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Short description:

In the first part of this deliverable we give a gentle introduction to offline partial evaluation in
general and ourOGEN system in particular. We then show how one can specialize interpreters
using offline specialization, starting from simple interpreters on to more complicated ones. Ex-
perimental results are also presented, highlighting that f'@EN system can be a good basis
for generating compilers for high-level languages. Being able to deal with interpreters will be
of major importance later in the project, especially for workpackage 5. This part of the deliver-
able has been accepted for publication as a book chapter (Logic-Based Program Synthesis and
Transformation, LNCS, Springer-Verlag).

In the second part we describe how we have adapteddl&N partial evaluation system in
particular in order to specialize modular programs (and specializing them in a modular fashion,
i.e., allowing one to separately specialize different modules).Once the implementation of the
modular specialisation is finished, we will produce a full paper and submit it to a conference.

The third part demonstrates that thegen approach is also applicable to the specialization of
constraint logic programs and leads to effective specializers. We present the basic specialization
technique for CLP(R) and CLP(Q) programs and show experimental results using ¢iea
system. This part has been presented at the PSI'03 conference and the paper will appear in the
LNCS post-proceedings.

The fourth part shows how to derive a self-applicable partial evaluator fromasEN com-
piler generator system. Apart from academic curiosity, this allows one to easily generate more
or less optimized specialized specializers, just by tuning the annotations. One can also eas-
ily generate debugging versions of the specialized specializers. It can also be used to obtain a
binding-time analysis, applying the CiaoPP system on purposely generated specializers (gener-
ated for analysis purposes and not intended to be run). This part of the deliverable is based on a
paper accepted for the FLOPS’04 symposium.

In the fifth part of the deliverable, we present the fully automatic BTA that will be part of
our integrated tool, and which makes use of the various technologies developed by the various
partners.

In the final part we present a polyvariant binding-time analysis for Mercury which is based
on constraint solving, and can deal with higher-order features. This part has been accepted
for publication as a book chapter (Logic-Based Program Synthesis and Transformation, LNCS,
Springer-Verlag).
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Part |
Introduction and Specialisation of
Interpreters

We present the latest version of theGEN partial evaluation system for logic programs. In
particular we present new binding-types, and show how they can be used to effectively specialise
a wide variety of interpreters. We show how to achieve Jones-optimality in a systematic way
for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small
functional programming language. Experimental results are also presented, highlighting that the
LOGEN system can be a good basis for generating compilers for high-level languages.

1 Introduction

Partial evaluation [59] is a source-to-source program transformation technique which specialises
programs by fixing part of the input of some source prograrand then pre-computing those
parts of P that only depend on the known part of the input. The so-obtained transformed pro-
grams are less general than the original but can be much more efficient. The part of the input that
is fixed is referred to as th&atic input, while the remainder of the input is called tthenamic
input.

Partial evaluation has been especially useful when applied to interpreters. In that setting the
static input is typically the object program being interpreted, while the actual call to the object
program is dynamic. Partial evaluation can then produce a more efficient, specialised version of
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the interpreter, which is sometimes akin to a compiled version of the object program.

The ultimate goal in that setting is to achieve so-calledes optimalityf57, 59, 85], i.e.,
fully getting rid of a layer of interpretation (called the “optimality criterion” in [59]). More
precisely, if we have a self-interpretérfor a languagel, i.e., an interpreter fof. written in
that same languagk, and then specialiséfor a particular object prograr® we would like to
obtain a specialised interpreter which is equivalen®t(or better of course). This is illustrated
in Figure 1.

In this work we study systematically how to specialise a wide variety of interpreters written
in Prolog using so-called offline partial evaluation. We will illustrate this using the partial evalua-
tion systenLOGEN starting from very simple interpreters progressing towards more complicated
interpreters. We will also show how we can actually achieve the goal of Jones optimality for a
logic programming self-interpreter, as well as for a debugger derived from it; i.e., when special-
ising the debugger for an object progr&mwith none of its predicates being spyed on we will
always get a specialised debugger equivaler® toVe believe this to be the first result of its
kind in a logic programming setting. In fact, how to effectively specialise interpreters has been a
matter of ongoing research for many years, and has been of big interest in the logic programming
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community, see e.g., [105, 117, 114, 13, 21, 67, 123, 72] to mention just a few. However, despite
these efforts, achieving Jones optimality in a systematic way has remained mainly a dream. To
our knowledge, Jones optimiality has been achieved only for a simple Vanilla self-interpreter in
[123], but the technique does not scale up to more involved interpreters. All of these works have
mainly tried to tackle the problem using fully automatic online partial evaluation techniques,
while here we are using the offline approach. Basicallypaline specialiser takes all of its
control decisions during the specialisation process itself, whilefflimne specialiser is guided

by a preliminarybinding-time analysiswhich in our case will be (partially) done by hand. The
basic reason we opt for the off-line approach is that it allows to steer the specialisation process
far better than on-line techniques. This steering is of particular importance in the current setting,
since all of the previous research using automatic on-line techniques has shown that specialising
interpreters (in general and especially Jones optimality) is hard to achieve.

2 Offline Partial Evaluation and the Cogen Approach

2.1 The Futamura projections

A partial evaluation or deduction system is calsdf-applicabléf it is able to effectively spe-

cialise itself. The practical interests of such a capability are manifold. The most well-known
lie with the so called second and thiFditamura projectiong30]. The general mechanism of

the Futamura projections is depicted in Figure 2. The first Futamura projection consists of spe-
cialising aninterpreterfor a particularobject programthereby producing a specialised version

of the interpreter which can be seen asoapiledversion of the object program. If the partial
evaluator is self-applicable then one can specialise the partial evaluator for performing the first
Futamura projection, thereby obtaining@mpilerfor the interpreter under consideration. This
process is called the second Futamura projection. The third Futamura projection now consists of
specialising the partial evaluator to perform the second Futamura projection. By this process we
obtain acompiler generato{cogen for short).

2.2 Offline Specialisation and the Cogen Approach

Guided by these Futamura projections a lot of effort, especially in the functional partial eval-
uation community, has been put into making systems self-applicable. First successful self-
application was reported in [61], and later refined in [62] (see also [59]). The main idea which

1This implies some efficiency considerations, e.g. the system has to terminate within reasonable time constrains,
using an appropriate amount of memory.



made this self-application possible was to separate the specialisation process into two phases, as
depicted in Figure 3:

— first abinding-time analysi$¢BT A for short) is performed which, given a program and an
approximation of the input available for specialisation, approximates all values within the
program and generates annotations that steer (or control) the specialisation process.

— a (simplified)specialisation phasevhich is guided by the result of the7" A.

Such an approach isff-line because most, control decisions are taken beforehand. The
interest for self-application lies with the fact that only the second, simplified phase has to be self-
applied. On a more technical level, such an approach also avoids the generation of overly general
compilers and compiler generators. We refer to [61, 62, 59] for further details. In the context of
logic programming languages the off-line approach was used in [94] and to some extent also in
[43].

@ota@

Source

/

Source
Program

BTA

Y
Y

Static ) Partial
Input I Evaluator

Y

Dynamic [ Specialised o
Input 'I Program »( Output

>

Figure 3: Offline Partial Evaluation

However, the actual creation of thegen according to the third Futamura projection is not
of much interest to users sineegen can be generated once and for all when a specialiser is
given. Therefore, from a user’s point of view, whethewgen is produced by self-application or
not is of little importance; what is important is that it exists and that it is efficient and produces
efficient, non-trivial specialised specialisers. This is the background behind the approach to
program specialisation called tlmowgen approach50, 52, 9, 3, 40, 119] (as opposed to the
more traditionalniz approach): instead of trying to write a partial evaluation systemwhich
is neither too inefficient nor too difficult to self-apply one simply writes a compiler generator
directly.



2.3 Overview of LOGEN

The application of the cogen approach in a logic programming setting was leading todEe!
system [63, 78], which we describe in more detail in the next section.
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Input l (Generating
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Extension
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Figure 4. lllustrating the OGEN system and theogen approach

Figure 4 highlights the way theoGEN system works. Typically, a user would proceed as
follows:

— First the source program is annotated using the BTA, which produces an annotated source
program. This annotated source program can be further edited, by usingdlEel Emacs
mode. This also allows an expert to inspect and manually refine the annotations to get
better specialisation.
The picture does not show thabGEN now also contains a term expansion package (for
SICStus and Ciao Prolog) that strips the annotations when loading the annotated source
program, allowing the annotated source program to be run directly. Together with the
Emacs mode, one can thus continue to develop, maintain and debug the source program
together with its annotation (and one can forget the original un-annotated source program).
— Second,LOGEN is run on the annotated source program and produces a specialised spe-
cialiser, called generating extension
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— This generating extension can now be used to specialise the source program for some static
input. Note that the same generating extension can be run many times for different static
inputs (i.e., there is no need to re-ru0GEN on the annotated source program unless the
annotated source program itself changes).

— When the remainder of the input is known, the specialised program can now be run and
will produce the same output as the original source program. Note again, that the same
specialised program can be run for different dynamic inputs; one only has to re-generate
the specialised program if the static input changes (or the original program itself changes).

3 Offline Partial Deduction of Logic Programs

We now try to formalise the process of offline partial evaluation of logic programs and give a
better understanding on havoGEN specialises its source programs.

Throughout this part of the delivarable, we suppose familiarity with basic notions in logic
programming. We follow the notational conventions of [83]. In particular, in programs, we
denote variables through strings starting with an upper-case symbol, while the notations of con-
stants, functions and predicates begin with a lower-case character.

3.1 Partial Deduction

The term “partial deduction” has been introduced in [65] to replace the term partial evaluation
in the context of pure logic programs (no side effects, no cuts). Though in some parts we briefly
touch upon the consequences of impure language constructs, we adhere to this terminology be-
cause the word “deduction” places emphasis on the purely logical nature of most of the source
programs. Before presenting partial deduction, we first present some aspects of the logic pro-
gramming execution model.

Formally, executing a logic prograi for an atomA consists of building a so-call€slLD-
treefor PU{<— A} and then extracting theomputed answer substitutiofiem every non-failing
branch of that tree. Take for example the well-known append program:

append([],L,L).
append([H|X],Y,[H|Z]) :- append(X,Y,Z).

For example, the SLD-tree fappend([a,b],[c],R) Is presented on the left in Fig-
ure 5. The underlined atoms are called selected atoms. Here there is only one branch, and its
computed answer R = [a,b,C]

11



append((a,b],[c],R) append (X, [c],R)
I S—

X=[ = X=[H|X2],
R=lc]  R=[H|R2]
N\

R=[a|R2]

append ([b], [c],R2) [l append (X2, [c],R2)

R2=[b|R3]
append([],[c],R3)

R3=[c]

Figure 5: Complete and Incomplete SLD-trees fordppend program

Partial evaluation builds upon this approach with two major differences:

e it is possible tanot select a given atom, leading to so-calladompleteSLD-trees where
the leaves are different from the empty goal. This is because the lack of the full input
may cause the SLD-tree to have extra branches, in particular infinite ones. For example,
in Figure 5 the rightmost tree is an incomplete SLD-treeafgpend(X,[c],R) , whose
full SLD-tree would be infinite.

The partial evaluator should not only avoid constructing infinite branches, but also other
branches causing inefficiencies in the specialised program.

Building such a tree is calleanfolding An unfolding ruletells us which atom to select at
which point. Every branch of an incomplete tree now does not produce a computed answer,
it rather produces a conditional answer which can be expressed as a program clause by
taking the resultant of that branch defined below.

e because of the point above, we may have to build a series of SLD-trees, to ensure that
every non-selected atom is covered by some root of some tree. The fact that every leaf is
an instance of a root is calledosednesgor sometimes alscoverednegs

In Figure 5 the leaf atorappend(X2,[c],R2) is already an instance of its root atom,
and so closedness is already ensured and there is for this example no need to build more
trees.

Definition 3.1 Let P be a programz =« () a goal,D a finite SLDNF-derivation of” U {G}
ending in— B, andf the composition of thengus in the derivation steps. Then the formula
Q9 — B is called theesultant of D.

E.g., the resultants of the derivations in the right tree of Figure 5 are:

12



append([].[c],[c]).
append([H|X2],[c],[HIR2]) :- append(X2,[c],R2).

Partial deduction starts from an initial set of atorh@rovided by the user that is chosen in
such a way that all runtime queries of interest are closed, i.e., an instance of some dtoAsin
we have seen, constructing a specialised program requires to construct an SLDNF-tree for each
atom in A. Moreover, one can easily imagine that ensuring closedness may require revision of
the setA. Hence, when controlling partial deduction, it is natural to separate the control into two
components (as already pointed out in [33, 91]):

e Thelocal controlcontrols the construction of the finite SLD-tree for each atom iand
thus determinewhatthe residual clauses for the atoms4rare.

e Theglobal controlcontrols the content od, it decidesvhichatoms are ultimately partially
deduced (taking care thdtremains closed for the initial atoms provided by the user).

More details on exactly how to control partial deduction in general can be found, e.g., in [73].
In offline partial evaluation the local control is hardwired, in the form of annotations added to the
source program. The global control is also partially hard-wired, by specifying which arguments
to which predicate are dynamic and which ones are static.

3.2 An Offline Partial Deduction Algorithm

As already outlined earlier, an offline partial evaluator works on an annotated version of the
source program. For offline partial deduction of logic programs there are usually two kinds of
annotations:

— filter declarations, which indicate which arguments to which predicates are static and
which ones dynamic. This influences the global control only.

— clause annotations, which mark every call in the body indicating how that call should be
treated during unfolding. This thus influences the local control only. There is of course an
interplay between these two annotations, and we return to this below.

For example, one could annotate thppend example above by saying that the second
argument ofappend is static, while the others are dynamic and we could mark the recursive
call append(X,Y,Z) as not unfoldable. Given such annotations and a specialisation query
append(X,[c],Z) , Offline partial deduction would unfold exactly as depicted in the right
tree of Figure 5 and produce the resultants above.

Based on such annotations, offline partial evaluation proceeds as follows:

13



Algorithm 3.2 (offline partial deduction)
Input: A programP and an atomi
M = {A}
repeat
select an unmarked atorhin M and mark it
unfold A by following the annotations in the annotated source program
if a selected ator is marked asnemathen
generaliseS into S’ by replacing all arguments marked as dynamic (in the filter decla-
rations) with a fresh variable
if no variant ofS” is in M then add it to M
pretty print the specialised clausesAf
until all atoms inM are marked

In practice, renaming transformations are also involved: Every atah is assigned a new
predicate name, whose arity is the number of arguments marked as dynamic (static arguments
do not need to be passed around; they have already been built into the specialised code). For
example, the resultants of the derivations in the right tree of Figure 5 would get transformed into
the following, where the second static argument has been removed:

append__0([],[c]).
append__ O(JH|X2],[H|R2]) :- append__0(X2,R2).

To give a better picture, we present a Prolog version of the above algorithm. The code is
runnable (using an implementation génsym, see [115], to generate new predicate names).
The full treatment inLOGEN is of course much more complicated, but this should give a good
idea of howLOGEN specialises programs.

An atom A is specialised by callinghemo(A,Res) in the code below. Thenemo/2 and
mematable/2  predicates return in their second argument the call to the new specialised pred-
icate where the static arguments are removed and the dynamic ones generalised. This generalisa-
tion and filtering is performed by thgeneralise  _and filter/3 predicate that returns in
its second argument the generalised original call (to be unfolded) with fresh variables and in its
third argument the corresponding call to the specialised predicate. It uses the annotations as de-
fined by théfilter/2 predicate to perform its task. The calematable(X,ResX) within
the definition oimemo/2 simply bindsResX to the residual version of the cadl Note thaResX
is different fromFX, which is the residual version of the generalised GdhXwhich has fresh
variables. For example, given the filter declarationdpp below and forX = app(X,[],X)

14



we would getGenX = app(Y,[],Z) ,and something likEX = app_0(Y,Z) andResX
= app__0(X,X) .

The predicateinfold/2  computes the bodies of the specialised predicates. A call annotated
asmemoais replaced by a call to the specialised version. It is created, if it does not exist, by the
call to memo/2. A call annotated asinfoldedis further unfolded. To be able to deal with
built-ins, we also add two more annotations: a call annotateththss completely evaluated;
finally, a call annotated asscallis added to the residual code without modification (for built-ins
that cannot be evaluated). These two annotations can also be useful for user-predicates (a user
predicate marked a=all is completely unfolded without further examination of the annotations,
while therescallannotation can be useful for predicates defined elsewhere or whose code is not
annotated). All clauses defining the new predicate are collected fistagl/3 and pretty
printed.

.- dynamic memo_table/2.
memo(X,ResX) :- (memo_table(X,ResX)
-> true /* nothing to be done: already specialised */
; (generalise_and_filter(X,GenX,FX),
assert(memo_table(GenX,FX)),
findall((FX:-B),unfold(GenX,B),XClauses),
pretty print_clauses(XClauses),nl,
memo_table(X,ResX) ) ).

unfold(X,Code) :- rule(X,B), body(B,Code).
body((A,B),(CA,CB)) :- body(A,CA), body(B,CB).
body(memo(X),ResX) :- memo(X,ResX).
body(unfold(X),ResCode) :- unfold(X,ResCode).
body(call(C),true) :- call(C).

body(rescall(C),C).

generalise_and_filter(Call,GCall,FCall) :- filter(Call,ArgTypes),

Call =.. [P|Args],
gen_filter(ArgTypes,Args,GenArgs,FiltArgs),
GCall =.. [P|GenArgs],

gensym(P,NewP), FCall =.. [NewP|FiltArgs].

gen_filter([],{1.[.0D)-

gen_filter([static|AT],[Arg|ArgT],[Arg|GT],FT) :-
gen_filter(AT,ArgT,GT,FT).

gen_filter([dynamic|AT],[_|ArgT],[GenArg|GT],[GenArg|FT]) :-

15



gen_filter(AT,ArgT,GT,FT).

[* the annotated source program: */

[* filter indicates how to generalise and filter */
filter(app(_,_,_),[dynamic,static,dynamic]).

/* rule annotates the source and indicates how to unfold */
rule(app([],L,L),call(true)).
rule(app([H|X],Y,[H|Z]),memo(app(X,Y,Z))).

Call: memo(app(X,[b],Y)) gives:

app__1([].[b]):-true
app__1(]_12855|_12856],[ 12855|_12854]) :- app__1( 12856, 12854).

3.3 Local and global termination

Without proper annotations of the source program, the above partial evaluator may fail to termi-
nate. There are essentially two reasons for nontermination.

¢ |ocal termination The unfolding predicatenfold/2  may fail to terminate or provide
infinitely many answers.

e global termination Even if all calls tounfold/2  terminate, we may still run into prob-
lems because the partial evaluator may try to build infinitely many specialised versions of
some predicate for infinitely many different static valdes.

To overcome the first problem, we may have to mark certain calle@®sorather than
unfold . In the worst case, every call is marked raemq which always ensures local ter-
mination (but means that little or no specialisation is performed).

To overcome global termination problems, we have to play with the filter declarations and
mark more arguments aynamic rather tharstatic

Another possible problem appears when built-ins lack enough input to behave as they do at
run-time (either by triggering an error or by giving a different result). When this appears, we
have to mark the offending call asscall  rather tharcall

20One often tries to ensure that a static argument is of so-chbedided static variatiofi59], so that global
termination is guaranteed.
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4 Non-recursive Propositional Logic Interpreter

We first introduce a simple propositional logic interpreter to demonstrate the basic annotations.
The interpreter will acceptnd, or, not, implies and basic variables. Thiet(Prog, Env, Result)
predicate takes two input arguments, the propositional formula and the environment containing
the variable mappings and produces the result. The environment is a list of valug$indexes

the:** element in the environment.

not(true,false).
not(false,true).

and(true,true ,true). or(true ,_ ,true).
and(false,_ ,false). or(false,true,true).
and(true,false,false). or(false,false,false).
int(true,_,true). int(false,_,false).

int(implies(X,Y),Env, Z) :- int(or(not(X),Y),Env,Z).
int(and(X,Y),Env, Z) :- int(X,Env,R1),int(Y,Env,R2),and(R1,R2,2).
int(or(X,Y),Env, Z) :- int(X,Env,R1),int(Y,Env,R2),0r(R1,R2,2).
int(not(X),Env, Z) :- int(X,Env,R1),not(R1,2).

int(var(X),Env, Z) :- lookup(X,Env,Z).

lookup(0,[X]_1,X).

lookup(N,[X|T],Y) :- N>0, N1 is N-1, lookup(N1,T,Y).

To be able to useOGEN, one must first define the entry points and annotate the variables for
the specialiser.

o filter annotates the arguments for residual predicates, using the following annotations

— static the value of the argument is known at specialisation time.

— dynamic the value of the argument is not necessarily known at specialisation time.

Top level predicates that one intends to specialise must be declared in this way, as well as
any subsidiary predicate which cannot be fully unfolded.

The syntax folLOGEN's filter declarations is more user-friendly than in the previous section.
For example, for the above program we could declare:

.- filter int(static, dynamic, dynamic).
:- filter lookup(dynamic, dynamic, dynamic).
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In other words, we assume that the propositional formula (the first argumami{f ) is
known at specialisation timesiatic) but the environment will only be known at runtimeyf
namic).

Next we must annotate the clauses in the original program to control the specialisation. The
following constructs can be used to annotate clauses in a program:

¢ unfold for reducible predicates, they will be unravelled during specialisation,

e memo for non-reducible predicates, they will be added to the memaoisation table and re-
placed with a generalised residual predicate,

e call the call will be made during specialisation. This is useful for built-in’s or for user
predicates which should be fully evaluated (without further intervention of the specialiser).

¢ rescall the call will be kept and will appear in the final specialised code. In contrast to
the memo annotation, no specialised predicate definition is produced for the call. This
annotation is especially useful for built-ins, but can also be useful for user predicates (e.qg.,
because the code is not available at specialisation time). The example below will show the
difference with thememoannotation.

As the propositional formula is known at specialisation tirsgtic) all calls toint/3  can
be unfolded. As concerns the variable lookups, let us first be cautious and mark the call to
lookup as arescall:

int(var(X),Env, Z) :- lookup(X, Env, ZZ.

v
rescall

Let us specialise the interpreter for the logical formula:
((var(0) V (var(1) A—wvar(2))) V false) A true. The output from specialisation is a new version
of the program representing the truth table for the formula; as the call to lookup was marked as
rescallit appears in the specialised program:

int(and(or(or(var(0),and(not(var(1)),var(2))),false),true),Env,R) :-
int__ O(Env,R).

int__ O(A,true) :-
lookup(0,A,true),lookup(1,A,true),lookup(2,A,C).

int_ O(Afalse) :-
lookup(0,A false),lookup(1,A,true),lookup(2,A,C).

int__ O(A,true) :-
lookup(0,A,true),lookup(1,A,false),lookup(2,A,true).

int_ O(Atrue) :-
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lookup(0,A,false),lookup(1,A,false),lookup(2,A,true).
int__ O(A,true) :-

lookup(0,A,true),lookup(1,A,false),lookup(2,A,false).
int__O(A,false) :-

lookup(0,A,false),lookup(1,A,false),lookup(2,A,false).

Observe that no specialised predicate has been producémbfamp/3 , as we have used
therescallannotation. If we mark the call imt/3  tolookup/3 asmemorather thamescall
and within the clauses a#bokup/3  we mark the built-in's asescall and the recursive call as
mema, we obtain the following very similar result:

int__ O(A,true) :-
lookup__1(0,Atrue),lookup__1(1,Atrue),lookup__1(2,A,B).

lookup__1(0,[B|C],B).
lookup__1(B,[C|D],E) - B > 0, F is (B - 1), lookup__1(F,D,E).

The main difference is that the specialised program no-longer requires the original code of
lookup to run, but apart from that it is almost identical to the previous result. One may notice that
in all calls tolookup/3  the first argument is actually static. One may thus think of changing
the filter declaration folookup/3 into:

.- filter lookup(static, dynamic, dynamic).

Unfortunately, if we now runOGEN we get a specialisation time error. Indeed, in the recur-
sive calllookup(N1,T,Y) in second clause dbokup/3  the variableN1 will be unbound at
specialisation time, and henceGEN will complain. The problem is that we have not evaluated
the callN1 is N-1 which bindsN1. Indeed, what we need to do is to annotate the clause as
follows:

lookup(N,[X|TLY) :- w, N1isN—1, }ookup(Nl, T,Y).

-

call call en

There is actually no need tmemo the calls to lookup: given that we know the first argu-
ment we can annotate all callsltmkup/3 asunfold andLoOGEN will produce the following
program:

int__O([true,true,B|C],true).

int__O([false,true,B|C],false).

int__O([true,false,true|B],true).

int__O([false,false,true|B],true).

int__O(Jtrue,false,false|B],true).

int__O([false,false,false|B],false).
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It is actually possible to obtain an even better specialisation than this, by providing more
information about the structure of the environment. For that we need more sophisticated filter
annotations, which we introduce later in Section 7. As an indication and teaser, if we declare
.- filter int(static,list(dynamic), dynamic). thenLOGEN can now produce the
following specialised program:

int__O(true,true,B,true).

int__O(false,true,B,false).

int__O(true,false,true,true).

int__O(false,false,true,true).

int__O(true,false,false,true).

int__O(false,false,false,false).

for the call:
int(and(or(or(var(0),and(not(var(1)),var(2))),false),true), [A,B,C],D)}

This program is more efficient as the environment list has vanished and no longer needs to
be inspected.

5 Specialising the Vanilla Self-Interpreter

5.1 Background

A classical benchmark for partial evaluation has been the so-called (paiitla meta-interpreter
(see, e.g., [49, 5]), described by the following piece of Prolog code:

solve(empty).

solve(and(A,B)) :- solve(A), solve(B).

solve(X) :- clause(X,Y), solve(Y).
clause(dapp(X,Y,Z,R),and(app(Y,Z,YZ),app(X,YZ,R))).
clause(app([],L,L),empty).
clause(app([HIX],Y,[H|Z]),app(X,Y,Z2)).

Theclause/2 facts describe the object program to be interpreted, vdulee/1 s the
meta-interpreter executing the object program. In pracsiclre will often be instrumented so
as to provide extra functionality for, e.g., debugging, analysis (e.g., using abstract unifications
instead of concrete unification) or transformation. We will actually do so later in this section.
However, even without these extensions the vanilla interpreter provides enough challenges for
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partial evaluation. Indeed, we would like to specialise the interpreter so as to obtain a residual
program equivalent to the object program being interpreted. For example, one would like to spe-
cialise our vanilla interpreter for the quesglve(dapp(X,Y,Z,R)) and obtain a specialised
interpreter equivalent to:

dapp(X,Y,Z,R) :- app(Y.Z,YZ),app(X,YZR).

app([,L,L).
app([HIX],Y,[H|Z]) :- app(X,Y,Z).

As we have seen in the introduction (cf. Figure 1), achieving such a feat for every object
program and query is called “Jones-optimality” [57, 85].

Online partial evaluators such asCE[79] or MiXxTUs [106] come close to achieving Jones-
optimality for many object programs. However, they will not do sodbrobject programs and
we refer the reader to [88] (discussing the parsing problem) and the more recent [123] and [72]
for more details. [123] presents a particular specialisation technique that can achieve Jones-
optimality for the vanilla interpreter, but the technique is very specific to that interpreter and as
far as we understand does not scale to extensions of it.

In the rest of this section we show hawGEN canachieve Jones-optimality for the vanilla
interpreter, and we show how we can then handle extensions of the basic interpreter.

5.2 The nonvar binding time annotation

First, we have to present a new feature ofGEN which is useful when specialising interpreters.
In addition to marking arguments to predicates as static or dynamiegN also supports the
binding-typenonvar. This means that this argument is not a free variable and will have at least
a top-level function symbol, but it is not necessarily ground. For generalisatmsgEN will
then keep the top-level function symbol but replace all its sub-arguments by fresh variables. For
filtering, every sub-argument becomes a new argument of the residual predicate.

A small example will help to illustrate this annotation:

.- filter p(nonvar).
p(f(X)) :- p(g(a)).
P(9(X)) - p(h(X)).
p(h(a)).

p(h(X)) - p(f(X)).

If we mark no call as unfoldable (i.e., every call is markedmag), we get the following
specialised program for the call p(f(2)):
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%%% p(f(A)) - P_O(A). p(A(A) - p_1(A). p(h(A)) - p__2(A).

p_0(B) :- p__1(a).
p__1(B) - p__2(B).
p__2(a).

p__2(B) :- p__0(B).
If we mark everything asnfold, except the last call, we obtain:

%%% p(f(A)) - p__O(A).
p__0(B).
p__0(B) - p__0O(a).

5.3 Jones-Optimality for Vanilla

The vanilla interpreter as shown above, is actually a badly written program as it mixes the control
structuresand andempty with the actual calls to predicates of the object program. This means
that the vanilla interpreter will not behave correctly if the object program contains predicates
and/2 orempty/0 . This fact also poses problems typing the program. Even more importantly
for us, it also prevents one from annotating the program effectivelydaieN. Indeed, statically

there is no way to know whether any of the three recursive calsotee/l  has a control
structure or a user call as its argument. EOGEN this means that we can only mark the call
clause(X,Y) asunfold. Indeed, if we mark any of theolve/1 calls asunfold we may get

into trouble, i.e., non-termination of the specialisation process. This also means that we cannot
even mark the argument smlve/1  asnonvar , as it may actually become a variable. Indeed,
take the calkolve(and(p,q)) . it will be generalised intsolve(and(X,Y)) and after
unfolding with the second clause we get the caltidve(X) andsolve(Y) . We thus only
obtain very little specialisation and we will not achieve Jones-optimality.

Two ways to solve this problem are as follows:

— assume that the control structures are used in a principled, predictable way that will allow
us to produce a better annotation.

— rewrite the interpreter so that it is clearly typed, allowing us to produce an effective anno-
tation as well as solving the problem with the name clashes between object program and
control structures.

We will pursue these solutions in the remainder of this section. A third possible solution is

to use more precise binding types which we introduce in later in Section 7. This will give some
improvements, but not full Jones optimality, due to the bad way in which solve is written.
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5.3.1 Structuring conjunctions

The first solution is to enforce a standard way of writing down conjunctions walause/2

facts by requesting that every conjuctions is eigmapty or is anand whose left part is an atom

and the right hand a conjunction. For the example above, this means that we have to rewrite the
clause/2 facts as follows:

clause(dapp(X,Y,Z,R),and(app(Y,Z,YZ),and(app(X,YZ,R),empty))).
clause(app([],L,L),empty).
clause(app([H|X],Y,[H|Z]),and(app(X,Y,Z),empty)).

This allows us to predict what to find within the arguments of a conjunction and thus we can
now annotate the interpreter more effectively, without risking non-termination:
:- filter solve(nonvar).
solve(empty).

solve(and(A,B)) :- solve(A) , solve(B)
memo un fold
solve(X) :- clause(X.,Y) , solve(Y)
un fold un fold

Given our assumption about the structure of conjunctions, the above annotation will still
ensure termination of the generating extension:
— local termination:
— the call toclause(X,Y)  can be unfolded as before elause/2 s definied by
facts
— the callssolve(B) andsolve(Y) can be unfolded as we know thBtand Y
are conjunctions and we will only deconstruct #ed/2 andempty/0 function
symbols but stop unfolding (possibly recursive) predicate calls.
— global termination: at the point when we mensolve(A) the variableA will be bound
to a predicate call. As we have marked the argumesbtee/l asnonvar generaliza-
tion will just keep the top-level predicate symbol. As there are only finitely many predicate
symbols, global termination is ensured.
Specialising forsolve(dapp(X,Y,Z,R)) now gives a Jones-optimal output.

