divided in a set of input arguments, denoted byin (p) and a set of output arguments denoted

by out (p). A goal is either an atom or a number of goals connected byconjunction, disjunction,

if then elseor not. An atom is either a unification or a procedure call. Note that, as an effect of

mode analysis [112], unifications are categorised as follows:

• An assignmentof the formX := Y . For such a unification,Y is input, whereasX is

output.

• A testof the formX == Y . BothX andY are input to the unification and of atomic type.

• A deconstructionof the form X ⇒ f(Y). In this case,X is input of the unification

whereasY is a sequence of output variables.

• A constructionof the formX ⇐ f(Y). In this caseX is output of the unification whereas

Y is a sequence of input variables.

During the translation into superhomogeneous form, unifications between values of a complex

data type may be transformed into a call to a newly generated procedure that (possibly recur-

sively) performs the unification. For any goalG, we denote within (G) andout (G) the set of

its input, respectively output variables13

Example 8 Consider the classical definition of theappend/3 predicate, both in normal syntax

and in superhomogeneous form for the modeappend(in,in,out) as depicted in Fig. 21.

append/3 append/3 in superhomogeneous form

append([],Y,Y).

append([E|Es],Y,[E|R]):-

append(Xs,Y,R).

append(X,Y,Z):-

(X⇒[], Z :=Y ;

X⇒[E|Es], append(Es, Y, R), Z ⇐[E|R]).

Figure 21: Theappend/3 predicate andappend(in,in,out) in superhomogeneous form.

According to Definition 36.1, conjunctions and disjunctions are considered binary constructs.

This differs from their representation inside the Melbourne compiler [109], where conjunctions

13Although Mercury has some support for more involved modes – other than input versus output – that are

necessary to supportpartially instantiated data structuresat run-time, release 0.9 of the Mercury implementation

[109] does not fully support these.

101

and disjunctions are represented in flattened form. Our syntactic definition however facilitates

the conceptual handling of these constructs during analysis.

For analysis purposes, we assume that every subgoal of a procedure body is identified by a

unique program point, the set of all such program points is denoted byPp. If we are dealing

with a particular procedure, we denote withη0 the program point associated with the procedure’s

head atom, and withηb the program point associated to its body goal. The set of program points

identifying the subgoals of a goalG is denoted byPps(G), this set includes the program point

identifyingG itself. If the particular program point identifying a goalG in a procedure’s body is

important, we subscribe the goal with its program point, as inGη or explicitly state thatPp(G) =

η. An important use of program points is to identify those atoms in the body of a procedure

in which a particular variable becomes initialised or, said otherwise, those atoms of which the

variable is an output variable. This information is computed by mode analysis, and we assume

the availability of a function

init : V 7→ ℘(Pp)

with the intended meaning that, for a variableV used in some procedure, ifinit (V) =

{η1, . . . , ηn}, the variableV is an output variable of the atoms identified byη1, . . . , ηn. Note

that the functioninit is implicitly associated with a particular procedure, which we do not

mention explicitly. When we use the functioninit , it will be clear from the context to what

particular procedure it is associated.

Example 9 Let us recall the definition ofappend/3 in superhomogeneous form for the mode

append(in,in,out) , with the atoms and structured goals occurring in the procedure’s def-

inition explicitly identified by subscribing them with their respective program point as in Fig-

ure 22. We denote the program points associated to a structured goal by subscripting the goal

append(X,Y,Z) 0:-

((X ⇒[] 1, Z :=Y2) c1 ;

(X⇒[E|Es] 3, (append(Es, Y, R) 4, Z ⇐[E|R] 5) c2) c3) d1 .

Figure 22:append/3 with explicit program points.

with the characters ‘c’ for conjunction and ‘d’ for disjunction, accompanied by a natural number.

From mode analysis, it follows that

init (X) = {0} init (E) = {3} init (R) = {4}
init (Y) = {0} init (Es) = {3} init (Z) = {2, 5}

102

Or, put otherwise,X andY (being input arguments) are initialised in the procedure’s head,E

andEs are initialised in the deconstruction identified by program point3, R is initialised in the

recursive call whereasZ is initialised either by the assignmentZ := Y (program point2) or by

the constructionZ ⇐ [E|R] (program point5).

36.3 A modular analysis

In order to make the binding-time analysis as much modular as possible, we devise an analysis

that works in two phases. In a first phase, we represent binding-times and the relations that exist

between them according the data flow in the program in a symbolic way. Doing so enables to

perform a large part of the data-flow analysis on this symbolic representation and hence inde-

pendent of a particular call pattern. It is only in the second phase that call patterns in the form of

the binding-times of a procedure’s input arguments are combined with the symbolic information

derived from the first phase, computing the actual binding-times of the remaining variables and

the annotations. The first phase of the analysis hence iscall independentwhereas the second

phase iscall dependent. Obviously, the call independent phase of the analysis does not need

to be repeated in case a procedure is called with a different binding-time characterisation of its

arguments and consequently, the result of a module’s call independent analysis can be used re-

gardless the context the module is used in, and must not be repeated when the module is used in

different programs. Since the domain of binding-times is condensing [54], the call-independent

analysis preserves the precision that would be obtained by a call-dependent analysis.

To symbolically represent the binding-time of a variable at a particular program point, we

introduce the concept of abinding-time variable, the set of which is denoted byVBT . We will

denote elements of this set as variables subscribed by a program point. IfV is a variable occurring

in a goalG, andη is a program point identifying an atom inG, then the binding-time variable

Vη ∈ VBT symbolically represents the binding-time ofV at program pointη. Given a type path

δ ∈ TPath, we use the notationV δ
η to denote the subvalue identified byδ in the binding-time of

V at program pointη.

Example 10 Given the definition ofappend/3 from Example 9, the binding-time variables

X0, Z2, Z5 and Z0 denote, respectively the binding-time ofX at the program point0 and the

binding-times ofZ at the program points2, 5 and0.

Apart from the binding-time variables that correspond with program variables, we introduce a

number of extra binding-time variables that we use to symbolically represent some control infor-

mation that will be collected (and needed) during the binding-time analysis. For each program

103

point η, we introduce two such variables,Rη andCη, that range over the set of binding-times

{⊥,>}. Their intended meaning is as follows:

• if Rη = ⊥, the goal identified byη reduces either totrue or fail during specialisation, or

to some residual code which is guaranteed not to fail at run-time. If, on the other hand,

Rη = >, the goal identified byη possibly reduces to residual code that can fail at run-time.

• if Cη = >, the goal identified byη is under dynamic control in the procedure’s body, which

is not the case ifCη = ⊥. We say that an atom is under dynamic control if the fact whether

it will be evaluated depends on the success or failure of another goal, sayGη′ while success

or failure of that goal is undecided at specialisation-time (that isRη′ = >).

Note that these binding-time variables – which we will refer to ascontrol variables– are boolean

in the sense that they will only assume a value that is either⊥ or>. During the binding-time ana-

lysis, these control variables collect the necessary information to implement the control strategy

of the specialiser. Our analysis models a rather conservative specialisation strategy, in the sense

that during specialisation, no atoms are reduced that are under dynamic control. The general

idea of this control strategy is as follows: if during specialisation only atoms are reduced that

are not under dynamic control, only atoms are reduced that would also be evaluated by an equiv-

alent single stage computation (where the static input part is extended with some ”dynamic”

input). Indeed, their being evaluated depends only on goals that are – during specialisation–

sufficiently reduced in order to decide success or failure. Hence, no atoms are “speculatively”

reduced, guaranteeing termination of the reduction process (constituting local termination) under

the assumption that the equivalent single stage computation terminates.

Example 11 Consider the following code fragment

if X ⇒ [] then p(X) else q(X)

Both atomsp(X) andq(X) are under dynamic control ifX ’s binding-time does not allow the

specialiser to decide whether or not the testX ⇒ [] will succeed during specialisation. Indeed,

the specialiser has no means of knowing which of the branches will be taken during the second

stage of the computation.

In general, the binding-time of a program variable can depend on the binding-times of other

program variables (according to the data flow) and on the value of the appropriate control vari-

ables (according to the control strategy). The values of the control variables that are associated

to a goal in turn depend on the binding-times of that goal’s input variables. Symbolically, we

104

can represent these dependencies by a number of constraints between the involved binding-time

variables. In general:

Definition 36.2A binding-time constraintis a constraint of the following form:

V δ
η � Xγ

η′ V δ
η � >

V δ
η �∗ Xγ

η′ V δ
η �∗ >

whereVη, Xη′ ∈ VBT andδ, γ ∈ TPath. The set of all binding-time constraints is denoted by

BTC.

A constraint of the formV δ
η � Xγ

η′ denotes that the binding-time represented byV δ
η must be

at least as dynamic as (orcover) the binding-time represented byXγ
η′. Note that such a constraint

requires the types ofV andX, denoted byτV andτX to be such thatτ δ
V andτ γ

X are instances

of one another, in order for their binding-times to be comparable. The intended meaning of a

constraint of the formV δ
η �∗ Xγ

η′ is that the binding-time represented byV δ
η is at least as dynamic

as the binding-time value associated to the path identified byγ in the binding-time represented by

Xγ
η′. Note that such a constraint does not requireτ δ

V andτ γ
X to be of comparable types; it simply

expresses that if the node identified byγ in the binding-time represented byXη′ is dynamic, so

must be the node identified byδ in Vη and by definition of a binding-time, so must be all its

descendant nodes. Remark that we also allow constraints of which the right-hand side is the

constant>. Although we occasionally also consider constraints of which the right-hand side

is the constant⊥, we do not explicitly mention these in the definition, as these constraints are

superfluous: for anyXη ∈ VBT andδ ∈ TPath, it holds by definition thatXδ
η � ⊥.

105

Example 12 Reconsider the definition ofappend/3 in Fig. 22. Some examples of binding-time

constraints between binding-time variables fromappend/3 and their intended meaning are:

Z2 � Y0

the binding-time associated toZ at program point2
is at least as dynamic as the binding-time associated

to Y at program point0

E3 � X
〈[|],1〉
0

the binding-time associated toE at program point3
is at least as dynamic as the subvalue denoted by〈[|], 1〉
of the binding-time associated toX at program point0

Z
〈[|],1〉
5 � E3

the subvalue denoted by〈[|], 1〉 in the binding-time of

Z at program point5 is at least as dynamic as the

binding-time associated toE at program point3

R3 �∗ X0

the atom at program point3 reduces to

true, fail or code that is guaranteed to succeed

if X0 represents a binding-time in which the

root node〈〉 is bound to static

C4 � R3

the atom at program point4 is under

dynamic control if the atom at program point3
possibly reduces to code that might fail

A set of binding-time constraints is called a binding-time constraint system (or simply a

constraint system). Given a constraint systemC, we define vars(C) as the set of all binding-time

variablesXη that occur in some constraintC ∈ C. The link between a binding-time constraint

system and the actual binding-times it represents is formalised as a (minimal) solution to the

constraint system.

Definition 36.3A solutionto a binding-time constraint systemC is a substitutionσ : VBT 7→ BT
mapping binding-time variables to binding-times withdom(σ) = vars(C) such that

• for every constraintV δ
η � > ∈ C andV δ

η �∗ > ∈ C it holds thatσ(Vη)
δ � >

• for every constraintV δ
η � Xγ

η′ ∈ C it holds thatσ(Vη)
δ � σ(Xη′)γ

• for every constraintV δ
η �∗ Xγ

η′ ∈ C it holds thatσ(Xη′)(γ) = dynamic⇒ σ(Vη)
δ � >

Given two solutionsσ andσ′ to C, we define thatσwσ′ if for all Vη ∈ dom(σ′) it holds that

Vη ∈ dom(σ) andσ(Vη) � σ′(Vη). A solutionσ is a least solutionfor C if for every solutionσ′

for C it holds thatσ′wσ.

106

Remember, a solution must also satisfy the condition of Definition 35.5, i.e. ifσ(Xη′)γ =

dynamicthen alsoσ(Xη′)γ•ε = dynamicfor any extensionε. We will sometimes use a con-

straint of the formV δ
η � Xγ′

η′ t Y γ′′

η′′ (analogously for�∗) as shorthand notation for the set of

constraints{V δ
η � Xγ′

η′ , V δ
η � Y γ′′

η′′ }. Indeed, from Definition 36.3 it can be seen that in any

solutionσ satisfying the latter two constraints, it holds thatσ(Vη)
δ � σ(Xγ′

η′) t σ(Y γ′′

η′′), where

t denotes the least upper bound on(BT +,�).

Example 13 Consider the following binding-time constraint system and its least solution. For

sake of simplicity, we assume that all binding-time variables are boolean and range over the set

{dynamic, static}.

Binding-time constraint system Least solution

Xη1 � >
Rη3 � Xη2

Yη4 � Xη1

Yη4 � Rη3

{
(Xη1 , dynamic) (Xη2 , static)

(Rη3 , static) (Yη4 , dynamic)

}

In what follows, we formulate our analysis as a call-independent abstract semantics. We

define the abstract “meaning” of a goal, be it an atom or a structured goal, as a set of binding-

time constraints (description domain℘(BTC)) that reflect the data flow between the input- and

output arguments of the goal. An essential operator for the symbolic data flow analysis is a

projection operator that basically rewrites a set of constraints such that every constraint expresses

(or constrains) the binding-time of a local variable within a procedure in function of the binding-

time(s) of that procedure’s input arguments. Such a constraint is said to be in normal form:

Definition 36.4A binding-time constraint is innormal formwith respect to a procedurep ∈ Proc

if it is either of the form

• V δ
η � >

• V δ
η � Xγ

η0
with X ∈ in (p) andη0 the program point associated top’s head atom.

and analogously for constraints of this form using�∗.

Example 14 Reconsider the binding-time constraints from Example 12. The constraints

Z2 � Y0 E3 � X
〈[|],1〉
0 R3 �∗ X0

are in normal form with respect toappend/3 , whereas the constraints

Z
〈[|],1〉
5 � E3 C4 � R3

are not.

107

Projection of a constraint involves unfolding the (subvalue of the) binding-time variable in its

right-hand side with respect to a single constraint on (a subvalue of) this variable. If we consider

two subvalues of a binding-time variable, sayXδ
η andXγ

η , one of them is a subvalue of the other

if either δ is an extension ofγ or vice versa. This is captured by the following definition:

Definition 36.5We define ext: TPath× TPath 7→ TPath× TPathas follows:

ext(γ, δ) =


(〈〉, ε) if γ = δ • ε

(ε, 〈〉) if γ • ε = δ

undefined otherwise

Note that if ext(γ, δ) = (ε, ε′) thenγ • ε = δ • ε′. Unfolding a constraintXγ
η � Y δ

η′ with respect

to another constraint result in a new constraint on (a subvalue of)Xγ
η , with as right hand side

the appropriate subvalue of the right hand side of the constraint that was used for unfolding. To

denote a subvalue of a constraint’s right hand sideφ (which is either a binding-time variable or a

one of the constants> or⊥), we use the notationφ•ε. If φ denotes a variableXγ
η , thenφ•ε equals

X
[γ•ε]
η . Otherwise, ifφ denotes one of the constants⊥ or>, φ•ε simply equalsφ. Note the use of

the least element of the equivalence class,[γ • η], to denote an element of the appropriate type

graphL≡τ (rather than the type treeLτ). The projection operation is defined in Definition 36.6

and basically consists of a fixed point iteration over an unfolding operator followed by a selection

operation that retrieves the constraints of interest from the fixed point. Recall thatη0 identifies

the head atom of the procedure of interest.

Definition 36.6Theprojectionof a setS ⊆ ℘(BTC) on a set of binding-time variablesV ⊆ VBT
is denoted by projV S and defined as

projV (S) = {X�(∗)φ ∈ lfp(unfS) |X ∈ V }

where unfS is defined in Figure 23.

The symbolic analysis is defined in Definition 36.7. The result of analysing a program is a

mapping (from the semantic domainDen) that maps a procedure symbolp to a set of binding-

time constraints on the variables that occur in the definition of the procedurep. The constraints

are in normal form. Polyvariance is immediate, since all constraints are expressed in terms of the

procedure’s input arguments, which are represented symbolically and hence can be instantiated

by any call pattern. The analysis is defined by a number of semantic functions defining the

abstract semantics of a programP : Prog 7→ Den in terms of the semantics of the individual

procedures, goals and atoms.

108

unfS : ℘(BTC) 7→ ℘(BTC)

unfS(I) = {Xη�(∗)Yη0 , Xη�(∗)> ∈ S} ∪ S1 ∪ S2 ∪ S3

where

S1 = {X [γ•ε]
η � φ•ε′ |Xγ

η � Y δ
η′ ∈ S, Y δ′

η′ � φ ∈ I, and ext(δ, δ′) = (ε, ε′)}

S2 = {Xγ
η �∗ φ |Xγ

η � Yη′ ∈ S andYη′ �∗ φ ∈ I}

S3 = {Xη �∗ φ•ε |Xη �∗ Y δ
η′ ∈ S, Y δ′

η′ � φ ∈ I and ext(δ, δ′) = (〈〉, ε)}

Figure 23: The projection projV

Definition 36.7 The call independent abstract semanticsfor description domain℘(BTC) has

semantic domain

Den : Π 7→ ℘(BTC)

and semantic functions

P : Prog 7→ Den

C : Proc 7→ Den 7→ Den

G : Goal 7→ Den 7→ ℘(BTC)

A : Atom 7→ Den 7→ ℘(BTC)

and is defined in Figures 24 and 25.

The result of analysing a program is a denotation,P[[P]]P , in the domainDen, which is a

mapping from a predicate symbol to a set of binding-time constraints. This mapping is defined

as the least fixed point of applying the analysis functionC to each individual procedure. The

analysis functionC constructs a partial denotation for a particular procedure, given a (possi-

bly incomplete) denotation that represents the result of analysis of the whole program so far.

The analysis functionsG andA map respectively a structured goal and an atomic goal to a set

of binding-time constraints, given a denotation – again representing the result of analysing the

whole program so far. In general, the result of analysing a complex goal is the union of the

constraints obtained by analysing each subgoal in isolation, together with a number of additional

constraints on the control variables associated with the goal and its subgoals. These constraints

are simple, as they merely reflect the propagation of the control variable’s value, either from the

109

P[[P]] = lfp(
⋃

p∈Proc(P)

C[[p]])

C[[p(X)← Gη]]d = {(p,G[[Gη]]d)}

G[[(G′
η′ , G′′

η′′)η]]d = G[[G′
η′]]d ∪G[[G′′

η′′]]d ∪ CCconj(η, η′, η′′)

G[[notη(Gη′)]]d = G[[Gη′]]d ∪ CCnot(η, η′)

G[[ifη G′
η′ thenG′′

η′′ elseG′′′
η′′′]] = G[[G′

η′]]d ∪G[[G′′
η′′]]d ∪G[[G′′′

η′′′]]d ∪ CCif (η, η′, η′′, η′′′)

G[[(G′
η′ ; G′′

η′′)η]]d = G[[G′
η′]]d ∪G[[G′′

η′′]]d ∪ CCdisj(η, η′, η′′)

G[[Aη]]d = A[[Aη]]d ∪ {Xη � Xη′ |X ∈ in (A), η′ ∈ reach (X, η)}

A[[X ==η Y]]d = {Rη �∗ Xη t Yη}
A[[X :=η Y]]d = {Xη � Yη t Cη, Rη � ⊥}
A[[X ⇒η f(Y)]]d =

⋃
Yi∈Y {Yi,η � X

[〈f,i〉]
η t Cη} ∪ {Rη �∗ Xη}

A[[X ⇐η f(Y)]]d =
⋃

Yi∈Y {X
[〈f,i〉]
η � Yi,η t Cη} ∪ {Rη � ⊥}

A[[p(X1, . . . , Xn)η]]d = ρ(projArgs(p),Rηb
d p) t {Xi,η � Cη |Xi ∈ out (p)}

whereArgs(p) denotes the sequence of formal arguments in the definition ofp/n, ηb is associated

to the body goal in the definition ofp/n andρ is a renaming mapping the sequence of formal

argumentsArgs(p) to the sequence of actual arguments〈X1, . . . , Xn〉 andRηb
toRη.

Figure 24: The call independent abstract semantics

110

CCconj(η, η′, η′′) =


Cη′ � Cη Cη′′ � Cη Cη′′ � Rη′

Rη � Rη′ Rη � Rη′′



CCdisj(η, η′, η′′) =


Cη′ � Cη Cη′′ � Cη

Rη � Rη′ Rη � Rη′′


CCnot(η, η′) =

{
Cη′ � Cη Rη � Rη′

}

CCif (η, η′, η′′, η′′′) =



Cη′ � Cη Cη′′ � Cη Cη′′′ � Cη

Cη′′ � Rη′ Cη′′′ � Rη′

Rη � Rη′ Rη � Rη′′ Rη � Rη′′′


Figure 25: The call independent abstract semantics (ctd.)

111

goal to its subgoals (in case of the control variableC) or from the goal’s subgoals to the goal

itself (in case ofR). The binding-time variables denoting dynamic control denote that a goal is

under dynamic controlwith respect to the procedure’s body. The negated goal in a negation is

under dynamic control only if the negation itself is. Observe that ifA reduces to true or is guar-

anteed to succeed, then not(A) fails. And if A fails then not(A) succeeds. So we can say that the

negation reduces to true, fail, or residual code which is guaranteed to succeed if the negated goal

does. The propagation in the other constructs is similar: the subgoals of an if-then-else are under

dynamic control if the if-then-else is under dynamic control. Moreover, both the then and else

goals are under dynamic control if the test goal possibly reduces to residual code which could fail

at run time. If each of the if-then-else’s subgoals reduces to true, fail or code that is guaranteed

to succeed, so does the if-then-else. The subgoals of a conjunction are under dynamic control

if the conjunction itself is. Moreover, the second conjunct is under dynamic control if the first

conjunct possibly reduces to residual code that could fail. If both conjuncts reduce to true, fail

or code that is guaranteed to succeed, so does the conjunction. To conclude, if a disjunction is

under dynamic control, so are both disjuncts. If both disjuncts reduce to true, fail or code that is

guaranteed to succeed, so does the disjunction.