%%% solve(dapp(A,B,C,D)) :- solve_ 0(A,B,C,D).
%%% solve(app(A,B,C)) :- solve__1(A,B,C).

solve_ 0(B,C,D,E) :- solve 1(C,D,F), solve 1(B,F,E).
solve_ 1([],B,B).

solve__1([B|C],D,[BI|E]) :- solve__1(C,D,E).
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LOGENWiIll in general produce a specialised program which is slightly better than the original
program in the sense that it will generate code only for those predicates that are reachable in the
predicate dependency graph from the initial call. E.g.,doive(app(X,Y,R)) only two
clauses foapp/3 will be produced, not a clause fdapp/4 .

It is relatively easy to see that Jones optimality will be achieved for any properly encoded ob-
ject program and any call to the object program. Indeed, any call of thedolva(p(  t1,...,t,)
will be generalised intsolve(p( _, ..., -) keeping information about the predicate being
called; unfolding this will only match the clauses pfas the callclause(X,Y) is marked
unfold and all of the parsing structurarfd/2 andempty/0 ) will then be removed by fur-
ther unfolding, leaving only predicate calls to be memoised. These are then generalised and
specialised in the same manner.

5.3.2 Rewriting Vanilla

The more principled solution is to rewrite the vanilla interpreter, so that the conjunction encoding
and the object level atoms are clearly separated. The attentive reader may have noticed that above
we have actually enforced that conjunctions are encoded as listnmvty/0 playing the role

of nil/l0  and and/2 playing the role of ./2. The following vanilla interpreter makes this explicit
and thus properly enforces this encoding. It is also more efficient, as it no longer attempts to find
definitions ofempty andand within theclause facts.

solve([]).
solve([H|T]) :- solve_atom(H), solve(T).
solve_atom(H) :- clause(H,Bdy), solve(Bdy).

clause(dapp(X,Y,Z,R), [app(Y,Z,YZ), app(X,YZ,R)]).
clause(app([J,R,R), [])-
clause(app([H[X].Y,[H|Z]), [app(X,Y,Z)]).

We can now annotate all calls smlve asunfold, knowing that this will only deconstruct
the conjunction represented as a list. However, the cadbtee _atom cannot be unfolded,
as with recursive object programs we may perform infinite unfoldingGEN now produces
the following specialised program for the quesglve _atom(dapp(X,Y,Z,R)) , having
marked the argument &blve _atom calls asnonvar .2

solve_atom__0(B,C,D,E) :- solve_atom__1(C,D,F), solve_atom__1(B,F,E).

3The predicatsolve does not have to be given a filter declaration as it is only unfolded and never residualised.

24



solve_atom__ 1([],B,B).
solve_atom__1([B|C],D,[B|E]) :- solve_atom__1(C,D,E).

We have again achieved Jones-Optimality, which holds for any object program and any
object-level query.

An almost equivalent solution would be to improve the original vanilla interpreter so that
atoms are tagged by a special function symbol, e.g., as follows:

solve(empty).

solve(and(A,B)) :- solve(A), solve(B).

solve(atom(X)) :- solve_atom(X).

solve_atom(H) :- clause(H,Bdy), solve(Bdy).
clause(dapp(X,Y,Z,R),and(atom(app(Y,Z,YZ)),atom(app(X,YZ,R)))).
clause(app([],L,L),empty).
clause(app([H|X],Y,[H|Z]),atom(app(X,Y,2))).

We have again clearly separated the control structures from the predicate calls and we can
basically get the same result as above (by marking all calls to soluafakl and the call to
solveatom asnemo).

5.3.3 Reflections

So, what are the essential ingredients that allowed us to achieve Jones optimality where others
have failed?

— First, the offline approach allows us to precisely steer the specialisation process in a pre-
dictable manner: we know exactly how the interpreter will be specialised independently of
the complexity of the object program. A problem with online techniques is that they may
work well for some object programs, but then be “fooled” by other (more or less contrived)
object programs; see [123, 72]. (On the other hand, online techniques can be capabable
for removing several layers of self-interpretation in one go. An offline approach in general
and our approach in particular will typically only be able to remove one layer at a time.)

— Second, it was also important to have refined enough annotations at our disposal. Without
thenonvar annotation we would not have been able to specialise the original vanilla self-
interpreter: we cannot mark the argumenstdve as static and marking it as dynamic
means that no specialisation will occur. Hence, considerable rewriting of the interpreter
would have been required if we just hathtic anddynamic at our disposat.

4We leave this as an exercise for the interested reader. See also Section 7.1 later in this part.
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6 Jones-Optimality for a Debugger

Let us now try to extend the above interpreter, to do something more useful. The code below
implements a tracing version gblve which takes two extra arguments: a counter for the
current indentation level and a list of predicates to trace.

dsolve([],_, ).
dsolve([H|T],Level, ToTrace) :-

(debug(H,ToTrace)

-> (indent(Level),print('Call: ’),print(H),nl,
dsolve_atom(H,s(Level),ToTrace),
indent(Level),print(Exit: "),print(H),nl)

; dsolve_atom(H,Level, ToTrace)

),

dsolve(T,Level, ToTrace).

debug(Call,ToTrace) :- Call=..[P]Args],
length(Args,Arity), member(P/Arity,ToTrace).

:- filter indent(dynamic).
indent(0).
indent(s(X)) :- print(’>’),indent(X).

.- filter dsolve_atom(nonvar,dynamic,static).
dsolve_atom(H,Level, TT) :-
clause(H,Bdy), dsolve(Bdy,Level,TT).

Basically, the annotation of dsolve and dsobtem calls are exactly as before: calls to
dsolve are unfolded, calls tdsolve _atom are not. As the new predicates are concerned,
all calls toindent are markednemo, and all calls toprint andnl are markedescall.
Everything else is markeahfold or call.

Fordsolve _atom(dapp([a,a,a],[b],[c],R),0,[]) we get the following almost
optimal code:

dsolve_atom__ 0(B,C,D,E,F) :-

dsolve_atom__ 1(C,D,G,F), dsolve_atom__1(B,G,E,F).
dsolve_atom__ 1([],B,B,C).
dsolve_atom__ 1(|B|C],D,[B|E],F) :- dsolve_atom__1(C,D,E,F).
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In fact, the extra last argument of both predicates can be easily removed by the FAR redundant
argument filtering post-processing of [81] which produces a Jones-optimal result:

dsolve_atom__ 0(A,B,C,D) :-

dsolve_atom__ 1(B,C,E),dsolve_atom__ 1(A,E,D).
dsolve_atom__ 1([],A,A).
dsolve_atom__ 1(JA|B],C,[A|D]) :- dsolve_atom__1(B,C,D).

Again, is is not too difficult to see thatoGEN together with the FAR post-processor [81]
produces a Jones-optimal result for every object progPaand callC', provided that none of the
predicates reachable fro@hare traced.

For dsolve _atom(dapp([a,a,a],[b],[c],R),0,[app/3]) we get the follow-
ing very efficient tracing version of our object program, where the debugging statements have
been weaved into the code. This specialised code now runs with minimal overhead, and there is
no more runtime checking whether a call should be traced or not:

dsolve_atom__0(B,C,D,E,F) :-
indent__1(F),print(Call: ’),print(app(C,D,G)),nl,
dsolve_atom__ 2(C,D,G,s(F)),
indent__ 1(F),print(Exit: ’),print(app(C,D,G)),nl,
indent__1(F),print(Call: ’),print(app(B,G,E)),nl,
dsolve_atom__ 2(B,G,E,s(F)),
indent__ 1(F),printCExit: "),print(app(B,G,E)),nl.
indent__1(0).
indent__1(s(B)) :- print(’>"),indent__1(B).
dsolve_atom__ 2([],B,B,C).
dsolve_atom__ 2([B|C],D,[B|E],F) :-
indent__ 1(F),print('Call: "),print(app(C,D,E)),nl,
dsolve_atom__ 2(C,D,E,s(F)),
indent__ 1(F),printCExit: "),print(app(C,D,E)),nl.

Running the specialised program fdsolve _atom __0([a,b,c],[],[d],R,0) , corre-
sponding to the calblsolve _atom(dapp([a,b,c],[],[d],R),0,[app/3]) to the
original program, prints the following trace:

| ?- dsolve_atom__0([a,b,c],[],[d],R,0).
Call: app([],[d],_837)
Exit: app({l.[d].[d])
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Call: app([a,b,c],[d],_525)
>Call: app([b,c],[d],_1341)
>>Call: app([c],[d],_1601)
>>>Call: app([],[d],_1891)
>>>Exit: app([],[d],[d])
>>Exit: app([c].[d].[c.d])
>Exit: app([b,c],[d],[b,c,d])
Exit: app([a,b,c],[d],[a,b,c,d])
R = [a,b,c,d] ?

yes

6.0.4 Some experimental results

We now present some experimental results for specialisingdlve anddsolve interpeters.
The results are summarised in Table 1. The results were obtained on a Powerbook G4 running at
1 Ghz with 1Gb RAM and using SICStus Prolog 3.10.1.

The partition4 object program calls append to partition a list into 4 identical sublists,
and has been run for a list of 1552 elements. fibenacci  object program computes the
Fibonacci numbers in the naive way using peano arithmetic. This program was benchmarked for
computing the 24th Fibonacci numbers. Exact queries can be found in the DPPD library [71].
The FAR filtering [81] has not been applied to the specialised programs. The time needed to
generate and run the generating extensions was negligible (more results, with full times can be
found later, for more involved interpreters where this time is more significant).

Table 1: Specialisingolve anddsolve usingLOGEN

\ object prograﬂ solve \ specialised speedud dsolve \ specialiseoﬂ speedud
partition4 350 ms| 200 ms 1.75 | 1590 ms| 220ms 7.23
fibonacci 890ms| 170ms 5.24 | 4670 ms| 180 ms 25.94

6.0.5 Adding more functionality

It should be clear how one can extend the above logic program interpreters. A good exercise is to
add more logical connectives, such as disjunction and implication, to the debugging interpreter
dsolve and then see whether one can obtain something similar to the Lloyd-Topor transfor-
mations [84] automatically by specialisation (with the added benefit that debugging can still be
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performed at the source level).

We will now show how one can handle interpreters for other programming paradigms. In
such a setting variables and their values may have to be stored in some environment structure
rather than relying on the Prolog variable model. This will raise a new challenge, which we
tackle next.

7 More Sophisticated Binding-Types

So far we have come by with just three binding types for arguments: static, dynamic, and non-
var. The latter denotes a simple kind of so-calpedtially static data [59]. For more realistic
programs, however, it is often essential to be able to deal with more sophisticated partially static
data. For example, interpreters often have an environment, and at specialisation time we may
know the actual variables store in the environment but not their value. Take the following sim-
ple interpreter for arithmetic expressions using addition, constants and variables whose value is
stored in an environment:

int(cst(C),_E,C).
int(var(V),E,R) :- lookup(V,E,R).
int(+(A,B),E,R) :- int(A,E,Ra), int(B,E,Rb), R is Ra+Rb.

lookup(V,[(V,Val)|_T],Val).
lookup(V,[(_Var, )|T],Res) :- lookup(V,T,Res).

A typical query to the above program would be

| ?- int(+(var(a),var(b)),[(a,1),(b,3),(c,5)],Res).
Res = 4 ?
yes

Now, if at specialisation time we know the variables of the environment list but not their
value, this would be represented by an atom to specialise:

int(+(var(a),var(b)).[(a, J.(b, e, ILR)

We cannot declare the environment as static and the best we can do, given the binding types
we have seen so far, is to declare the environment as nonvar:

.- filter int(static,nonvar,dynamic).

Unfortunately, this means thatoGeN will replace [(a, .),(b, ),(c, )] by[]],
hence leading to suboptimal specialisation. For example, we cannot doéiddp because
we now no longer know the length of the environment.
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7.1 Binding-Time improvements and bifurcation

One way to overcome such limitations is often to rewrite the program to be specialised into
a semantically equivalent program which specialises better, i.e., in which more arguments can
be classified as static and/or more calls can be unfolded. This process isliatew-time
improvementsee, e.g., Chapter 12 of [59].

One simple binding-time improvement for this particular problem is to define an auxilary
predicate as follows:

aux(Expr,A,B,C,Res) :- int(Expr,[(a,A),(b,B),(c,C)],Res).

We can now fully unfold all calls tint andlookup and declare the argumentsanix as
follows:

.- filter aux(static,dynamic,dynamic,dynamic,dynamic).

However, this solution is rather ad-hoc and only works because the above interpreter is non-
recursive and hence no callsitd have to be memoised. Hence, this solution can only work in
special circumstances.

A more principled solution, is to apply a binding-time improvement sometimes chiled
furcation[23, 96]. This consists of splitting the environment into two parts (the static and the
dynamic part) and then rewriting the interpreter accordingly. Here, a solution is to split the envi-
ronment into two lists: a static one containing the variable names and a dynamic list containing
the actual values. We would then rewrite our interpreter as follows:

.- filter int(static,static,dynamic,dynamic).

int(cst(C), _E, E2,C).

int(var(V),E,E2,R) :- lookup(V,E,E2,R).

int(+(A,B),E,E2,R) :- int(A,E,E2,Ra), int(B,E,E2,Rb), R is Ra+Rb.

.- filter lookup(static,static,dynamic,dynamic).

lookup(V,[V|_],[Vall_],val).
lookup(V,[_|T],[_|ValT],Res) :- lookup(V,T,ValT,Res).

We can now fully unfold all calls tant andlookup . One could also decide not to un-
fold the calls toint or tolookup(V,E,E2,R) without much loss of specialisation, and the
technique would also work for a recursive interpreter.

There are however several problems with this approach:

— it can be very cumbersome and errorprone to rewrite the program
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— for every different annotation we may have to rewrite the program in a different way

— if the dynamic and static data are not as neatly separated as above, it can be non-trivial to
find a proper separation

— the final result is not always “optimal”. E.g., in the example above the information that the
variable list and the value list must be of the same length is no longer explicit, resulting in

a suboptimal residual program.
For example, specialising féwokup(b,[a,b,c],[1,X,Y],Res) gives:

%%% lookup(b,[a,b,c],[1,X,Y],Res) :- lookup__ 0O([1,X,Y],Res).
%%% lookup(b,[a,b,c],A,B) :- lookup__O(A,B).
lookup__ 0([B,C|D],C).

This is less efficient than the result we will obtain later below, mainly because the value list
has still to be deconstructed and examined at runtime (via the unificatiofBy@fD] ).

Luckily, LOGEN provides a better way of solving this problem by allowing the user to define
their own binding-types. For the interpreter above we would like to be able to define a custom
binding-type describing a list of pairs whose first element is static and the second dynamic. In
the rest of this section we formalise and describe how this can be achieved.

7.2 Formal Definition of Binding-Types

In what follows, we introduce the notion oftanding-typeto characterise partially instantiated
specialisation-time values in a more precise way. Like a traditional type in logic programming
[4], a binding-type is conceptually defined as a set of terms closed under substitution and repre-
sented by a term constructed fragpe variablesandtype constructorsn the same way that a
data term is constructed from ordinary variables and function symbols. However, to characterise
specialisation-time values rather than run-time values, we assume three predefined, atomic types,
i.e. static dynamicandnonvar(e C).

Formally, atypeis thus

— either atype variable
— aterm of the fornstatic , dynamic , ornonvar ,
— aterm of the fornmterm( o) whereo = f(r,...,7,) andf is a function symbol of arity

n > 0 andr; are types,
— or a term of the formtype( 7) wherer consists of aype constructorof arity n > 0
applied ton types.
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The use of theéerm andtype tags allows the set of function symbols and type constructors
to overlap and avoids cumbersome renamings. We will introduce some shorthand notations
below. Formally, new types can now be defined as follows:

Definition 7.1 A type definitiorfor a type constructor of arity n is of the form:

-type (Vi Vo) > (T o TR)
with £ > 1,n and wherel/, ..., V, are distinct type variables, ang are types which only
contain type variables ifiv;, ..., V,}.

A type systent’ is a set of type definitions, exactly one for every type constructifferent
fromstatic , dynamic , andnonvar . We will refer to the type definition fot in I" by Def ().

For convenience,0GEN also accepts the following shorthand notations as types:
— a function symbolf of arity n > 0 applied ton types, provided that = 0 = f ¢
{static, dynamic,nonvar} andn = 1 = f & {type, list,term}. This is then equivalent
to the typeterm( f(71,...,7,)) -
— oratermofthe forntist( 7) wherer isatype. Thisis equivalent tgpe(list( 7)) ,
where the type constructbst is pre-defined as follows:
- type list(T) > [ ] ; [T | list(T)].
We will refer to the type definition foe in " by Def(c).
We definetype substitutiono be finite sets of the forfiV, /m, ..., Vi/7}, where every;
is a type variable and a type. Type substitutions can be applied to types (and type definitions) to
produceinstancesn exactly the same way as substitutions can be applied to terms. For example,
list(V){V/static} = list(static). A type or type definition is callegroundif it contains no type
variables.
In general, a specialisation-time value (or data term) can be characterised by a number of
binding-types. This relation is made explicit byyge judgment

Definition 7.2 We now defindype judgementlating terms to types in the type systém
— t : dynamic holds for any ternt
— t :static  holds for any ground term
— t : nonvar holds for any non-variable term
—t : type (c(7i,...,7})) if there exists a ground instance of the type definitiogy - (c)
which has the form- type  ¢(7{,...,7%)--> ( ...;7; ...) andwhere : 7
— f(ty, ..., tn) s term (f(rm,..., 7)) if t;: 7 for 1 < i <n.
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Note that our definitions guarantee that types are downwards-closed {ire=- t6 : 7).

A few examples are as follow$] : static, [] : struct([]),[] : list(static),[] : list(dynamic),
s(0) : static hence[s(0)] : list(static), X : dynamic andY : dynamic hence[X,Y] :
list(dynamic).

7.3 Using binding-types

Basically, the three basic binding types are now used to control generalisation and filtering within
the offline partial deduction algorithm of Section 3.2 as follows:

— an argument marked aynamicis replaced by a fresh variable and there will be an argu-
ment for it in the residual predicate;

— an argument marked agaticis not generalised, and there will be no argument for it in the
residual predicate;

— an argument marked a®nvarthe top-level function symbol willl be kept, but all of its
arguments replaced by fresh variables. There will be one argument in the residual predicate
per argument of the top-level function symbol.

— an argument marked asrm(f(r,...,7,)) will basically be dealt with like thenonvar
case, except that the top-level function symbol has tg lbed every sub-argument ¢f
will be recursively generalised and filtered according to the binding-types

— for an argument marked &gpe( (7, . . ., 7,)) the type definition of will be looked at and
the argument will be treated according to the body of the definition. For disjunctions like
71 ; To the algorithm will first attempt to apphy;, and if that is not successful it will apply

T2.
For example, given the declarationfilter p(static,dynamic,nonvar). the call
p(a,[b],f(c,d)) will be generalised intp(a, _f( _, .)) and the residual version of the call

will be something likep__1([b],c,d)

Given the declaration filter p(static,dynamic,term(f(static,dynamic))).
the call will be generalised into(a, _f(c, _)) and the residual version will be something like
p--2([b].d)

Finally, using:- filter p(static,list(dynamic),static). as filter declaration,
this call will be generalised intp(a,[ _].f(c,d)) with the residual version being _3(b) .

Let us now try to tackle the original arithmetict/3  interpreter using the more refined
binding-types. First, we define a new type, describing a list of pairs whose first element is static
and whose second element is given by a parameter of the type constructor (so as to show how
parameters can be used):
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- type bind_list(X) ---> list((static,X)).
For the interpreter we can now simply provide the following filter declarations:

.- filter int(static,type(bind_list(dynamic)),dynamic).
.- filter lookup(static,type(bind_list(dynamic)),dynamic).

While these annotations and types were derived by hand, we believe that it is possible to
derive them by adapting the polymorphic binding-time analysis for Mercury presented in a com-
panion paper [122]. For more details see [122].

Let us now use OGEN to specialise the originaht/3  interpreter for the query
lookup(b,[(a,1),(b,X),(c,Y)],Res) . This gives the following specialised code:

%%% lookup(b,[(a,A),(b,B),(c,C)],D) :- lookup__ O(A,B,C,D).
lookup__0(B,C,D,C).

This code is much more efficient, as linear time lookup of variable bindings has been replaced
by basically constant time lookup in the argument list.

Let us now specialise the interpreter for a full-fledged query:
int(+(cst(3), +(+(cst(2),cst(5)), +(var(y), +(var(x),var(y))))),
[(@,1),(b,2),(x,3),(y,4)],X) . This produces the following satisfactory result, where the
arithmetic expression has been fully compiled into Prolog code.

int. OB,C.D,EF) - Gis (2 + 5), His (D + E),
lis (E +H),Jis (G + 1), Fis (3 +J).

One can see that the reducti@nis (2+5) has not been performed by the specialiser. This
shows an aspect where an online specialiser could have fared better, as it could have realised that,
for this particular instruction, the right hand side of tk was actually known (even though
it is in general dynamic). Still, it is possible to instru@GEN to try to perform calls using the
so-calledsemicallannotation [78]. Another alternative is to binding-time improve the program
by inserting an explicit if-statement, changing the 3rd clause of the interpreter as follows:

int(+(A,B),E,E2,R) :- int(A, E, E2, Ra), int (B, E, E2, Ra),
un}rold un}?}ld
(ground((Ra,Rb)) -> RisRa+Rb ; RisRa-+Rb).
c?zrll C:lrll 7'e;gall

where the if-statement itself is marked static and performed at specialisation time. The re-
sulting specialised interpreter is then:

int__ 0(B,C,D,EFF) .- G is (D + E), H is (E + G),
lis (7 + H), Fis (3 + I).
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7.4 Revisiting Vanilla again

Finally, let us present a third solution for specialisng the Vanilla self-interpreter from Section 5.3.
Indeed, we can now use the following more precise binding types on the original interpreter, thus
ensuring that relevant information will be kept by the generalisation:

- type vexp ---> (empty ; and(type(vexp),type(vexp))
; type(predcall)).
;- type predcall ---> (app(dynamic,dynamic,dynamic)
dapp(dynamic,dynamic,dynamic,dynamic)).
.- filter solve(type(vexp)).

This will not give full Jones optimality, due to the bad way in which the origs@le is
written, but it will at least give much better specialisation than was possible usingtfus,
dynamic, andnonvar.

8 Lambda Interpreter

Based on the insights of the previous section, we now tackle a more substantial example. We
will present an interpreter for a small functional language. The interpreter still leaves much to be
desired from a functional programming language perspective, but the main purpose is to show
how to specialise a non-trivial interpreter for another programming paradigm. The interpreter
will use an environment, very much like the one in the previous section, to store values for
variables and function arguments. The full annotated source code is available withdbe!
distribution athttp://www.ecs.soton.ac.uk/"mal/systems/logen.html .

To keep things simple, we will not use a parser but simply use Prolog’s operator declarations
to encode the functional programs. The following shows how to encode the fibonacci function
for our interpreter:

- 0p(150,fx,$). /* to indicate variables */

- 0p(150,fx,&). /* to indicate constants */

- op(150,yfx,’==="). /* to define functions */

- op(150,yfx,@). /* to do calls to defined functions */
- op(250,yfx,’->"). [* for sequential composition */

fib === lambda(x,if($x = &0, &1,
if($x = &1, &1,
fib @ ($x - &1) + fib @ ($x - &2)))).
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The source code of the interpreter is as follows. As usual in functional programming, one
distinguishes between constructors (encoded usimggtr/2 ) and functions (encoded using
lambda/2 ). Functions can be defined statically using tfye= declarations which can then be
extracted using theun/1  expression. One can uggas a shorthand to call such defined func-
tions. One can introduce local variables using l#t68  expression. The predicagval/3
computes the normal form of an expression. The rest of the code should be pretty much self-
explanatory. To keep the code simpler, we have not handled renaming of the arguments of lambda
expressions (it is not required for the examples we will deal with).

eval('&’'(C),_Env,constr(C,[])). /* 0-ary constructor */
eval(constr(C,Args),Env,constr(C,EArgs)) :- |_eval(Args,Env,EArgs).
eval('$'(VKey),Env,val) :- /* variable */ lookup(VKey,Env,Val).
eval('+'(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),
eval(Y,Env,constr(VY,[])), XY is VX+VY.
eval(-’(X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),
eval(Y,Env,constr(VY,[])), XY is VX-VY.
eval("™ (X,Y),Env,constr(XY,[])) :- eval(X,Env,constr(VX,[])),
eval(Y,Env,constr(VY,[])), XY is VX*VY.
eval(let(VKey,VExpr,InExpr),Env,Result) :- eval(VExpr,Env,VVal),
store(Env,VKey,VVal,InEnv), eval(InExpr,InEnv,Result).
eval(if(Test,Then,Else),Env,Res) :- eval if(Test,Then,Else,Env,Res).
eval(lambda(X,Expr),_Env,lambda(X,Expr)).
eval(apply(Arg,F),Env,Res) :- eval(F,Env,FVal),
eval(Arg,Env,ArgVal), eval apply(ArgVval,FVal,Env,Res).
eval(fun(F), ,FunDef) :- '==='(F,FunDef).
eval(@'(F,Args),E,R) :- eval(apply(Args,fun(F)),E,R).
eval(print(X),Env,FVval) :- eval(X,Env,FVal),print(FVal),nl.
eval(->'(X,Y),Env,Res) :- /* seq. composition */
eval(X,Env, ), eval(Y,Env,Res).

eval_apply(ArgVal,Fval,Env,Res) :- rename(FVal,Env,Jlambda(X,Expr)),
store(Env,X,ArgVal,NewEnv), eval(Expr,NewEnv,Res).

rename(Expr,_Env,RenExpr) :- RenExpr=Expr. [* sufficient for now */

|_eval([l,_E.[).
|_eval([H|T],E,[EHIET]) :- eval(H,E,EH), |_eval(T,E,ET).
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eval_if(Test,Then,_Else,Env,Res) :- test(Test,Env), !, eval(Then,Env,Res).
eval_if(_Test,_Then,Else,Env,Res)) :- eval(Else,Env,Res).

test('="(X,Y),Env) :- eval(X,Env,VX),eval(Y,Env,VX).

store([],Key,Value,[Key/Value]).

store([Key/_Value2|T],Key,Value,[Key/Value|T]).

store([Key2/Value2|T],Key,Value,[Key2/Value2|BT]) :-
Key\==Key2,store(T,Key,Value,BT).

lookup(Key,[Key/Value|_T],Value).
lookup(Key,[Key2/ Value2|T],Value) :-
Key\==Key2,lookup(Key, T ,Value).

8.1 Handling the cut

One may notice that the above program does use a cut in the cagleaforif . Previous version
of LOGEN did not support the cut, but it turns out that specialising the cut is actually very easy
to do: basically all one has to do is to simply mark the cuts using eitherathe or rescall
annotations we have already encountered. It is of course up to the annotator to ensure that this is
sound, i.e., one has to ensure that:
— if a cut is markectall , then whenever it is reached and executed at specialisation time
the calls to the left of the cut will never fail at runtime.
— if a cut is marked asgescall  within a predicatey, then no calls tg are unfolded. One
can relax this condition somewhat, e.g., one may to be able to unfold such a predicate
if all computations are deterministic (like in our functional interpreter) but one has to be
very careful when doing that.
These conditions are sufficient to handle the cut in a sound, but still useful manner.

8.2 Annotations

To be able to specialise this interpreter we need the powedGEN's binding types. The struc-

ture of the environment is much like in the previous section, but here we have more information
about the structure of values that the interpreter manipulates and stores. Basically, values are
encoded usingonstr/2 , whose first argument is the symbol of the constructor being encoded
and the second argument is a list containing the encoding of the arguments. A lambda expression
is also a valid value.
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- type value_expression =
(constr(dynamic,list(type(value_expression))) ;
lambda(static,static)).
- type env = list( static / type(value_expression)).

We can now annotate the calls of our program. Basically, all built-ins have to be marked
rescall but all user calls can be markedwasfold except for the call:

eval _apply(ArgVal,FVal,Env,Res)
We thus supply the following filter declaration:

- type result = ( type(value_expression) ; dynamic).
;- filter eval_apply(type(result),type(result),type(env),dynamic).

Note that we use a union type foesult , because often (but not always) we will have
partial information about the result types. Union types are thus a way to ath@eN to make
some online decisions: during specialisation it will check whether the first and second argument
of eval _apply match thevalue _expression type and only if they do not will it treat the
arguments as dynamic.

8.3 Experiments

When specialising this program for, e.g., calling fiire function we get something very similar
to the (naive) fibonacci program one would have written in Prolog in the first place:

%% eval_apply(constr(A,[]),lambda(x,if($x= &0,&1,if($x= &1,&1,
%% fib@($x- &1)+Hib@($x- &2)))),[x/constr(B,[])],C) :-
%% eval_apply__ 2(A,B,C).
eval_apply__2(0,B,constr(1,[])) :-
eval_apply_ 2(1,B,constr(1,[])) -
eval_apply__ 2(B,C,constr(D,[])) :-
E is (B - 1), eval_apply__2(E,B,constr(F,[])),
G is (B - 2), eval_apply__2(G,B,constr(H,[])), D is (F + H).

This specialised code runs about 14 times faster than the original, and even running all of
LOGEN, the generating extension and then the specialised program is still 7 times faster than
running the original program. Full details of this experiment can be found in Table 2.

Furthermore, speedups are likely to get much bigger for more complicated programs, with
more functions and more arguments and variables. Indeed, in Table 2 we have also specialised
the interpreter for the following slightly bigger functional progréosop _fib which has extra
loop variables, already resulting in a bigger speedup:
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loop_fib === lambda(cur,let(curl,$cur + &1, let(cur2, $curl + &1,
let(cur3, $cur2 + &1, if(($cur = &22),

(fib @ ($cur)),
(print(constr(fibonacci,[$cur,fib @ ($cur)]))

> (loop_fib @ ($curl))))))).

Note thatLOGEN has only to be run once for theval interpreter; the same generating
extension can then be used for any functional programs. Similarly, the specialised code can then
be used for any call to the functional program and the generating extension only has to be run
once per functional program that is compifed.

Table 2: Specialisingval usingLOGEN

function eval cogen| genex| specialised speedup speedup speedup
call runtime | time | time runtimej FW(incl.gx) (incl. gx,cogen)
fib(24) 1050 ms| 60 ms| 15ms 75 ms 14.0 11.7 7
loop_fib(0) | 2030 ms| 60 ms| 20ms 90 ms 22.6 18.5 11.9

9 Discussion and Conclusion

Probably the most closely related work is [58] which treats untype first-order functional lan-
guages, and gives a list of recommendations on how to write interpreters that specialise well.
Even though [58] does of course not address the specific issues that arise when specialising logic
programming interpreters, many points raised in [58] are also valid in the logic programming
setting. For example, [58] suggests to “Write your interpreter compositionally” which is exactly
what we have done for our lambda interpreter in Section 8 and which makes it much easier to
ensure termination of the specialisation process. [58] also warns of “data structures that contain
static data, but can grow unboundedly under dynamic control” (such as a stack). The environ-
ment in the lambda interpreter contained static data but its length was fixed and so caused no
problem; however if we were to add an activation stack to our interpreter in Section 8 we would
have to resort to the recipes suggested in [58].

5In the speedup figures we suppose that the time needed for consulting is the same for the original and specialised
program. In our experiments consulting the specialised program was actually slightly faster, but this may not always
be the case.
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We have already discuss related work in the logic programming community [105, 117, 114,
13, 21, 67,123, 72]. In the functional community there has been a lot of recent interest in Jones
optimality; see [57, 85, 116, 38]. For example, [38] shows theoretically the interest of having a
Jones-optimal specialiser and the results should also be relevant for logic programming.

As far as future work is concerned, the most challenging topic is probably to provide a fully
automatic binding-time analysis. As already mentioned, the binding-time analysis in [122] may
prove to be a good starting point. Still, it is likely that at least some user intervention will be
required in the foreseeable future to specialise more complicated interpreters.