Example 15 Reconsider the definition ofappend/3 in Figure 22. The body goal contains

the following structured subgoals: a conjunction identified by program pointc1 with the atomic

conjuncts identified by program points1 and 2, a second conjunction identified byc2 with the

atomic conjuncts identified by program points4 and5, a third conjunction identified byc3 with

the conjuncts identified by program points3 andc2 and a disjunction identified by program point

d1 with the disjuncts identified byc1 andc3. The binding-time constraints that are associated to

each of these structured goals are as follows:

(c1)

C1 � Cc1 Rc1 � R1

C2 � Cc1 Rc1 � R2

C2 � R1

(c2)

C4 � Cc2 Rc2 � R4

C5 � Cc2 Rc2 � R5

C5 � R4

(c3)

C3 � Cc3 Rc3 � R3

Cc2 � Cc3 Rc3 � Rc2

Cc2 � R3

(d1)
Cc1 � Cd1 Rd1 � Rc1

Cc3 � Cd1 Rd1 � Rc3

112

The binding-time constraints that are associated to an atomic goal are somewhat more in-

volved. Apart from binding-time constraints on the atom’s output variables, analysing an atom

Aη also possibly results in a binding-time constraint on the control variableRη, indicating un-

der what conditions the atom can be reduced to true, fail, or code that is guaranteed to succeed.

Moreover, when creating the binding-time constraints on the atom’s output variables, the control

variableCη must be taken into account, in order to guarantee that the particular binding-time is

made> in case the atom is under dynamic control.

Note that in the definition ofA the binding-time variables that refer to theinput variables

of an atom at program pointη are indexed by the program pointη. Consequently, a number of

additional constraints must be created for each atom, relating the binding-time of such an input

argument at program pointη with its binding-time at the program point(s) where the binding-time

was created, being output of some other atom.

A test does not have any output variables, so it only creates constraints on control variables.

The atom reduces to true, fail or code that is guaranteed to succeed when both input variables

are bound to an outermost functor. An assignmentX := Y introduces the constraints specifying

that the binding-time ofX at program pointη must be at least as dynamic as the binding-time

of Y at program pointη. Recall that the latter’s value is constrained to be at least as dynamic

as the least upper bound of the binding-times ofY at the reachable program points whereY is

assigned a value. Moreover, if the assignment is under dynamic control,Xη must be assigned the

value>. This is guaranteed by addingt Cη to the right-hand side of the constraint onXη. Even

if an assignment is not reduced, it can never fail at run time. Hence the (superfluous) constraint

Rη � ⊥. A deconstruction introduces some binding-time constraints indicating that the binding-

time of the newly introduced variables must be at least as dynamic as the corresponding subvalue

in the binding-time of the variable that is deconstructed. Also in this case, the least upper bound

with Cη guarantees that, if the deconstruction is under dynamic control, the newly introduced

binding-time variables will be forced to have the value>. If the deconstructed variable is bound

to at least an outermost functor, the deconstruction reduces to true or fail at specialisation time.

Otherwise, a residualised deconstruction can either succeed or fail at run time which is reflected

by the fact that in that caseRη will have the value>. When handling a construction on the

other hand, the binding-time of the constructed variable is constrained by the binding-times of

the variables used in the construction. Again, if the construction is under dynamic control, the

constructed binding-time is guaranteed to be> by the use of the least upper bound withCη. Even

when residualised, a construction can never fail, so again the (superfluous) constraintRη � ⊥ is

introduced.

113

Example 16 Reconsider the definition ofappend/3 in Figure 22. The constraints that are

associated to the unifications inappend/3 ’s body goal are as follows. The numbers in the left

hand side column denote the particular unification’s program point.

(1) R1 �∗ X0

(2) R2 � ⊥ Z2 � Y0

(3) R3 �∗ X0

E3 � X
〈[|],1〉
0

Es3 � X
〈〉
0

(5) R5 � ⊥
Z
〈[|],1〉
5 � E3

Z
〈〉
5 � R4

Finally, handling a procedurep(X1, . . . , Xn) call involves retrieving the constraints for the called

procedurep from the denotation and projecting these onto the set of variablesArgs(p) ∪ {Rηb
}.

This projection operation makes sure that the constraints on these variables are in normal form,

i.e. that they are expressed in terms ofin (p). The resulting set of constraints is then renamed to

the context of the call: the formal arguments ofp, Args(p) are renamed to their corresponding

actual argument in〈X1, . . . , Xn〉 and the constraints onRηb
are renamed to constraint onRη,

expressing that the call reduces to true, fail or code that is guaranteed to succeed if the body of

the called procedure reduces to true, fail or code that is guaranteed to succeed.

Example 17 LetP denote the program consisting only of the definition ofappend/3 depicted

in Figure 22 and let(1) and (2) denote, respectively, the sets of constraints depicted in Exam-

ples 15 and 16. The fixed point computation forP[[P]] starts with an empty denotation and hence,

in the first round of the computation, the recursive call does not introduce any constraints; the

result ofC[[append/3]]{} is a denotation that mapsappend/3 to the constraint set(1)∪ (2).

It is only in the second round, when the constraints are projected and renamed, that the recursive

call adds the constraints

R4 � Y0 R
〈([|],1)〉
4 � Es

〈([|],1)〉
3 R4 �∗ Es0

One can verify that in a next round no new constraints are introduced by the recursive call, and

henceP[[P]] results in a denotation that associatesappend/3 to the union of the constraints

derived above with the sets(1) and (2).

36.4 From constraints to annotations

Once we have computedP[[P]], it suffices to have a set of binding-times for the input variables of

a procedurep in order to compute the binding-times of the remaining variables in the definition

114

of p, as well as the annotations that are associated with a particular atom in the definition ofp.

Let us first introduce the semantic domainCall, that we use to represent a call in the domain of

binding-times:

Call = {p(β1, . . . , βn) | p/n ∈ Π and∀i : βi ∈ BT +}

To ease notation, we assume that such a call contains a binding-time for each argument (input

as well as output). However, since these calls are used to represent the binding-times of the

input arguments of the call only, we asume the binding-times of the output arguments to be⊥.

We will denote elements ofCall by a single greek letterπ if the particular procedure/argument

combination is irrelevant. We can now define the annotation of a procedure with respect to a

particular call as follows:

Definition 36.8Given a denotationd ∈ Den for a programP and a callp(β1, . . . , βn) ∈ Call,

the procedure annotation (of a procedurep ∈ Proc(P)) induced by a callp(β1, . . . , βn) is

defined as the least solutionσ of (d p) in whichσ(Xi) = βi for everyXi ∈ in (p).

Being a solution of the set of binding-time constraints associated to a procedurep, a proce-

dure annotation not only provides binding-times for all program variables inp, but also maps

every binding-time variable of the formCη to either⊥ or>, denoting respectively that the goal at

program pointη in the procedure’s body should be evaluated during specialisation, or be residu-

alised. Being aleastsolution, a procedure annotation contains the least dynamic binding-times

while still satisfying the congruence relation. As such, a procedure annotation of a procedurep

with respect to a callπ represents control information for a specialiser as to how to treat each

subgoal of the body ofp, when a call top is approximated byπ.

A polyvariant analysis for a programP and an initial callp(β1, . . . , βn) can then be performed

by first computing the procedure annotationσ of p induced byp(β1, . . . , βn) and consecutively

computing, for every callq(X1, . . . , Xm) that occurs at some program pointη in the definition

of p, the procedure annotation ofq induced byq(σ(X1η), . . . , σ(Xmη)). This process is repeated

recursively until no more abstract calls are encountered for which no procedure annotation has

been constructed yet. In other words, a polyvariant annotation process for a programP with

initial call π boils down to computing the abstract callset of(P, π): The set of abstractions

of all calls that can possibly be encountered during evaluation ofP with respect to a call that

is abstracted byπ. Formally, we define also this annotation process by a number of semantic

functions that define the meaning of a programP with respect to an initial callπ as a set of calls

in the domain of binding-times.

115

Pc[[P]]π = lfp(
⋃

p∈Proc(P)

Cc[[p]]π)

Cc[[p(X1, . . . , Xn)← B]]πS =
⋃

p(β1,...,βb)∈S∪{π}

Gc[[B]]p(β1, . . . , βn)

Gc[[not(G)]]π = Gc[[G]]π

Gc[[G1, G2]]π = Gc[[G1]]π ∪Gc[[G2]]π

Gc[[G1; G2]]π = Gc[[G1]]π ∪Gc[[G2]]π

Gc[[if G1 themG2 elseG3]]π = Gc[[G1]]π ∪Gc[[G2]]π ∪Gc[[G3]]π

Gc[[q(Y1, . . . , Yn)]]π = {q(σπ(Y1), . . . , σπ(Yn))}

andGc[[A]]π = ∅ for any other atomic goalA and whereσπ denotes the procedure annotation

induced byπ ∈ Call.

Figure 26: The annotation semantics

Definition 36.9 Thefirst-orderannotation semantics has semantic domainDenc : ℘(Call) and

semantic functions

Pc : Prog 7→ Call 7→ Denc

Cc : Proc 7→ Call 7→ Denc 7→ Denc

Gc : Goal 7→ Call 7→ Denc

defined in Figure 26.

The definition of the semantic functionsPc, Cc andGc is straightforward. The semantic

domainDenc = ℘(Call) represents the set of all abstract callsets. The semantics of a program

P with respect to an initial callπ is defined as the least fixed point of repeatedly computing the

semantics of each procedure (byCc) in P within the context of this initial call and a (possibly

incomplete) denotation containing the result of analysis so far. The analysis functionCc con-

structs a partial denotation for a particular procedure as the union of the denotations obtained by

analysing the procedure’s body goal with respect to every call to the procedure encountered so

far. The semantics of an individual goalG in the body of a procedurep is defined with respect

to a callπ to p. The definition ofGc is straightforward, as it only collects the abstract calls

encountered in the annotation ofp induced byπ. Note that the analysis is guaranteed to create a

finite number of procedure annotations since every procedure has a finite number of arguments,

every such argument can only be approximated by a finite number of binding-times, and hence

only a finite number of call patterns can be constructed for a particular procedure.

116

36.5 On the modularity of the approach

In summary, the binding-time analysis we have developed so far is to be performed in two phases.

The first phase of the process performs the data flow analysis in a symbolic way. A procedure

is analysed independent of a particular call pattern, and the analysis handles procedure calls by

projecting and renaming the constraints that are associated to the called procedure. For a pro-

gram that is divided into several modules, this means that the constraint generating phase of the

analysis can be performed one module at a time, bottom-up in the module hierarchy if we con-

sider hierarchies without circularities. Reconsider the module hierarchy from Fig. 20. The result

of bottom-up analysis of this hierarchy is depicted in Fig. 27. First, the modules at the bottom

level,M4 andM5 are analysed. Since these modules do not import any other modules, they can

be treated as regular programs, and we can simply computeP[[M4]] andP[[M5]]. The rounded

boxes in the figure denote the result of computingP[[M]] for a particular moduleM . The shaded

part of the box represent this denotation, restricted to the procedures from the module’s inter-

face. Subsequently, the modulesM2 andM3 can be analysed, since their analysis only requires

M1

M3M2

M4 5M

M4
µ

M5
µ

M2
µ

M3
µ

M1
µ

Figure 27: Bottom-up analysis of the module hierarchy.

the constraints from the interface procedures ofM4, respectivelyM4 andM5. Computation of

P[[M2]] andP[[M3]] can proceed as before, with the exception that the fixed point computation

should not be started from the empty denotation, but rather fromP[[M4]] andP[[M4]] ∪ P[[M5]]

respectively. Finally, since now the result is available of analysingM2, M3 andM5, the module

M1 can be analysed. Note that in this process, each module is analysed only once. If a module,

like M5 in the example, is imported in more than one module, analysing the latter modules only

requires theresultof analysing the former.

The second phase of the analysis, computing the procedure annotations, is naturally a call-

dependent process. Consequently, annotating a multi-module program for an initial call to a

117

procedurep in the top-level module requires the constraints for all the procedures (spread out over

all modules) that are in the call graph forp. One could argue that this corresponds to analysing

a multi-module program as if it was a single-module monolithic program. However, it should

be noted that computing a procedure annotation induced by a particular call is a rather cheap

process. Since the involved constraints are in normal form, it merely consists of performing a

substitution on the right-hand side of the constraints and computing their least upper bounds.

The hard part of the analysis – tracing the data flow between the input- and output arguments

of a procedure – which possibly involves procedure calls over module boundaries, is done at the

symbolic level, in a modular fashion.

37 Higher-order Binding-time Analysis

Mercury is a higher-order language in whichclosurescan be created, passed as arguments of

predicate calls, and in turn be called themselves. To describe the higher-order features of the

language, it suffices to extend the definition of superhomogeneous form (see Definition 36.1)

with two new kinds of atoms:

• A higher-order unificationwhich is of the formX ⇐ p(V1, . . . , Vk) whereX,V1, . . . , Vk ∈
V andp/n ∈ Π with k ≤ n.

• A higher-order callwhich is of the formX(Vk+1, . . . , Vn) whereX,Vk+1,. . . ,Vn ∈ V with

0 ≤ k ≤ n.

A higher-order unificationX ⇐ p(V1, . . . , Vk) constructs a closure from ann-arity procedurep

by currying the firstk arguments (withk ≤ n). The result of the construction is assigned to the

variableX and denotes a procedure of arityn−k. Such a closure can be called by a higher-order

call of the formX(Vk+1, . . . , Vn) whereVk+1, . . . , Vn are then − k remaining arguments. The

effect of evaluating the conjunctionX ⇐ p(V1, . . . , Vk), X(Vk+1, . . . , Vn) equals the effect of

evaluatingp(V1, . . . , Vn).14

In order to represent higher-ordertypesit suffices to add a special type constructor,pred,

to ΣT . This constructor is special in the sense that it can be used with any arity and it has no

type rule associated with it. Consequently, a higher-order type corresponds with a leaf node in

14When writing Mercury code, the programmer can also use lambda expressions to construct closures. These can,

however, be converted into a regular procedure definition which is then again used to construct the closure as above.

The Melbourne Mercury compiler does this conversion as part of the translation into superhomogeneous form. Note

that closures cannot be constructed from other closures: once a closure is created, one can only call it or pass it as

an argument to another procedure.

118

a type tree. In what follows we represent higher-order types aspred(t1, . . . , tk) with t1, . . . , tk

first-order types. We furthermore assume that higher-order types are not used in the definition of

other types; that is, values of higher-order type are only constructed, called, or passed around as

arguments of a procedure call.15

The basic problem when analysing a procedure involving higher-order calls, is that the control

flow in the procedure is determined by the values of the higher-order variables. To retrieve

a set of suitable binding-time constraints between the in- and output arguments of a higher-

order callX(Yk+1, . . . , Yn), it is necessary to know to some extent to what closuresX can be

bound to during specialisation. Consequently, to achieve an acceptable level of precision, the

symbolic data flow analysis needs to be enhanced by some form ofclosure analysis[60, 98]

which basically computes for every higher-order call an approximation of the closures that may

be bound to the higher-order variable involved. In what follows, we will first define a suitable

representation for such closure information, and reformulate the first phase of our binding-time

analysis so that it integrates the derivation of closure information with the derivation of binding-

time constraint systems. Doing so basically transforms the process of building constraint systems

into a call dependent process, since closures can be passed around by procedure calls and hence

the analysis needs to take the closure information from a particular call pattern into account. We

conclude this section with a discussion on the modularity of the higher-order approach.

37.1 Representing closures

In order to use closures during binding-time analysis, where concrete values of the closure’s

curried arguments are approximated by binding-times, we introduce the notion of abinding-time

closureas follows.

Definition 37.1 A binding-time closureis a term of the formp(β1, . . . , βk) wherep/n ∈ Π,

k ≤ n andβ1, . . . , βk ∈ BT +. The set of all such binding-time closures is denoted byClos.

If p/n ∈ Π, p(β1, . . . , βk) approximates a set of procedures of arityn−k, each being an instance

of p in which the firstk arguments are fixed and whose values are approximated by the binding-

timesβ1, . . . , βk.

Example 18 Given the traditionalappend/3 procedure andβl being a binding-time approx-

imating terms of typelist(T) that are instantiated at least up to a list skeleton,append,

append(βl) andappend(⊥, βl) are examples of binding-time closures of arity3, 2 and1 respec-

tively.

15In fact, this is also a limitation of release 0.9 of the Mercury implementation [109].

119

In order to obtain a precise binding-time analysis, we approximate the value of a higher-order

variable with asetof binding-time closures. A singleton set{c} describes that the higher-order

variable under consideration is, during specialisation, definitely bound to a closure that is ap-

proximated byc. In general, a set{c1, . . . , cn} describes that the higher-order variable under

consideration is bound during specialisation to a closure that is approximated either byc1, c2,. . . ,

or cn. To make this representation explicit, we alter the definition of the domainB. Instead

of containing only the valuesstaticanddynamic, we now include a valuestatic(S) with S be-

ing a set of binding-time closures. Note that, if we definedynamic > static as before and

static(S1) > static(S2) if and only if S1 ⊇ S2, B is still partially ordered. Since the binding-

times now include higher-order binding-times, we alter the definition of the partial order relation

onBT :

Definition 37.2 Let β, β′ ∈ BT such thatdom(β) ⊆ dom(β′) or dom(β′) ⊆ dom(β). We say

thatβ coversβ′, denoted byβ � β′ if and only if ∀δ ∈ dom(β) ∩ dom(β′) holds that

• β′(δ) = dynamicimpliesβ(δ) = dynamic, and

• β′(δ) = static(S ′) impliesβ(δ) = static(S) andS ⊇ S ′.

Note that, with this new definition, the covers relation remains only defined between two binding-

times that are derived from types that are instances of each other. In case of higher-order binding-

times this means that both sets of binding-time closures contain closures of identical arity and

argument types. Like before, we denote withBT + the setBT ∪ {>,⊥}, and(BT +,�) forms a

complete lattice.

37.2 Higher-order binding-time analysis

We now reformulate the analysis from Section 36 such that it takes the higher-order constructs of

Mercury into account. As a first observation, note that the binding-time constraints that are asso-

ciated to first-order unifications and structured goals (see Figures 24 and 25) remain unchanged

in the context of a higher-order analysis. To deal with higher-order constructions, we add an extra

form of binding-time constraint toBTC; namely a constraint of the formXη � p(X1, . . . , Xk).

The intended meaning is that the (higher-order) binding-time associated toX at program point

η should at least contain a closure constructed fromp and the binding-times of its arguments at

program pointη. Formally, we extend the definition of a solution (Definition 36.3) such that for

every constraint of the formXη � p(X1η , . . . , Xkη) it holds that

σ(Xη) � static({p(β1, . . . , βk)}) whereβi � σ(Xiη) for 1 ≤ i ≤ k.

120

The main difference with the symbolic data flow analysis of Section 36 in a higher-order

setting is that a set of constraints can no longer be associated to a procedure symbol (as in the

semantic domainDen). Instead, in the higher-order analysis, we associate a set of binding-

time constraints with a particular abstract call. Therefore, we define the analysis as an abstract

semantics as before, but over the new semantic domain

Dencc : Call 7→ ℘(BTC).

The notion of a procedure annotation of a procedurep induced by a callp(β1, . . . , βn) is straight-

forwardly adapted for use with a denotation inDencc rather than inDen. Moreover, given two

such mappingsf, g ∈ Dencc, we definef ∪ g as a mapping inDencc with dom(f ∪ g) =

dom(f) ∪ dom(g) and

∀x ∈ dom(f ∪ g) : (f ∪ g)(x) =


f(x) ∪ g(x) if x ∈ dom(f) ∩ dom(g)

f(x) if x ∈ dom(f) andx 6∈ dom(g)

g(x) if x ∈ dom(g) andx 6∈ dom(f)

The resulting analysis is a call-dependent analysis that is basically a combination of the call-

independent and call-dependent analyses of Section 36.

Definition 37.3

Thehigher-order semanticshas semantic domain

Dencc : Call 7→ ℘(BTC)

and semantic functions

Pcc : Prog 7→ Call 7→ Dencc

Ccc : Proc 7→ Call 7→ Dencc 7→ Dencc

Gcc : Goal 7→ Call 7→ Dencc 7→ Dencc

Acc : Atom 7→ Call 7→ Dencc 7→ Dencc

defined in Figure 28.

Again, the meaning of a program is defined as a fixed point computation over the meaning

of the individual procedures in the program given a binding-time abstraction of the call with

respect to which the program must be specialised. Each procedure is analysed (byCcc) within

the context of this initial call and a denotation (inDencc) representing the (possibly incomplete)

results of analysis so far. The definition ofGcc, defining the abstract meaning of a goal, is

121

Pcc[[P]]π = lfp(
⋃

p∈Proc(P)

Ccc[[p]]π)

Ccc[[p(X1, . . . , Xn)← B]]πd =
⋃

p(β1,...,βn)∈dom(d)∪{π}

Gcc[[B]]p(β1, . . . , βn)d

Gcc[[(G
′
η′ , G′′

η′′)η]]πd = Gcc[[G
′
η′]]πd ∪Gcc[[G

′′
η′′]]πd ∪ {(π, CCconj(η, η′, η′′))}

Gcc[[notη(Gη′)]]πd = Gcc[[Gη′]]πd ∪ {(π, CCnot(η, η′))}
Gcc[[ifη G′

η′ thenG′′
η′′ elseG′′′

η′′′]]πd = Gcc[[G
′
η′]]πd ∪Gcc[[G

′′
η′′]]πd ∪Gcc[[G

′′′
η′′′]]πd

∪{(π, CCif (η, η′, η′′, η′′′))}
Gcc[[(G

′
η′ ; G′′

η′′)η]]πd = Gcc[[G
′
η′]]πd ∪Gcc[[G

′′
η′′]]πd ∪ {(π, CCdisj(η, η′, η′′))}

Gcc[[Aη]]πd = Acc[[Aη]]πd ∪ {(π, S)}
whereS = {Xη � Xη′ |X ∈ in (A), η′ ∈ reach (X, η)}

Acc[[U]]πd = {(π,A[[U]]d)} for a first-order unificationU

Acc[[X ⇐ p(X1, . . . , Xk)η]]πd = {(π, {Xη � p(X1, . . . , Xn) t Cη,Rη � ⊥})}
Acc[[q(Y1, . . . , Yn)η]]πd = S1 ∪ S2 where

S1 = {(q(β1, . . . , βn), {})}
S2 = {(π, ρ(projArgs(q),Rηb

(d q(β1, . . . , βn)))}
with βi = σπ(Yiη)

Acc[[X(Yk+1, . . . , Yn)η]]πd = S1 ∪ S2 where

S1 = {(q(β1, . . . , βn), {}) | q(β1, . . . , βk) ∈ S}
whereσπ(Xη) = static(S)

andβi = σπ(Yi) for k + 1 ≤ i ≤ n

S2 = {(π,
⋃

π′∈dom(S1) ρ(projV (dπ′)))}
whereV = Args(p) ∪ {Rηb

}

Figure 28: The higher-order semantics

122

basically identical to the definition ofG from Section 36, apart from the facts that (1) it threads

a denotation as well as the abstract call to the procedure that is currently being analysed and

(2) it associates this abstract call to the constraints for a particular goal. The same observations

hold for the definition ofAcc. The constraints derived for a first-order unification are identical to

those derived byA. A higher-order construction results in a constraint stating that the binding-

time of the higher-order variable must contain at least the abstract closure created at this program

point with the usual condition that the construction must not be under dynamic control. Being

a construction, reduction can never result in code that might fail during exeuction, hence the

(superfluous) constraint onRη.