Another avenue for further investigation is to move from interpreters to program transformers
and analysers. A particular kind of program transformer is of course a partial evaluator, and one
may wonder whether we can specialise, e.g., the code from Section 3. Actually, it turns out we
can now do this and, surprisingly or not, the specialised specialisers we obtain in this way are
quite similar to the one generated byGEN directly. This issue is investigated in [22], proving
some first encouraging results.

In conclusion, we have shown how to use offline specialisation in general@adN in
particular to specialise logic programming interpreters. We have shown how to obtain Jones-
optimality for simple self-interpreters, as well as for more involved interpreter such as a debug-
ger. We have also shown how to specialise interpreters for other programming paradigms, using
more sophisticated binding-types. We have also presented some experimental results, highlight-
ing the speedups that can be obtained, and showing thabthien system can be useful basis for
generating compilers for high-level languages. Indeed, we soon hope to be able to@pply
to derive a compiler from the interpreter in [74], and then compiling high-level B specifications
into Prolog code for fast animation and verification.
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Part Il

Modular Specialisation

In this part of the deliverable, we describe how we have adapteddBeN partial evaluation
system in particular in order to specialise modular programs (and specialising them in a modular
fashion, i.e., allowing one to seperately specialise different modules).

10 Introduction

Making a specialisation tool suite modular poses interesting challenges. In traditional compi-
lation, modules are divided into a public part (interface) and a private part (implementation).
If user code changes in the implementation part, no other module needs recompilation. If the
interface part of a module changes, only the modules that imported the modified interface need
recompilation. On the other hand, in most approaches to specialisation, even with no change of
any interface, implementation changes can have two non-local influence:

e they can influence the compilation of codalled by the modified code. This is typical to
specialisation: adding or changing calls will change the way the called code needs to be
specialised.

e they can also influence the compilation of code ttelts the modified code. This is only
the case if cross-module unfolding is performed; it is similar to cross-module inlining of
function calls in traditional compilers.

We will not study the second case in detail in the sequel because it is relatively well-known. It
influences recompilation in the same direction as interface changes does, i.e. from callee to caller
modules. It can theoretically be accounted for by considering the whole inlined predicate body
as part of the interface for the module. In practice it can be implemented by explicit dependency
tracking.

The first case is more interesting because it means that simply compiling each module sep-
arately in some correct order is not sufficient. In the sequel we describe bG®&N has been
extended to support this kind of modular compilation.
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11 Making specialisation modular

We have adapted thedGEN partial evaluation system to specialise modular programs incremen-
tally. In analogy with modular compilation, we have designed a scheme that allows specialisation
to be performed one module at a time, while tracking sufficient dependency information to know
which modules need respecialisation after some of the source files have been modified.

11.1 Generating extension

LOGEN works by translating each source module (pl file) intgemerating extensio(gx file)
containing the definition of specialising predicates: for each predicate for the source module,
the gx file has a corresponding predicate whose role is to generate a specialised version of the
original predicate. The predicate in the gx file has its name suffixed withdnd an extra
argument “Code” that gets bound to the specialised Prolog code.
Consider, for example, the predicateap(Goal, Listl, List2) . LOGEN will pro-
duce in the generating extension a predicatp_u(Goal, Listl, List2, Code) . Its
role is to produce residual code: the call, semgp_u(qg, [A,B,C], [d,e,f], Code)
will produceCode = (q(A,d), q(B,e), q(C,f)) . This code is then used to define a
specialised predicataap__ 0(A,B,C) . (Specialised predicates get arbitrarily mangled names.)
The specialised code typically contains calls to other specialised predicates, for example
when specialising a predicapethat callsmap. This triggers a chain of specialisations that can
potentially sweep through the entire program, across modules, in an uncontrollable way.
However, if we disregard unfolding, then the specialised code should only contaihta
specialised version of the predicates it uses, not actual code coming from these other predicates.
For example, the specialisation of

p(Goal, List) :- map(Goal, List, [hel,lo,world]).

for the call patterrp(q, [A,B,C]) might beCode = map__ 0(A,B,C) , wheremap_ 0
is the predicate of the above example.

Thus, to build the specialised version of a predicate it is sufficient to knowmdheeof the
specialised predicates that we must call. The definitiop_of0 containing a call tanap__ 0
can be generated before the definitiomadp__ 0O itself.

So, to make specialisation modular, during the specialisation of a predicate we must limit
ourselves to looking up names of other predicates, or inventing new names if needed. A different
tool is used to control the process globally and specialise the called predicates.
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11.2 Structure of the gx file

In the non-modular implementation bbGEN, the predicatéoo_u in the generating extension
was responsible for looking up the specialisation pattern in a memo table, and generating and
storing the corresponding code if it was not found in the memo.

These bookkeeping aspects have been dissociated from the specialisation process itself in the
module-aware version afoGEN. Each source code predicdt® triggers the creation of three
predicates in the gx file:

e foo_request looks up the specialisation pattern in the memo table. If it is not found
there, a new mangled name is invented using a counterf¢e.g. 2 ) and saved for future
reference. No specialisation is actually performed.

e foo_u is the specialiser proper.

e foo_spec generates the code for a particular specialisation pattern by cétlmgi
and writing the result at the proper location.

11.3 The memo and spec files

For bookkeepingLOGEN creates for each pl source module two extra files: a memo file acting
as look-up table matching specialisation patterns to mangled names, and a spec file containing
the actual specialised predicates. The set of all spec files (and only them) constitutes the final,
fully specialised program.

M.pl M.spec

foo/1 M.memo
foo/2

foo  1(X):-

foo(a,X) foo__1(X)

: foo_ 2(X):-
bar/1 foo(X,b)  foo__2(X) .
bar/2 : :

bar(a) bar__1

Figure 6: Specialisation vimemaoandspecfiles

For example, suppose we have a predi¢ate in a module M that calls predicatear in
module N. To specialise it with a given pattern, we @ise_spec in file M.gx. This call
requires the following information:
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e theM.gx file, forfoo_u , called byfoo_spec ;
e theN.gx file, for bar_request |, called byfoo_u ;

o theN.memofile, wherebar_request looks up and possibly adds a mangled name for
the specific call pattern dfar .

The actual specialisation bér is not performed, but the call tmar_request  has recorded
this pattern ilfN\.mema. The basic idea is thus to specialise predicates one module at a time. The
memo file records, besides the mangled names, which call patterns have been requested and
which ones have been done.

11.4 Module driver

Given that specialising a predicate in module M only requires the gx and memo files for the
modules directly used by M, it makes sense to specialise all predicates of M before proceeding
to another module. An external loop called the “module driver’ loadsMh@emofile and
enumerates all specialisation patterns that are marked as requested and not done. For each of
them, the procedure described in 11.3 is applied.

This may create new requested entries in the memo table of both M and other modules that
M directly depends on. The whole operation must thus be repeated until M reaches a fixed point
with only “done” entries left ilM.mema Then the procedure must be repeated for all modules
(which might sometimes create new entriesMmmemoas well), until we reach a global fixed
point with only “done” entries left in all the memo files.

The entry points for this process are specified by the user. Specialisation propagates recur-
sively through the whole program, though the process is now modular: only one module and its
direct dependencies need to be loaded in memory and processed at a time, including a small set
of short memo files.

11.5 Example

This section expands the example of 11.3 with real code. It shows all the steps and the generated
Prolog code. Assume the source files of figures 7 and 8, which together define a matcher that
looks for a substringPat inside of a stringr.

Assume that the user (or some other part of the program) requests the specialisation pattern
match("xy", T) . A line similar to the following one is entered intb.memao

memo_table(m, match("xy", T), match__0O(T), requested).
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;- use_module(n).

.- residual match/2.
.- filter match(static,dynamic):match.
logen(match, match(Pat,T)) :-

logen(memo, matchl(Pat,T,Pat,T)).

Figure 7: Than.pl source file

:- residual matchl/4.
.- filter matchl1(static,dynamic,static,dynamic):matchl.
logen(matchl, matchl([],Ts,P,T)).
logen(matchl, matchl([A|Ps],[B|Ts],P,[X|T])) :-

logen(rescall, A\==B),

logen(memo, matchl(P,T,P,T)).
logen(matchl, match1([A|Ps],[A|Ts],P,T)) :-

logen(unfold, matchl(Ps,Ts,P,T)).

Figure 8: Then.pl source file

LOGEN starts by generating gx files for all the involved source modules. These files are
a static translation of their corresponding source files; they do not depend on other modules.
Figure 9 shows the generated sourcenaitch_u . Note the pattern of variables in the call to
matchl _request , which corresponds to the call found in the originstch .

match_u(B,C,Code) :-
matchl_request(B,C,B,C,Code).

Figure 9: Thanatch _u predicate irm.gx

We then specialise the modute we load the filesn.gx , m.memq n.gx andn.memo (the
latter is currently empty) and iterate through the entries ohtieeno_table for the modulem
that are marked a®quested . This triggers a call tonatch_spec

1. match_spec callsmatch_u to generate the residual code;
2. match_u callsmatchl_request defined inn.gx ;

3. matchl_request invents a mangled name foratchl , saymatchl__ 42 , andinserts
the following line inn.memo:
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memo_table(n, matchl("xy",T,"xy",U), matchl__42(T,U), requested).

The residual code generatedimatchl request s a call to this newly created predicate,
which match_spec writes into them.spec file. It finally marks the originally requested
specialisation pattern as “done”.

match__0(T) :-
matchl_42(T,T).

Figure 10: The generated fite.spec

Becauser.memo contains a “requested” entry, specialisation must now proceed to module
n. This time we only need to load.gx andn.memo. The requested entry triggers a call
to matchl_spec . The corresponding residual code will now be completely generated by re-
cursive calls tomatchl_u , which does not depend on external modules any more. Finally,
matchl spec generates the code of figure 11 and updatesfimemo file to:

memo_table(n, matchl("xy",T,"xy",U), matchl__42(T,U), done).
which completes the specialisation.

matchl 42([Al_], [|B]) :-
X \== A,
matchl__42(B, B).

matchl__42([x,Al_], [_IB]) :-
y \== A,
matchl_42(B, B).

matchl__42(x,y|_], ).

Figure 11: The generated fitespec

12 Tracking changes in the source
If the source code of a module M is modified, the following files are invalid:

e M.gx, which can easily be regenerated,;

e M.spec , which must be thrown away;
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e M.memq which musinotbe discarded: instead, we just mark all the entries as “requested”
again.

The purpose of keeping the memo file is to keep track of which predicates, and which spe-
cialisation patterns, the modules using M are asking for. All these patterns are still present in
M.mema

After having invalidated as above all the files corresponding to changes in the source files,
then we can restart the specialisation process described in 11.4. This will only respecialise M,
unless M now asks for new specialisation patterns for predicates from other modules. This case
which is taken care of as above, without clearing any more gx, spec or memo file. For example,
say we change the definition ofatch (see above) so that it now prints debugging information
when it is called. Then then.gx file will be regenerated, anchatch_spec will again call
match_u . This puts thewrite in the residual code, and then catimtchl request as
previously. This has the effect of generating a residual call to the ssemehl 42 , because
the pattern did not change. The files for the modubee not modified, and will not have to be
specialised again.

12.1 Dead patterns

The process described above is robust in the sense that the set of spec files after respecialisation
is guaranteed to contain the optimal specialised code. However, it can contain dead code as well,
because no entry is ever removed from the memo files.

To continue the example of the previous section, if we had modifigdl to change the call
pattern tanatchl , then a newnatchl__43 would have been invented, and then implemented
inn.spec . Butn.memo andn.spec stillmentionmatchl__42 , thoughitis no longer used.

In other words, with time, while the source undergoes modification, the set of specialisation
patterns only grows. It is likely that some of these patterns were requested by source code long
gone. The easier solution is from time to time to completely clean up all the spec and memo files
and start specialisation from scratch again.

The current implementation marks each memo file entry with an additional flag (“user” or
“internal”) to distinguish between entries explicitely requested by the user and entries merely
generated by the specialisation of other predicates. This allows the memao file to be cleaned up
without removing the “user” requested patterns.
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13 Future work

We presented an approach to modular specialisation, which still has to be validated by large-
scale tests. Its implementation LWGEN is not complete at the moment. The missing piece is
the module driver (11.4).

13.1 Unfolding

We outline below a possible technique to allow unfolding, i.e. inlining code across modules
during specialisation.

Each module can record (e.g. in the memo file) which other modules it contains code from.
More precisely, a module N is listed in M.memo exactly if a predicate from module N was
(directly or indirectly) unfolded into a specialised predicate written in M.spec.

This information is easy to collect at specialisation time, by adding to fechu predicate
in the gx files an additional argument through which it can return, in addition to the specialised
Prolog code, a list of modules of which this code contains specialised bits. Each predicate
in module N only has to make sure that N is indeed in the list. Thésofu directly calls
bar_u and sticks the code produced bgr_u into a larger piece of code, the module depen-
dency list will contain both M (byoo_u ) and N (bybar_u ). Then a reference to M and N are
recorded intdM.memowhen the resulting code is written kd.spec .

When the user modifies the source of a module M, we can simply clear the spec files of all
the modules whole memo file contains a reference to M, instead d¥jjsgiec .

While causing potentially large-scale respecialisation, this approach is probably acceptable
because unfolding across modules is expected to be limited.

13.2 Related work

Modular specialisation presents no particular theoretical challenge; the practical challenge is to
manage the dependencies correctly, using appropriate internal data. While modularisation can
be seen as a nice and useful programming language feature, it is common to use it to minimize,
for large programs, the increasingly large amount of time needed to perform static analysis like
specialisation or compilation.

There is no general recipe to make a given static analyser modular. The solution presented
here is specific to theoGEN system. Many other kinds of systems (compilers, specialisers, type
inferencers...) are capable of modular analysis.
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13.3 Conclusion

We expect to be able to validate the approach presented in the present chapter on large applica-
tions. Our solution is purely practical; it has no theoretical draw-backs like loss of precision. The
currently implemented part limits unfolding to intra-module calls, but we hope to be able to lift

even this restriction.
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Part Il
CLP Specialisation

This part of the delivarable demonstrates thatdhen approach is also applicable to the spe-
cialisation of constraint logic programs and leads to effective specialisers. We present the basic
specialisation technique for CLP(R) and CLP(Q) programs and show experimental results using
the LOGEN system.

14 Introduction

Program specialisation, also called partial evaluation (see, e.g., [59]), is an automatic technique
for program optimization. Specialisation optimises programs by distinguishing between static
and dynamic input data. Using the static data, parts of the original program can be evaluated
at specialisation time, resulting in a hopefully more efficient residual program. The residual
program is only dependent on the dynamic data (Fig. 12(a)) and can offer a substantial speed
increase.

Despite some recent interest, there has been surprisingly little work on specialization of con-
straint logic programs. Indeed after some work in the early 90s [108, 107] there has been a long
period of relative inactivity, especially compared to the success that constraint logic program-
ming has encountered for practical applications. Only very recently, new research is emerging
[27, 28, 100, 118] which is trying to tackle this difficult but practically relevant problem.

This paper presents an introduction to program specialisation of Constraint Logic Programs
(CLP) and presents our newly developed technique and its implementation. We illustrate our
technique and implementation on several examples and we also present experiments which eval-
uate the power and efficiency of our implementation. Our work presents the first offline spe-
cialiser for CLP, and it is also the first compiler generator for CLP. Our goal was to develop a
system with fast and predictable specialisation times, and plan to integrate the tool into the Ciao
Prolog system. To ensure wide applicability we also cater for non-declarative features.

14.1 Offline vs Online Specialisation

In an offline specialiser almost all the control decisions are taken before the actual specialisa-
tion phase in a preliminary analysis phase referred tbiading-time analysi¢BTA). Online

partial evaluators typically do not make use of such a preliminary phase phase but instead take
their decisions on the fly, using the actual values of the static data. Note, however, that offline
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Static

Annotation ~ Program P

Data
P \ § K
Dynamic / Output
Data Static Specialised
P Data | Genex (P) | ® Program P
(a) The specialised program P’ is only de- (b) Overview of the Cogen approach.
pendent on the dynamic input Given a program and an annotation the
Cogen produces a Genex, or specialised
specialiser

Figure 12: Program Specialisation

partial evaluators maintain — during specialisation — a list of calls that have been previously
specialised or are pending [59]. This is calledmoisation

Online partial evaluators are in principle more powerful, as they base their control decisions
on more precise information. However, one of the big advantages of the offline approach is the
efficiency of the specialisation process itself: indeed, once the annotations have actually been
derived, the specialiser is relatively simple, and can be made to be very efficient, since all deci-
sions concerning local control are made before and not during specialisation. Other advantages
of the offline approach is the better predictability of the output, i.e., it is easier to predict be-
forehand (based on the outcome of the BTA) what will happen during the specialisation phase.
The simplicity of the specialiser also means that it is much easier to ackédivapplication
i.e., specialise the specialiser itself using partial evaluation. Self-application enables a partial
evaluator to generate so-called “compilers” from interpreters using the second Futamura pro-
jection and a compiler generatafogen) using the third Futamura projection (see, e.g., [59]).
However, the actual creation of thegen according to the third Futamura projection is not of
much interest to users sineegen can be generated once and for all when a specialiser is given.
This is known as theogen-approackand has been successfully applied in many programming
paradigms [8, 104, 50, 52, 9, 3, 78].

15 Logen

LOGEN [78] is an offline specialiser for logic programs which uses dhgn approach. Given
an annotated version of program P, a(P), specifying for example which inputs will be static
and dynamicLOGEN produces a specialised specialiser, or Genex (generating extension) for the
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program P. Running the Genex with particular values for the static inputs produces the specialised
program (Fig. 12(b)). As the Genex is not dependent on actual data values it can be reused to
produce different specialised programs. Using this approach the efficiency of the specialisation
process is greatly improved in situations where the same program is specialised multiple times.

The annotated version a(P) employedlUmGEN contains:

1. for every predicate, a description of which arguments wilktaic or dynamic It is also
possible to only annotate certain parts of arguments as static.

2. for every predicate call in the program, whether this call shouldrideldedor memoised
i.e., whether it should be performed within the specialiser or whether the call should be
performed at runtime. In the former case, the Genex generatedbdgN will replace
(during specialisation) this predicate call in the body by its definition, performing all the
needed substitutions. In the latter case, the predicate call wijeheralisedby replacing
all parts which are marked a@ynamicby a fresh variable. It will then be checked whether
the generalised call has been encountered before. If it has not been encountered before, the
original program will be specialised for this generalised call.

15.1 Logen for CLP(R) and CLP(Q)

Constraint Logic Programming over the real domain, GRP,(and the rational domain, CL&]

, offer a powerful mathematical solver for the domains of real and rational numbers. Th&CLP(
and CLP() schemes used in this document and related tool are instances of the general Con-
straint Logic Programming Scheme introduced by Jadfaal. [55].

Specialisation of CLRR) or CLP(Q) programs using existing offline specialisation tech-
niques causes problems as the program state is not limited to the goal stack but also populates
a constraint store. This means thatGeN [78] cannot properly handle CLP programs. Indeed,
LOGEN either performsll the constraint processing at specialisation timealbthe constraint
processing at runtime — it is not possiblegartially evaluateconstraints. This is obviously a
serious limitation and with the increasing adoption of CLP languages by industry it is important
that tools allow for efficient specialisation of CLP programs.

Based upon the currenbGEN system we have thus developed a new versiaro®EN that
can handle full CLPR) or CLP(Q) programs. It supports constraint specialisation across pred-
icates by memoising constraints and retains the full power of the orig@EN to specialise
ordinary logic programming constructs. In the next section we show how this is achieved.
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16 Specialisation of pure CLPR) and CLP(()) Programs

In this section we explain how the two main operations ©GEN, unfolding and memoisation,
are adapted in order to handle CLP.

16.1 Unfolding and Simplification

The classical unfold transformation replaces a predicate call with the predicate body, perform-
ing all the needed substitutions. In CLB(the state of uninstantiated variables is held in the
constraint store, after unfolding the residual constraints have to be extracted from the constraint
store, projected and simplified and then added back into the residual program.

Let us examine the trivial CLR{) program in Fig. 13, which multiplieX by an intege” to
give R. Fig. 14 demonstrates how to unfold this program for theraaltiply(X,2,R) . After
each recursive call to multiply, a new constraint is added to the constraint stosg. (&fter the
unfolding has completed the final constraints inadd variable assignments can be extracted.
These are then projected onto the variables of the top-level query and simplified to produce
the following residual program:

multiply(X,2.0,R) :- {R = 2.0 * X).

Careful attention must be paid to the simplification of the residual constraints. During un-
folding an entailment check ensures that redundant clauses are removed from the specialised
program. [87] demonstrates the optimizations available through constraint reordering and re-
moval when the removal does not effect control flow. If a constraint is likely to fail and hence
cause backtracking then it should be added to the constraint store as early as possible to ensure
less time is wasted in unneeded calculations.

multiply(_,Y,R) :- {Y = 0.0, R = 0.0}.
multiply(X,Y,R) :- {Y >0 ,Y1 =Y -1, R = X + R1},
multiply(X,Y1,R1).

Figure 13: Trivial CLPR) Multiplication predicate

16.2 Memoisation

In the originalLOGEN, when a calk: is memoised it is first generalised, by replacing any parts
of the call that are marked as dynamic by a fresh variable. For example; if(2, 3) and if the
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= multiply(X,2,R)

=~ {Yl=2-1,R=X+RI1}, multiply(X,Y1,R1)

; (@),

=~ multiply(X,1,R1)
= {Y2=1-1,Rl =X+ R2}, multiply(X,Y2,R2)

{R=X+RI,
- multiply(X,0,R2) R1=X+R2} C2

'

- {Y2=0,R2=0}
{R=X+RlI,

I% RI=X+R2
R2=0} C,

Figure 14: The multiply predicate is unfolded, producing the residual constrajnts C

second argument t@is marked dynamic, we obtain a generalised €a# p(2,V’). LOGEN (or
rather the generating extension generated®gEN) then searches its memo table for a variant
of . If ¢ is a variant of any previously memoised callyill be replaced with the residual call
from the memo table (this might e.g. pe2(1")). Otherwise’ has to be specialised on its own,
and residual code has to be generated for it.

In the CLP setting the originalkGENmemoisation must be extended to take into account the
constraint store. As a CLP variable may be uninstantiated but still bound to constraints it can not
always be clearly marked as static or dynamic. A new variable type, constraint, was introduced
so that the constraints can be propagated throughout the specialised program. A variable can still
be marked as dynamic to limit constraint propagation.

When a call¢, is memoised for the first time the current constraints, projected onto the argu-
ments ofc, must also be stored. During subsequent specialisation, constraints can be discarded
if they are already entailed by the system. Therefore a memoised call can only be reused if the
current constraints are at least as restrictive as the constraints stored for the memoised call.

16.3 Rounding Errors with CLP(R)

Currently the specialisation phase uses the Rational domain, CLP(Q), to generate specialised
code for the CLPR) engine. During the specialisation phase the residual constraint store be-
comes part of the specialised program. Fig. 15 demonstrates it is not always possible to retrieve
exact numbers from the CLR] engine and therefore truncation errors can be introduced into
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the specialised program.

| 2- {21/20 * Y > X}.{21/20*X > Y}.
{Y-1.05*X<-0.0},
{Y-0.9523809523809523*X>0.0} ?
yes

Figure 15: Demonstration of CLP(R) rounding problems. The output from the CLP engine is
dependent on the ordering of the variables.

17 Examples and Experiments

In this section we illustrate our technique on a non-trivial example. Fig. 16 calculates the balance
of a loan overN periods.Balances is a list of length/NV. The interest rate is controlled by the

loan scheme and decided by the amount of the initial loan. The map predicate is used to apply
the loan scheme over the list of balances.

17.1 Unfolded Example

In Fig. 17 the loan predicate has been specialised to calculate the balances over two periods for
a principal loan over 4000. As the length of the list is known all of the recursive calls can be
executed at specialisation time. The map, scheme, and calcLoan calls have been unfolded and
the resultant code has been inlined in the specialised code. The two redundant loan schemes have
been removed from the final code. The specialised predicate (Fig. 17) runs 68% faster than the
original predicate in Fig. 16.

17.2 Memo Example

In Fig. 18 the map predicate from the loan program has been specialised to use either schemel
or scheme2. The length of the list has not been specified so the recursive call must be memoised.
The calls in the body of map have been unfolded and the residual code inlined in the specialised
code. The removal of the overhead from the univ and call operators combined with the simpli-
fication of the loan calculation to include the hard coded interest rate produces a 57% speed up
over the original predicate.
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loan(Principal, Balances, Repay) :-  {Principal>=7000},
Term = [Principal|Balances], map(schemel, Term, Repay).
loan(Principal, Balances, Repay) :- {Principal >= 4000, Principal<7000},
Term = [Principal|Balances], map(scheme2, Term, Repay).
loan(Principal, Balances, Repay) :-  {Principal >= 1000, Principal<4000},
Term = [Principal|Balances], map(scheme3, Term, Repay).
loan(Principal, Balances, Repay) :- {Principal >= 0, Principal<1000},
Term = [Principal|Balances], map(scheme4, Term, Repay).

schemel(Amount, NewAmount, Repayment) :-

{Interest = 0.005}, calcLoan(Amount, NewAmount, Interest,Repayment).
scheme2(Amount, NewAmount, Repayment) :-

{Interest = 0.01}, calcLoan(Amount, NewAmount, Interest,Repayment).
scheme3(Amount, NewAmount, Repayment) :-

{Interest = 0.015}, calcLoan(Amount, NewAmount, Interest,Repayment).
scheme4(Amount, NewAmount, Repayment) :-

{Interest = 0.02}, calcLoan(Amount, NewAmount, Interest,Repayment).

map(_,[L1,0).
map(SCHEME,[H1,H2|Tail], Repayment) :- Call =.. [SCHEME,H1,H2, Repayment],
call(Call), map(SCHEME,[H2|Tail], Repayment).

calcLoan(Amount,NewTotal, Interest, Repayment) :-
{NewTotal = Amount + (Amount * Interest) - Repayment}.

Figure 16: Loan.pl, calculates the balance of a loan dwgreriods for a given loan scheme and
repayment.

17.3 Summary of experimental results

Table 3 summarises our experimental results. The timings were obtained by using SICStus Pro-
log 3.10 on a 2.4 GHz Pentium 4. The second column contains the time spent by cogen to

produce the generating extension. The third column contains the time that the generating exten-
sion needed to specialise the original program for a particular specialisation query. The fourth

column contains the time the specialised program took for a series of runtime queries and the fifth
column contains the results from the original programs. The final column contains the speedup
of the specialised program as compared to the original. Full details of the experiments (source
code, queries,...) can be found at [71].
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loan__1(Principal,C,D,E) :-
{ Principal >= (7000), Principal = (((200/201)*C) + ((200/201)*E)),
D = (((201/200) * C) - E) }.
loan__1(Principal,G,H,l) :-
{ Principal < (7000),
Principal = (((100/101)*G) + ((100/101)*)), H = (((11/10)*G) - I) }.
loan(Principal,[B,C],D) :- { Principal > (4000) }, loan__1(A,B,C,D).

Figure 17: Specialised version of the loan predicate for loan(X,[P1,P2], R) wherd000

map(schemel,A,B) :- map__ 1(A,B).

map(scheme2,A,B) :- map__2(A,B).

map__1([B],C).

map__1([D,E|F],G) :- {E = ((201/200) * D ) - G }, map__ 1([E|F],G).
map__2([B],C).

map__ 2([D.E|F],G) :- { E = ((101/100) * D) - G }, map_ 2([E|F],G).

Figure 18: Specialised version of the loan example for calls map(schemel, T, R) and
map(scheme2,T,R). In this example the recursive call to_maig memoed as the length of
the list is not known at specialisation time

18 Non-declarative Programs

It is well known that to properly handle Prolog programs with non-declarative features one has
to pay special attention to the left-propagation of bindings and of failure [106, 102]. Indeed, for
callsc to predicates with side-effects (suchrd® ) “c, fail” is not equivalent to fail, ¢”. Other
predicates are called “propagation sensitive” [106]. For calts such predicates, even though

¢, fail = fail may hold, the equivalende, X =t¢) = (X = t, ¢) does not. One such predicate
isvar/l : we have, e.g(var(X),X=a) =% (X=a,var(X)) . Predicates can both be propagation
sensitive and have side-effects (suchpast/1 ). The way this problem is overcome in the

Program | Cogen Time| Genex Time| Runtime | Original | Speedup

multiply Oms 20 ms 10 ms 3780 ms | 37800 %
loan_unfold Oms 0ms 385 ms 647 ms 68 %
loan_map 0O ms Oms 411 ms 647 ms 57 %
ctl_clp Oms 100 ms 17946 ms| 24245 ms| 35%

Table 3. Experimental results
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LOGEN system [78] is via special annotations which selectively prevent the left-propagation of
bindings and failure. This allows thedoGEN system to handle almost full Prolggwhile still

being able to left-propagate bindings whenever this is guaranteed to be safe. In a CLP setting,
the whole issue gets more complicated in that one also has to worry about the left-propagation of
constraints. Take for instance the clap§€¢) :- var(X),{X=<2} and suppose we transform
itinto p_1(X) :- {X=<2},var(X) . The problem is now that the quef¥>=2},p_1(X) to

the specialised program fails while the original quety=2},p(X)  succeeds with a computed
answerX=2.0 . To overcome this problem we have extended the scheme from [78] to enable
us to selectively prevent the left-propagation of constraints. Using our new system we are now
in a position to handle full CLP programs with non-declarative features. Take for example the
following simple CLP{) program:

p(xX,Y) - {X>Y}, print(Y), {X=2}.

Using our system we can specialise this program for, e.g., the q{8r¥) vyielding the
following, correct specialised program:

p__ 0(Y) :- {3>Y}, print(Y), fail.

19 Future, Related Work and Conclusions

There has been some early work on specialization of CLP programs [108, 107] and optimization
[86]. There has been some recent interest in online specialisation techniques for constraint logic
programs [27, 28, 100, 118, 99]. To the best of our knowledge there is no work on offline
specialisation of CLP programs, and to our knowledge none of the above techniques can handle
non-declarative programs.

The binding-time analysis of [78], based on a termination analysis for logic programs needs
to be adapted to take the constraints into account. At this stage it is not clear whether existing
termination analysis techniques for constraint logic programs such as [92] can be used to that
end.

There is still scope to improve the code generator of our system, e.g., by using more sophis-
ticated reordering as advocated in [86] Other possibilities might be to convert CLP operations
into standard Prolog arithmetic (e.g., usia® ) when this is safe. Extension to other domains,
such as CLP(FD) are being investigated. Finally, we plan to integra&eN into the Ciao
Prolog system, making the use of our system more transparent.

SPredicates which inspect and modify the clause database of the program being specialisechsseas
andretract/1 are not supported; although it is possible to treat a limited form of them.
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The specialisation of CLP programs is an important research area for partial evaluation.
We have implemented a working version of an offline CRPépecialiser and first results look
promising.
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Part IV
Self-Application

In this part we show how to derive a self-applicable partial evaluator from.©OGEN compiler
generator system. Apart from academic curiosity, this allows one to easily generate more or less
optimised specialised specialisers, just by tuning the annotations. One can also easily generate
debugging versions of the specialised specialisers. It can also be used to obtain a binding-time
analysis, applying the CiaoPP system on purposely generated specialisers (generated for analysis
purposes and not intended to be run).

20 Introduction and Summary

Partial evaluationhas received considerable attention over the past decade both in functional
(e.g. [59]), imperative (e.g. [3]) and logic programming (e.g. [33, 65, 101]). In the context of
pure logic programs, partial evaluation is often referred tpatial deduction the term patrtial
evaluation being reserved for the treatment of impure logic programs. We will adhere to this
convention in this paper.