Handling procedure calls is somewhat more involved than in the first-order case. Retrieving

the constraints associated to a first-order call from the denotation now requires to compute the

binding-times of the arguments in of the call. As before,σπ represents the procedure annotation

induced by the callπ. The binding-time variables in the resulting (projected) constraints are

again renamed to the actual arguments of the callX1, . . . , Xn and the control variableRηb
is

renamed toRη, as before. As for the other goals, the resulting constraints are associated to the

abstract callπ for which the surrounding procedure is being analysed. The resulting mapping, in

Figure 28 denoted byS2, is updated with the mapping{(q(β1, . . . , βn), {})} in order to make sure

that the callq(β1, . . . , βn) is in the domain of the newly constructed denotation, and hence will be

analysed during a next round of the analysis. Note that the use of∪ guarantees that if the call was

already in the domain of the donation, the set of constraints associated to it remains unchanged.

A higher-order call is basically handled as a set of first-order calls. First, the binding-time of

the higher-order variable is retrieved from the procedure annotationσπ for the currently analysed

procedure/call combination. If this binding-time equalsstatic(S), each closureq(β1, . . . , βk) ∈
S is transformed to a first-order call by addingσπ(Xk+1), . . . , σπ(Xn) to its arguments. From

then on, the call is handled as a first-order call. The constraints associated to this call are retrieved

from the denotation and added to the denotation under construction, and the call itself is added

to the domain of the denotation under construction.

37.3 On the modularity of the approach

In a higher-order setting, the constraint generation phase of our binding-time analysis is a call

dependent process. Indeed, the data flow dependencies in a procedure are determined by the

closures contained in the procedure’s call pattern. This suggests that the advantage of modularity,

associated to the constraint based technique in a first-order setting, might no longer hold in a

higher-order setting. However, to some extent the analysis can still be performed in a bottom-up,

123

modular way. Consider a moduleM that exports the predicatesp1, . . . , pn. We can than compute⋃
p∈{p1,...,pn}

Pcc[[P]]p(>, . . . ,>).

At first sight, it might seem strange to perform a call-dependent analysis with respect to

an inital call in which all arguments are approximated by>. However, recall that only the

higher-order parts of the call patterns influence the resulting constraint systems. Hence, for

those procedures that have no higher-order arguments, the constraint system derived by the call

dependent analysis for a callp(>, . . . ,>) equals the one derived by the call independent analysis

of Section 36, and it can readily be used by other modules importing these procedures. Note that

the call dependent nature of the process ensures that closure information that is constructed in a

moduleM , is propagated insideM itself. It is only if closure information is “lost” over a module

boundary that the resulting analysis is less precise than a full call dependent analysis over the

complete multi-module program. This is the case when, in some module, closure information is

available in some arguments of a call to an imported procedurep whereas, being imported, the

constraints that are used forp are those obtained by analysingp(>, . . . ,>).

38 Example

In this section, we present an example, and use it to discuss to what extent the proposed analysis

is also applicable in the context of Prolog.

38.1 A simple interpreter

Consider the simple interpreter for arithmetic expressions depicted in Figure 29. The program

consists of a number of type definitions and two predicates. The typeenv defines an environment

as a list of elements, each element being a pair (typeelem) consisting of an identifier (type

ident) and an integer (typeint). We assume that the typesident andint are atomic and

builtin. The type (exp) defines an expression as either a constant integer, a variable denoted by

an identifier, or the sum of two expressions.

The predicatelookup/3 takes an identifier and an environment as input, searches the value

associated to the identifier in the environment en returns this value or fails. Note that the predicate

is defined as being non-deterministic in order to mimick a purely declarative implementation in

Prolog. The interpreter itself is represented by the predicateint which takes an expression and

an environment as input and returns the value of the expression or fails. Both predicates are given

in superhomogeneous form.

124

:- type env --> nil ; cons(elem, env).

:- type elem --> pair(ident,int).

:- type exp --> cst(int) ; var(ident) ; +(exp,exp).

:- pred lookup(ident, env, int).

:- mode lookup(in,in,out) is multi.

lookup(V,E,Val):- E ⇒1 cons(A,As), A ⇒2 pair(I,VI), (

V==3 I, Val :=4 VI

;

lookup(V,As,T) 5, Val :=6 T).

:- pred int(exp,env,int).

:- mode int(in,in,out) is multi.

int(E,Env,R):-(

E⇒1 cst(C), R :=2 C

;

E⇒3 var(V), lookup(V,Env,Val) 4, R :=5 Val

;

E⇒6 +(A,B), int(A,Env,R1) 7, int(B,Env,R2) 8, plus(R1,R2,R) 9).

Figure 29: A simple interpreter

125

After call-independent analysis, the binding-time constraints associated with thelookup/3

predicate are as follows. All constraints are in normalised form. Where relevant, a binding-time

variable is indexed by a subscript indicating the program point at which the constraint holds.

Recall that the�-constraints express the regular data flow, whereas the�∗-constraints reflect

the specialisation-strategy: a constraintX �∗ Y δ denotes that the binding-time ofX cannot be

static if the nodeδ in the binding-time ofY is markeddynamic. Such a constraint is due to the

presence, earlier in the predicate, of a deconstruction (or test) onY δ that may be residualised and

subsequently fail at run-time.

A � E〈(cons,1)〉

As � E〈(cons,2)〉

I � E〈(cons,1),(pair,1)〉

I �∗ E

V I � E〈(cons,1),(pair,2)〉

V I �∗ E

V al4 � E〈(cons,1),(pair,2)〉

V al4 �∗ E t E〈(cons,1)〉 t E〈(cons,1),(pair,1)〉 t V

T � E〈(cons,1),(pair,2)〉

T �∗ E t E〈(cons,1)〉 t E〈(cons,1),(pair,1)〉 t V

V al6 � E〈(cons,1),(pair,2)〉

V al6 �∗ E t E〈(cons,1)〉 t E〈(cons,1),(pair,1)〉 t V

The interpretation of these constraints is as follows. The data-flow (or�) constraints are ob-

tained in a straightforward way, by projecting the constraints obtained from the unifications. The

strategy (or�∗) constraints are somewhat more involved. The constraintsI �∗ E andV I �∗ E

denote thatI andV I must be> in caseE is not bound to an outermost functor. Indeed, ifE is

not bound to an outermost functor, the deconstruction at program point 1 cannot be reduced at

specialisation-time and the atom at program point 2 (in whichI andV I are assigned their value)

is under dynamic control and hence not to be reduced. Subsequently, the construction at program

point 4 is under dynamic control if one of the preceeding atoms cannot be reduced or results in

code that may fail at runtime, which is the case if either the environmentE, the elements of the

environment (E〈(cons,1)〉), the identifiers within each such element (E〈(cons,1),(pair,1)〉 or the vari-

ableV is not bound to an outermost function. Similar considerations explain the�∗ constraints

onT andV al at program point 6 in the other branch of the disjunction. The constraints onT are

equal to the least upper bound of those (in the least fixed point) onV al4 andV al6. Recall that the

constraints onT , which originate from the recursive call, are obtained fromT � V al4 t V al6.

126

The binding-time constraints derived for theint/3 predicate are as follows.

C � E〈(cst,1)〉

R2 � E〈(cst,1)〉

R2 �∗ E

V � E〈(var,1)〉

V al � Env〈(cons,1),(pair,2)〉

V al �∗ Env t Env〈(cons,1)〉 t Env〈(cons,1),(pair,1)〉 t E〈(var,1)〉

R5 � Env〈(cons,1),(pair,2)〉

R5 �∗ E t Env t Env〈(cons,1)〉 t Env〈(cons,1),(pair,1)〉 t E〈(var,1)〉

A � E〈(+,1)〉

B � E〈(+,2)〉

R1 � E〈(+,1),(cst,1)〉 t Env〈(cons,1),(pair,2)〉

R1 �∗ E t E〈(+,1)〉 t E〈(+,2)〉 t E〈(+,1),(var,1)〉 t E〈(+,2),(var,1)〉t
Env t Env〈(cons,1)〉 t Env〈(cons,1),(pair,1)〉

R2 � E〈(+,2),(cst,1)〉 t Env〈(cons,1),(pair,2)〉

R2 �∗ E t E〈(+,1)〉 t E〈(+,2)〉 t E〈(+,1),(var,1)〉 t E〈(+,2),(var,1)〉t
Env t Env〈(cons,1)〉 t Env〈(cons,1),(pair,1)〉

R9 � E〈(+,1),(cst,1)〉 t E〈(+,2),(cst,1)〉 t Env〈(cons,1),(pair,2)〉

R9 �∗ E t E〈(+,1)〉 t E〈(+,2)〉 t E〈(+,1),(var,1)〉 t E〈(+,2),(var,1)〉t
Env t Env〈(cons,1)〉 t Env〈(cons,1),(pair,1)〉

These constraints are obtained in a similar way as those for thelookup predicate.

Assume we want to specialise this program for the query

int(+(cst(2),+(var(x),cst(3))), [pair(y,Yval),(x,Xval)],Res) (1)

i.e., the expression to compute is fully instantiated and the domain of the environment mapping

is fully defined but the concrete values associated to the identifiers are as yet unknown. These

degrees of instantiation are expressed by the binding-timesβexp defined for the typeexp and

βenv defined for the typeenv .

βexp =

{
(〈〉, static), (〈(cst, 1)〉, static), (〈(var, 1)〉, static)

(〈(+, 1)〉, static), (〈(+, 2)〉, static)

}

βenv =


(〈〉, static)

(〈(cons, 1), (pair, 1)〉, static)

(〈(cons, 1), (pair, 2)〉, dynamic)


127

Note that the abstract callint(βexp, βenv,) will give rise to an abstract calllookup(static, βenv,) .

In the least solution of the constraints forlookup with respect to this call, we obtain that the

output argumentV al = V al4 t V al6 = dynamic. However, the input to each test or deconstruc-

tion in lookup is at least bound to an outermost functor and hence is a candidate for reduction.

In addition, if we look at the strategy constraints

C2 �∗ E

C3 �∗ E t E〈(cons,1)〉

C4 �∗ E t E〈(cons,1)〉 t V t E〈(cons,1),(pair,1)〉

C5 �∗ E t E〈(cons,1)〉

C6 �∗ E t E〈(cons,1)〉 t V t E〈(cons,1),(pair,1)〉

we derive that none of the atoms is under dynamic control and consequently, each atom can be

annotated as reducible.

Consequently, for theint predicate we obtainR = dynamicbut similarily to the case of the

lookup predicate, none of the atoms is under dynamic control and the input to each unification

is bound to at least an outermost constructor. Hence all unifications can be reduced. Only the

predicateplus , which we assume builtin, has both input argumentsdynamicand need to be

residualised. The result of specialisation using the obtained annotations is the residual program

int(Xval,Yval,Res):- plus(Xval,3,T), plus(2,T,Res).