Guided by thd=utamura projectiongsee e.g. [59]) a lot of effort, especially in the functional
partial evaluation community, has been put into making systems self-applicable. A partial eval-
uation or deduction system is callsdlf-applicableif it is able to effectively specialise itself.

The practical interests of such a capability are manifold. The most well-known are related to the
second and thiréfutamura projection$30].

History of self-application for logic programming

Not surprisingly, writing an effectively self-applicable specialiser is a non-trivial task — the
more features one uses in writing the specialiser the more complex the specialisation process
becomes, as the specialiser then has to handle these features as well. For a long time it was
believed that in order to develop a self-applicable specialiser for logic programs one needed to
write a clean, pure and simple specialiser. In practice, this meant using few (or even no) impure
features in the implementation of the specialiser. For thisgtbend representatiofd9] was
believed to be key, in which variables of the source program are represented by ground constants
within the specialiser. Indeed, the ground representation allows one to freely manipulate the

"This implies some efficiency considerations, e.g. the system has to terminate within reasonable time constrains,
using an appropriate amount of memory.
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source program to be specialised in a declarative mannemdiground representatiomvhere
source-level variables are represented as variables in the program specialiser, suffers from some
semantical problems [90] and requires some non-declarative features (dundads3 ) in

order to perform the specialisation.

Some early attempts at self-application [29] used the non-ground representation, but the self-
applying led to incorrect results as the specialiser did not properly handle the non-declarative
constructs that were employed in its implementgtio®ther specialisers liketixTus [106],

PADDY [102] andEcCE[79] use the non-ground representation, but none of them are able to
effectively specialise themselves.

The ground representation approach towards self-application was pursued in [11], [70], [94],
and [13, 44, 43] leading to some self-applicable specialisers:

— SAGE [43], a self-applicable partial evaluator foib@el. While the speedups obtained by
self-application are respectable, the process takes a very long time (several hours) and the
obtained specialised specialisers are still extremely slow. This is probably due to the ex-
plicit unification algorithm required by the ground representation. To effectively specialise
this much more powerful specialisation techniques would be required to obtain reasonably
efficient specialisers. Similar performance problems were encountered in the earlier work
[11].

— LOGIMIX [94, 59], a self-applicable partial evaluator for a subset of Prolog, incluéling
then-else side-effects and some built-ins.olGIMIX uses a meta-interpreter (sometimes
calledInstanceDempfor the ground representation in which the goals are “lifted” to the
non-ground representation for resolution. This avoids the use of an explicit unification
algorithm, at the expense of some pofveUnfortunately,LoGIMIX gives only modest
speedups (when compared to results for functional programming languages, see [94]),
but it was probably the first practical self-applicable specialiser for a logic programming
language.

Given the problem in developing a truly practical self-applicable specialiser for logic pro-
grams, the attention shifted to thegen approaci50]: instead of trying to write a partial eval-
uation system which is neither too inefficient nor too difficult to self-apply, one simply writes
a compiler generator directly. Indeed, the actual creation of the cogen according to the third
Futamura projection is in general not of much interest to users since the cogen can be generated
once and for all when a specialiser is given. This approach was pursued in [63, 78] leading to
the LOGEN system, which can produce specialised specialisers much more efficiently than any

8A problem mentioned in [11], see also [94, 70].
9This idea was first used by Gallagher in [32, 33] and then later in [75] to write a declarative meta-interpreter for

integrity checking in databases.
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of the self-applicable systems mentioned above. The resulting specialisers themselves are also
much more efficient.

A new attempt at self-application

In a sense the cogen approach has closed the practical debate on self-application for logic pro-
gramming languages: one can get most of the benefits of self-application without writing a self-
applicable specialiser. Still, there is the question of academic curiosity: is it really impossible to
derive the cogen written by hand in [63, 78] by self-application? Also, having a self-applicable
specialiser is sometimes more flexible as we may generate different cogens for different pur-
poses (such as one with debugging enabled). One may produce more or less optimised cogens
by tweaking the specialisation process, and better control the tradeoff between specialisation
time and quality of the optimised code. Maybe there are other situations where a self-applicable
partial evaluation system is preferrable to a cogeructst specialiser projections [39] and the
semantic modifiers of Abramov andi@k [1] may be such a setting.

This paper aims to answer some of these questions. Indeed, after the developnaest of
we realised that one could translateGEN into a classical partial evaluator without too much
difficulty. Furthermore, using new annotation facilities developed for the second versian of
GEN|[78], one can actually make this partial evaluator (henceforth callejiself-applicable. By
self-applyingLix we obtain generating extensions via the second Futamura projection which are
very similar to the ones produced bpGEN and the cogen obtained via the third Futamura pro-
jection also has lot of similarities to the codeL@iGEN. The performance of this self-applicable
partial evaluator is (after self-application) on par withGeN, and is thus much faster than any
of the previous self-applicable logic programming specialisers. In the paper we also show some
potential practical applications of this self-applicable specialiser.

The code of the specialiser itself is also surprisingly simple, but uses a few non-declarative
features and does not use the ground representation. So, contrary to earlier belief, declarativeness
and the ground representation were not the best way to climb the mountain of self-application.

In summary, Futamura’s insight was that a cogen could be derived by a self-applicable spe-
cialiser. The insight in [50] was that a cogen is just a simple extension of a binding-time analysis,
while our insight is that an effective self-applicable specialiser can be derived by transforming a
cogen.

21 The Partial Evaluator

LOGEN andLIx are both offline partial evaluators. An offline partial evaluator works on an
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annotated version of the source program, these annotations are used to guide the specialisation
process. There are two kinds of annotations:
— filter declarations, indicating whether arguments to predicates stedic or dynamic.
This influences the global control.
— clause annotationsindicating how every call in the body should be treated during unfold-
ing. These influence the local control.

21.1 The Basic Annotations

A common annotation format is used for both th& and LOGEN systems. Each call in the
program is annotated usithggen/2 and arguments are annotated using filter declarations. The
head of a clause is annotated with an identifier. The format of the annotations is demonstrated in
the following append example:

.- filter append(static,dynamic,dynamic).

logen(app, append([],L.L)).
logen(app, append([H|T], L, [H|T1])) :- logen(unfold, append(T,L,T1).

The first argument to append has been markestatsc, it will be known at specialisation
time, and the other arguments have been mady@admic. The recursive call to append is anno-
tated for unfolding, the first argument is known thus guaranteeing termination at specialisation
time. Some of the basic annotations are:

— unfold for reducible predicates, they will be unravelled during specialisation.

— memo for non-reducible predicates, they will be added to the memoisation table and re-

placed with a generalised residual predicate.

— call the call will be made during specialisation.

— rescallthe call will be kept and will appear in the final specialised code.

21.2 The Source Code

We now present the main body of thex partial evaluatdf. An atomA is specialised by calling

lix(  A,Res) . Thememo/2 andmematable/2  predicates return in their second argument a

call to a new specialised predicate where static arguments have been removed and dynamic ones
generalised. Generalisation and filtering are performeddneralise  _and filter/3 Ct

returns in its second argument the generalised call (to be unfolded) and in its third argument
the call to the specialised predicate. It uses the annotations defirfeie 39 to perform its

0TheLix system can be downloaded from:
http://www.ecs.soton.ac.uk/"sjc02r/lix/lix.html
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task. The predicatgensym/2 is used to create unique names for the specialised predicates. The
predicataunfold/2  computes the bodies of specialised predicates. A call annotatedraas
replaced by a call to the specialised version. If it does not already exist it is createeinhy/2.

A call annotated asnfold is further unfolded; a call annotatedeall is completely evaluated,;
finally, a call annotated aescall is added to the residual code without modification (for
built-ins that cannot be evaluated or code that is defined elsewhere). All clauses defining the new
predicate are collected usirigndall/3 and pretty printed. To save space the definition of
pretty _print _clauses/1 is not given.

:- dynamic memo_table/2 flag/2.
lix(CallToSpecialise, ResidualCall) :-
print(:- dynamic flag/2, memo_table/2.\n’),
print(:- use_module(library(lists)).\n’),
memo(CallToSpecialise, ResidualCall).
memo(Call, Residual) :-
( memo_table(Call, Residual) -> true
; generalise_and_filter(Call, GenCall, ResidualPred),
assert(memo_table(GenCall,ResidualPred)),
findall((ResidualPred:-Body), unfold(GenCall,Body), Clauses),
format(’/*’k="k*/"'n’, [ResidualPred,GenCall]),
pretty print_clauses(Clauses),
memo_table(Call, Residual)
).
unfold(Head, Residual) :- ann_clause(_, Head, Body),body(Body, Residual).
body(true, true).
body((A,B), (ResA,ResB)) :- body(A, ResA), body(B, ResB).
body(logen(call,Call), true) :- call(Call).
body(logen(rescall,Call), Call).
body(logen(memo,Call), Residual) :- memo(Call, Residual).
body(logen(unfold,Call), Residual) :- unfold(Call, Residual).

generalise_and _filter(Call, GenCall, ResidualPred) :-
filter(Call, Filter), Call=..][Head|Args],
gen_filter(Filter, Args, GenArgs, ResArgs), GenCall=..[Head|GenArgs],
gensym(Head, ResHead), ResidualPred =..[ResHead|ResArgs].
gen_filter([], [1, 0. -
gen_filter([static|A], [B|C], [B|D], E) :-
gen_filter(A, C, D, E).
gen_filter(Jdynamic|A], [_|B], [C|D], [CIE]) :-
gen_filter(A, B, D, E).

/* code for unique symbol generation, using dynamic flag/2 */
oldvalue(Sym, Value) :- flag(gensym(Sym), Value), !.
oldvalue(_, 0).

64



set_flag(Sym, Value) :-
nonvar(Sym), retract(flag(Sym,_)), !, asserta(flag(Sym,Value)).
set_flag(Sym, Value) :- nonvar(Sym), asserta(flag(Sym,Value)).

gensym(Head, ResidualHead) :-
var(ResidualHead), atom(Head),
oldvalue(Head, OldVal), NewVal is OldVal+1,
set_flag(gensym(Head), NewVal), name(A__, " "),
string_concat(Head, A, Head ),
string_concat(Head__, NewVal, ResidualHead).
append([], A, A).
append([A|B], C, [A|D]) :- append(B, C, D).
string_concat(A, B, C) :- name(A, D), name(B, E),
append(D, E, F), name(C, F).

/* Printing and Flatten Clauses removed to save space */

/* Clause Database: automatically created from annoated file */
ann_clause(1, app([,A,A), true).

ann_clause(2, app([A|B],C,[AID]), logen(memo,app(B,C,D))).
filter(app(_,_,_), [dynamic,static,dynamic]).

21.3 Specialised Code

To specialise code we use the2  entry point. Callindgix(app(A,[b],C),Res) spe-
cialises the append predicate to appfhid to the end of a list:

app__1(l, [b]).
app__1([AB], [AIC]) :- app__1(B, C).

The generation of the above code tab&18 ms'! This is a very simple example to demonstrate
the partial evaluator. The specialisation of a non-trivial Vanilla debugging interpreter is given in
appendix 25.3.

22 Towards Self-Application

We have presented the main body of the code fontlkesystem. For a partial evaluator to be
self-applicable it must be able to effectively handle all of the features it uses. The system we have
presented so far uses a few non-declarative features and does not use the ground representation.
In this section will shall introduce the required extension to makeself-applicable.

Benchmarks performed using SICStus Prolog 3.10.1 for Linux on a Pentium 2.4GHz with 512MB RAM.
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22.1 The nonvar Binding-Type

We now present a new feature derived fra@GEN which is useful when specialising inter-
preters. This annotation will be the key for effective self-application.

In addition to marking arguments to predicatesstic or dynamic, it is also possible to
use the binding-typaonvar. This means that this argument is not a free variable and will have
at least a top-level function symbol, but it is not necessarily ground. During generalisation, the
top level function symbol is kept but all its sub-arguments are replaced by fresh variables. For

filtering, every sub-argument becomes a new argument of the residual predicate.
A small example will help to illustrate this annotation:

.- filter p(nonvar).
p(f(X)) :- p(g(a)).
pa(X)) - p(h(X)).
p(h(a)).

p(h(X)) - p(f(X)).

If we mark no calls as unfoldable, we get the following specialised program for the call

p(f(2)):

%%% entry point: p(f(2)) :- p__0(2)

p_0B) - p_1(d).
p__1(B) - p_2(B).
p__2(a).

p_2(B) - p_0(B).
If we mark everything except the last call as unfoldable we obtain:

p__0(B).
p__0(B) - p_0(a).

The gen filter/2 predicate in the.ix source code is extended to handle tlevar
annotation:

gen_filter([nonvar|A], [B|C], [DIE], F) :-
B=..[G|H], length(H, 1), length(J, 1),
D=..[G|J], gen filter(A, C, E, K), append(J, K, F).

22.2 Treatment of findall

In LiIX findall is used to collect the clauses when unfolding a call; hence we have to be able
to treat this feature during specialisation.
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Handlingfindall is actually not much different from handling negation in [78]. There is
a static versionf{ndall ), in which the call is executed at specialisation time, and a dynamic
version (esfindall ), where it is executed at runtime. In both cases, the second argument
must be annotated. Foesfindall , much likeresnot in [78], the annotated argument
should be deterministic and should not fail (which can be ensured by wrapping the argument into
ahide _nf annotation, see [78]). Also, if@ndall is marked as static then the call should be
sufficiently instantiated to fully determine the list of solutions. The following code is used in the
subsequent examples:

- filter all_p(static,dynamic).
all_p(X,Y) :- findall(X,p(X),Y).
.- filter p(static).

p(@). p(b).

If the findall is marked as residual and weemo p(X) inside it then the specialised program
forall _p(a)Y) is:

all_p__ O(A) :- findall(a,p__1,A).
p_ 1.

If we markp(X) asunfold we get:

all_ p_O(A) :- findall(atrue,A).

For self-application, onlyesfindall is actually required. Thieody/2 predicate is extended
as follows:

body(resfindall(Vars,G2,Sols), findall(Vars,VS2,Sols)) :-
body(G2,VS2).

22.3 Treatment of if

In the LIX code anif-then-else is used inmemo/2. In this case théf is dynamic, the
body of the conditional will be computed, along with those of the branches aifid atatement
will be constructed in the residual code.ixLis also extended to handle a stafic which is
performed at specialisation time.

body(resif(A,B,C), (D->E;F)) :-

body(A, D), body(B, E), body(C, F).
body(if(A,B,C), D) :-

(body(A, ) -> body(B, D) ; body(C, D)).

67



22.4 Handling the cut

This is actually very easy to do, as with careful annotation the cut can be treated as a normal
built-in call. The cut must be annotated usicegl, where it is performed at specialisation time,
or rescall, where it is included in the residual code. It is up to the annotator to ensure that this is
sound, i.eLIX assumes that:

— if a cut markedtall is reached during specialisation then the calls to the left of the cut will

never fail at runtime.

— if a cut is marked asescall within a predicatey, then no calls t@ are unfolded.

These conditions are sufficient to handle the cut in a sound, but still useful manner.

23 Self-Application

Using the features introduced in Section 22 and the basic annotations from SectianX2tdn
be successfully annotated for self-application. Self-application allows us to achieve the Futamura
projections as depicted in Fig. 2.

23.1 Generating Extensions

In Section 21.3 we specialisegp/3 for the callapp(A,[b],C) . If a partial evaluator is fully
self-applicable then it can specialise itself for performing a particular specialisation, producing
a generating extensionThis process is the second Futamura projection. When specialising an
interpreter the generating extension is a compiler.

A generating extension for the append predicate can be created by calling:

lix(lix(app(A,B,C),R),R1)

which creates a specialised specialiser for the append predicate.

/*Generated by Lix*/

.- dynamic flag/2, memo_table/2.

/* oldvalue__1( 5557, 5586) = oldvalue( 5557, 5586) */
oldvalue__1(A, B) :- flag(gensym(A), B), !.
oldvalue__1(_, 0).

/* set flag_ 1( 7128, 7153) = set_flag(gensym(_7128), 7153) */

set_flag__ 1(A, B) :- retract(flag(gensym(A), )), !,
asserta(flag(gensym(A),B)).

set flag_ 1(A, B) :- asserta(flag(gensym(A),B)).

/* gensym__1(_4392) = gensym(app,_4392) */
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gensym__1(A) :- var(A), oldvalue__1(app, B),

C is B+1,set flag_ 1(app, C),

name(C, D), name(A, [97,112,112,95,95|D]).
/* Printing and Flatten Clauses removed to save space */

/* unfold__1(_6925,_6927,_6929,_6956) = unfold(app(_6925, 6927, _6929),_6956) */
unfold__1([l, A, A, true).
unfold__1([A|B], C, [A|D], E) :- memo__1(B, C, D, E).

/* memo__1( 2453, 2455, 2457, 2484) = memo(app( 2453, 2455, 2457), 2484) */
memo__1(A, B, C, D) :-
( memo_table(app(A,B,C), D) -> true
; gensym__1(E), F=..[E,G,H],
assert(memo_table(app(G,B,H),F)),
findall((F:-I), unfold__1(G,B,H,l), J),
format('/*’k="k*/'n’, [F,app(G,B,H)]),
pretty print_clauses__1(J),
memo_table(app(A,B,C), D)
).
/* lix__1( 1288, 1290, 1292, 1319) = lix(app( 1288, 1290, 1292), 1319) */
lix__1(A, B, C, D) :- print(/*Generated by Lix*/\n’),
memo__ 1(A, B, C, D).

This is almost entirely equivalent to the proposed specialised unfolders in [63, 76]. It is
actually slightly better as it will do flow analysis and only generate unfolders for those predicates
that are reachable from the query to be specialised. Notgethgym/2 predicate is specialised

to produce only symbols of the forapp __N. Generation of the above togk3 ms.

The generating extension for append can be used to specialise the append predicate for dif-
ferent sets of static data. Calling the generating extensionlixith1(A,[b],C,R) creates
the same specialised version of the append predicate as in Section 21.3:

app__1([], [b]).
app__1([AlB], [AIC]) :- app__1(B, C).

However using the generating extension is faster, for this small exabripl2 ms instead of

0.318 ms. Using a larger benchmark, unfolding (as opposed to memoising) the append predicate
for a10, 000 item list produces more dramatic results. To generate the same code the generating
extension taked0 ms compared t®90 ms for Lix. The overhead of creating the generating
extension for the larger benchmark is only ms. Generating extensions can be very efficient
when a program is to be specialised multiple times with different static data.
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23.2 Lix Compiler Generator

The third Futamura projection is realised by specialising the partial evaluator to perform the
second Futamura projection. By this process we obtaionapiler generatofcogenfor short),
a program that transforms interpreters into compilers. By specialisingo create generating
extensions we createX -COGEN, a self-applied compiler generator. This can be achieved with
the quenylix(lix(lix(Call,R),R1),R2) . An extract from the produced code is now given:
/*unfold__13(Annotation, Generated Code, Specialisation Time) */
unfold___13(true, true, true).
unfold__13((A,B), (C,D), (E,F)) :-

unfold__13(A, C, E),

unfold__13(B, D, F).
unfold__13(logen(call,A), true, call(A)).
unfold__13(logen(rescall,A), A, true).

This has basically re-generated the 3-level cogen described in [63, 76]. lesitedl anno-
tation for example, the call4) will become part of the residual program, and nothitg:.¢) is
performed at specialisation time.

The generatedix -cCOGEN will transform an annotated program directly into a generating
extension, like the one found in section 23.1. Howau&-COGENIs faster: to create the same
generating extension from an input programiof00 predicates.IX-COGEN takes only3.9 s
compared td00.9 s forLIX.

24 Comparison

24.1 Logen

The LOGEN system is an offline partial evaluation system using the cogen approach. Instead of
using self-application to achieve the third Futamura projectionLth®@EN compiler generator

is hand written. Ix was derived fromL.OGEN by rewriting it into a classical partial evaluation
system. Using the second Futamura projection and self-applyimgroduces almost identi-

cal generating extensions to those produced ®geN. Apart from the predicate names the
specialised unfolders generated by the two systems are the same:

app__u([],AAtrue). unfold__1([], A, A, true).

app__u([AB].C,[AIDLE) :- unfold__1([A[B], C, [AID], E) :-
app__m(B,C,D,E). memo__1(B, C, D, E).
LoGEN Generating Extension ‘ Lix-coGENGenerating Extension
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While LOGEN is a hand written compiler generatanx must be self-applied to produce
the same result as in Section 23.2. If we compareltheEN source code to the output in
Section 23.2 we find very similar clauses in the fornmbofly/3 (note however, that the order
of the last two arguments is reversed).

body(true,true,true). unfold__13(true, true, true).
body((G,GS),(G1,GS1),(V,VS)) :- unfold__13((A,B), (C,D), (E,F)) :-
body(G,G1,V), unfold__13(A, C, E),
body(GS,GS1,VS). unfold__13(B, D, F).
body(logen(call,Call),Call,true). unfold__13(logen(call,A), true, call(A)).
body(logen(rescall,Call),true,Call). unfold__13(logen(rescall,A), A, true).
LOGEN LIX-COGEN

Unlike LIX, LOGEN does not perform flow analysis. It produces unfolders for all predicates in
the program, regardless of whether or not they are reachable.

24.2 Logimix and Sage

Comparisons of the initiatogen with other systems such a®GIMIX, PADDY, andsP can be

found in [63]. The time taken to produce the generating extensions was 50 times faster using
LOGEN (0.02 s instead of 1.10 s or 0.02 s instead of 0.98 s) and the specialisation times were
about 2 times faster. It is likely that a similar relationship holds betwagnand LOGIMIX.
Self-applyingsAGE is not possible for normal users, so we had to take the timings from [43]:
generating the compiler generator takes alioathours (including garbage collection), creating

a generating extension for the examples in [43] took at leadtours (1.8 hours with garbage
collection). The speedups from using the generating extension instead of the partial evaluator
range fron.7 to 3.6 but the execution times for the system (including pre- and post-processing)
still range from113 s to447 s.

25 New Applications

Apart from the academic satisfaction of building a self-applicable specialiser, we think that there
will be practical applications as well. We elaborate on a few in this section.

25.1 Several Versions of the Cogen

In the development of new annotation and specialisation techniques it is often useful to have
a debugging specialisation environment without incurring any additonal overhead when it is
not required. Using.IXx we can produce a debugging or non-debugging specialiser from the
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same base code, the overhead of debugging being specialised away when it is not required. By
augmenting_1x with extra options we can produce several versions of the cogen depending on
the requirements:
— a debugging cogen, useful if the specialisation does not work as expected
— a profiling cogen
— a simple cogen, whose generating extensions produce no code but which can be fed into
termination analysers or abstract interpreters to obtain information to check the annota-
tions.
We could also play with the annotationstok to produce more or less aggressive specialis-
ers, depending on the desired tradeoff between specialisation time, size of the specialised code
and the generating extensions, and quality of the specialised code. This would be more flexible
and maintainable than re-writingoGEN to accomodate various tradeoffs.

25.2 Extensions for Deforestation/Tupling

Lix is more flexible tharn.oGEN: we do not have to know beforehand which predicates are
susceptible to being unfolded or memoised. Hengg, can handle a potentially unbounded
number of predicates. Using this allowsx to perform a simple form of conjunctive partial
deduction [24].

For example, the following is the well known double append example where conjunctive par-
tial deduction can remove the unnecessary intermediate datastrdt(ttas isdeforestatioir

doubleapp(X,Y,Z,XYZ) :- append(X,Y,XY), append(XY,Z,XYZ).
append([],L.L).
append([HIX],Y,[H|Z]) :- append(X,Y,Z).

When annotating this example forx we can now simply annotate a conjunctionnasmo
(which is not allowed in.OGEN):

ann_clause(1,doubleapp(A,B,C,D), (memo((append(A,B,E),append(E,C,D))))).

RunningLix on this will produce a result where the intermediate datastructure has been
removed (after post-processing, as in [24]):

/* atom specialised: doubleapp(A,B,C,D), benchmark info: 0 ms */
doubleapp(A,B,C,D) :- doubleapp__ 0(A,B,C,D).

append__2([],B,B).

append__ 2([C|D],E,[C|F]) :- append__2(D,E,F).
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conj__1([1,[1,B,B).

conj__1([],[C|D],E,[C|F]) :- append__2(D,E,F).
conj__ 1([G|H],I,J,[GIK]) :- conj__1(H,I,J,K).
doubleapp__ 0(B,C,D,E) :- conj__1(B,C,D,E).

For this example to work inOGEN we would need to declare every possible conjunction
skeleton beforehand, as a specialised unfolder predicate has to be generated for every such con-
junction. Lix is more flexible in that respect, as it can unfold a conjunction even if it has not been
declared before.

We have also managed to deal with the rotate-prune example from [24], but more research
will be needed into the extent that the extra flexibilityL.ok can be used to do deforestation or
tupling in practice. It should be possible, for example, to find out whether there is a bounded
number of conjunction skeletons simply by self-application.

25.3 A Non-Trivial Interpreter Example

We now demonstrate thatx can handle more complicated examples by introducing a Vanilla
debugging interpreter using structured conjunctions, where every conjunction is eithay

or is anand and the left part is an atom and the right handside a conjunction. The code below
implements a tracing version @blve which takes two extra arguments: a counter for the
indentation level and a list of predicates to trace.

/* Clause DB */

dclause(app([],L,L), empty).

dclause(app([H|X], Y, [H|Z]), and(app(X,Y,Z),empty)).
dclause(rev(A,B), and(rev(A,[],B),empty)).

dclause(rev([],A,A), empty).

dclause(rev([A|B],C,D), and(rev(B,[A|C],D),empty)).
dclause(rev_app(A,B,C), and(rev(A,D),and(app(D,B,C),empty))).

/* Vanilla Debugging Interpreter */
dsolve(empty,_, ).
dsolve(and(A,B), Level,ToTrace) :-
(debug(A,ToTrace) ->
( indent(Level), printCCall: ), print(A), nl,
dsolve(A,s(Level), ToTrace),
indent(Level), printCExit: ), print(A), nl)

dsolve(A,Level, ToTrace)),
dsolve(B,Level,ToTrace).
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dsolve(X,Level, ToTrace) :-
dclause(X,Y),
dsolve(Y,Level, ToTrace).
indent(0).
indent(s(A)) :- print(’>"), indent(A).
debug(Call,ToTrace) :-
Call =.. [P]Args],
length(Args, Arity), member(P/Arity, ToTrace).

Fordsolve(rev_app(A,B,C), L, [app/3]) we get the following efficient tracing
version of our object program, where the debugging statements have been weaved into the code.
This specialised code now runs with minimal overhead, and there is no more runtime checking
for whether a call should be traced or not.

/* indent/1 */
indent__1(0).
indent__1(s(A)) :- print(>), indent__1(A).
/* revi3 */
dsolve__3([l, A, A, ).
dsolve__3([A|B], C, D, E) :- dsolve__3(B, [A|C], D, E).
[* rev/2 */
dsolve_ 2(A, B, C) :- dsolve_ 3(A, [], B, C).
[* app/3 */
dsolve__4([], A, A, ).
dsolve__4([A|B], C, [AID], E) :-
indent__ 1(E),print('Call: "),print(app(B,C,D)),nl,
dsolve_ 4(B, C, D, s(E)),
indent__ 1(E),print(Exit: "),print(app(B,C,D)),nl.
/* rev_app/3 */
dsolve_ 1(A, B, C, D) :-
dsolve_ 2(A, E, D),
indent__1(D),print("'Call: "),print(app(E,B,C)),nl,
dsolve__4(E, B, C, s(D)),
indent__1(D),printCExit: ’),print(app(E,B,C)),nl.

Running the specialised code fdsolve__ 1([a,b,c],[d,e,f],C,0) , the same as
running dsolve(rev_app([a,b,c],[d,e,f],C),0,[app/3]) in the original, pro-
duces the following trace:

| ?- dsolve__1([a,b,c],[d,e.f],C,0).
Call: app([c,b,a],[d,e,f], 555)
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>Call: app([b,a],[d,e,f],_1056)
>>Call: app([a],[d,e,f],_1228)
>>>Call: app([].[d,e,f],_1436)
>>>Exit: app([],[d,e,f],[d,e,f])
>>Exit: app([a],[d,e,f],[a,d,e,f])
>Exit: app([b,a],[d,e.f],[b,a,d,e,f])
Exit: app([c,b,a],[d,e,f],[c,b,a,d,e,f])
C = [c,badef ?

yes

26 Conclusions and Future Work

We have presented an implemented, effective and surprisingly simple, self-applicable partial
evaluation system for Prolog and have demonstrated that the ground representation is not re-
quired for a partial evaluation system to be self-applicable. (Thesystem can be used for the
specialisation of non-trivial interpreters, and we hope to extend the system to use more sophisti-
cated binding types developed fiobGEN.

While LIX andLOGEN essentially perform the same task, there are some situations where a
self-applicable partial evaluation system is preferrablex ¢an potentially produce better gen-
erating extensions, using specialised versiongaofsym and performing some of the generali-
sation and filtering beforehand. We have shown the potential for the use af deforestation,
and in producing multiple cogens from the same code. The overhead of a debugging cogen can
be specialised away when it is not required or a more aggressive specialiser can be generated by
tweaking the annotations.
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Part V
Framework for A Fully Automatic Binding
Time Analysis

In this part of the deliverable, we link the previously formalised binding-types with binary clause
semantics. Offline partial evaluation techniques rely on an annotated version of the source pro-
gram to control the specialisation process. These annotations are required to ensure termination
of the partial evaluation. We present an outline of the algorithm for generating these annotations
automatically. The process is made up from indenpendent components which if missing could
be replaced by a manual procedure or oracle, making the procedure semi-automatic. Finally, a
draft of a worked example is being presented. This represents work in progress and further work
needs to be carried out.

27 Offline Partial Evaluation

Most off-line approaches perform what is callediading-time analysigrior to the special-
ization phase. In essencepmding-time analysi¢BTA for short) does the following: given a
program and an approximation of the input available for specialization, it approximates all values
within the program and generates annotations that steer (or control) the specialization process.
The partial evaluator (or the compiler generator generating the specialised partial evaluator) then
uses the generated annotated program to guide the specialization process. This process is illus-
trated in Figure 19.

Within the annotated program there are two types of annotations.

o Filter declarations these give each argument of a predicabeaing-type A binding-type
indicates something about the structure of an argument, For example, it could indicate
which parts of the argument adgynamic(possibly unbound at specialization time) and
which parts are knowns(atic) at specialization time. (Other more precise binding types
are possible). These annotations influenceglobal control in that dynamic parts are
generalised away (i.e., replaced by fresh variables) and known parts are kept unchanged.

¢ Clause annotationsthese indicate how every call in the body should be treated during
specialization, Essentially, the annotations determine whether a call is unfolded at special-
ization time or at run time. These influence theal control[91].
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Figure 19: The role of the BTA

In this paper we outline a procedure for generating these annotations automatically. There are
several independent components of the procedure. Hence, if one of these components is missing
it could be replaced by a manual procedure or oracle, making the whole process semi-automatic.

The input to the procedure is (i) a program to be specialized, (ii) a set of types, and (iii) a
goal whose arguments are typed with respect to the given types. Note that the program need not
be a typed program in the usual sense. The types simply define sets of terms which form the
basis for the binding type annotations, and the types do not have to be associated with particular
arguments of predicates.

The independent components that are part of the overall automatic BTA procedure are (i) a
type determinization algorithm, (ii) an abstract interpreter over a domain of determinized (dis-
joint) types, and (iii) a termination analyser, incorporating for example an abstract interpreter
over a domain of convex hulls.
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28 Binding Types

The basis of the BTA is a classification of arguments using abstract values. Abstract values can
be chosen in different ways. The BTA procedure described here is independent of the particular
choice of abstraction; the only essential aspect of the abstraction is that it must be possible to
determine whether an argument is possibly unbound (that is, it is could be a variable). In this
case, the argument is calldginamic

The simplest approach is to classify arguments within the program to be specialised as either
staticor dynamic The value of a static argument will lokefinitely ground A dynamic argument
can be either ground or not ground, that is, it can be any term. The use of static-dynamic binding
types was introduced for functional programs, and has been used in logic program BTAs [94].
While often sufficient for functional programs, it sometimes proves to be too weak for logic
programs: in logic programming partially instantiated data structures appear naturally even at
runtime. A simple classification of arguments into “fully known” or “totally unknown” is there-
fore unsatisfactory and would prevent specializing a lot of “natural” logic programs such as the
vanilla metainterpreter [49, 89] or most of the benchmarks fronp#eDlibrary [71].

Other more expressive binding types can be based on lists or other data-types. Using typi-
cal notation for defining types, one can define lists (or trees etc.) whose elements are ground,
dynamic, numbers, nested structures and so on. These types must be representable as a set of
regular types rules. The sets of ground and non-ground terms can also be defined as regular
types. Examples are given in [34].

28.1 Derivation of Filter Declarations

The given set of types is first transformed into a set of disjoint regular types. This process is
calleddeterminizatiorand is described in detail in another report [34]. The disjoint types define
an abstract domain, which is input, along with the typed goal, to an abstract interpreter over that
domain. The details of the abstract interpretation algorithm are also given in [34].

For example, the simple binding typstatic and dynamicare determinized to the disjoint
typesstaticandnon-static Note thatdynamicis the union ofstaticandnon-static

The output of the abstract interpreter is an assignment of a set of disjoint types to each
argument. Lefp/n be a predicate in the program. Then the analyser assigns a binding type
p(Sh,...,S,) top, whereS; (1 < j < n)is aset of disjoint typeét;,, . ... t;, }. The meaning of
the assignment is that, wheneygn is called during specialization, if§" argument is contained
in of the types{¢,,, ..., t;, } and is not contained in any type other than, . .., ¢, }.

The assignment of types to arguments for a predipatecalled afilter for p. The filter
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is used in the generalization operation dueing partial evalaution. We assume that there is a
generalization operation, which takes as input an atom for predicated a filter forp, and
returns another, more general atompoiThe LOGEN generalization procedure was modified to
handle the disjoint determinized types described above.

29 Clause Annotations

Each clause is annotated indicating how every call in the body should be treated during special-
ization. This is needed to ensure local termination. Some of the basic annotations are:

¢ unfold for reducible predicates: they will be unfolded during specialization.

e memo for non-reducible predicates: they will be added to the memoisation table and
replaced with a generalized residual predicate (using the filter for that predicate).

e call: for reducible predicates; they will be completely evaluated during specialization.

e rescalt for builtins and imported predicates; the call will be kept and will appear in the
final specialised code.

29.1 Example Annotation

The simple annotations are demonstrated using thedN annotation syntax:

.- filter append(static, dynamic, dynamic).

append([],L,L).
append([H|T],L,[H|T1]) :- logen(unfold, append(T,L,T1).

The first argument to append has been markeslage ; it will be known at specialization
time. The other arguments have been martgadamic , so they may or may not be known at
specialization time.

The filter declaration above could be derived automatically from the append program, the in-
puttypesstatic anddynamic , and the typed goappend(static, dynamic, dynamic)
After determinizing the input types, the filter would be represented in the following equivalent
form.

-filter append([static],[static,nonstatic],[static,nonstatic]).
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In other words, the second and third argument can be either static or non-static, which is the same
as dynamic. The fact that a type such[static, nonstatic] is dynamic can easily be
detected [34].

Note that the analysis guarantees correct filters. In a manually written filter, it is not guaran-
teed that calls tappend would actually satisfy the given binding types (e.g. thgtend would
always be called with a ground first argument).

Examining the clause annotation in the example, the recursive call to append is annotated for
unfolding. The first argument is static and this is sufficient to guarantee termination at specializa-
tion time (this will be formally checked by the termination analysis component of our algorithm).

If we could not guarantee the termination of the recursive call then it would have to be marked
asmemo

29.2 Derivation of Filter Declarations in the Presence of Clause Annota-
tions

In the derivation of filter declarations mentioned above it was stated that whernewver called

during specialization, itg* argument has a value given by one of the types, ... t; }. It

was not explained what is meant by “wheneygr is called during specialization”. In fact, this
depends on the clause annotations, since the decision of whether to memo or call an atom affects
the propagation of binding types.

Standard abstract interpretation, which assumes a complete computation, is modified to allow
for memo-ing of calls. Memo-ed called are simply ignored when propagating binding types. The
same holds forescallannotations. Note that we still derive filters for memo-ed calls: it is only
for propagation of binding types that they are ignored.

30 Termination Checking Based on Binary Clause Semantics

There are two separate termination requirements during partial evaluatomal termination
concerns the avoidance of infinite derivations in which atoms annotatadfakl or call are
selected. Global terminationconcerns the set of calls that are unfolded in the course of the
partial evaluation, which should be finite. Finiteness of the set is ensured by a generalization
operation driven by the filter declarations.

Both of these termination questions are approached vidittey clause semantidd7], a
representation of a program’s computations that makes possible reasoning about loops, and hence
termination analysis. Informally, the binary clause semantics of a progrethe set of all pairs
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of atoms (called binary clauseg)X )6 < ¢() such thap is a predicatep(X) is a most general

atom forp, and there is a finite derivation (with leftmost selection ralep(X), ..., «— (q(f), Q)

with computed answer substitution In other words a call tp(X) is followed some time later

by a call tog(t), computing a substitutiof. We can thus use this information to reason about

the set of calls that follow any initial call (by taking appropriate instances of the binary clauses).
In particular, loops are represented by binary clauses with the same predicate occurring in head
and body.

The binary semantics is in general infinite, but we can make safe approximations of the set
of binary clauses using standard abstract interpretation. The relevant abstraction is based on the
size of terms (i.e. we abstract an argument by its size with respect to some measure). We use a
domain of convex hulls to abstract the set of binary clauses with respect to a given measure.

Using such an abstraction, we aim to obtain a finite set of binary clauses ofpfofm «
7(X,Y),q(Y), wherer(X,Y) is a linear relation between argumenfsandY” which represent
the sizes of the respective concrete arguments. Termination proofs (for calls to a preficate
require us to prove that for every abstract binary claysé) «— #(X,Y),p(Y), 7(X,Y) entails
a strict reduction in size for some bounded (rigid) componenk of Boundedness (rigidity)
of the arguments is established by another abstract interpretation very similar to binding type
propagation. The details are not discussed here, except to say that a size measure can be derived
for each binding type. A term is rigid with respect to a measure if all its instances have the same
size.

As we did for for binding type propagation, we need to modify binary clauses to take account
of the annotations, since selection of atoms annotaieaehoor rescallare not allowed.

Given an annotated program the binary program is generated by a transformation devel-
oped for backwards analysis [35], and modified for annotated programs. The transformation is
carried out inLOGEN itself, by partial evaluation of the interpreter shown in Section 32.

30.1 Checking For Local Termination

Given the binary clause program, we compute an abstraction using convex hulls (currently we use
a convex hull analyser kindly supplied by Samir Genaim and Mike Codish [36]). The specialized
binary clause program represents a binary claugg — ¢(5) as bin_solve(p(t), q(5)). We
examine the binary clauses and look for unfold loops, which are abstract binary clauses of the
form:

bin_solve(p(ss, ..., Sn), unfold(p(ts,..., t,))) < C(s1,.. ., Snyt1,. . tn)
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whereC'(sq, ..., Sn, t1,...,t,) iS some linear constraint. We then check whether for some argu-
ment; there is a decrease fros to ¢;. If so, we check whether thg" argument is rigid with
respect to the current filter for. If so, termination is ensured, and otherwise not.

30.2 Checking for Global Termination

An annotated program output from the algorithm described above is then examined for global
termination properties. Again, an analysis based on binary clauses is used, but this time, we seek
abstract binary clauses of the following form:

bin_solve(p(ss, ..., Sn), memo(p(ty,... . t,))) < C(s1,- -, Snyt1,. .. tn)

Such clauses represent recursive introduction of memo-ed calls. The binary clause trans-
formation incorporates the generalization operator, as can be seen in the interpreter shown in
Section 32, since the actual memo-ed call is produced by the generalizatin,of . , ¢,,) into
memo(p(ty, ..., t,)), with respect to the filter fop.

In global termination checking, the conditions on the constr@ist, . . . , s, t1,...,t,) are
more relaxed compared to local termination conditions. We are willing to generate an infinite
number of memo-ed calls, as long as the set of those calls is finite (up to variable renaming).
Indeed, if we encounter a memo-ed call that has already been treated before, no new processing
will arise. This situation is similar to termination of tabled logic programs and hence the tech-
niques for ensuringuasi-terminatiorof [25, 80] form a good starting point. There are in fact
two conditions that will ensure global termination:

e Either we can use the same condition as for local termination and require alstnetise
in size for some rigid argument.

e or we are satisfied if the arguments are imatreasingin size, provided that the norms are
so-calledfinitely partitioning[25, 80], meaning that only finitely many terms (up to vari-
able renaming) have the same size. For instance, the term size norm is finitely partitioning
but the list length is not (e.g[0], [s(0)], [s(s(0))],... all have the same
size 1).

Supposing we have finitely partitioning norms, our BTA will, for each binary clause as shown
above, seek arguments which increase in size. If such arguments exist, then global termination is
not ensured, and we must perform some further generalisation during partial evaluation in order
to ensure termination. This can be achieved by changing the filter for the increasing argument to
dynamic .
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31 Outline of Algorithm

We now outline the main operations and steps in the algorithm. The core of the algorithm is a
loop which propagates the binding types with respect to the current clause annotations, generated
the binary program and checks the current filters for termination conditions, and modifies the
clause annotations accordingly. Initially, all body atoms are annotatadfakl or call, except
for imported predicates which are annotatedcall Annotations can be changed rieemoor
rescall until termination is established.

The algorithm below does not check for global termination. This is discussed in the next
section.

Initialization:

Get program types and determinize them;
Initialize all clause annotations to

- unfold for defined user predicates,

- call for builtins

- rescall for imported predicates;
Compute filters w.r.t. current clause annotations

and initial filter-annotation for the query;

Repeat:
Finished := True;
Bin := binary program for local unfolding, w.r.t. current
clause annotations;
ConvexBin := convex hull abstraction of Bin;
For each clause annotation unfold(A)
Let Filter(A) := the current filter for A,
If
Filter(A) does not terminate w.r.t. ConvexBin
Then
change unfold(A) to memo(A); Finished := False;
EndIf
EndFor
For each clause annotation call(A)
Let Filter(A) := the current filter for A;
If
Filter(A) is insufficiently instantiated to call A
Then
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change call(A) to rescall(A); Finished := False;
EndIf
EndFor
Compute new filters w.r.t. current clause annotations;
If
global non-termination is indicated in ConvexBin
Then
change the increasing arguments in the filters
for memo-ed predicates to dynamic

Until Finished;

Return current filters and current clause annotations;

Termination of the main loop is ensured since there is initially only a finite numbenifoid
or call clause annotations, and each iteration of the loop eliminates one orunfmie or call
annotations.

32 Generation of the Binary Clause Semantics

To determine the binary clause semantics needed for the termination analysis, we can actually
leverage our ASAP tools and obtain it by specializing an interpreter (cBiledsolve ) using

LOGEN. Bin _solve is a binary clause interpreter based on the simple vanilla interpreter solve.
Specializing binsolve with respect to the filter goals and annotated programs we wish to analyse
produces a program whose semantics is the binary clause semantics for either local unfolding or
memoed calls.

.- filter solve(type(list(nonvar))):solve.
bin_solve([unfold(H)|_T],unfold(H)).
bin_solve([memo(H)|_T],memo(H1)) :- filter(H.,F), generalise(H,F,H1).
bin_solve([unfold(H)|_T],RecCall) :-

bin_solve_atom(H,RecCall).
bin_solve([unfold(H)|T],RecCall) :-

solve_atom(H),

bin_solve(T,RecCall).
bin_solve([memo( )|T],RecCall) :-

bin_solve(T,RecCall).
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:- filter bin_solve_atom(nonvar_nf,dynamic).
bin_solve_atom(H,Rec) :-
rule(H,Bdy),
bin_solve(Bdy,Rec).

.- filter test(dynamic,dynamic).

test(H,Rec) :-
filtered(H),
bin_solve([unfold(H)],Rec).

filtered(ann_dapp(_, , , ).
filtered(ann_app(_,_, )).

:- module("/cvs_root/cogen2/logen_examples/bta_test/bin_solve.pl.memo’,
[test__0/2,bin_solve_atom__1/2,solve_atom__ 2/4,
bin_solve_atom__3/2,solve_atom__4/3]).
gensym(num__num,5).
memo_table(0,test(A,B),test__ 0(A,B),done(user),[]).
memo_table(1,bin_solve_atom(ann_dapp(A,B,C,D),E),
bin_solve_atom__1(ann_dapp(A,B,C,D),E),
done(internal),[]).
memo_table(2,solve_atom(ann_dapp(A,B,C,D)),
solve_atom__2(A,B,C,D),
done(internal),[]).
memo_table(3,bin_solve_atom(ann_app(A,B,C),D),
bin_solve_atom__3(ann_app(A,B,C),D),
done(internal),[]).
memo_table(4,solve_atom(ann_app(A,B,C)),
solve_atom__ 4(A,B,C),
done(internal),[]).

test O(ann_dapp(B,C,D,E),ann_dapp(B,C,D,E)).

test O(ann_dapp(B,C,D,E),F) :-
bin_solve_atom__1(ann_dapp(B,C,D,E),F).

test__O(ann_app(B,C,D),ann_app(B,C,D)).

test O(ann_app(B,C,D),E) :-
bin_solve_atom__3(ann_app(B,C,D),E).

bin_solve_atom__ 1(ann_dapp(B,C,D,E),ann_app(C,D,F)).
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bin_solve_atom__1(ann_dapp(B,C,D,E),F) :-
bin_solve_atom__3(ann_app(C,D,G),F).

bin_solve_atom__ 1(ann_dapp(B,C,D,E),memo(app(B,F,E))) :-
solve_atom__ 4(C,D,F).

solve_atom__2(B,C,D,E) :-
solve_atom__4(C,D,F).

bin_solve_atom__3(ann_app([B|C],D,[B|E]),memo(ann_app(C,D,E))).

solve_atom__ 4([],B,B).

solve_atom__ 4([B|C],D,[BIE)).

33 Worked Example

We demonstrate the algorithm using a worked example of a pattern matching program.
Thematch predicate identifies a patteRat in a stringT.

match(Pat,T) :-
matchl(Pat,T,Pat,T).
matchl1([],Ts,P,T).
match1([A|Ps],[B|Ts],P,[X|T]) :-
A\==B,
match1(P,T,P,T).
match1([A|Ps],[A|Ts],P,T) :-
matchl(Ps,Ts,P,T).

Initialise the annotations to all unfold and call.

.- filter match(list, dynamic).
match(Pat,T) :-
unfold(match1(Pat,T,Pat,T)).
match1([],Ts,P,T).
match1([A|Ps],[B|Ts],P,[X|T]) :-
call(A\==B),
unfold(matchl(P,T,P,T)).
match1([A|Ps],[A[Ts],P,T) :-
unfold(match1(Ps,Ts,P,T)).

Specializing through birsolve to obtain the abstract clause semantics:

bin_solve_atom__ O(match(B,C),unfold(match1(B,C,B,C))).
bin_solve_atom__ 1(matchl1([B|C],[D|E],F,[G]|H]),unfold(matchl(F,H,F,H))).
bin_solve_atom__ 1(match1([B|C],[B|D],E,F),unfold(match1(C,D,E,F))).
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Abstracting the programming with respect to list length norm

.- filter match(list,dynamic).

.- filter match1(list,dynamic,list,dynamic).

bin_solve_atom__ O(match(B,_),unfold(match1(B,_,B, ))).
bin_solve_atom__ 1(matchl1(1+C, ,F, ),unfold(matchl(F, ,F, ))).
bin_solve_atom__ 1(match1(1+C, ,E, ),unfold(matchl(C,_,E, ))).

For each binary clause of the foriin _solve _atom(p(--),unfold(p(--))
bin_solve_atom__ 1(match1(1+C,_,F, ),unfold(match1(F,_,F, ))).

Argument 1 does not show decrease 1+0-
Argument 3 does not show decrease-H~
Offending call must be marked as memo.

:- filter match(list, dynamic).
match(Pat,T) :-
unfold(matchl(Pat,T,Pat,T)).
matchl1([],Ts,P,T).
match1([A|Ps],[B|Ts],P,[X|T]) :-
call(A\==B),
memo(matchl(P,T,P,T)).
match1([A|Ps],[A|Ts],P,T) :-
unfold(matchl(Ps,Ts,P,T)).

bin_solve_atom__ O(match(B,C),unfold(match1(B,C,B,C))).
bin_solve_atom__ 1(match1([B|C],[B|D],E,F),unfold(match1(C,D,E,F))).

Abstract program again . ..

bin_solve_atom__ O(match(B,C),unfold(match1(B,C,B,C))).
bin_solve_atom__ 1(match1(1 +C, ,E, ),unfold(matchl(C,_,E, ))).

For each binary clause of the foriin _solve _atom(p(--),unfold(p(--))
bin_solve_atom__ 1(matchl(1 +C,_,E, ),unfold(matchl(C, ,E, ))).

Argument 1 does show decrease 1+QOC, and is rigid with respect to the size measure.
Hence, local termination is ensured.
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Part VI
A Higher-Order Binding-Time Analysis for
Mercury

In this work, we develop a binding-time analysis for the logic programming language Mercury.
We introduce a precise domain of binding-times, based on the type information available in Mer-
cury programs, that allows to represent partially static data structures for specialisation. The
analysis is polyvariant, and deals with the module structure and higher-order capabilities of Mer-
cury programs.

34 Introduction

Program specialisation is a technique that transforms a program into another program, by pre-
computing some of its operations. Assume we have a prodraoh which the input can be
divided in two parts, say andd. If one of the input parts, say, is known at some point in
the computation, we caspecialiseP with respect to the available inpdt This specialisation
process comprises performing those computations that depend only or, and recording
their resultsin a new program, together with tleedefor those computations that could not be
performed (because they rely on the input pa#t unknown at this point in the computation).
The result of the specialisation is a new prografp,that computes, when provided with the
remaining input pard, thesameresult asP does when provided with the complete input d.
Comprising a mixture of program evaluation and code generation, the program specialisation
process is also often referred to by the nampagial evaluation mixed computatior staged
computation

Staging the computations of a program can be useful (usually in terms of efficiency) when
different parts of a program’s input become known at different times during the computation.
The best benefit can be obtained when a single program must be run a number of times while a
part of its input remains constant over the different runs. In this case, the program can first be
specialised with respect to the constant part of the input, while afterwards the resulting program
can be run a number of times, once for each of the remaining (different) input parts. In such
a staged approach, the computations that depend only on the constant input part are performed
only once — during specialisation. In the non-staged appr@datgmputations — including those
depending on the constant part — are performed over and over again in each run of the program.
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When using program specialisation to stage the computations of a program, the basic prob-
lem is deciding what computations can be safely performed during the specialisation process.
The driving force behind this decision is twofold. Firstly, the specialisation process itself must
terminate; that is, the specialiser may not to get into a loop when evaluating a sequence of
computations from the program that is to be specialised. Secondly, the obtained degree of spe-
cialisation should be “as good as possible”, meaning that a fair amount of computatiocerthat
be performed during specialisatiare effectively performed during specialisation.

The key factor determining whether a computation can be performed during specialisation is
the fact whether enough input values are available to compute a result. If that is the case, the
specialiser can perform the computation; if not, it should generate code to perform this com-
putation at a later stage. Binding-time analysis is a static analysis that, given the program and a
description about the available partial input with respect to which the program will be specialised,
computes for every statement in the program what input values will be known when that state-
ment is reached during specialisation. In addition, the analysis computes — according to some
control strategy — whether or not the statement should be evaluated during specialisation.

Once the progran® and its available partial inputhas been analysed by binding-time ana-
lysis, specialisation oP with respect ta boils down to evaluating those statement®ithat are
annotated as such by the binding-time analysis. This specialisation technique iofialiee
the reason being that most of the control decisions have been taken by the binding-time analysis.
This in contrast with the so-calleah-line specialisation technique in which the program to be
specialised is not analysed by any binding-time analysis, but is directly evaluated with respect
to its partial input under the supervision of a control system that decides — for every statement
under consideration — on the fly whether or not it can safely be evaluated. Both approaches to-
wards specialisation have their advantages and disadvantages. In this work, we concentrate on
off-line specialisation and construct a binding-time analysis for the logic programming language
Mercury.

34.1 Binding-time Analysis and Logic Programming

Using binding-time analysis to control the behaviour of the specialisation has been thoroughly
investigated in a number of programming paradigms. Breaking work on off-line program spe-
cialisation of imperative languages include C-mix by Andersen [2] and more recently Tempo
[19, 53] by Consel and his group. Also in the context of functional language specialisation,
most work focusses on binding-time analysis and off-line specialisation, originally motivated to
achieve better self-application [31, 56]. Whereas initial analysis dealt with first-order languages
[56], more recently developed analyses deal with higher-order aspects [42, 10], polymorphism
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[93, 48] and partially static data structures [69].

In the field of logic programming, however, only little attention has been paid to off-line
program specialisation. Known exceptions atesIMIX [95] andLOGEN [64] that develop dif-
ferent approaches to off-line program specialisation for Prolog. Both cited works, however, lack
an automatic binding-time analysis and rely on the user to provide the specialiser with suitable
annotations of the program. To the best of our knowledge, the only attempt to construct an
automatic binding-time analysis for logic programming is [14] and our own work about which
we report in [77]. The approach of [14] is particular, in the sense that it obtains the required
annotations not by analysing the subject program directly but rather by analysing the behaviour
of an on-line program specialiser on the subject program. Although conceptually interesting,
the latter approach is overly conservative and restricts the number of computations that can be
performed during specialisation. Indeed, [14] decides whether to unfold a call or not based on
the original program, not taking current annotations into account. This means that call can ei-
ther be completely unfolded or not at all. The binding-time analysis first described in [120] and
employed in [77] is also particular in the sense that it obtains its annotations by repeatedly ap-
pyling an automatic termination analysis. If the termination analysis identifies a call as possibly
non-terminating, that call is marked such that it will not be reduced by the specialiser. Then the
termination analysis is rerun to prove termination of the program under the assumption that each
call that is marked as non-reducible is not evaluated. The process is repeated until termination of
the (annotated) program can be proven.

Both the approach of [14] and [77] have been designed towards dealing with untyped and
unmoded logic programming languages. The fact that most logic programming languages are
untyped makes it hard — if not impossible — to represent the availabilipagfal input in a
sufficiently precise way during the analysis. More importantly, the lack of control flow infor-
mation in the program makes it nearly impossible to approximate the data flow in a sufficiently
precise way and renders the derivation of a binding-time analysis by "classic” abstract interpre-
tation techniques not straightforward, hence the approaches of [14] and [77]. In this work, we
construct a completely automatic binding-time analysis for the recently introduced logic pro-
gramming language Mercury. Being a strongly typed and moded language, it lifts the obstacles
encountered with more traditional logic programming languages and allows to construct a “tradi-
tional” binding-time analysis along the lines of [42, 60] based on data flow analysis. Yet, its more
involved data- and control flow features — inherent to a logic programming language — render the
derivation of an automatic binding-time analysis a daunting and not straightforward task.

90



34.2 Mercury

The design of Mercury was started in October 1993 by researchers at the University of Mel-
bourne. While logic programming languages had been around for quite some time, no one
seemed to fully realise the theoretical advantages such a language would have over more tra-
ditional, imperative languages. These advantages are widely known, and are summarised for
example in [111]: a higher level of expressivity (enabling the programmer to concentrate on
what has to be done rather than bowto do it), the availability of a useful formal semantics
(required for the — relatively — straightforward design of analysis and transformation tools), a
semantics that is independent of any order of evaluation (useful for parallelising the code), and a
potential for declarative debugging [82]. While a language like Prolog does offer some of these
advantages, others are destroyed by the impure features of the language.

The main objective of the Mercury designers was to create a logic programming language
that would bepure and useful for the implementation of a large numbereafl-world applica-
tions. To achieve this goal, the main design objectives of Mercury can be summarised as follows
[111]: Support for the creation of reliable programgd his involves a language that allows to
detect some classes of bugs at compile-tiBwgpport for programming in teamkarge software
systems are usually build by a number of programmers. The language must provide good sup-
port for creating a single application from multiple parts that are build (sometimes in isolation)
by different programmers. These two objectives form a major departure from Prolog which, at
the time, had basically no support for programming in the large, and which does not allow a lot of
type-, mode- and determinism errors to be caught at compile-time. Another important objective
wassupport for the creation of efficient programghe efficiency of the language implementation
had to be at least comparative with (but preferably better than) comparable languages.

To meet these design objectives, Mercury was fitted with a strong system of type-, mode-
and determinism declarations. Apart from providing excellent comments on how the data used
in a predicate should look and how the code is supposed to be used, these declarations enable the
compiler to perform a number of analyses and to spot a substantial number of bugs at compile
time, rather than producing a program that shows some unexpected behaviour at run-time as is
often the case with Prolog. Also, the availability of declarations allows to fix the evaluation
order of the body atoms in a predicate and provides as such the basis for an efficient execution
mechanism of the language [20, 110, 112]. Mercury is equipped with a modern module system
that enables to hide some data definitions and to encapsulate both data and code, and provides as
such support for programming-in-the-large activities.
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35 A Domain of Binding-times

Binding-time analysis can be seen as an application of abstract interpretation over a domain of
binding-times A binding-time abstracts a value by specifying at what time during a 2-stage
computatio?’ the value becomes known. In their most basic form, the binding-time of a value
is eitherstatic or dynami¢ denoting a value that is known early, during specialisation, or late,
during evaluation of the residual program, respectively.

It is recognised [60] that for a logic programming language, approximating values by either
static or dynamicis too coarse grained in general. Indeed, most logic programs use a lot of
structureddata, where data values are represented by structured terms. Consequently, the input
to the specialiser usually consists of a partially instantiated term: a term that is less instantiated
than it would be at run-time. Approximating a partially instantiated terndyayamicusually
results in too much information loss, possibly resulting in missed specialisation opportunities.
Therefore, we use the structural information from the type system of Mercury to represent more
detailed binding-times, capable of distinguishing between the computation stages irpatigch
of a value (according to that value’s type) become known.

Mercury’s type system is based on a polymorphic many-sorted logic, and corresponds to the
Mycroft-O'Keefe type system [97]. Basically, the types are discriminated union types and sup-
port parametric polymorphism: a type definition can be parametrised with some type variables,
as the following example in Mercury syntax shows.

Example 1 :- type list(T) ---> [] ; [T | list(T)].

The above defines a polymorphic tyls(T)  : it defines values of this type to be terms that
are eithef] (the empty list) or of the fornfA|B] whereA s a value of typd andBis a value
of typelist(T)

Formally, if we denote withx+ the set of type constructors and with- the set of type
variables of a languagg, the set oftypesassociated td is represented by (X, Vr); that is
the set of terms that can be constructed flomand V. A type containing variables is said to
be polymorphic¢ otherwise it is anonomorphidype. Atype substitutions a substitution from
type variables to types. The application of a type substitution to a polymorphic type results in a
new type, which is amstanceof the original type.

As usual, the set of program values is denoted oy, 2); that is the set of terms that can be
constructed from a sét of function symbols and a s&t of program variables.

2Generalisations exist in which computations are staged over more thtages (see e.g. [41]). In this work,
we focus on a traditional 2-stage process, dividing the computations in a programspeeoslisation-timeversus
run-time
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The relation between a type and the values (terms) that constitute the type is made explicit by
atype definitiorthat consists of a number tyfpe rulesone for every type constructor. Example 1
shows the type rule associated to tis¢/1 type constructor. Formally, a type rule is defined
as follows:

Definition 35.1 Thetype ruleassociated to a type construcfofn € Y7 is a definition of the
form

MT) = fi(T1); s fu(Ta)
whereT is a sequence of type variables froni/ and forl < i < k, fi/m € Y with 7; a
sequence afi types from7 (X, V) and all of the type variables occurring in the right hand side
occur in the left hand side as well. The function symbigfs . .., f;} are said to be associated
with the type constructak. A finite set of type rules is called a type definition.

Given a type substitution, we define the notion of an instance of a type rule in a straight-
forward way. In theory, every type (constructor) can be defined by a type rule as above. In
practice, however, it is useful to have some types builtin in the system. For Mercury, the types
int ,float ,char ,string are builtin types whose denotation is predefined and is the set of
integers, floating point numbers, characters and strings respectively.

Mercury is a statically typed language, in which the (possibly polymorphic) type of every
term occurring in the program text is known at compile-time. In what follows, we use the type
definition to construct, for every type occurring in the program, a finite description ctithe-
ture that values belonging to the denotation of a particular type can take. The relevance of such
a description is in the fact that it can be used to abstract the values belonging to the denotation of
the type according to their structure, allowing the construction of a precise abstract domain for
program analysis, in particular binding-time analysis.

To extract a structural description of a type from a type definition, we introduce the notion
of a type-path being a sequence of functor/argument position pairs that is meant to denote a path
through the type definition from a type to an occurrence of one of its subtypes. In fact, a type
itself can be represented as a (possibly infinite) set of such paths, one for every path from the
type that is being defined to some subtype occurring at a particular position within some term
belonging to the denotation of that type. More formally, we denote the set of all such sequences
overY x N by TPath The empty sequence is denoted(byand givery, e € TPath we denote
with 0 e ¢ the sequence obtained by concatenating . A type treefor a particular type can
then be defined as follows:

Definition 35.2 Given a typer € 7 (X7, V7), thetype treeof 7, denoted by.., is a set of
sequences fromPathand is recursively defined as:
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o if t = W(T)0 with h(T) — fi(71);...; fx(Tx) a type rule and a type substitution, then
foralli € {1...k}, andif f;/m € X, for eachj € {1...m}, ((fi,7)) ® 0 € L, where
d€ 5(%)9 andr;, denotes thg-th type in7;.

Example 2 Reconsider the typkst(T') from Example 1. The type tree b¢(T)) is the infinte
set of type paths

( <> )
(1)
(1 2))
(([,2), ({1, 1)
Liisury = (U] 2), ({11, 2))
((10,2), (1l1,2), (1 1)
((10,2), (111, 2), (11 2))
(([,2), (1l1,2), (11, 2), ({11, 1)

The general idea now is to define, for any typea finite approximation of . that provides
a good characterisation of the structure of terms of typeFirst we introduce the following
notation that formally defines the type that is identified by a type-path within another type.

Definition 35.3Let 7 be atype of the form = h(T)0, h € ¥ defined byh(T) — fi(r,, ..
andé € TPathof the formd = ((f,4)) e e. Then we have that’ = 7 if f = f; for somej.
Moreover,r¢ = 7 for any typer.

Note that forr € 7 (X7, V) and§ € TPath 79 is only defined in casé € £,. Also note that
a type pathy € £, can also be used to identify a particular subterm in a term, if it exists.
Indeed, if§ € TPathis of the formé = ((f,4)) e eandt = f(¢y,...,t,) we definet’ = .