38.2 The Prolog case

The basic characteristic of Mercury that make this work feasible is the presence of type- and

mode information. Hence, one may ask to what extent the technique can be carried over to

the analysis of (pure) Prolog programs. Let us assume that the same type information as above

is available. Given that the normal use of theint/3 predicate is with mode(i,i,o) , a

mode analysis is able to show thatlookup/3 is also called with mode(i,i,o) and that both

predicates return a ground answer. Taking care that variables in output positions of predicates

are first occurrences (hence free variables) one can obtain a normalisation that is almost a replica

of the Mercury code.

lookup(V,E,Val):- E=cons(A,As), A=pair(I,VI), V=I, Val=VI.

lookup(V,E,Val):- E=cons(A,As), A=pair(I,VI), lookup(V,As,T), Val=T.

int(E,Env,R):- E = cts(C), R=C.

int(E,Env,R):- E = var(V), lookup(E,Env,Val), R=Val .

int(E,Env,R):- E = +(A,B), int(A,Env,R1), int(B,Env,R2), is+(R1,R2,R).

128

Using the mode information about the variables participating in unifications, one could clas-

sify them into tests, assignments, constructions and deconstructions as in the Mercury code.

There is one difference. In the case of Mercury, assignments and constructions are guaranteed to

succeed. In the case of our mode analysis, a variable not having mode input can still be partially

intantiated, hence the unfication could fail at run-time. This will not happen in the example at

hand. Indeed a simple local analysis shows that the variables being assigned are effectively free.

E.g. inVal=VI , V al is the first occurrence of the output variable. Whether a unificationη can

fail has to be properly encoded in the special binding-time analysis variableRη. Apart from this,

given the type information and the specification of the query to be specialised, the binding time

analysis as done for Mercury can be performed, leading to the same annotations and hence, a

specialiser as Logen[77] could derive the same specialised code.

Finally, it is feasible to handle more complex modes than simply input and output. In [15],

a more refined mode analysis, called rigidity analysis is developed. Given a termt of typeτ , it

considers all subtypesτ ′ of τ . The term isτ ′-rigid if it cannot have a well-typed instance that

has a variable as a subterm of typeτ ′. Such a type based rigidity analysis can provide more

detailed mode information that has the potential to contribute to a better binding-time analysis.

For example, such an analysis could show that a term of typeelem (cnfr. the simple interpreter)

that is not ground, isident -rigid.

To conclude the discussion of this example, we note that — within the context of Prolog –

the results obtained by the binding-time analysis could be directly fed to the LOGEN off-line

partial deduction system [64, 77]. This system uses the notion of abinding-typeto characterise

specialisation-time values. Basic binding-types arestatic— characterising a value as ground —

anddynamic– characterising a value as possibly non-ground – but more involved binding-types

can be declared by the user using binding-type rules, much in the same way as types are declared

by type rules.
In the interpreter example, the binding-timesβexp andβenv could be translated to the follow-

ing binding-type definitions:

:- type exp ---> cst(static) ; var(static) ; +(static,static).

:- type elem --> pair(static,dynamic).

:- type env ---> nil ; cons(elem,env).

Input to the LOGEN system would then consist of the program in which every call is anno-

tated as reducible (by means of theunfold annotation [64, 77]) together with the binding-type

classification of the queryint(exp,env,dynamic) .

129

39 Discussion

Constraint based (binding-time) analysis has been considered before. In [46], Henglein devel-

ops such a constraint-based (higher-order) binding-time analysis forλ-calculus by viewing the

problem as a type inference problem for annotatedλ-terms in a two-levelλ-calculus. A set of

constraints capturing local binding-time requirements is created and transformed into a normal

form. A solver is used to find a consistent minimal binding-time classification. The analysis

is redeveloped, concentrating on the aspect of polyvariance, for a PCF-like language in [48].

Henglein’s analysis is scaled up by Bondorf and Jørgensen in [12], where they construct three

(monovariant) analyses to be used in the partial evaluator Similix [10]. An important concep-

tual advantage, mentioned among others in [12], of doing binding-time analysis by constraint

normalisation is the fact that the constraint based approach is viewed as a moreelegantdescrip-

tion of the analysis, compared with a direct abstract interpretation approach in which the source

code is abstractly interpreted over the domain of binding-times. Indeed, in the constraint-based

approach, problem and solution are separated: the constraint system expresses the binding-time

requirementson the involved variables, whereas actual binding-times are contained in asolution

to the constraint system. A practical consequence of this separation is that the data flow analysis,

being performed at the symbolic level, needs to be performed only once for each predicate (in

a first-order setting) rather than performing a separate analysis for every (abstract) call to the

predicate. This result extends – at least to some extent – to a higher-order setting in the sense

that the data flow analysis needs to be performed only once for each combination of a predicate

with the closure information from its arguments.

In this work, we have shown that a constraint-based approach is also feasible for the logic

programming language Mercury. The available type information allows to construct a precise

domain of binding-times, whereas the available mode information allows to express the data

flow constraints in a sufficiently precise way. Apart from being modular, the resulting analysis

is polyvariant, and able to deal with partially instantiated data structures. Strongly related to

our domain of binding-times is the domain proposed and used by Launchbury and Mogensen.

Launchbury [69] defines a system of types and derives a finite domain ofprojectionsover each

type. Such a projection maps a value to a part of the value that is definitely static, as such

“blanking” out the dynamic part. In recent work [6, 7], a binding-time analysis is presented for

the lambda calculus that allows an expression to be both static and dynamic at the same time;

the general idea is to be able to access statically the (static) components of a residualised data

structure. The exact relation and/or integration with a fine-grained domain of binding-times as

employed by our technique is an interesting topic for further research.

Upgrading binding-time analysis to deal with Mercury’s higher-order constructs requires clo-

130

sure information. In the literature, also closure analysis has been formulated by means of abstract

interpretation [10, 18] as well as by constraint solving [45, 98, 47]. Bondorf and Jørgensen [12]

develop a constraint-based flow analysis that traces higher-order flow as well as flow of con-

structed (first-order) values. In this work, we have combined closure analysis with binding-time

analysis and used constraints to express the first-order as well as the higher-order data flow.

We have enhanced the domain of binding-times to include a set of closures that represents the

binding-time of a higher-order value, and formulated the constraint-generation phase as a call

dependent process in which however only the higher-order parts of the call pattern determine the

result of analysis. During constraint generation, the constraints involving higher-order values are

evaluated, and the resulting closure information is used to decide what constraints to incorporate,

possibly propagating closure information down into the called procedures.

We have discussed in detail how the analysis can be applied to multi-module programs ac-

cording to a one module at a time scenario in Sections 36.5 and 37.3. If we do not wish to

propagate closure information over module boundaries, the constraint generation phase can be

performed one module at a time, bottom-up in the module hierarchy. Remaining issues are

precisely such inter-module closure propagation and the handling of circularities in the module

hierarchy. Recent work [16] presents a framework for the (call-dependent) analysis of multi-

module programs that solves both problems. The key invariant in the approach of [16] is that

at each stage of the process, the analysis results are correct, but reanalysis may – when more

information is available – produce more accurate results. The analysis performs some extra

bookkeeping such that, when a module is analysed, it records both the call patterns occurring

in the calls to the imported procedures, and the analysis results of the module’s exported pro-

cedures. When the recorded information contains new calls (or calls with a more accurate call

pattern) to the imported modules, the analysis may decide to reanalyse the relevant imported

modules with respect to the more accurate call patterns. Likewise, the recording of more ac-

curate analysis results for a module’s exported procedures can trigger the reanalysis of those

modules that would possibly profit from these more accurate results. Note that our binding-time

analysis neatly fits such an approach: initially, a module’s exported procedures are analysed with

respect to> (no closure information is available). The resulting binding-time constraint systems

are correct, but could possibly be rendered more precise, when the procedures are (re)analysed

with respect to a more accurate call pattern (one thatdoescontain some closure information).

To the best of our knowledge, the binding-time analysis of modular programs has been consid-

ered only occasionally before. Henglein and Mossin [48] note that a symbolic representation of

binding-times allows a modular approach. Based on such a symbolic analysis, [26] present a

method to specialise a multi-module program – written in a simple yet higher-order functional

language – by constructing, for each of the modules, a generating extension, while using only

131

the result of a call-independent binding-time analysis. The analysis assumes that annotations

indicating whether a function must be unfolded are given by hand and is restricted to module

hierarchies without circular dependencies.

To summarise, we can state that few binding-time analyses have been developed that are

polyvariant, deal with partially instantiated data, modulesandhigher-order constructs for a real-

istic language. Our binding-time analysis achieves this for the Mercury language by combining

a number of known techniques: partially instantiated structures are dealt with by incorporating

a structured and precise domain of binding-times, polyvariance and modularity are achieved by

computing the binding-times symbolically and higher-order information is incorporated by prop-

agating closure information during the symbolic phase of the analysis. Two important limitations

of our technique are in the modularity of the approach, in particular the lack of propagation of

closure information over module boundaries and the handling of circularities in the module de-

pendency graph. Fortunately, both issues can be addressed by imposing a system like [16] on top

of our technique.

132

References

[1] S. M. Abramov and R. Glück. Semantics modifiers: an approach to non-standard se-

mantics of programming languages. In M. Sato and Y. Toyama, editors,Third Fuji In-

ternational Symposium on Functional and Logic Programming, page to appear. World

Scientific, 1998.

[2] L. Andersen. Binding-time analysis and the taming of C pointers. InPEPM93, pages

47–58. ACM, 1993.

[3] L. O. Andersen.Program Analysis and Specialization for the C Programming Language.

PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

[4] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes through types

to assertions.Formal Aspects of Computing, 6(6A):743–765, 1994.

[5] K. R. Apt and F. Turini.Meta-logics and Logic Programming. MIT Press, 1995.

[6] K. Asai. Binding-time analysis for both static and dynamic expressions. InStatic Analysis

Symposium, pages 117–133, 1999.

[7] K. Asai. Binding-time analysis for both static and dynamic expressions.New Generation

Computing, 20(1):27–52, 2001.

[8] L. Beckman, A. Haraldson,̈O. Oskarsson, and E. Sandewall. A partial evaluator and its

use as a programming tool.Artificial Intelligence, 7:319–357, 1976.

[9] L. Birkedal and M. Welinder. Hand-writing program generator generators. In

M. Hermenegildo and J. Penjam, editors,Programming Language Implementation and

Logic Programming. Proceedings, Proceedings of PLILP’91, LNCS 844, pages 198–214,

Madrid, Spain, 1994. Springer-Verlag.

[10] A. Bondorf. Automatic autoprojection of higher order recursive equations.Science of

Computer Programming, 17:3–34, 1991.

[11] A. Bondorf, F. Frauendorf, and M. Richter. An experiment in automatic self-applicable

partial evaluation of Prolog. Technical Report 335, Lehrstuhl Informatik V, University of

Dortmund, 1990.

[12] A. Bondorf and J. Jørgensen. Efficient analyses for realistic off-line partial evaluation.

Journal of Functional Programming, 3(3):315–346, 1993.

133

[13] A. F. Bowers and C. A. Gurr. Towards fast and declarative meta-programming. In K. R.

Apt and F. Turini, editors,Meta-logics and Logic Programming, pages 137–166. MIT

Press, 1995.

[14] M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time analysis for

off-line partial deduction. In C. Hankin, editor,Programming Languages and Systems,

Proc. of ESOP’98, part of ETAPS’98, pages 27–41, Lisbon, Portugal, 1998. Springer-

Verlag. LNCS 1381.