Example 3 If 7 = list(T") we have for example that
70 = list(T), r{0D) = 7 and 7 (12 — (202 — 1j54(T),
Similarily for a term¢ = [1, 2] we have for example that
£0 = [1,2], ¢00) = 1 and @2 — 9,
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Given the definition of a type tree, we introduce the following equivalence relation on the
paths in a type tre€,.. We define= (in £,) as the least transitive relation such that for any
S, € L. if 6 = aeecandr® = 7@ thena = 6. Informally, two type paths in a type tree are
equivalent if either one of the paths is an extension of the other while both identify the same type,
or the paths share a common initial subpath that identifies the same type as both gathisin
what follows, we restrict our attention to (possibly polymorphic) types that are not defined in
terms of a strict instance of itself. That is, we assume for any typeds € £, thatt £ 7°
(where< denotes the strict instance relation). This is a natural condition and is related to the
polymorphism discipline of definitional genericity [68]. For any such typehe equivalence
relation= partitions the (possibly infinite sef), into a finite number of equivalence classes. For
anyj € L., the equivalence class 6fis defined as

pl={veL;|d=n}

The least element of an equivalence cla$exists and is defined as follows.

[0] = a € [0] such that/5 € [0] : § = « e € for somee € TPath

Next, we define, for a type, its type graphas the finite set of minimal elements of the equiva-
lence classes of ;:

Definition 35.4For a typer € 7 (X, V), we denoter’s type graph byC= which is defined as

£=={P]|se L)

A type graphL= provides a finite approximation of the structure of terms of typevery
path in £= abstracts a number of subterms of the term according to theiragygeposition in
the term. For theéist(T') type from abovel, -y = {{). (([[], 1))}. The path{) represents all
subterms of typéist(7') in a term of typelist(T'), whereag([|], 1)) represents all subterms of
type T occurring in the first argument position of a funcfgdr In other words,() can be seen
as identifying the skeleton of the list, whered§], 1)) as identifying the elements of the list.
Note that due to the particular definition &f two subterms of a same type are not necessarily
abstracted by the same nodedp. This is the case whefi, contains two type paths identifying
the same type without them being equivalent, as in the next example.

Example 4 Consider the typeair(7T) defined as
pair(T) — (T —T).
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A term of the typeair(T) is a term(A — B) where A and B are terms of typd’. For 7 =
pair(T),
()
typetree; = LZ = ¢ ((—),1)
((=),2)
Although ((—), 1) and ((—), 2) identify subterms of the same tyje they are not equivalent
according to the definition of equivalence.

The ability to distinguish between two occurrences of the same tyge mlows a more precise
characterisation of terms of type This is illustrated with Example 4, in which it allows to
distinguish between both elements of a pair. Type based analyses [121, 15, 66] have a coarser
granularity. All paths leading to nodes of the type tree of the same type are placed in the same
equivalence class.

Now, one can obtain an abstract characterisation of terms ofrtyip@sed on the structure of
the term (or at least the type it belongs to), by associating an abstract value to each of the paths in
L=. For binding-time analysis, we are interested in the time a (part of a) value becomes known
in the computation process. We use the abstract vafues{static dynamig. static denotes
that the binding certainly occurs at specialisation tilgjamic that it is not known when (and
in case of logic programs “if”) the binding occurs. A binding-time associates a valuefrton
each of the paths in a type graph.

Definition 35.5A binding-timefor a typet € 7 (X, V) is a function
B:L; — B

such thatvé € dom(3) holds that3(0) = dynamicimplies that3(9’) = dynamicfor all ' €
dom(3) with ' = § e € for somee € TPath The set of all binding-times (independent of the
type) is denoted by 7 .

The relation between terms and the binding-times that approximate them is given by the
following abstraction function.

Definition 35.6 Thebinding-time abstractioiis a functiona : 7 (3, V) — BT and is defined as
follows:

§ € L= andv = dynamidif 39 and a subtern’’ in 0
a(t:7)=< (§,v)| suchthat® is avariable and = ¢’
v = staticotherwise

96



If atermt : 7 contains a subtermi’ that is a variable, then the binding-time abstraction associates
the valuedynamicto the path inC= that identifies this subterm and to all its extensiong§in

Example 5 Given the following terms of tygeést(7') as defined in Example 1, their binding-time
abstraction is:

a([]) = {0, static), ((([[], 1)), static)}
a([X1, Xo] = {({), statig), ((([[], 1)), dynamig}
a(X) = {({),dynamiq, ((([|], 1)), dynamig}
o([X|Y]) = {({),dynamig, ((([l], 1)), dynamig }

Since the termj] does not contain any variable, it is abstracted by a binding-time specifying
that the list’'s skeleton as well as its elements are static. A {&fmX,] is approximated by a
binding-time specifying that the list's skeleton is static, but its elements are dynamic. A variable
is abstracted by a binding-time specifying that the list's skeleton as well as its elements are
dynamic. Also a terniX |Y] is approximated by a binding-time stating that its list skeleton as
well as its elements are dynamic due to the presence of the variable sulbtetint(T).

The following example shows why, if the valdgnamids associated to a pathin a binding-
time for a typer, dynamicis also associated to all extensionsyof L£=.

Example 6 Consider a type definition for a tree of integers:
inttree ---> nil ; t(int, inttree, inttree).

The type graph of = inttree, L= contains only two paths(¢) denoting the tree’s skeleton, and
(t, 1) denoting the integer elements in the tree. We have

a(t(0, X, t(1, nil,nil))) = {({), dynamig, ({¢, 1), dynamig}.

Although all subterms of type int in the tert0, X, ¢(1, nil, nil)) are non-variable terms, we
cannot abstract them to static. Indeed, the variallén the term, being of type inttree, possibly
represents some unknown integer elements.

To make our approximations suitable for a binding-time analysis, we define a partial order rela-
tiononB7:

Definition 35.7 Let 3, 3’ € BT such thatdom(5) C dom(3’) or dom(5') C dom(3). We
say thats coversg’, denoted by3 = ' if and only if V6 € dom(3) N dom(/’) holds that
B'(§) = dynamicimplies 5(d) = dynamic
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If a binding-time3 covers another binding-tim&’, then3 is “at least as dynamic” as'.
Note that the relationship betwedom(3) anddom(3’) implies that thecoversrelation is only
defined between two binding-times that are derived from typasds’ such that either is an
instance ofr’ or 7’ is an instance of.

Example 7 Recall the binding-times obtained by abstracting the terms in Example 5. We have
that
a(X) = a([X1, Xo]) = a([])

In what follows, we extend the notion of therelation to include the elemen{S", 1 } such
thatT > gandg = L forall 5 € BT. If we denote withB7 * the setB7 = BT U{T, L},
(BT, =) forms a complete lattice. Wherever appropriate, we usend T to denote, for a
particular type, a binding-time in which all paths are mappestaébic, respectively a binding-
time in which all paths are mappeddgnamic Occasionally we will also call such binding-times
completely static and completely dynamic, respectively.

We conclude this section by introducing some more notation. Firstdénotes a binding-
time for a typer andd € dom(3), then3® denotes the binding-time for a typé that is obtained
as follows:

#={ (oo |vecs }.

In other words, if3 = a(t) then3® = «(t?). Finally, letr, r,..., 7, be types and € ¥ such
thatf (¢, : 7,...,t, : 7,) is atermin the denotation of If 3, ..., 3, are binding-times for the
typest, ..., ,, we denote withf (5, ..., 3,) theleast dynamidinding-time for typer such
that gl = 3, for all 4.

36 A Modular Binding-time Analysis for Mercury

In what follows, we develop a polyvariant binding-time analysis. The final output of the analysis

is an annotated program in which each of the original procedures may occur in several anno-
tated versions, depending on the binding-times of the (input) arguments with respect to which
the procedure was called. Each such version contains the binding-times of the local variables
and output arguments as well as instructions stating for each subgoal of the procedure’s body
whether or not it should be evaluated during specialisation. Correctness of the analysis ensures
that if a particular calp(t4, . . ., t,,) occurs during specialisation, the analysis has created a ver-
sion of the called procedure that is annotated with respect to the particular call’s binding-time
abstractiorp(«(t,), ..., a(t,)). Before we define the actual analysis, we introduce Mercury’s
module system and define some necessary machinery to base the analysis upon.
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36.1 Mercury’s module system

A Mercury program is defined as a set of Mercury modules. The basic module system of Mer-
cury is simple. A module consists of amterfacepart and anmplementatiorpart. The interface
part contains those type definitions and procedure declarations that the module provades (or
ports) towards other modules. In other words, the types and procedures declared in the interface
part of a module are visible and can be usedifgported by other modules. Apart from the
implementation of the procedures that are declared in the module’s interface, its implementation
part possibly contains additional type definitions and the declaration and implementation of ad-
ditional procedures. These types and procedures are only visible in the implementation part of
this module, and can not be used by other modules.

Note that the way in which the modules import each other impose a hierarchy on the modules
that constitute a program. Following the terminology of [103], we use the noiatjporty M, M’)
to indicate that the modul&/ imports the interface a#/’ andimported /) to denote the set of
modules that are imported hy/, that is:imported /) = {M' | import§ M, M’)}. Figure 20
shows an example of a module hierarchy in Mercury in which we graphically represent a module
by a box, and denotenportg M, M’) by an arrow fromM towards)M’. In the example, we have

M1

N

My Mg

Figure 20: A sample module hierarchy.

thatimported M) = {M,, M3, Ms}. Note that in Mercury, themportsrelation is not transitive;

when a modulé\/ imports the interface of a moduld’, it becomes dependent on the interfaces
imported by’ (and those imported therein) but it does not import these itself. While in Mer-
cury modules may depend on each other in a circular way, we restrict our attention to programs in
which no circular dependencies exist between the modules. We discuss circular dependencies in
Section 39. The module system described above is to some extent a simplification of Mercury’s
real module system, in which modules can be constructed from submodules. While submodules
do provide extra means to the programmer to control encapsulation and visibility of declarations,
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they do not pose additional conceptual difficulties and we do not consider them in the remainder
of this work.

In this work, we aim at developing a binding-time analysis that is as modular as possible.
Ultimately, a modular analysis deals with each module of a program in isolation. We will discuss
throughout the text to what extent our binding-time analysis is modular in this respect.

36.2 Mercury programs for analysis

Mercury is an expressive language, in which programs can be composed of predicates and func-
tions, one can use DCG notation, etc. However, if we consider only programs that are type
correct and well-moded — which is natural, since the compiler should reject programs that are
not [112] — such a program can be translated superhomogeneous forhl12]. Translation to
superhomogeneous form involves a number of analysis and transformation steps. These include
translating am-ary function definition into am + 1 ary predicate definition [113], making the
implicit arguments in DCG-predicate definitions and calls explicit, and copying and renaming
predicate definitions and calls such that every remaining predicate definition has a single mode
declaration associated with it [112] that specifies for each argument whether it is an input or out-
put argument. As such, every predicate definition is transformed in a set of sojualtediure
definitions, with one procedure for every mode in which the original predicate is used.

For our analysis purposes, we assume that a Mercury program is given in superhomogeneous
form. This does not involve any loss of generality, as the transformation from a plain Mercury
program into superhomogeneous form is completely defined and automated [112]. Formally,
the syntax of Mercury programs in superhomogeneous form can be defined as follows. We use
the symbolll to refer to the set oproceduresymbols underlying the language associated to
the program. As such, we consider two procedures that are derived from the same predicate as
having different procedure symbols.

Definition 36.1

Proc == p(X):—-G.
Goal = Atom ’ not(G’) ‘ (Gl s GQ) ‘ (Gl ) GQ) ’ if Gl thenG’2 elseGg
Atom == X =Y |X ==Y | X = f(V)| X < f(V)]|p(X)

wherep/n € 11 and X is a sequence of distinct variables oV, f/m € X, Y a sequence of.
distinct variables oV, andG, G, G5, G5 € Goal.

The definition of a procedurg in superhomogeneous form consists of a single clause. The
sequence of arguments in the head of the clause, denotettdyip), are distinct variables,
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explicit unifications are created for these variables in the body goal — denot8odyyp) — and
complex unifications are broken down in several simpler ones. The arguments of a prgcedure
are divided in a set of input arguments, denotednbyp) and a set of output arguments denoted
by out (p). A goal is either an atom or a number of goals connectecbioyunction disjunction

if then elseor not An atom is either a unification or a procedure call. Note that, as an effect of
mode analysis [112], unifications are categorised as follows:

e An assignmenbf the form X := Y. For such a unificationY” is input, whereasX is
output.

e A testof the formX == Y. Both X andY are input to the unification and of atomic type.

e A deconstructiorof the form X = f(Y). In this caseX is input of the unification
whereas’” is a sequence of output variables.

e A constructionof the formX <« f(Y"). In this caseX is output of the unification whereas
Y is a sequence of input variables.

During the translation into superhomogeneous form, unifications between values of a complex
data type may be transformed into a call to a newly generated procedure that (possibly recur-
sively) performs the unification. For any gaal we denote withn (G) andout (G) the set of

its input, respectively output variablés

Example 8 Consider the classical definition of t@pend/3 predicate, both in normal syntax

and in superhomogeneous form for the magpend(in,in,out) as depicted in Fig. 21.
append/3 ‘ append/3 in superhomogeneous form
append([],Y,Y). append(X,Y,2):-
append([E[Es],Y,[E|R]):- X=0, 2 =Y ;
append(Xs,Y,R). X=[E|Es], append(Es, Y, R), Z <[EIR]).
Figure 21: Theappend/3 predicate andppend(in,in,out) in superhomogeneous form.

According to Definition 36.1, conjunctions and disjunctions are considered binary constructs.
This differs from their representation inside the Melbourne compiler [109], where conjunctions

B3Although Mercury has some support for more involved modes — other than input versus output — that are
necessary to suppopartially instantiated data structurest run-time, release 0.9 of the Mercury implementation
[109] does not fully support these.
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and disjunctions are represented in flattened form. Our syntactic definition however facilitates
the conceptual handling of these constructs during analysis.

For analysis purposes, we assume that every subgoal of a procedure body is identified by a
unique program point, the set of all such program points is denotefpbyif we are dealing
with a particular procedure, we denote wighthe program point associated with the procedure’s
head atom, and with, the program point associated to its body goal. The set of program points
identifying the subgoals of a goél is denoted byPps(G), this set includes the program point
identifying G itself. If the particular program point identifying a gaalin a procedure’s body is
important, we subscribe the goal with its program point, &s,jor explicitly state thaPp(G) =
n. An important use of program points is to identify those atoms in the body of a procedure
in which a particular variable becomes initialised or, said otherwise, those atoms of which the
variable is an output variable. This information is computed by mode analysis, and we assume
the availability of a function

init =V — o(Pp)

with the intended meaning that, for a varialifeused in some procedure, iffit (V) =
{m,...,n.}, the variableV" is an output variable of the atoms identified fy ..., 7n,. Note
that the functioninit  is implicitly associated with a particular procedure, which we do not
mention explicitly. When we use the functiamt , it will be clear from the context to what
particular procedure it is associated.

Example 9 Let us recall the definition aippend/3 in superhomogeneous form for the mode
append(in,in,out) , with the atoms and structured goals occurring in the procedure’s def-
inition explicitly identified by subscribing them with their respective program point as in Fig-
ure 22. We denote the program points associated to a structured goal by subscripting the goal

append(X,Y,Z2) -
(X =0 1, Z:=Y9) ¢, ;
(X=[E|Es] s, (append(Es, Y, R) 4, Z<[EIR] 5)c)cs) as-

Figure 22:append/3 with explicit program points.

with the characters ‘c’ for conjunction and ‘d’ for disjunction, accompanied by a natural number.
From mode analysis, it follows that

it (X)={0} init (E)={3} init (R)
init (V) ={0} init (Fs)={3} init (2)

{4}
{2,5}
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Or, put otherwise X andY (being input arguments) are initialised in the procedure’s head,
and Es are initialised in the deconstruction identified by program p@inR is initialised in the
recursive call whereag is initialised either by the assignmeft:= Y (program point2) or by
the constructior? < [FE|R] (program points).

36.3 A modular analysis

In order to make the binding-time analysis as much modular as possible, we devise an analysis
that works in two phases. In a first phase, we represent binding-times and the relations that exist
between them according the data flow in the program in a symbolic way. Doing so enables to
perform a large part of the data-flow analysis on this symbolic representation and hence inde-
pendent of a particular call pattern. It is only in the second phase that call patterns in the form of
the binding-times of a procedure’s input arguments are combined with the symbolic information
derived from the first phase, computing the actual binding-times of the remaining variables and
the annotations. The first phase of the analysis hencalisndependentvhereas the second
phase iscall dependent Obviously, the call independent phase of the analysis does not need
to be repeated in case a procedure is called with a different binding-time characterisation of its
arguments and consequently, the result of a module’s call independent analysis can be used re-
gardless the context the module is used in, and must not be repeated when the module is used in
different programs. Since the domain of binding-times is condensing [54], the call-independent
analysis preserves the precision that would be obtained by a call-dependent analysis.

To symbolically represent the binding-time of a variable at a particular program point, we
introduce the concept of Binding-time variablethe set of which is denoted Bys-. We will
denote elements of this set as variables subscribed by a program pbims.dfvariable occurring
in a goalGG, andn is a program point identifying an atom @, then the binding-time variable
V,, € Vr symbolically represents the binding-timeéfat program point). Given a type path
0 € TPath we use the notatiow,f to denote the subvalue identified byn the binding-time of
V' at program poini).

Example 10 Given the definition ofppend/3 from Example 9, the binding-time variables
Xo, Z3, Z5 and Z, denote, respectively the binding-time Xfat the program point and the
binding-times o/ at the program pointg, 5 andO0.

Apart from the binding-time variables that correspond with program variables, we introduce a
number of extra binding-time variables that we use to symbolically represent some control infor-
mation that will be collected (and needed) during the binding-time analysis. For each program
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pointn, we introduce two such variable®,, andC,, that range over the set of binding-times
{L, T}. Their intended meaning is as follows:

o if R, = L, the goal identified by reduces either terue or fail during specialisation, or
to some residual code which is guaranteed not to fail at run-time. If, on the other hand,
R, = T, the goal identified by possibly reduces to residual code that can fail at run-time.

e if C, = T, the goal identified by is under dynamic control in the procedure’s body, which
is not the case if, = L. We say that an atom is under dynamic control if the fact whether
it will be evaluated depends on the success or failure of another godl, sasile success
or failure of that goal is undecided at specialisation-time (th&,js= T).

Note that these binding-time variables — which we will refer to@strol variables- are boolean

in the sense that they will only assume a value that is either T. During the binding-time ana-

lysis, these control variables collect the necessary information to implement the control strategy
of the specialiser. Our analysis models a rather conservative specialisation strategy, in the sense
that during specialisation, no atoms are reduced that are under dynamic control. The general
idea of this control strategy is as follows: if during specialisation only atoms are reduced that
are not under dynamic control, only atoms are reduced that would also be evaluated by an equiv-
alent single stage computation (where the static input part is extended with some "dynamic”
input). Indeed, their being evaluated depends only on goals that are — during specialisation—
sufficiently reduced in order to decide success or failure. Hence, no atoms are “speculatively”
reduced, guaranteeing termination of the reduction process (constituting local termination) under
the assumption that the equivalent single stage computation terminates.

Example 11 Consider the following code fragment
if X =[] then p(X) else q(X)

Both atomg (X)) andq(X) are under dynamic control iX's binding-time does not allow the
specialiser to decide whether or not the té5t= || will succeed during specialisation. Indeed,
the specialiser has no means of knowing which of the branches will be taken during the second
stage of the computation.

In general, the binding-time of a program variable can depend on the binding-times of other
program variables (according to the data flow) and on the value of the appropriate control vari-
ables (according to the control strategy). The values of the control variables that are associated
to a goal in turn depend on the binding-times of that goal's input variables. Symbolically, we
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can represent these dependencies by a number of constraints between the involved binding-time
variables. In general:

Definition 36.2 A binding-time constrainis a constraint of the following form:

é §
Vis X, VEeT

5w x VY 0 *
Vist Xy VIRt T

whereV,, X,, € Vr andd,y € TPath The set of all binding-time constraints is denoted by
B1C.

A constraint of the foran - Xg, denotes that the binding-time represented/]éynust be
at least as dynamic as (ocovel) the binding-time represented bglg Note that such a constraint
requires the types df and X, denoted by, andrx to be such that{. andr} are instances
of one another, in order for their binding-times to be comparable. The intended meaning of a
constraint of the fornv,;S = Xg/ is that the binding-time representedvzi,glis at least as dynamic
as the binding-time value associated to the path identifiegibyhe binding-time represented by
X;,. Note that such a constraint does not requfr@ndr); to be of comparable types; it simply
expresses that if the node identified pyn the binding-time represented by, is dynamic so
must be the node identified kyin V,, and by definition of a binding-time, so must be all its
descendant nodes. Remark that we also allow constraints of which the right-hand side is the
constantT. Although we occasionally also consider constraints of which the right-hand side
is the constantl, we do not explicitly mention these in the definition, as these constraints are
superfluous: for any,, € V7 andd € TPath it holds by definition thatxg = L.
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Example 12 Reconsider the definition append/3 in Fig. 22. Some examples of binding-time
constraints between binding-time variables frappend/3 and their intended meaning are:

the binding-time associated 6 at program point2
Zy = Yy is at least as dynamic as the binding-time associated
toY at program point)

the binding-time associated 0 at program point3

Es >~ Xé[”’1> is at least as dynamic as the subvalue denoted |hyt )
of the binding-time associated 0 at program point)
the subvalue denoted Bjj], 1) in the binding-time of
Zé“]’” > FE5 | Z at program point; is at least as dynamic as the
binding-time associated t& at program point3

the atom at program poiret reduces to

true, fail or code that is guaranteed to succeed

if X represents a binding-time in which the

root node() is bound to static

Rs =" Xy

the atom at program point is under
Cs = Rs dynamic control if the atom at program poidit
possibly reduces to code that might fail

A set of binding-time constraints is called a binding-time constraint system (or simply a
constraint system). Given a constraint systénwve define varg’) as the set of all binding-time
variablesX, that occur in some constraiot € C. The link between a binding-time constraint
system and the actual binding-times it represents is formalised as a (minimal) solution to the
constraint system.

Definition 36.3 A solutionto a binding-time constraint systeins a substitutiow : Vg — BT
mapping binding-time variables to binding-times wildm (o) = vargC) such that

e for every constraint}? = T € CandV;? =* T € Citholds thatr(V;)* = T
« for every constraint,’ = X7, € Citholds thatr(V;)° = o(X,/)?
» for every constraint;’ =* X, € C it holds thats (X,/)(y) = dynamic= o(1;)° = T

Given two solutionsr ando’ to C, we define that J o’ if for all V;, € dom(¢’) it holds that
V, € dom(o) ando(V;) = o'(V,). A solutiono is aleast solutiorfor C if for every solutionos’
for C it holds thato’ Jo.
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Remember, a solution must also satisfy the condition of Definition 35.5, ie(Xf, )" =
dynamicthen alsoo(X,,)?* = dynamicfor any extensiore. We will sometimes use a con-
straint of the formVj - Xg,' L Yn”,’,” (analogously for-*) as shorthand notation for the set of
constraints{V;’ = X,V = Y;,}. Indeed, from Definition 36.3 it can be seen that in any
solution satisfying the latter two constraints, it holds tedt,)? = o(X)) U o(Y;), ), where

LI denotes the least upper bound(@v *, >).

Example 13 Consider the following binding-time constraint system and its least solution. For
sake of simplicity, we assume that all binding-time variables are boolean and range over the set
{dynamic static}.

Binding-time constraint system Least solution
X, =T
R, = X,, (X, ,dynamig (X,,, static)
Y,, = X, { (R,,, static) (Y,,, dynamig }
Yo = Iy,

In what follows, we formulate our analysis as a call-independent abstract semantics. We
define the abstract “meaning” of a goal, be it an atom or a structured goal, as a set of binding-
time constraints (description domaii37C)) that reflect the data flow between the input- and
output arguments of the goal. An essential operator for the symbolic data flow analysis is a
projection operator that basically rewrites a set of constraints such that every constraint expresses
(or constrains) the binding-time of a local variable within a procedure in function of the binding-
time(s) of that procedure’s input arguments. Such a constraint is said to be in normal form:

Definition 36.4A binding-time constraint is inormal formwith respect to a procedupes Proc
if it is either of the form

o VI T
. Vj = X, with X € in (p) andn, the program point associated;ts head atom.
and analogously for constraints of this form uskag
Example 14 Reconsider the binding-time constraints from Example 12. The constraints
ZozYy Bz XM Ry=t X,
are in normal form with respect tappend/3 , whereas the constraints
zZ - By =Ry

are not.
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Projection of a constraint involves unfolding the (subvalue of the) binding-time variable in its
right-hand side with respect to a single constraint on (a subvalue of) this variable. If we consider
two subvalues of a binding-time variable, sﬁﬁ and X7, one of them is a subvalue of the other
if either § is an extension of or vice versa. This is captured by the following definition:

Definition 36.5We define ext TPath x TPath— TPath x TPathas follows:

(().e)  ify=0dee
ext(y,0) = ¢ (e, () ifyee=0
undefined otherwise

Note that if exty, §) = (¢, €') theny e ¢ = § o ¢’. Unfolding a constraini’) = Yn‘i with respect

to another constraint result in a new constraint on (a subvalu& pfwith as right hand side

the appropriate subvalue of the right hand side of the constraint that was used for unfolding. To
denote a subvalue of a constraint’s right hand sidehich is either a binding-time variable or a

one of the constants or L), we use the notation®. If ¢ denotes a variabl&?, then¢*c equals

X4, Otherwise, if$ denotes one of the constantsor T, ¢* simply equalsy. Note the use of

the least element of the equivalence clq@Tn], to denote an element of the appropriate type
graph£= (rather than the type tre€.). The projection operation is defined in Definition 36.6
and basically consists of a fixed point iteration over an unfolding operator followed by a selection
operation that retrieves the constraints of interest from the fixed point. Recat),tidentifies

the head atom of the procedure of interest.

Definition 36.6 The projectionof a setS C o(B7C) on a set of binding-time variablés C Vi1
is denoted by prgjS and defined as

proj, (S) = {X>=®¢ € lfp(unfs) | X € V}
where unf is defined in Figure 23.

The symbolic analysis is defined in Definition 36.7. The result of analysing a program is a
mapping (from the semantic domairen) that maps a procedure sympoto a set of binding-
time constraints on the variables that occur in the definition of the proceddree constraints
are in normal form. Polyvariance is immediate, since all constraints are expressed in terms of the
procedure’s input arguments, which are represented symbolically and hence can be instantiated
by any call pattern. The analysis is defined by a number of semantic functions defining the
abstract semantics of a progrdn: Prog — Den in terms of the semantics of the individual
procedures, goals and atoms.
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unfs : p(B7C) — p(BTIC)

unfg(7) = {X, =MV, X, =0T € S}US, US,US;

where

Sio= (X7 =0 | X7 = V2 €SYY = ¢el, andextd, &) = (e,€)}

S

(X)) =" 9| X) =Y,y eSandY, =* ¢ € I}
S3 = {X, =" ¢ | X, =Y, €S,V = pelTandexts, o) = ((),e)}
Figure 23: The projection prgj

Definition 36.7 The call independent abstract semantifts description domainp(B7C) has
semantic domain
Den : 11 — p(B7C)

and semantic functions
P : Prog — Den

C : Proc — Den — Den
G : Goal — Den — p(B7C)
A : Atom — Den — o(B7C)
and is defined in Figures 24 and 25.

The result of analysing a program is a denotatBff] P, in the domainDen, which is a
mapping from a predicate symbol to a set of binding-time constraints. This mapping is defined
as the least fixed point of applying the analysis funciono each individual procedure. The
analysis functionC constructs a partial denotation for a particular procedure, given a (possi-
bly incomplete) denotation that represents the result of analysis of the whole program so far.
The analysis function& and A map respectively a structured goal and an atomic goal to a set
of binding-time constraints, given a denotation — again representing the result of analysing the
whole program so far. In general, the result of analysing a complex goal is the union of the
constraints obtained by analysing each subgoal in isolation, together with a number of additional
constraints on the control variables associated with the goal and its subgoals. These constraints
are simple, as they merely reflect the propagation of the control variable’s value, either from the
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Pl =1p( | J Clp])

pEProc(P)

Clp(X) < Gyld = {(p, GIG,]d)}

G(G,, G"),]d = G[G}1dUG[Gy.]d U CCeonin 7' 1")
G[not,(Gy)]d = G[Gy]du CCnot(n,n)
G[if, G/, thenGY, elseGl,] = G[G. ]dUG[G.,]d U G[G,]1d U CCig(n. 0/, 0", n")
G[[(G’,, an),ld = GG, JdUG[GY.]d U CCyisj(n, ', ")
G[A,]d = A[A,JdUu{X, = X, | X €in (A),n ereach (X,n)}
A[X ==, Y]d = {R,>=* X, UY,}
A[X =, Y]d = {X,=Y,uC, R, = L}
A[X =, fDld = UperlViy = X0 U IR, =7 X}
AIX <, fDld = Uy X = Vi uC U{R, = 1}
Alp(Xy, .., Xo)gld = (prOJArgS(p),Rnde) U{Xi, = C, | X; €out (p)}

whereArgs(p) denotes the sequence of formal arguments in the definitipfvofy, is associated
to the body goal in the definition gf/n andp is a renaming mapping the sequence of formal
argumentsArgs(p) to the sequence of actual argumefits, ..., X,,) andR,, to R,

Figure 24: The call independent abstract semantics
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Cp=Cy Cpr=Cy Cpr =Ry
CCeonjm. ' n") =
Rn z Rn/ Rn t Rn//

Cyp =C, Cyp =C,
CCyisj(m: ', 1") =

CCnot(n, 1) = { Cy=Cp Ry=Ry }
( Cp =Cp Cp=Cy Cpr = Cy \
COIf (7]’ ', n" 77”/) — Cﬁ” >Ry CW"’ = Ry

\ Rn i Rn/ er i Rn// Rn t Rn/// )

Figure 25: The call independent abstract semantics (ctd.)
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goal to its subgoals (in case of the control variabjeor from the goal’'s subgoals to the goal

itself (in case ofR). The binding-time variables denoting dynamic control denote that a goal is
under dynamic controlith respect to the procedure’s badyhe negated goal in a negation is
under dynamic control only if the negation itself is. Observe thdit ieduces to true or is guar-
anteed to succeed, then ad} fails. And if A fails then notA) succeeds. So we can say that the
negation reduces to true, fail, or residual code which is guaranteed to succeed if the negated goal
does. The propagation in the other constructs is similar: the subgoals of an if-then-else are under
dynamic control if the if-then-else is under dynamic control. Moreover, both the then and else
goals are under dynamic control if the test goal possibly reduces to residual code which could fail
at run time. If each of the if-then-else’s subgoals reduces to true, fail or code that is guaranteed
to succeed, so does the if-then-else. The subgoals of a conjunction are under dynamic control
if the conjunction itself is. Moreover, the second conjunct is under dynamic control if the first
conjunct possibly reduces to residual code that could fail. If both conjuncts reduce to true, fail
or code that is guaranteed to succeed, so does the conjunction. To conclude, if a disjunction is
under dynamic control, so are both disjuncts. If both disjuncts reduce to true, fail or code that is
guaranteed to succeed, so does the disjunction.

Example 15 Reconsider the definition @ppend/3 in Figure 22. The body goal contains
the following structured subgoals: a conjunction identified by program pgimtith the atomic
conjuncts identified by program pointsand 2, a second conjunction identified by with the
atomic conjuncts identified by program poidteind 5, a third conjunction identified by; with

the conjuncts identified by program poitandc, and a disjunction identified by program point
d; with the disjuncts identified by andcs;. The binding-time constraints that are associated to
each of these structured goals are as follows:




The binding-time constraints that are associated to an atomic goal are somewhat more in-
volved. Apart from binding-time constraints on the atom’s output variables, analysing an atom
A, also possibly results in a binding-time constraint on the control varighleindicating un-
der what conditions the atom can be reduced to true, fail, or code that is guaranteed to succeed.
Moreover, when creating the binding-time constraints on the atom’s output variables, the control
variableC, must be taken into account, in order to guarantee that the particular binding-time is
madeT in case the atom is under dynamic control.