[15] M. Bruynooghe, W. Vanhoof, and M. Codish. Pos(T) : Analyzing dependencies in

typed logic programs. InPerspectives of System Informatics, 4th International An-

drei Ershov Memorial Conference, PSI 2001, Revised Papers, volume 2244 ofLNCS,

pages 406–420. Springer-Verlag, 2001. URL = http://www.cs.kuleuven.ac.be/cgi-bin-

dtai/publ info.pl?id=37386.

[16] F. Bueno, M. de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. A

model for inter-module analysis and optimizing compilation. In K. Lau, editor,Prepro-

ceedings of LOPSTR 2000, pages 64–71, 2000.

[17] M. Codish and C. Taboch. A semantic basic for the termination analysis of logic programs.

The Journal of Logic Programming, 41(1):103–123, 1999.

[18] C. Consel. Binding time analysis for higher order untyped functional languages. In1990

ACM Conference on Lisp and Functional Programming, Nice, France, pages 264–272.

ACM, 1990.

[19] C. Consel et al. A uniform approach for compile-time and run-time specialization. In

O. Danvy, R. Gl̈uck, and P. Thiemann, editors,Partial Evaluation, volume 1110 ofLecture

Notes in Computer Science, pages 54–72. Springer-Verlag, 1996.

[20] T. Conway, F. Henderson, and Z. Somogyi. Code generation for Mercury. In J. Lloyd,

editor,Proceedings of the International Symposium on Logic Programming, pages 242–

256, Cambridge, 1995. MIT Press.

[21] Y. Cosmadopoulos, M. Sergot, and R. W. Southwick. Data-driven transformation of meta-

interpreters: A sketch. In H. Boley and M. M. Richter, editors,Proceedings of the Interna-

tional Workshop on Processing Declarative Knowledge (PDK’91), volume 567 ofLNAI,

pages 301–308, Kaiserslautern, FRG, July 1991. Springer Verlag.

134

[22] S. Craig and M. Leuschel. Lix: An effective self-applicable partial evaluator for prolog.

Submitted, Nov 2003.

[23] A. De Niel, E. Bevers, and K. De Vlaminck. Partial evaluation of polymorphically typed

functional languages: The representation problem. In M. Billaud and et al., editors,Ana-

lyse Statique en ProgrammatiońEquationelle, Fonctionelle, et Logique (Bigre, vol. 74),

pages 90–97, October 1991.

[24] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen.

Conjunctive partial deduction: Foundations, control, algorithms and experiments.The

Journal of Logic Programming, 41(2 & 3):231–277, November 1999.

[25] S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. Sagonas. Termination ana-

lysis for tabled logic programming. In N. Fuchs, editor,Proceedings of the International

Workshop on Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463,

pages 111–127, Leuven, Belgium, July 1998.

[26] D. Dussart, R. Heldal, and J. Hughes. Module-sensitive program specialisation. In

SIGPLAN ’97 Conference on Programming Language Design and Implementation, June

1997, Las Vegas, pages 206–214. ACM, 1997.

[27] F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specializing con-

straint logic programs. InLogic Based Program Synthesis and Transformation. Proceed-

ings of Lopstr’2000, LNCS 1207, pages 125–146, 2000.

[28] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying ctl properties of infinite-state sys-

tems by specializing constraint logic programs. InProceedings of VCL’2001, Florence,

Italy, September 2001.

[29] H. Fujita and K. Furukawa. A self-applicable partial evaluator and its use in incremental

compilation.New Generation Computing, 6(2 & 3):91–118, 1988.

[30] Y. Futamura. Partial evaluation of a computation process — an approach to a compiler-

compiler.Systems, Computers, Controls, 2(5):45–50, 1971.

[31] Y. Futamura. Partial evaluation of a computation process — an approach to a compiler-

compiler.Systems, Computers, Controls, 2(5):45–50, 1971.

[32] J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,

University of Bristol, November 1991.

135

[33] J. Gallagher. Specialisation of logic programs: A tutorial. InProceedings PEPM’93,

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manip-

ulation, pages 88–98, Copenhagen, June 1993. ACM Press.

[34] J. Gallagher and K. Henriksen. Abstract domains based on regular types. Technical Re-

port ASAP Deliverable D4.5, Dept. of Computer Science, Roskilde University, Roskilde,

Denmark, January 2004.

[35] J. P. Gallagher. A Program Transformation for Backwards Analysis of Logic Programs. In

M. Bruynooghe, editor,Pre-proceedings of the International Symposium on Logic Based

Program Synthesis and Transformation (LOPSTR 2003), volume CW 365 ofKatholieke

Universiteit Leuven, Dept. of Computer Science, Technical Report, pages 113–122, 2003.

[36] S. Genaim and M. Codish. Inferring termination conditions of logic programs by back-

wards analysis. InInternational Conference on Logic for Programming, Artificial intel-

ligence and reasoning, volume 2250 ofSpringer Lecture Notes in Artificial Intelligence,

pages 681–690, 2001.

[37] A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure termination of off-line partial

evaluation. InPerspectives of System Informatics: Proceedings of the Andrei Ershov Sec-

ond International Memorial Conference, LNCS 1181, pages 273–284. Springer-Verlag,

1996.

[38] R. Glück. Jones optimality, binding-time improvements, and the strength of program

specializers. InProceedings of the ASIAN symposium on Partial evaluation and semantics-

based program manipulation, pages 9–19. ACM Press, 2002.

[39] R. Glück. On the generation of specialisers.Journal of Functional Programming,

4(4):499–514, 1994.

[40] R. Glück and J. Jørgensen. Efficient multi-level generating extensions for program spe-

cialization. In S. Swierstra and M. Hermenegildo, editors,Programming Languages, Im-

plementations, Logics and Programs (PLILP’95), LNCS 982, pages 259–278, Utrecht,

The Netherlands, September 1995. Springer-Verlag.

[41] R. Glück and J. Jørgensen. An automatic program generator for multi-level specialization.

Lisp and Symbolic Computation, 10:113–158, 1997.

[42] C. Gomard and N. Jones. A partial evaluator for the untyped lambda-calculus.Journal of

Functional Programming, 1(1):21–69, 1991.

136

[43] C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language

Gödel. PhD thesis, Department of Computer Science, University of Bristol, January 1994.

[44] C. A. Gurr. Specialising the ground representation in the logic programming language

Gödel. In Y. Deville, editor, Logic Program Synthesis and Transformation.Proceedings

of LOPSTR’93, Workshops in Computing, pages 124–140, Louvain-La-Neuve, Belgium,

1994. Springer-Verlag.

[45] N. Heintze. Set-based analysis of ML programs. InACM Conference on Lisp and Func-

tional Programming, pages 306–317, 1994.

[46] F. Henglein. Efficient type inference for higher-order binding-time analysis. In J. Hughes,

editor, Functional Programming Languages and Computer Architecture, Cambridge,

Massachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523), pages 448–

472. ACM, Springer-Verlag, 1991.

[47] F. Henglein. Simple closure analysis. Technical Report D-193, DIKU Semantics Report,

1992.

[48] F. Henglein and C. Mossin. Polymorphic binding-time analysis. In D. Sannella, editor,

Programming Languages and Systems — ESOP’94. 5th European Symposium on Pro-

gramming, Edinburgh, U.K., April 1994 (Lecture Notes in Computer Science, vol. 788),

pages 287–301. Springer-Verlag, 1994.

[49] P. Hill and J. Gallagher. Meta-programming in logic programming. In D. M. Gabbay,

C. J. Hogger, and J. A. Robinson, editors,Handbook of Logic in Artificial Intelligence

and Logic Programming, volume 5, pages 421–497. Oxford Science Publications, Oxford

University Press, 1998.

[50] C. K. Holst. Syntactic currying: yet another approach to partial evaluation. Technical

report, DIKU, Department of Computer Science, University of Copenhagen, 1989.

[51] C. K. Holst. Finiteness analysis. In J. Hughes, editor,Proceedings of the 5th ACM Confer-

ence on Functional Programming Languages and Computer Architecture (FPCA), LNCS

523, pages 473–495. Springer-Verlag, August 1991.

[52] C. K. Holst and J. Launchbury. Handwriting cogen to avoid problems with static typing.

In Draft Proceedings, Fourth Annual Glasgow Workshop on Functional Programming,

Skye, Scotland, pages 210–218. Glasgow University, 1991.

137

[53] L. Hornof and J. Noýe. Accurate binding-time analysis for imperative languages: Flow,

context, and return sensitivity. InPEPM97, pages 63–73. ACM, 1997.

[54] D. Jacobs and A. Langen. Static analysis of logic programs for independent AND-

parallelism.Journal of Logic Programming, 13(2 &3):291–314, May/July 1992.

[55] J. Jaffar, S. Michaylov, and R. H. C. Yap. A methodology for managing hard constraints

in CLP systems. InProceedings of the ACM SIGPLAN ’91 Conference on Programming

Language Design and Implementation, pages 306–316, Toronto, Ontario, Canada, June

1991.

[56] N. Jones, P. Sestoft, and H. Søndergaard. An experiment in partial evaluation: The gen-

eration of a compiler generator. In J.-P. Jouannaud, editor,Rewriting Techniques and Ap-

plications, Dijon, France. (Lecture Notes in Computer Science, vol. 202), pages 124–140.

Springer-Verlag, 1985.

[57] N. D. Jones. Partial evaluation, self-application and types. In M. S. Paterson, editor,

Automata, Languages and Programming, LNCS 443, pages 639–659. Springer-Verlag,

1990.

[58] N. D. Jones. What not to do when writing an interpreter for specialisation. In O. Danvy,

R. Glück, and P. Thiemann, editors,Partial Evaluation, International Seminar, LNCS

1110, pages 216–237, Schloß Dagstuhl, 1996. Springer-Verlag.

[59] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program

Generation. Prentice Hall, 1993.

[60] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial Evaluation and Automatic Program

Generation. Prentice Hall, 1993.

[61] N. D. Jones, P. Sestoft, and H. Søndergaard. An experiment in partial evaluation: The

generation of a compiler generator. In J.-P. Jouannaud, editor,Rewriting Techniques and

Applications, LNCS 202, pages 124–140, Dijon, France, 1985. Springer-Verlag.

[62] N. D. Jones, P. Sestoft, and H. Søndergaard. Mix: a self-applicable partial evaluator for

experiments in compiler generation.LISP and Symbolic Computation, 2(1):9–50, 1989.

[63] J. Jørgensen and M. Leuschel. Efficiently generating efficient generating extensions in

Prolog. In O. Danvy, R. Glück, and P. Thiemann, editors,Partial Evaluation, International

Seminar, LNCS 1110, pages 238–262, Schloß Dagstuhl, 1996. Springer-Verlag.

138

[64] J. Jørgensen and M. Leuschel. Efficiently generating efficient generating extensions in

Prolog. In O. Danvy, R. Glück, and P. Thiemann, editors,Proceedings Dagstuhl Semi-

nar on Partial Evaluation, pages 238–262, Schloss Dagstuhl, Germany, 1996. Springer-

Verlag, LNCS 1110.

[65] J. Komorowski. An introduction to partial deduction. In A. Pettorossi, editor,Proceedings

Meta’92, LNCS 649, pages 49–69. Springer-Verlag, 1992.

[66] V. Lagoon, F. Mesnard, and P. Stuckey. Termination analysis zith types is more accurate.

In 19th International Conference on Logic Programming, ICLP, LNCS. Springer-Verlag,

2003. To appear.

[67] A. Lakhotia and L. Sterling. How to control unfolding when specializing interpreters.

New Generation Computing, 8:61–70, 1990.

[68] T. K. Lakshman and U. S. Reddy. Typed prolog: A semantic reconstruction of the

Mycroft-O’Keefe type system. In K. Saraswat, Vijay; Ueda, editor,Proceedings of the

1991 International Symposium on Logic Programming (ISLP’91), pages 202–220, San

Diego, CA, 1991. MIT Press.

[69] J. Launchbury. Dependent sums express separation of binding times. In K. Davis and

J. Hughes, editors,Functional Programming, Glasgow, Scotland, 1989, pages 238–253.

Springer-Verlag, 1990.

[70] M. Leuschel. Partial evaluation of the “real thing”. In L. Fribourg and F. Turini, editors,

Logic Program Synthesis and Transformation — Meta-Programming in Logic.Proceed-

ings of LOPSTR’94 and META’94, LNCS 883, pages 122–137, Pisa, Italy, June 1994.

Springer-Verlag.

[71] M. Leuschel. TheECCE partial deduction system and theDPPD library of benchmarks.

Obtainable viahttp://www.ecs.soton.ac.uk/˜mal , 1996-2002.

[72] M. Leuschel. Homeomorphic embedding for online termination of symbolic methods. In

T. Æ. Mogensen, D. Schmidt, and I. H. Sudborough, editors,The Essence of Computation

- Essays dedicated to Neil Jones, LNCS 2?56, pages 379–403. Springer-Verlag, 2002.

[73] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction:

Control issues.Theory and Practice of Logic Programming, 2(4 & 5):461–515, July &

September 2002.

139

[74] M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,

and D. Mandrioli, editors,FME 2003: Formal Methods, LNCS 2805, pages 855–874.

Springer-Verlag, 2003.

[75] M. Leuschel and D. De Schreye. Towards creating specialised integrity checks through

partial evaluation of meta-interpreters. InProceedings of PEPM’95, the ACM Sigplan

Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages

253–263, La Jolla, California, June 1995. ACM Press.

[76] M. Leuschel and J. Jørgensen. Efficient specialisation in Prolog using a hand-written

compiler generator. Technical Report DSSE-TR-99-6, Department of Electronics and

Computer Science, University of Southampton, September 1999.

[77] M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisa-

tion in Prolog using a hand-written compiler generator.Theory and Practice of

Logic Programming, 4(1):139–191, 2002. URL = http://www.cs.kuleuven.ac.be/cgi-bin-

dtai/publ info.pl?id=38686.

[78] M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in Pro-

log using a hand-written compiler generator.Theory and Practice of Logic Programming,

4(1):139–191, 2004.

[79] M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvari-

ance in partial deduction of normal logic programs.ACM Transactions on Programming

Languages and Systems, 20(1):208–258, January 1998.

[80] M. Leuschel, B. Martens, and K. Sagonas. Preserving termination of tabled logic pro-

grams while unfolding. In N. Fuchs, editor,Proceedings of the International Workshop on

Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463, pages 189–205,

Leuven, Belgium, July 1998.

[81] M. Leuschel and M. H. Sørensen. Redundant argument filtering of logic programs. In

J. Gallagher, editor,Logic Program Synthesis and Transformation. Proceedings of LOP-

STR’96, LNCS 1207, pages 83–103, Stockholm, Sweden, August 1996. Springer-Verlag.

[82] J. W. Lloyd. Declarative error diagnosis.New Generation Computing, 5:133–154, 1987.

[83] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[84] J. W. Lloyd and R. W. Topor. Making PROLOG more expressive.Journal of Logic

Programming, 1(3):225–240, 1984.

140

[85] H. Makholm. On Jones-optimal specialization for strongly typed languages. In W. Taha,

editor,Semantics, Applications, and Implementation of Program Generation, LNCS 1924,

pages 129–148. Springer-Verlag, 2000.

[86] K. Marriott and P. Stuckey. The 3 r’s of optimizing constraint logic programs: Refinement,

removal, and reordering. InProceedings of POPL’93, pages 334–344. ACM Press, 1993.

[87] K. G. Marriott and P. J. Stuckey. The 3 r’s of optimizing constraint logic programs: re-

finement, removal and reordering. InProceedings of the 20th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 334–344. ACM Press, 1993.

[88] B. Martens.On the Semantics of Meta-Programming and the Control of Partial Deduction

in Logic Programming. PhD thesis, K.U. Leuven, February 1994.

[89] B. Martens and D. De Schreye. Two semantics for definite meta-programs, using the

non-ground representation. In K. R. Apt and F. Turini, editors,Meta-logics and Logic

Programming, pages 57–82. MIT Press, 1995.

[90] B. Martens and D. De Schreye. Why untyped non-ground meta-programming is not (much

of) a problem.The Journal of Logic Programming, 22(1):47–99, 1995.

[91] B. Martens and J. Gallagher. Ensuring global termination of partial deduction while al-

lowing flexible polyvariance. In L. Sterling, editor,Proceedings ICLP’95, pages 597–613,

Kanagawa, Japan, June 1995. MIT Press.

[92] F. Mesnard and S. Ruggieri. On proving left termination of constraint logic programs.

ACM Transactions on Computational Logic, 2003. to appear.

[93] T. Mogensen. Binding Time Analysis for Polymorphically Typed Higher Order Lan-

guages. In J. Diaz and F. Orejas, editors,TAPSOFT’89, Barcelona, Spain, volume 352 of

LNCS, pages 298–312. Springer-Verlag, 1989.

[94] T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog.

In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and Transformation.Pro-

ceedings of LOPSTR’92, pages 214–227. Springer-Verlag, 1992.

[95] T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog. In

K.-K. Lau and T. Clement, editors,Proceedings LOPSTR’92, pages 214–227. Springer-

Verlag, Workshops in Computing Series, 1993.

141

[96] T. Æ. Mogensen. Separating binding times in language specifications. InProceedings of

FPCA’89, pages 12–25. ACM press, 1989.

[97] A. Mycroft and R. A. O’Keefe. A polymorphic type system for PROLOG.Artificial

Intelligence, 23(3):295–307, 1984.

[98] J. Palsberg. Closure analysis in constraint form.ACM Transactions on Programming

Languages and Systems, 17(1):47–62, 1995.

[99] J. C. Peralta.Analysis and Specialisation of Imperative Programs: An approach using

CLP. PhD thesis, Department of Computer Science, University of Bristol, 2000.

[100] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of clp pro-

grams. In M. Leuschel, editor,Logic-based Program Synthesis and Transformation (LOP-

STR’2002), LNCS 2664, pages 90–108, Madrid, Spain, September 2002. Springer-Verlag.

[101] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and tech-

niques.The Journal of Logic Programming, 19& 20:261–320, May 1994.

[102] S. Prestwich. The PADDY partial deduction system. Technical Report ECRC-92-6,

ECRC, Munich, Germany, 1992.

[103] G. Puebla and M. Hermenegildo. Some issues in analysis and specialization of modular

Ciao-Prolog programs. In M. Leuschel, editor,Proceedings of the Workshop on Opti-

mization and Implementation of Declarative Languages, Las Cruces, 1999. In Electronic

Notes in Theoretical Computer Science, Volume 30 Issue No.2, Elsevier Science.

[104] S. A. Romanenko. A compiler generator produced by a self-applicable specializer can

have a surprisingly natural and understandable structure. In D. Bjørner, A. P. Ershov, and

N. D. Jones, editors,Partial Evaluation and Mixed Computation, pages 445–463. North-

Holland, 1988.

[105] S. Safra and E. Shapiro. Meta interpreters for real. In H.-J. Kugler, editor,Proceedings of

IFIP’86, pages 271–278, 1986.

[106] D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog.New Generation Com-

puting, 12(1):7–51, 1993.

[107] D. A. Smith. Partial evaluation of pattern matching in constraint logic programming lan-

guages. In N. D. Jones and P. Hudak, editors,ACM Symposium on Partial Evaluation

142

and Semantics-Based Program Manipulation, pages 62–71. ACM Press Sigplan Notices

26(9), 1991.

[108] D. A. Smith and T. Hickey. Partial evaluation of a CLP language. In S. Debray and

M. Hermenegildo, editors,Proceedings of the North American Conference on Logic Pro-

gramming, pages 119–138. MIT Press, 1990.

[109] Z. Somogyi et al. The Melbourne Mercury compiler, release 0.9.

[110] Z. Somogyi, F. Henderson, and T. Conway. The implementation of Mercury, an efficient

purely declarative logic programming language. InProceedings of the ILPS’94 Post-

conference Workshop on Implementation Techniques for Logic Programming Languages,

1994.

[111] Z. Somogyi, F. Henderson, and T. Conway. Logic programming for the real world. In

Proceedings of the ILPS’95 Postconference Workshop on Visions for the Future of Logic

Programming, 1995.

[112] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an

efficient purely declarative logic programming language.Journal of Logic Programming,

29(1–3):17–64, 1996.

[113] Z. Somogyi, F. Henderson, T. Conway, A. Bromage, T. Dowd, D. Jeffery, P. Ross,

P. Schachte, and S. Taylor. Status of the Mercury system. InProceedings of the JIC-

SLP’96 Workshop on Parallelism and Implementation Technology for (Constraint) Logic

Programming Languages, 1996.

[114] L. Sterling and R. D. Beer. Metainterpreters for expert system construction.The Journal

of Logic Programming, 6(1 & 2):163–178, 1989.

[115] L. Sterling and E. Shapiro.The Art of Prolog. MIT Press, 1986.

[116] W. Taha, H. Makholm, and J. Hughes. Tag elimination and Jones-optimality. In O. Danvy

and A. Filinski, editors,Programs as Data Objects, Second Symposium, PADO 2001,

LNCS 2053, pages 257–275, Aarhus, Denmark, May 2001. Springer-Verlag.

[117] A. Takeuchi and K. Furukawa. Partial evaluation of Prolog programs and its application

to meta programming. In H.-J. Kugler, editor,Information Processing 86, pages 415–420,

1986.

143

[118] Y. Tao, W. Grosky, and C. Liu. An Automatic Partial Deduction System for Constraint

Logic Programs. In9th International Conference on Tools with Artificial Intelligence (IC-

TAI ’97), pages 149–157, Newport Beach, CA, USA, Nov. 1997. IEEE Computer Society.

[119] P. Thiemann. Cogen in six lines. InInternational Conference on Functional Programming,

pages 180–189. ACM Press, 1996.

[120] W. Vanhoof and M. Bruynooghe. Binding-time annotations without binding-time ana-

lysis. In Logic for Programming, Artificial Intelligence, and Reasoning, 8th Interna-

tional Conference, Proceedings, volume 2250 ofLecture Notes in Artificial Intelligence,

pages 707–722. Springer-Verlag, 2001. URL = http://www.cs.kuleuven.ac.be/cgi-bin-

dtai/publ info.pl?id=36223.

[121] W. Vanhoof and M. Bruynooghe. When size does matter - Termination analysis

for typed logic programs. InLogic-based Program Synthesis and Transformation,

11th International Workshop, LOPSTR 2001, Selected Papers, volume 2372 ofLec-

ture Notes in Computer Science, pages 129–147. Springer-Verlag, 2002. URL =

http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publinfo.pl?id=39276.

[122] W. Vanhoof, M. Bruynooghe, and M. Leuschel. Binding-time analysis for Mercury. sub-

mitted, 2003.

[123] W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, editor,Logic Program

Synthesis and Transformation. Proceedings of LOPSTR’97, LNCS 1463, pages 322–342,

Leuven, Belgium, July 1997.

144