Note that in the definition ofA the binding-time variables that refer to thgput variables
of an atom at program pointare indexed by the program point Consequently, a number of
additional constraints must be created for each atom, relating the binding-time of such an input
argument at program pointwith its binding-time at the program point(s) where the binding-time
was created, being output of some other atom.

A test does not have any output variables, so it only creates constraints on control variables.
The atom reduces to true, fail or code that is guaranteed to succeed when both input variables
are bound to an outermost functor. An assignmeént Y introduces the constraints specifying
that the binding-time ofX at program point) must be at least as dynamic as the binding-time
of Y at program point). Recall that the latter’'s value is constrained to be at least as dynamic
as the least upper bound of the binding-time%'céit the reachable program points whéfes
assigned a value. Moreover, if the assignment is under dynamic cakifrolust be assigned the
value T. This is guaranteed by addingC, to the right-hand side of the constraint ). Even
if an assignment is not reduced, it can never fail at run time. Hence the (superfluous) constraint
R, = L. Adeconstruction introduces some binding-time constraints indicating that the binding-
time of the newly introduced variables must be at least as dynamic as the corresponding subvalue
in the binding-time of the variable that is deconstructed. Also in this case, the least upper bound
with C, guarantees that, if the deconstruction is under dynamic control, the newly introduced
binding-time variables will be forced to have the valUelf the deconstructed variable is bound
to at least an outermost functor, the deconstruction reduces to true or fail at specialisation time.
Otherwise, a residualised deconstruction can either succeed or fail at run time which is reflected
by the fact that in that casg, will have the valueT. When handling a construction on the
other hand, the binding-time of the constructed variable is constrained by the binding-times of
the variables used in the construction. Again, if the construction is under dynamic control, the
constructed binding-time is guaranteed tolbby the use of the least upper bound with Even
when residualised, a construction can never fail, so again the (superfluous) coffraint is
introduced.
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Example 16 Reconsider the definition @ppend/3 in Figure 22. The constraints that are
associated to the unifications append/3 ’s body goal are as follows. The numbers in the left
hand side column denote the particular unification’s program point.

(1) | Ry =* Xy
(2) | Ry = L Zy = Yy
Ex>= X .1
(3) R3 i* XO 3= 0 <>
70~ g
(5) | Rs = L S
Z5 i R4
Finally, handling a procedung X1, . . ., X,,) call involves retrieving the constraints for the called

procedurey from the denotation and projecting these onto the set of variakigs(p) U {R,, }.

This projection operation makes sure that the constraints on these variables are in normal form,
i.e. that they are expressed in termsrofp). The resulting set of constraints is then renamed to

the context of the call: the formal argumentspofArgs(p) are renamed to their corresponding
actual argument ifX, ..., X,) and the constraints oR,, are renamed to constraint @9,
expressing that the call reduces to true, fail or code that is guaranteed to succeed if the body of
the called procedure reduces to true, fail or code that is guaranteed to succeed.

Example 17 Let P denote the program consisting only of the definitioambend/3 depicted

in Figure 22 and let(1) and (2) denote, respectively, the sets of constraints depicted in Exam-
ples 15 and 16. The fixed point computationBji”] starts with an empty denotation and hence,

in the first round of the computation, the recursive call does not introduce any constraints; the
result of C[append/3 ]{} is a denotation that mapesppend/3 to the constraint setl) U (2).

Itis only in the second round, when the constraints are projected and renamed, that the recursive
call adds the constraints

R, =Y, Ri([”ﬂ)) - Esé([”’l» R, =* Esq

One can verify that in a next round no new constraints are introduced by the recursive call, and
henceP[P] results in a denotation that associatagpend/3 to the union of the constraints
derived above with the sef$) and (2).

36.4 From constraints to annotations

Once we have computd®] P], it suffices to have a set of binding-times for the input variables of
a procedurg in order to compute the binding-times of the remaining variables in the definition
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of p, as well as the annotations that are associated with a particular atom in the definjtion of
Let us first introduce the semantic domainl/, that we use to represent a call in the domain of
binding-times:

Call = {p(B1,...,B,) | p/n e andVi: 3; € BT}

To ease notation, we assume that such a call contains a binding-time for each argument (input
as well as output). However, since these calls are used to represent the binding-times of the
input arguments of the call only, we asume the binding-times of the output argumentslio be

We will denote elements af'all by a single greek letter if the particular procedure/argument
combination is irrelevant. We can now define the annotation of a procedure with respect to a
particular call as follows:

Definition 36.8 Given a denotatiod € Den for a programP and a callp(f3s, . .., 5,) € Call,
the procedure annotation (of a proceduge € Proc(P)) induced by a callp(8y,...,03,) is
defined as the least solutienof (d p) in whicho(X;) = §; for everyX; € in (p).

Being a solution of the set of binding-time constraints associated to a progedupoce-
dure annotation not only provides binding-times for all program variables but also maps
every binding-time variable of the for@l), to either_L or T, denoting respectively that the goal at
program point in the procedure’s body should be evaluated during specialisation, or be residu-
alised. Being deastsolution, a procedure annotation contains the least dynamic binding-times
while still satisfying the congruence relation. As such, a procedure annotation of a progedure
with respect to a calk represents control information for a specialiser as to how to treat each
subgoal of the body gf, when a call tg is approximated byt.

A polyvariant analysis for a prografmand an initial calp(/5,, . . ., 5,) can then be performed
by first computing the procedure annotatiomof p induced byp(5, . .., 3,) and consecutively
computing, for every calf(X, ..., X,,) that occurs at some program poiptn the definition
of p, the procedure annotation @fnduced byy(o(X,,), ..., o(X,,,)). This process is repeated
recursively until no more abstract calls are encountered for which no procedure annotation has
been constructed yet. In other words, a polyvariant annotation process for a prBgnathn
initial call = boils down to computing the abstract callset(éf 7): The set of abstractions
of all calls that can possibly be encountered during evaluatioR wifith respect to a call that
is abstracted byr. Formally, we define also this annotation process by a number of semantic
functions that define the meaning of a progr&with respect to an initial calt as a set of calls
in the domain of binding-times.
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P [Plr=Itp( | Celpln)

pEProc(P)
Cel[p(X1,...,X,) « BlrS = U GelBlp(, ... 5n)
P(B1,-.,8)€SU{m}
G.[not(G)]x — G.[G]r
GC[[Gl,GQ]]TF = GC[[Gl]]ﬂ' U G HGQ]]
GC[[Gl;GQ]]ﬂ' = Gc[[ ]]71' UG [[GQ]]
G [if G themG, elseGs|r = Ge[Gi]m U G [Ga]m U Ge[Gs]
Gc[[q(YLaYn)]]ﬂ- = {CI(UW(Yl),an(Yn))}

and G.[A]r = 0 for any other atomic goall and wherer,, denotes the procedure annotation
induced byr € Call.

Figure 26: The annotation semantics

Definition 36.9 Thefirst-orderannotation semantics has semantic doniaim,. : p(Call) and
semantic functions
P.: Prog — Call — Den,

C. : Proc+— Call — Den,. — Den,
G : Goal — Call — Den,
defined in Figure 26.

The definition of the semantic functio®®,, C. and G, is straightforward. The semantic
domainDen. = p(Call) represents the set of all abstract callsets. The semantics of a program
P with respect to an initial calt is defined as the least fixed point of repeatedly computing the
semantics of each procedure (@Y) in P within the context of this initial call and a (possibly
incomplete) denotation containing the result of analysis so far. The analysis fugtioan-
structs a partial denotation for a particular procedure as the union of the denotations obtained by
analysing the procedure’s body goal with respect to every call to the procedure encountered so
far. The semantics of an individual go@lin the body of a procedurgis defined with respect
to a callw to p. The definition ofG. is straightforward, as it only collects the abstract calls
encountered in the annotationiduced byr. Note that the analysis is guaranteed to create a
finite number of procedure annotations since every procedure has a finite number of arguments,
every such argument can only be approximated by a finite number of binding-times, and hence
only a finite number of call patterns can be constructed for a particular procedure.
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36.5 On the modularity of the approach

In summary, the binding-time analysis we have developed so far is to be performed in two phases.
The first phase of the process performs the data flow analysis in a symbolic way. A procedure
is analysed independent of a particular call pattern, and the analysis handles procedure calls by
projecting and renaming the constraints that are associated to the called procedure. For a pro-
gram that is divided into several modules, this means that the constraint generating phase of the
analysis can be performed one module at a time, bottom-up in the module hierarchy if we con-
sider hierarchies without circularities. Reconsider the module hierarchy from Fig. 20. The result
of bottom-up analysis of this hierarchy is depicted in Fig. 27. First, the modules at the bottom
level, M, and M5 are analysed. Since these modules do not import any other modules, they can
be treated as regular programs, and we can simply conipjté,] andP[M;]. The rounded

boxes in the figure denote the result of computi*{d/] for a particular modulé/. The shaded

part of the box represent this denotation, restricted to the procedures from the module’s inter-
face. Subsequently, the modules and M5 can be analysed, since their analysis only requires

Figure 27: Bottom-up analysis of the module hierarchy.

the constraints from the interface procedured/ff respectivelyM, and M5;. Computation of
P[M,] andP[M;3] can proceed as before, with the exception that the fixed point computation
should not be started from the empty denotation, but rather g, andP[M,] U P[M;]
respectively. Finally, since now the result is available of analysiiig M/; and M5, the module
M, can be analysed. Note that in this process, each module is analysed only once. If a module,
like Ms; in the example, is imported in more than one module, analysing the latter modules only
requires theesultof analysing the former.

The second phase of the analysis, computing the procedure annotations, is naturally a call-
dependent process. Consequently, annotating a multi-module program for an initial call to a
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procedure in the top-level module requires the constraints for all the procedures (spread out over
all modules) that are in the call graph far One could argue that this corresponds to analysing

a multi-module program as if it was a single-module monolithic program. However, it should
be noted that computing a procedure annotation induced by a particular call is a rather cheap
process. Since the involved constraints are in normal form, it merely consists of performing a
substitution on the right-hand side of the constraints and computing their least upper bounds.
The hard part of the analysis — tracing the data flow between the input- and output arguments
of a procedure — which possibly involves procedure calls over module boundaries, is done at the
symbolic level, in a modular fashion.

37 Higher-order Binding-time Analysis

Mercury is a higher-order language in whiclosurescan be created, passed as arguments of
predicate calls, and in turn be called themselves. To describe the higher-order features of the
language, it suffices to extend the definition of superhomogeneous form (see Definition 36.1)
with two new kinds of atoms:

¢ A higher-order unificatiorwhich is of the formX < p(V4,..., Vi) whereX, V;,... V; €
YV andp/n € I with k < n.

¢ A higher-order callwhich is of the formX (V}..1,...,V,) whereX,V;4,...,V, € V with
0<k<n.

A higher-order unificationX < p(V4, ..., V}) constructs a closure from anarity procedure
by currying the firstk arguments (withk < n). The result of the construction is assigned to the
variableX and denotes a procedure of anity- k. Such a closure can be called by a higher-order
call of the formX (Vjy1,...,V,) whereVy.4,...,V, are then — k remaining arguments. The
effect of evaluating the conjunctioN < p(Vi,..., Vi), X (Viy, ..., V,) equals the effect of
evaluatingp(Vy, ..., V,).*

In order to represent higher-ordspesit suffices to add a special type constructared,
to X7. This constructor is special in the sense that it can be used with any arity and it has no
type rule associated with it. Consequently, a higher-order type corresponds with a leaf node in

When writing Mercury code, the programmer can also use lambda expressions to construct closures. These can,
however, be converted into a regular procedure definition which is then again used to construct the closure as above.
The Melbourne Mercury compiler does this conversion as part of the translation into superhomogeneous form. Note
that closures cannot be constructed from other closures: once a closure is created, one can only call it or pass it as
an argument to another procedure.
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a type tree. In what follows we represent higher-order types-ed(ti, ..., t) with ¢1,. .. tx
first-order types. We furthermore assume that higher-order types are not used in the definition of
other types; that is, values of higher-order type are only constructed, called, or passed around as
arguments of a procedure c&il.

The basic problem when analysing a procedure involving higher-order calls, is that the control
flow in the procedure is determined by the values of the higher-order variables. To retrieve
a set of suitable binding-time constraints between the in- and output arguments of a higher-
order callX (Yy,1,...,Y,), it is necessary to know to some extent to what closufesan be
bound to during specialisation. Consequently, to achieve an acceptable level of precision, the
symbolic data flow analysis needs to be enhanced by some foctosire analysig60, 98]
which basically computes for every higher-order call an approximation of the closures that may
be bound to the higher-order variable involved. In what follows, we will first define a suitable
representation for such closure information, and reformulate the first phase of our binding-time
analysis so that it integrates the derivation of closure information with the derivation of binding-
time constraint systems. Doing so basically transforms the process of building constraint systems
into a call dependent process, since closures can be passed around by procedure calls and hence
the analysis needs to take the closure information from a particular call pattern into account. We
conclude this section with a discussion on the modularity of the higher-order approach.

37.1 Representing closures

In order to use closures during binding-time analysis, where concrete values of the closure’s
curried arguments are approximated by binding-times, we introduce the notidnrafiag-time
closureas follows.

Definition 37.1 A binding-time closurds a term of the formp(f,, ..., 8x) wherep/n € 1I,
k<mnandg,...,0, € BT*. The set of all such binding-time closures is denoted to.

If p/n €11, p(f,. .., Ox) approximates a set of procedures of arity &, each being an instance
of p in which the firstk arguments are fixed and whose values are approximated by the binding-

timesg, ..., G.

Example 18 Given the traditionabppend/3 procedure ands; being a binding-time approx-
imating terms of typdist(T) that are instantiated at least up to a list skeletamppend,
append((;) andappend(_L, 3;) are examples of binding-time closures of afify2 and 1 respec-
tively.

151n fact, this is also a limitation of release 0.9 of the Mercury implementation [109].
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In order to obtain a precise binding-time analysis, we approximate the value of a higher-order
variable with asetof binding-time closures. A singleton sgt} describes that the higher-order
variable under consideration is, during specialisation, definitely bound to a closure that is ap-
proximated byc. In general, a sefc,...,c,} describes that the higher-order variable under
consideration is bound during specialisation to a closure that is approximated eitheedy. .,

or ¢,. To make this representation explicit, we alter the definition of the dorBaitnstead

of containing only the valuestatic anddynamic¢ we now include a valustatiq S) with S be-

ing a set of binding-time closures. Note that, if we defdymamic > static as before and
statiq5;) > statiq.Sy) if and only if S; O S,, B is still partially ordered. Since the binding-
times now include higher-order binding-times, we alter the definition of the partial order relation
onBT:

Definition 37.2Let 3, 3’ € BT such thatdom(5) C dom((') or dom(3') C dom(3). We say
that3 coversi’, denoted by3 = 3" if and only if V6 € dom(3) N dom(3') holds that

e [#'(§) = dynamicimplies 3(4) = dynamic and
e () = statid,S") implies 3(6) = statiq.S) andS O 5.

Note that, with this new definition, the covers relation remains only defined between two binding-
times that are derived from types that are instances of each other. In case of higher-order binding-
times this means that both sets of binding-time closures contain closures of identical arity and
argument types. Like before, we denote Wit * the set57 U {T, L}, and(B7 *, ») forms a
complete lattice.

37.2 Higher-order binding-time analysis

We now reformulate the analysis from Section 36 such that it takes the higher-order constructs of
Mercury into account. As a first observation, note that the binding-time constraints that are asso-
ciated to first-order unifications and structured goals (see Figures 24 and 25) remain unchanged
in the context of a higher-order analysis. To deal with higher-order constructions, we add an extra
form of binding-time constraint t87C; namely a constraint of the fort,, > p(X;, ..., Xj).

The intended meaning is that the (higher-order) binding-time associat€datgprogram point

1 should at least contain a closure constructed fgoamd the binding-times of its arguments at
program point). Formally, we extend the definition of a solution (Definition 36.3) such that for
every constraint of the fornX,, = p(X,,,..., X}, ) it holds that

o(Xy) = static({p(B1, ..., 0k)}) whereg; = o(X;, ) forl <i<k.
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The main difference with the symbolic data flow analysis of Section 36 in a higher-order
setting is that a set of constraints can no longer be associated to a procedure symbol (as in the
semantic domairDen). Instead, in the higher-order analysis, we associate a set of binding-
time constraints with a particular abstract call. Therefore, we define the analysis as an abstract
semantics as before, but over the new semantic domain

Deng. : Call — p(B7C).

The notion of a procedure annotation of a procegureluced by a calb(4;, . . ., 5,) is straight-
forwardly adapted for use with a denotation/ien,.. rather than inDen. Moreover, given two
such mappingy,g € Den., we definef U g as a mapping inDen.. with dom(f U g) =
dom(f) U dom(g) and

flx)ug(x) if z € dom(f) N dom(g)
Ve edom(fUg): (fUg)(z) =< f(x) if © € dom(f)andz & dom(g)
g(x) if z € dom(g) andx & dom(f)

The resulting analysis is a call-dependent analysis that is basically a combination of the call-
independent and call-dependent analyses of Section 36.

Definition 37.3
Thehigher-order semanticsas semantic domain

Den,. : Call — o(B7C)
and semantic functions
P.. : Prog — Call — Den,.

Cece : Proc— Call — Den,. — Den,,

Gee : Goal — Call — Den,. — Deng.

A : Atom — Call — Den,. — Den,.
defined in Figure 28.

Again, the meaning of a program is defined as a fixed point computation over the meaning

of the individual procedures in the program given a binding-time abstraction of the call with
respect to which the program must be specialised. Each procedure is analysed)(lythin

the context of this initial call and a denotation (iren..) representing the (possibly incomplete)
results of analysis so far. The definition Gf.., defining the abstract meaning of a goal, is
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Pe[Plr =1p( | Ceclpln)

pEProc(P)

Ccc[[p(Xlw'-aXn) <_B]]7Td: U Gcc[[B]]p(ﬂhuﬁn)d

p(B1,-..,0n) Edom(d)U{r}

GCC[[(G%H G/,,;//)n]]ﬂ-d -
Gee[not, (Gyy)]md =
Gcc [['fn G%/ thenG;;// e|S€‘G;7,fu]]7Td =

ce[Gry]md U Gcc[[GZN]]Wd UA{(m, Ccconj(n’ n',n")}

[€4
cc|Gylmd U {(m, CChnot(n, 7))}
cc [[G%/]]ﬂ'd U GCC [[G”//]]Trd U Gcc IIGNZ/]] d

Q00

U{(m, CCig(n, ', 0", ™))}
GCC[[(G%/;GZ//)n]]Trd = cc[[G;7 ]]WdU GccHGHH]]WdU {(77 OOd|sJ(77 n',n ))}
Gee[Ay]md = Acc[A]rd U{(m, S)}

whereS = {X,, = X,, | X €in (A),n e reach (X,n)}

A [U]md = {(m, A[U]d)} for afirst-order unificatio/
A ]X < p(Xy, ..., Xp)ylnd = {(m,{X, = p(X1,...,X,)UC,, Ry, = L})}
Acclg(Yr, ..., Y, ]nd = S; US, where

Sio= {(q(Br,-- . Bu) AN}
Sa = A{(m, p(Projurgsg),r,, (da(Br;- -, 5n)))}
with 3; = Ufr(Yin)
Acc[X(Yig1, ..., Yn)ymd = S; US, where
Sto= @B, B) {D) [ a(Br,. ... Br) € S}
whereo (X)) = statiq.5)
andg; = o, (Y;)fork+1<i<n

S2 = {(m Unecoms) P(PTOIy (d7))) }
whereV = Args(p) U {R,, }

Figure 28: The higher-order semantics
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basically identical to the definition && from Section 36, apart from the facts that (1) it threads

a denotation as well as the abstract call to the procedure that is currently being analysed and
(2) it associates this abstract call to the constraints for a particular goal. The same observations
hold for the definition ofA ... The constraints derived for a first-order unification are identical to
those derived byA. A higher-order construction results in a constraint stating that the binding-
time of the higher-order variable must contain at least the abstract closure created at this program
point with the usual condition that the construction must not be under dynamic control. Being
a construction, reduction can never result in code that might fail during exeuction, hence the
(superfluous) constraint dR,,.

Handling procedure calls is somewhat more involved than in the first-order case. Retrieving
the constraints associated to a first-order call from the denotation now requires to compute the
binding-times of the arguments in of the call. As befergrepresents the procedure annotation
induced by the callr. The binding-time variables in the resulting (projected) constraints are
again renamed to the actual arguments of the Xall.. ., X,, and the control variabl®,, is
renamed taR,,, as before. As for the other goals, the resulting constraints are associated to the
abstract callr for which the surrounding procedure is being analysed. The resulting mapping, in
Figure 28 denoted by, is updated with the mappiddq(31, . . ., 5,),{})} in order to make sure
that the cally(54, . . ., 5,) is in the domain of the newly constructed denotation, and hence will be
analysed during a next round of the analysis. Note that the usgoérantees that if the call was
already in the domain of the donation, the set of constraints associated to it remains unchanged.
A higher-order call is basically handled as a set of first-order calls. First, the binding-time of
the higher-order variable is retrieved from the procedure annotatiéor the currently analysed
procedure/call combination. If this binding-time equstatiq.S), each closure(5, ..., (k) €
S is transformed to a first-order call by addipg(X;1), ..., 0.(X,) to its arguments. From
then on, the call is handled as a first-order call. The constraints associated to this call are retrieved
from the denotation and added to the denotation under construction, and the call itself is added
to the domain of the denotation under construction.

37.3 On the modularity of the approach

In a higher-order setting, the constraint generation phase of our binding-time analysis is a call
dependent process. Indeed, the data flow dependencies in a procedure are determined by the
closures contained in the procedure’s call pattern. This suggests that the advantage of modularity,
associated to the constraint based technique in a first-order setting, might no longer hold in a
higher-order setting. However, to some extent the analysis can still be performed in a bottom-up,
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modular way. Consider a modulé that exports the predicatgs, . . ., p,,. We can than compute

pe{pl ----- pn}

At first sight, it might seem strange to perform a call-dependent analysis with respect to
an inital call in which all arguments are approximated by However, recall that only the
higher-order parts of the call patterns influence the resulting constraint systems. Hence, for
those procedures that have no higher-order arguments, the constraint system derived by the call
dependent analysis foracallT, ..., T) equals the one derived by the call independent analysis
of Section 36, and it can readily be used by other modules importing these procedures. Note that
the call dependent nature of the process ensures that closure information that is constructed in a
moduleM, is propagated insid&/ itself. It is only if closure information is “lost” over a module
boundary that the resulting analysis is less precise than a full call dependent analysis over the
complete multi-module program. This is the case when, in some module, closure information is
available in some arguments of a call to an imported procegdwhkereas, being imported, the
constraints that are used fpare those obtained by analysipgr,..., T).

38 Example

In this section, we present an example, and use it to discuss to what extent the proposed analysis
is also applicable in the context of Prolog.

38.1 A simple interpreter

Consider the simple interpreter for arithmetic expressions depicted in Figure 29. The program
consists of a number of type definitions and two predicates. Thestypelefines an environment

as a list of elements, each element being a pair (Blpen ) consisting of an identifier (type
ident ) and an integer (typat ). We assume that the typetent andint are atomic and
builtin. The type é€xp) defines an expression as either a constant integer, a variable denoted by
an identifier, or the sum of two expressions.

The predicatédookup/3 takes an identifier and an environment as input, searches the value
associated to the identifier in the environment en returns this value or fails. Note that the predicate
is defined as being non-deterministic in order to mimick a purely declarative implementation in
Prolog. The interpreter itself is represented by the predicatewhich takes an expression and
an environment as input and returns the value of the expression or fails. Both predicates are given
in superhomogeneous form.
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type env --> nil ; cons(elem, env).
- type elem --> pair(ident,int).

- type exp --> cst(int) ; var(ident) ; +(exp,exp).

pred lookup(ident, env, int).
:- mode lookup(in,in,out) is multi.

lookup(V,E,Val):- E =1 cons(AAs), A = pair(l,VI), (
V==3 |, Val :=4 VI

lookup(V,As,T) 5, Val :=¢ T).

- pred int(exp,env,int).
:- mode int(in,in,out) is multi.

int(E,Env,R):-(
E=; cst(C), R =2 C

E=-3 var(V), lookup(V,Env,Val) 4, R:=5 Val

E=¢ +(AB), int(A,Env,R1) 7, int(B,Env,R2) &, plus(R1,R2,R)

Figure 29: A simple interpreter
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After call-independent analysis, the binding-time constraints associated witsokug/3
predicate are as follows. All constraints are in normalised form. Where relevant, a binding-time
variable is indexed by a subscript indicating the program point at which the constraint holds.
Recall that the=-constraints express the regular data flow, whereas-theonstraints reflect
the specialisation-strategy: a constrait-* Y denotes that the binding-time &f cannot be
static if the nodé in the binding-time oft” is markeddynamic Such a constraint is due to the
presence, earlier in the predicate, of a deconstruction (or te$t tmat may be residualised and
subsequently fail at run-time.

A= F{(cons 1))

As » El(cons2))

[ = [i(cons.1).(pair.1))

[~*E

VI & El(cons.).(pair.2))

VI=*E

Valy = Ef(cons.).(pair.2))

Valy =* E Ll Eleons.)) | | (cons.1).(pair.)) | |1/
T = [f(cons.).(pair.2))

T =+ E L El(cons.)) | | fr{(cons,1).(pair 1)) | |1/
Valg = E{(cons),(pair2))

Valg =* E U El(cons 1)) || plleons, ) (pair, 1)) | |}/

The interpretation of these constraints is as follows. The data-flowJaronstraints are ob-
tained in a straightforward way, by projecting the constraints obtained from the unifications. The
strategy (or—*) constraints are somewhat more involved. The constrdirts £ andV [ =* E

denote thaf andV' I must beT in caseF is not bound to an outermost functor. Indeedkifs

not bound to an outermost functor, the deconstruction at program point 1 cannot be reduced at
specialisation-time and the atom at program point 2 (in wihiehdV I are assigned their value)

is under dynamic control and hence not to be reduced. Subsequently, the construction at program
point 4 is under dynamic control if one of the preceeding atoms cannot be reduced or results in
code that may fail at runtime, which is the case if either the environmettie elements of the
environment (=) the identifiers within each such elemegt{¢o1)-(rer:1)) or the vari-

ableV is not bound to an outermost function. Similar considerations explaikthenstraints

onT andVal at program point 6 in the other branch of the disjunction. The constrairitsaye

equal to the least upper bound of those (in the least fixed poirt@nandV als. Recall that the
constraints of1’, which originate from the recursive call, are obtained ffBris Valy LI Valg.
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The binding-time constraints derived for tiié/3  predicate are as follows.

C = EllestD)

Ry > F(est,1))

Ry >* FE

V = EfarD)

Val = Enp{(cons),(pair2))

Val =* Env L Env{€onsD) || Bryfcons.1).(pair,1) | | p(var.1))

R = Enul(cons),(pair2))

Rs =* E U Env U Envicons)) || Epgllcons D). (pair)) | | p(var,1))

A = B

B = E(+2)

R1 = E{D(est) | | Fpq((cons 1), (pair,2)

R1 =* E U E{D) | g2) | gl war)) | pl(+:2)(ver, 1) |
Fnw L Envi©onsD) || ppy(cons,1),(pair1)

R2 E{(+2).(est,1) | | Fipg(cons,1),(pair,2))

R2 =* E L E{+D) | g(+2) | gl war)) | pl(+:2)(var1))
Env U Eny{(ens) || Epy{(cons1).(pair,1))

Ry = E{(+D(est ) | pl(+2)(est, ) || Frpg(cons,1),(pair.2))

Ry >* E LI EED) ) B2 | Bl war 1) || B((+2),(var,1) |

Env L Env((cons,l» L Env((cons,l),(pair,l))

These constraints are obtained in a similar way as those féodkep predicate.
Assume we want to specialise this program for the query

int(+(cst(2),+(var(x),cst(3))), [pair(y,Yval),(x,Xval)],Res) 1)

i.e., the expression to compute is fully instantiated and the domain of the environment mapping
is fully defined but the concrete values associated to the identifiers are as yet unknown. These
degrees of instantiation are expressed by the binding-tifngsdefined for the typexp and

Benw defined for the typenv .

) ((), statig), ({(est, 1)), static),  ({(var,1)), static)
e = (((+,1)), static),  (((+,2)), static)

((), static)
Benw = & ({(cons, 1), (pair, 1)), static)
({(cons, 1), (pair, 2)), dynamig
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Note that the abstract catit( ..., Seno, -) Will give rise to an abstract cdtbokup( static Feny, -) -
In the least solution of the constraints fookup with respect to this call, we obtain that the
output argument’al = Valy U Valg = dynamic However, the input to each test or deconstruc-
tion inlookup is at least bound to an outermost functor and hence is a candidate for reduction.
In addition, if we look at the strategy constraints

Co=*FE

Cy =* E 11 El(cons.1))

Cy =+ E L Bilcons.) |1/ || [(cons.1) (pair.1))

Cs =* F 1) [l(eons.D))

Cs =* E U Elcons)) | || Fl(eons,),(pair.1))
we derive that none of the atoms is under dynamic control and consequently, each atom can be
annotated as reducible.

Consequently, for theat predicate we obtai® = dynamicbut similarily to the case of the
lookup predicate, none of the atoms is under dynamic control and the input to each unification
is bound to at least an outermost constructor. Hence all unifications can be reduced. Only the
predicateplus , which we assume builtin, has both input argumetysamicand need to be
residualised. The result of specialisation using the obtained annotations is the residual program
int(Xval,Yval,Res):- plus(Xval,3,T), plus(2,T,Res).

38.2 The Prolog case

The basic characteristic of Mercury that make this work feasible is the presence of type- and
mode information. Hence, one may ask to what extent the technique can be carried over to
the analysis of (pure) Prolog programs. Let us assume that the same type information as above
is available. Given that the normal use of ti®/3  predicate is with modéi,i,o) , a

mode analysis is able to show thabkup/3 s also called with modé,i,0) and that both
predicates return a ground answer. Taking care that variables in output positions of predicates
are first occurrences (hence free variables) one can obtain a normalisation that is almost a replica
of the Mercury code.

lookup(V,E,Val):- E=cons(A,As), A=pair(l,VI), V=I, Val=VI.

lookup(V,E,Val):- E=cons(A,As), A=pair(l,VI), lookup(V,As,T), Val=T.

int(E,Env,R):- E
int(E,Env,R):- E
int(E,Env,R):- E

cts(C), R=C.
var(V), lookup(E,Env,Val), R=Val .
+(A,B), int(AEnv,R1), int(B,Env,R2), is+(R1,R2,R).
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Using the mode information about the variables participating in unifications, one could clas-
sify them into tests, assignments, constructions and deconstructions as in the Mercury code.
There is one difference. In the case of Mercury, assignments and constructions are guaranteed to
succeed. In the case of our mode analysis, a variable not having mode input can still be partially
intantiated, hence the unfication could fail at run-time. This will not happen in the example at
hand. Indeed a simple local analysis shows that the variables being assigned are effectively free.
E.g. inVal=VI , Val is the first occurrence of the output variable. Whether a unificatioan
fail has to be properly encoded in the special binding-time analysis vafigplépart from this,
given the type information and the specification of the query to be specialised, the binding time
analysis as done for Mercury can be performed, leading to the same annotations and hence, a
specialiser as Logen[77] could derive the same specialised code.

Finally, it is feasible to handle more complex modes than simply input and output. In [15],

a more refined mode analysis, called rigidity analysis is developed. Given & tdrype 7, it
considers all subtypes of . The term isr’-rigid if it cannot have a well-typed instance that
has a variable as a subterm of type Such a type based rigidity analysis can provide more
detailed mode information that has the potential to contribute to a better binding-time analysis.
For example, such an analysis could show that a term ofdigra (cnfr. the simple interpreter)

that is not ground, igdent -rigid.

To conclude the discussion of this example, we note that — within the context of Prolog —
the results obtained by the binding-time analysis could be directly fed to the LOGEN off-line
partial deduction system [64, 77]. This system uses the notiorbofding-typeto characterise
specialisation-time values. Basic binding-typessietic— characterising a value as ground —
anddynamic— characterising a value as possibly non-ground — but more involved binding-types
can be declared by the user using binding-type rules, much in the same way as types are declared
by type rules.

In the interpreter example, the binding-timés, and}.,,, could be translated to the follow-
ing binding-type definitions:

- type exp ---> cst(static) ; var(static) ; +(static,static).
- type elem --> pair(static,dynamic).

.- type env ---> nil ; cons(elem,env).

Input to the LOGEN system would then consist of the program in which every call is anno-
tated as reducible (by means of tinafold annotation [64, 77]) together with the binding-type
classification of the quemnt(exp,env,dynamic)
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39 Discussion

Constraint based (binding-time) analysis has been considered before. In [46], Henglein devel-
ops such a constraint-based (higher-order) binding-time analysisdatculus by viewing the
problem as a type inference problem for annotatddrms in a two-level-calculus. A set of
constraints capturing local binding-time requirements is created and transformed into a normal
form. A solver is used to find a consistent minimal binding-time classification. The analysis

is redeveloped, concentrating on the aspect of polyvariance, for a PCF-like language in [48].
Henglein’s analysis is scaled up by Bondorf and Jgrgensen in [12], where they construct three
(monovariant) analyses to be used in the partial evaluator Similix [10]. An important concep-
tual advantage, mentioned among others in [12], of doing binding-time analysis by constraint
normalisation is the fact that the constraint based approach is viewed as alsgaetdescrip-

tion of the analysis, compared with a direct abstract interpretation approach in which the source
code is abstractly interpreted over the domain of binding-times. Indeed, in the constraint-based
approach, problem and solution are separated: the constraint system expresses the binding-time
requirement®n the involved variables, whereas actual binding-times are containezbintéon

to the constraint system. A practical consequence of this separation is that the data flow analysis,
being performed at the symbolic level, needs to be performed only once for each predicate (in
a first-order setting) rather than performing a separate analysis for every (abstract) call to the
predicate. This result extends — at least to some extent — to a higher-order setting in the sense
that the data flow analysis needs to be performed only once for each combination of a predicate
with the closure information from its arguments.

In this work, we have shown that a constraint-based approach is also feasible for the logic
programming language Mercury. The available type information allows to construct a precise
domain of binding-times, whereas the available mode information allows to express the data
flow constraints in a sufficiently precise way. Apart from being modular, the resulting analysis
is polyvariant, and able to deal with partially instantiated data structures. Strongly related to
our domain of binding-times is the domain proposed and used by Launchbury and Mogensen.
Launchbury [69] defines a system of types and derives a finite domairo@ctionsover each
type. Such a projection maps a value to a part of the value that is definitely static, as such
“blanking” out the dynamic part. In recent work [6, 7], a binding-time analysis is presented for
the lambda calculus that allows an expression to be both static and dynamic at the same time;
the general idea is to be able to access statically the (static) components of a residualised data
structure. The exact relation and/or integration with a fine-grained domain of binding-times as
employed by our technique is an interesting topic for further research.

Upgrading binding-time analysis to deal with Mercury’s higher-order constructs requires clo-
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sure information. In the literature, also closure analysis has been formulated by means of abstract
interpretation [10, 18] as well as by constraint solving [45, 98, 47]. Bondorf and Jargensen [12]
develop a constraint-based flow analysis that traces higher-order flow as well as flow of con-
structed (first-order) values. In this work, we have combined closure analysis with binding-time
analysis and used constraints to express the first-order as well as the higher-order data flow.
We have enhanced the domain of binding-times to include a set of closures that represents the
binding-time of a higher-order value, and formulated the constraint-generation phase as a call
dependent process in which however only the higher-order parts of the call pattern determine the
result of analysis. During constraint generation, the constraints involving higher-order values are
evaluated, and the resulting closure information is used to decide what constraints to incorporate,
possibly propagating closure information down into the called procedures.

We have discussed in detail how the analysis can be applied to multi-module programs ac-
cording to a one module at a time scenario in Sections 36.5 and 37.3. If we do not wish to
propagate closure information over module boundaries, the constraint generation phase can be
performed one module at a time, bottom-up in the module hierarchy. Remaining issues are
precisely such inter-module closure propagation and the handling of circularities in the module
hierarchy. Recent work [16] presents a framework for the (call-dependent) analysis of multi-
module programs that solves both problems. The key invariant in the approach of [16] is that
at each stage of the process, the analysis results are correct, but reanalysis may — when more
information is available — produce more accurate results. The analysis performs some extra
bookkeeping such that, when a module is analysed, it records both the call patterns occurring
in the calls to the imported procedures, and the analysis results of the module’s exported pro-
cedures. When the recorded information contains new calls (or calls with a more accurate call
pattern) to the imported modules, the analysis may decide to reanalyse the relevant imported
modules with respect to the more accurate call patterns. Likewise, the recording of more ac-
curate analysis results for a module’s exported procedures can trigger the reanalysis of those
modules that would possibly profit from these more accurate results. Note that our binding-time
analysis neatly fits such an approach: initially, a module’s exported procedures are analysed with
respect tol' (no closure information is available). The resulting binding-time constraint systems
are correct, but could possibly be rendered more precise, when the procedures are (re)analysed
with respect to a more accurate call pattern (one do&iscontain some closure information).

To the best of our knowledge, the binding-time analysis of modular programs has been consid-
ered only occasionally before. Henglein and Mossin [48] note that a symbolic representation of
binding-times allows a modular approach. Based on such a symbolic analysis, [26] present a
method to specialise a multi-module program — written in a simple yet higher-order functional

language — by constructing, for each of the modules, a generating extension, while using only
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the result of a call-independent binding-time analysis. The analysis assumes that annotations
indicating whether a function must be unfolded are given by hand and is restricted to module
hierarchies without circular dependencies.

To summarise, we can state that few binding-time analyses have been developed that are
polyvariant, deal with partially instantiated data, modwadhigher-order constructs for a real-
istic language. Our binding-time analysis achieves this for the Mercury language by combining
a number of known techniques: partially instantiated structures are dealt with by incorporating
a structured and precise domain of binding-times, polyvariance and modularity are achieved by
computing the binding-times symbolically and higher-order information is incorporated by prop-
agating closure information during the symbolic phase of the analysis. Two important limitations
of our technique are in the modularity of the approach, in particular the lack of propagation of
closure information over module boundaries and the handling of circularities in the module de-
pendency graph. Fortunately, both issues can be addressed by imposing a system like [16] on top
of our technique.

132



References

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

S. M. Abramov and R. Gick. Semantics modifiers: an approach to non-standard se-
mantics of programming languages. In M. Sato and Y. Toyama, edifbig] Fuji In-
ternational Symposium on Functional and Logic Programmipage to appear. World
Scientific, 1998.

L. Andersen. Binding-time analysis and the taming of C pointersPE®PM93 pages
47-58. ACM, 1993.

L. O. AndersenProgram Analysis and Specialization for the C Programming Language
PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

K. R. Aptand E. Marchiori. Reasoning about Prolog programs: from modes through types
to assertionsFormal Aspects of Computing(6A):743—765, 1994.

K. R. Apt and F. Turini.Meta-logics and Logic ProgrammingMIT Press, 1995.

K. Asai. Binding-time analysis for both static and dynamic expressiorStdtic Analysis
Symposiuppages 117-133, 1999.

K. Asai. Binding-time analysis for both static and dynamic expressiNiesv Generation
Computing 20(1):27-52, 2001.

L. Beckman, A. Haraldsor). Oskarsson, and E. Sandewall. A partial evaluator and its
use as a programming todArtificial Intelligence 7:319-357, 1976.

L. Birkedal and M. Welinder.  Hand-writing program generator generators. In
M. Hermenegildo and J. Penjam, editoRspgramming Language Implementation and
Logic Programming. Proceedings, Proceedings of PLILR1IINCS 844, pages 198-214,
Madrid, Spain, 1994. Springer-Verlag.

A. Bondorf. Automatic autoprojection of higher order recursive equatiddsience of
Computer Programmingl7:3-34, 1991.

A. Bondorf, F. Frauendorf, and M. Richter. An experiment in automatic self-applicable
partial evaluation of Prolog. Technical Report 335, Lehrstuhl Informatik V, University of
Dortmund, 1990.

A. Bondorf and J. Jgrgensen. Efficient analyses for realistic off-line partial evaluation.
Journal of Functional Programming(3):315-346, 1993.

133



[13] A. F. Bowers and C. A. Gurr. Towards fast and declarative meta-programming. In K. R.
Apt and F. Turini, editorsMeta-logics and Logic Programmingages 137-166. MIT
Press, 1995.

[14] M. Bruynooghe, M. Leuschel, and K. Sagonas. A polyvariant binding-time analysis for
off-line partial deduction. In C. Hankin, editdProgramming Languages and Systems,
Proc. of ESOP’98, part of ETAPS'9®ages 27-41, Lisbon, Portugal, 1998. Springer-
Verlag. LNCS 1381.

[15] M. Bruynooghe, W. Vanhoof, and M. Codish. Pos(T) : Analyzing dependencies in
typed logic programs. IPerspectives of System Informatics, 4th International An-
drei Ershov Memorial Conference, PSI 2001, Revised Paparsime 2244 ofLNCS
pages 406—-420. Springer-Verlag, 2001. URL = http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publinfo.pl?id=37386.

[16] F. Bueno, M. de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. A
model for inter-module analysis and optimizing compilation. In K. Lau, edRoepro-
ceedings of LOPSTR 200@ages 64—71, 2000.

[17] M. Codish and C. Taboch. A semantic basic for the termination analysis of logic programs.
The Journal of Logic Programming1(1):103-123, 1999.

[18] C. Consel. Binding time analysis for higher order untyped functional languagé&99in
ACM Conference on Lisp and Functional Programming, Nice, Frapeges 264-272.
ACM, 1990.

[19] C. Consel et al. A uniform approach for compile-time and run-time specialization. In
O. Danvy, R. Giick, and P. Thiemann, editoRartial Evaluation volume 1110 of.ecture
Notes in Computer Scienggages 54—72. Springer-Verlag, 1996.

[20] T. Conway, F. Henderson, and Z. Somogyi. Code generation for Mercury. In J. Lloyd,
editor, Proceedings of the International Symposium on Logic Programnpages 242—
256, Cambridge, 1995. MIT Press.

[21] Y. Cosmadopoulos, M. Sergot, and R. W. Southwick. Data-driven transformation of meta-
interpreters: A sketch. In H. Boley and M. M. Richter, edité?mceedings of the Interna-
tional Workshop on Processing Declarative Knowledge (PDK'9djume 567 ofLNAI,
pages 301-308, Kaiserslautern, FRG, July 1991. Springer Verlag.

134



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Craig and M. Leuschel. Lix: An effective self-applicable partial evaluator for prolog.
Submitted, Nov 2003.

A. De Niel, E. Bevers, and K. De Vlaminck. Partial evaluation of polymorphically typed
functional languages: The representation problem. In M. Billaud and et al., edituas,
lyse Statique en Programmaticﬁquationelle, Fonctionelle, et Logique (Bigre, vol. /4)
pages 90-97, October 1991.

D. De Schreye, R. Gkk, J. Jargensen, M. Leuschel, B. Martens, and M. H. Sgrensen.
Conjunctive partial deduction: Foundations, control, algorithms and experimé&is.
Journal of Logic Programming41(2 & 3):231-277, November 1999.

S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K. Sagonas. Termination ana-
lysis for tabled logic programming. In N. Fuchs, editerpceedings of the International
Workshop on Logic Program Synthesis and Transformation (LOPSTRSIOS 1463,
pages 111-127, Leuven, Belgium, July 1998.

D. Dussart, R. Heldal, and J. Hughes. Module-sensitive program specialisation. In
SIGPLAN '97 Conference on Programming Language Design and Implementation, June
1997, Las Vegagages 206-214. ACM, 1997.

F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specializing con-
straint logic programs. lhogic Based Program Synthesis and Transformation. Proceed-
ings of Lopstr2000LNCS 1207, pages 125-146, 2000.

F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying ctl properties of infinite-state sys-
tems by specializing constraint logic programs. Pimceedings of VCL'20Q1Florence,
Italy, September 2001.

H. Fujita and K. Furukawa. A self-applicable partial evaluator and its use in incremental
compilation.New Generation Computing(2 & 3):91-118, 1988.

Y. Futamura. Partial evaluation of a computation process — an approach to a compiler-
compiler. Systems, Computers, Contrd?$5):45-50, 1971.

Y. Futamura. Partial evaluation of a computation process — an approach to a compiler-
compiler. Systems, Computers, Contrdl$5):45-50, 1971.

J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,
University of Bristol, November 1991.

135



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Gallagher. Specialisation of logic programs: A tutorial. Pmceedings PEPM’93,
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation, pages 88-98, Copenhagen, June 1993. ACM Press.

J. Gallagher and K. Henriksen. Abstract domains based on regular types. Technical Re-
port ASAP Deliverable D4.5, Dept. of Computer Science, Roskilde University, Roskilde,
Denmark, January 2004.

J. P. Gallagher. A Program Transformation for Backwards Analysis of Logic Programs. In
M. Bruynooghe, editorPre-proceedings of the International Symposium on Logic Based
Program Synthesis and Transformation (LOPSTR 20@3ume CW 365 oKatholieke
Universiteit Leuven, Dept. of Computer Science, Technical Rgpages 113-122, 2003.

S. Genaim and M. Codish. Inferring termination conditions of logic programs by back-
wards analysis. Iihnternational Conference on Logic for Programming, Artificial intel-
ligence and reasoningrolume 2250 ofSpringer Lecture Notes in Artificial Intelligence
pages 681-690, 2001.

A. J. Glenstrup and N. D. Jones. BTA algorithms to ensure termination of off-line partial
evaluation. InPerspectives of System Informatics: Proceedings of the Andrei Ershov Sec-
ond International Memorial Conferenc&NCS 1181, pages 273-284. Springer-Verlag,
1996.

R. Gluck. Jones optimality, binding-time improvements, and the strength of program
specializers. liProceedings of the ASIAN symposium on Partial evaluation and semantics-
based program manipulatiopages 9-19. ACM Press, 2002.

R. Gluck. On the generation of specialiserslournal of Functional Programming
4(4):499-514, 1994.

R. Gluck and J. Jgrgensen. Efficient multi-level generating extensions for program spe-
cialization. In S. Swierstra and M. Hermenegildo, editBhrggramming Languages, Im-
plementations, Logics and Programs (PLILP’'9RNCS 982, pages 259-278, Utrecht,
The Netherlands, September 1995. Springer-Verlag.

R. Gluck and J. Jgrgensen. An automatic program generator for multi-level specialization.
Lisp and Symbolic Computatiph0:113-158, 1997.

C. Gomard and N. Jones. A partial evaluator for the untyped lambda-caldolusal of
Functional Programmingl1(1):21-69, 1991.

136



[43] C. A. Gurr. A Self-Applicable Partial Evaluator for the Logic Programming Language
Godel PhD thesis, Department of Computer Science, University of Bristol, January 1994.

[44] C. A. Gurr. Specialising the ground representation in the logic programming language
Godel. In Y. Deuville, editor, Logic Program Synthesis and Transformatwoceedings
of LOPSTR’93Workshops in Computing, pages 124-140, Louvain-La-Neuve, Belgium,
1994. Springer-Verlag.

[45] N. Heintze. Set-based analysis of ML programsA{@M Conference on Lisp and Func-
tional Programmingpages 306—-317, 1994.

[46] F. Henglein. Efficient type inference for higher-order binding-time analysis. In J. Hughes,
editor, Functional Programming Languages and Computer Architecture, Cambridge,
Massachusetts, August 1991 (Lecture Notes in Computer Science, volpagss 448—
472. ACM, Springer-Verlag, 1991.

[47] F. Henglein. Simple closure analysis. Technical Report D-193, DIKU Semantics Report,
1992.

[48] F. Henglein and C. Mossin. Polymorphic binding-time analysis. In D. Sannella, editor,
Programming Languages and Systems — ESOP’94. 5th European Symposium on Pro-
gramming, Edinburgh, U.K., April 1994 (Lecture Notes in Computer Science, vol, 788)
pages 287-301. Springer-Verlag, 1994.

[49] P. Hill and J. Gallagher. Meta-programming in logic programming. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, editorandbook of Logic in Artificial Intelligence
and Logic Programmingvolume 5, pages 421-497. Oxford Science Publications, Oxford
University Press, 1998.

[50] C. K. Holst. Syntactic currying: yet another approach to partial evaluation. Technical
report, DIKU, Department of Computer Science, University of Copenhagen, 1989.

[51] C. K. Holst. Finiteness analysis. In J. Hughes, edRooceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Computer Architecture (FRGIE)S
523, pages 473-495. Springer-Verlag, August 1991.

[52] C. K. Holst and J. Launchbury. Handwriting cogen to avoid problems with static typing.
In Draft Proceedings, Fourth Annual Glasgow Workshop on Functional Programming,
Skye, Scotlangages 210-218. Glasgow University, 1991.

137



[53] L. Hornof and J. Nog. Accurate binding-time analysis for imperative languages: Flow,
context, and return sensitivity. PEPM97 pages 63—-73. ACM, 1997.

[54] D. Jacobs and A. Langen. Static analysis of logic programs for independent AND-
parallelism.Journal of Logic Programmingl3(2 &3):291-314, May/July 1992.

[55] J. Jaffar, S. Michaylov, and R. H. C. Yap. A methodology for managing hard constraints
in CLP systems. IiProceedings of the ACM SIGPLAN '91 Conference on Programming
Language Design and Implementatigrages 306—316, Toronto, Ontario, Canada, June
1991.

[56] N. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation: The gen-
eration of a compiler generator. In J.-P. Jouannaud, e@®®@#yriting Techniques and Ap-
plications, Dijon, France. (Lecture Notes in Computer Science, vol.,2@@)es 124-140.
Springer-Verlag, 1985.

[57] N. D. Jones. Partial evaluation, self-application and types. In M. S. Paterson, editor,
Automata, Languages and ProgrammindNCS 443, pages 639-659. Springer-Verlag,
1990.

[58] N. D. Jones. What not to do when writing an interpreter for specialisation. In O. Danvy,
R. Gluck, and P. Thiemann, editorBartial Evaluation, International Seminat.NCS
1110, pages 216-237, Schlof3 Dagstuhl, 1996. Springer-Verlag.

[59] N. D. Jones, C. K. Gomard, and P. Sestd®artial Evaluation and Automatic Program
Generation Prentice Hall, 1993.

[60] N. D. Jones, C. K. Gomard, and P. Sestd®artial Evaluation and Automatic Program
Generation Prentice Hall, 1993.

[61] N. D. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation: The
generation of a compiler generator. In J.-P. Jouannaud, eRigwvriting Techniques and
Applications LNCS 202, pages 124-140, Dijon, France, 1985. Springer-Verlag.

[62] N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: a self-applicable partial evaluator for
experiments in compiler generationlSP and Symbolic Computatip§(1):9-50, 1989.

[63] J. Jargensen and M. Leuschel. Efficiently generating efficient generating extensions in
Prolog. In O. Danvy, R. Gick, and P. Thiemann, editoiRartial Evaluation, International
Seminar LNCS 1110, pages 238-262, Schlo3 Dagstuhl, 1996. Springer-Verlag.

138



[64] J. Jgrgensen and M. Leuschel. Efficiently generating efficient generating extensions in
Prolog. In O. Danvy, R. Gick, and P. Thiemann, editorBroceedings Dagstuhl Semi-
nar on Partial Evaluation pages 238-262, Schloss Dagstuhl, Germany, 1996. Springer-
Verlag, LNCS 1110.

[65] J. Komorowski. An introduction to partial deduction. In A. Pettorossi, edarceedings
Meta'92 LNCS 649, pages 49-69. Springer-Verlag, 1992.

[66] V. Lagoon, F. Mesnard, and P. Stuckey. Termination analysis zith types is more accurate.
In 19th International Conference on Logic Programming, ICLRICS. Springer-Verlag,
2003. To appear.

[67] A. Lakhotia and L. Sterling. How to control unfolding when specializing interpreters.
New Generation Computing:61—-70, 1990.

[68] T. K. Lakshman and U. S. Reddy. Typed prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In K. Saraswat, Vijay; Ueda, edifngceedings of the
1991 International Symposium on Logic Programming (ISLP'@iHges 202—-220, San
Diego, CA, 1991. MIT Press.

[69] J. Launchbury. Dependent sums express separation of binding times. In K. Davis and
J. Hughes, editorgsunctional Programming, Glasgow, Scotland, 1988ges 238-253.
Springer-Verlag, 1990.

[70] M. Leuschel. Partial evaluation of the “real thing”. In L. Fribourg and F. Turini, editors,
Logic Program Synthesis and Transformation — Meta-Programming in LBgiceed-
ings of LOPSTR’94 and META'94.NCS 883, pages 122-137, Pisa, Italy, June 1994.
Springer-Verlag.

[71] M. Leuschel. Theecck partial deduction system and tin@pD library of benchmarks.
Obtainable viahttp://www.ecs.soton.ac.uk/"mal , 1996-2002.

[72] M. Leuschel. Homeomorphic embedding for online termination of symbolic methods. In
T. £. Mogensen, D. Schmidt, and I. H. Sudborough, edifidne, Essence of Computation
- Essays dedicated to Neil JonédNCS 2?56, pages 379-403. Springer-Verlag, 2002.

[73] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction:
Control issues.Theory and Practice of Logic Programming(4 & 5):461-515, July &
September 2002.

139



[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]
[84]

M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editorsFME 2003: Formal MethodsLNCS 2805, pages 855-874.
Springer-Verlag, 2003.

M. Leuschel and D. De Schreye. Towards creating specialised integrity checks through
partial evaluation of meta-interpreters. Broceedings of PEPM'95, the ACM Sigplan
Symposium on Partial Evaluation and Semantics-Based Program Manipulgtages
253-263, La Jolla, California, June 1995. ACM Press.

M. Leuschel and J. Jgrgensen. Efficient specialisation in Prolog using a hand-written
compiler generator. Technical Report DSSE-TR-99-6, Department of Electronics and
Computer Science, University of Southampton, September 1999.

M. Leuschel, J. Jagrgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisa-
tion in Prolog using a hand-written compiler generatoiTheory and Practice of
Logic Programming4(1):139-191, 2002. URL = http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publinfo.pl?id=38686.

M. Leuschel, J. Jgrgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in Pro-
log using a hand-written compiler generatdheory and Practice of Logic Programming
4(1):139-191, 2004.

M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvari-
ance in partial deduction of normal logic programCM Transactions on Programming
Languages and Systen®9(1):208-258, January 1998.

M. Leuschel, B. Martens, and K. Sagonas. Preserving termination of tabled logic pro-
grams while unfolding. In N. Fuchs, editétroceedings of the International Workshop on
Logic Program Synthesis and Transformation (LOPSTR'EBNCS 1463, pages 189-205,
Leuven, Belgium, July 1998.

M. Leuschel and M. H. Sgrensen. Redundant argument filtering of logic programs. In
J. Gallagher, editol,.ogic Program Synthesis and Transformation. Proceedings of LOP-
STR’96 LNCS 1207, pages 83-103, Stockholm, Sweden, August 1996. Springer-Verlag.

J. W. Lloyd. Declarative error diagnosislew Generation Computing:133—-154, 1987.
J. W. Lloyd. Foundations of Logic Programmingpringer-Verlag, 1987.

J. W. Lloyd and R. W. Topor. Making PROLOG more expressidaurnal of Logic
Programming 1(3):225-240, 1984.

140



[85] H. Makholm. On Jones-optimal specialization for strongly typed languages. In W. Taha,
editor,Semantics, Applications, and Implementation of Program GenerdtdGS 1924,
pages 129-148. Springer-Verlag, 2000.

[86] K. Marriott and P. Stuckey. The 3 r's of optimizing constraint logic programs: Refinement,
removal, and reordering. lIAroceedings of POPL'93ages 334-344. ACM Press, 1993.

[87] K. G. Matrriott and P. J. Stuckey. The 3 r's of optimizing constraint logic programs: re-
finement, removal and reordering. Rroceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges 334-344. ACM Press, 1993.

[88] B. Martens.On the Semantics of Meta-Programming and the Control of Partial Deduction
in Logic Programming PhD thesis, K.U. Leuven, February 1994.

[89] B. Martens and D. De Schreye. Two semantics for definite meta-programs, using the
non-ground representation. In K. R. Apt and F. Turini, editdigta-logics and Logic
Programming pages 57-82. MIT Press, 1995.

[90] B. Martens and D. De Schreye. Why untyped non-ground meta-programming is not (much
of) a problem.The Journal of Logic Programmin@2(1):47-99, 1995.

[91] B. Martens and J. Gallagher. Ensuring global termination of partial deduction while al-
lowing flexible polyvariance. In L. Sterling, editd?roceedings ICLP’95pages 597-613,
Kanagawa, Japan, June 1995. MIT Press.

[92] F. Mesnard and S. Ruggieri. On proving left termination of constraint logic programs.
ACM Transactions on Computational LogR003. to appear.

[93] T. Mogensen. Binding Time Analysis for Polymorphically Typed Higher Order Lan-
guages. In J. Diaz and F. Orejas, editGAPSOFT’'89, Barcelona, Spaimolume 352 of
LNCS pages 298-312. Springer-Verlag, 1989.

[94] T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog.
In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and Transform&tion.
ceedings of LOPSTR'9pages 214-227. Springer-Verlag, 1992.

[95] T. Mogensen and A. Bondorf. Logimix: A self-applicable partial evaluator for Prolog. In
K.-K. Lau and T. Clement, editor®roceedings LOPSTR’9pages 214-227. Springer-
Verlag, Workshops in Computing Series, 1993.

141



[96] T. ££. Mogensen. Separating binding times in language specificatiofsod¢eedings of
FPCA’89 pages 12-25. ACM press, 1989.

[97] A. Mycroft and R. A. O’Keefe. A polymorphic type system for PROLOGurtificial
Intelligence 23(3):295-307, 1984.

[98] J. Palsberg. Closure analysis in constraint for&CM Transactions on Programming
Languages and Systenis(1):47-62, 1995.

[99] J. C. Peralta.Analysis and Specialisation of Imperative Programs: An approach using
CLP. PhD thesis, Department of Computer Science, University of Bristol, 2000.

[100] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of clp pro-
grams. In M. Leuschel, editdrpgic-based Program Synthesis and Transformation (LOP-
STR’2002)LNCS 2664, pages 90-108, Madrid, Spain, September 2002. Springer-Verlag.

[101] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and tech-
nigues.The Journal of Logic Programmind 9& 20:261-320, May 1994.

[102] S. Prestwich. The PADDY partial deduction system. Technical Report ECRC-92-6,
ECRC, Munich, Germany, 1992.

[103] G. Puebla and M. Hermenegildo. Some issues in analysis and specialization of modular
Ciao-Prolog programs. In M. Leuschel, editéroceedings of the Workshop on Opti-
mization and Implementation of Declarative Languadess Cruces, 1999. In Electronic
Notes in Theoretical Computer Science, Volume 30 Issue No.2, Elsevier Science.

[104] S. A. Romanenko. A compiler generator produced by a self-applicable specializer can
have a surprisingly natural and understandable structure. In D. Bjgrner, A. P. Ershov, and
N. D. Jones, editordartial Evaluation and Mixed Computatippages 445-463. North-
Holland, 1988.

[105] S. Safra and E. Shapiro. Meta interpreters for real. In H.-J. Kugler, eBitoceedings of
IFIP’86, pages 271-278, 1986.

[106] D. Sahlin. Mixtus: An automatic partial evaluator for full Proldgew Generation Com-
puting 12(1):7-51, 1993.

[107] D. A. Smith. Partial evaluation of pattern matching in constraint logic programming lan-
guages. In N. D. Jones and P. Hudak, edit?é6M Symposium on Partial Evaluation

142



and Semantics-Based Program Manipulatipages 62—71. ACM Press Sigplan Notices
26(9), 1991.

[108] D. A. Smith and T. Hickey. Partial evaluation of a CLP language. In S. Debray and
M. Hermenegildo, editorgroceedings of the North American Conference on Logic Pro-
gramming pages 119-138. MIT Press, 1990.

[109] Z. Somogyi et al. The Melbourne Mercury compiler, release 0.9.

[110] Z. Somogyi, F. Henderson, and T. Conway. The implementation of Mercury, an efficient
purely declarative logic programming language. RAroceedings of the ILPS’94 Post-
conference Workshop on Implementation Techniques for Logic Programming Languages
1994.

[111] Z. Somogyi, F. Henderson, and T. Conway. Logic programming for the real world. In
Proceedings of the ILPS’95 Postconference Workshop on Visions for the Future of Logic
Programming 1995.

[112] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an
efficient purely declarative logic programming languadeurnal of Logic Programming
29(1-3):17-64, 1996.

[113] Z. Somogyi, F. Henderson, T. Conway, A. Bromage, T. Dowd, D. Jeffery, P. Ross,
P. Schachte, and S. Taylor. Status of the Mercury systenPrdoeedings of the JIC-
SLP’96 Workshop on Parallelism and Implementation Technology for (Constraint) Logic
Programming Language4996.

[114] L. Sterling and R. D. Beer. Metainterpreters for expert system construckios Journal
of Logic Programming6(1 & 2):163-178, 19809.

[115] L. Sterling and E. Shapirdl'he Art of Prolog MIT Press, 1986.

[116] W. Taha, H. Makholm, and J. Hughes. Tag elimination and Jones-optimality. In O. Danvy
and A. Filinski, editors,Programs as Data Objects, Second Symposium, PADO,2001
LNCS 2053, pages 257-275, Aarhus, Denmark, May 2001. Springer-Verlag.

[117] A. Takeuchi and K. Furukawa. Partial evaluation of Prolog programs and its application
to meta programming. In H.-J. Kugler, edittnformation Processing 8pages 415-420,
1986.

143



[118]

[119]

[120]

[121]

[122]

[123]

Y. Tao, W. Grosky, and C. Liu. An Automatic Partial Deduction System for Constraint
Logic Programs. I®th International Conference on Tools with Artificial Intelligence (IC-
TAI'97), pages 149-157, Newport Beach, CA, USA, Nov. 1997. IEEE Computer Society.

P. Thiemann. Cogen in six lines. limternational Conference on Functional Programming
pages 180-189. ACM Press, 1996.

W. Vanhoof and M. Bruynooghe. Binding-time annotations without binding-time ana-
lysis. In Logic for Programming, Atrtificial Intelligence, and Reasoning, 8th Interna-
tional Conference, Proceedinggolume 2250 ol ecture Notes in Artificial Intelligence
pages 707-722. Springer-Verlag, 2001. URL = http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publinfo.pl?id=36223.

W. Vanhoof and M. Bruynooghe. When size does matter - Termination analysis
for typed logic programs. IrLogic-based Program Synthesis and Transformation,
11th International Workshop, LOPSTR 2001, Selected Papaisime 2372 ofLec-

ture Notes in Computer Scienc@ages 129-147. Springer-Verlag, 2002. URL =
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/pubfo.pl?id=39276.

W. Vanhoof, M. Bruynooghe, and M. Leuschel. Binding-time analysis for Mercury. sub-
mitted, 2003.

W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, edagic Program
Synthesis and Transformation. Proceedings of LOPSTRNTS 1463, pages 322-342,
Leuven, Belgium, July 1997.

144



