ASAP
(R IQYE IST-2001-38059

HS L Advanced Analysis and Specialization for
Pervasive Systems

Integrated Abstract Interpretation and
Online Specialization

Deliverable number: D4

Workpackage: Basic Specialization Techniques (WP3)

Preparation date: 1 November 2003

Due date: 1 May 2003

Classification: Public

Lead participant: Univ. of Southampton

Partners contributed: Univ. of Southampton, Tech. Univ. of Madrid (UPM), Roskilde
Univ

Project funded by the European Community under the “Information Society Tech-
nologies” (IST) Programme (1998-2002).

Short description:

In the first part of the deliverable, we present a theoretical framework that can be used to
extend existing logic program specialization methods, such as partial deduction and conjunctive
partial deduction, to make use of more refined abstract domains. It is also shown how this
framework opens up the way for new optimizations and enables a simpler correctness-proving
of specialization techniques. This part will appear in May 2004 in the ACM Transactions on
Programming Languages and Systems.

The second part describabstract specializatiomvhich is at the heart of the specialization
system inCiaoPP . We discuss its potential applications, which include program paralleliza-
tion, optimization of dynamic scheduling (concurrency), and integration of partial evaluation
techniques. This part is based on an invited talk at PEPM’03.

In the third part we present an abstract domain based on regular types for its usage in top-
down abstract interpretation and present a new widening which is more precise than those pre-
viously proposed while being efficient. This part is based on a paper presented at SAS. Also in
this part an abstract specialization algorithm using an abstract domain based on convex hulls is
described. The core algorithm is based on the framework described in the first part, propagating
both abstract calls and answers. This is based on a paper in LOPSTR’02.

In the fourth part we present some insights into using program specialization (with abstract
interpretation) as applied to inductive theorem proving and model checking, which will be of
importance when applying our technique to the tasks in workpackage 5 later in the project. This
part is based on an invited paper at LOPSTR’03.

The fifth part describes a new class of abstract domains which appears to be promising for
both online and offline specialization (and has already been applied in the BTA algorithm, see
part V of Db5). These domains are constructed from regular types, by converting the given types
into disjoint types. The resulting finite domain is condensing, which suggests more efficient
propagation of answers and calls.

Finally, the sixth part describes an algorithm which extends abstract interpretation by includ-
ing partial deduction capabilities. This allows improving both existing analysis and specialization
techniques.

Contents

I A Framework for the Integration of Partial Evaluation and Abstract

Interpretation of Logic Programs 7
1 Background 7
2 Basics of Partial Deduction 9
3 Partial Deduction and Program Analysis 14
3.1 Partial Deduction as Program Analysis 14.
3.2 Abstract Interpretation 15
3.3 Partial Deduction as Abstract Interpretation 16.
3.4 DISCUSSION o e e 21
4 Abstract Domains for Specialization 22
5 Abstract Unfolding and Resolution 24
6 Atomic Abstract Partial Deduction 31
6.1 Correctness of Atomic Abstract Partial Deduction 31
6.2 A Generic Procedure for Abstract Partial Deduction 33.
7 Conjunctive Abstract Partial Deduction 34
7.1 Generating Residual Code for Conjunctive Partial Deduction 35.
8 Generic Correctness Results 38
8.1 Correctness for Computed Answers e 38.
8.2 Preservation of Finite Failure45
9 Some Instances of Abstract Partial Deduction a7
9.1 Classical and Conjunctive Partial Deduction 47.
9.2 Ecological and Constrained Partial Deduction 48.
9.3 Partial Deductionusing Regular Types 48.
10 Propagating Success Information 51
11 More Related Work 54

12 Future Work and Conclusion 56
Il Abstract Specialization and its Applications 58
13 Background 58
13.1 An Overview of Specialization Techniques 59
13.2 Abstract Specialization through A Motivating Example 60
14 Abstract Interpretation 62
14.1 Goal-Dependentanalysis 63.
15 Abstract Executability 65
16 Abstract Multiple Specialization 66
16.1 AnalysisAnd-Or Graphs 67
16.2 Code Generation froman And—-OrGraph 69.
17 Program Parallelization 71
17.1 The Annotation Process and Run-time Tests 71 .
17.2 An Example: Matrix Multiplication 72
18 Optimisation of Dynamic Scheduling 74
18.1 Programs with Delaying Conditions 74
18.2 Simplifying Dynamic Scheduling. 75
18.3 Reordering Delaying Literals 76
18.4 Automating the Optimisation 78
19 Integration with Partial Evaluation 78
19.1 And-Or GraphsVs.SLDTrees. i i ii i 79
19.2 Partial Evaluation using And-Or Graphs 82
19.2.1 Global Control in Abstract Interpretation 83
19.2.2 Local Control in Abstract Interpretation 83
19.2.3 Abstract Domains and Widenings for Partial Evaluation 84.
19.3 Code Generation using Success Substitutions 85 .
20 Related Work 86
21 Conclusions 87

[l More Precise Yet Efficient Type Inference for Logic Programs 89

22 Background 89
23 Regular Types 90
24 Abstract Domain for Type Inference 92
25 Widenings 93
26 Structural Type Widening 96
27 Type Inference Analysis Results 101
28 Convex Hull Abstractions in Specialization of CLP Programs 103
28.1 AConstraintDomain 105
29 An Algorithm for Specialization with Constraints 108
29.1 Generationof Callsand Answers, 109
29.2 Approximation Using Convex Hulls and Widening 112
29.3 Generation of the Specialized Program 113.
29.4 Correctness of the Specialization 114.
30 Examples 116
31 Related Work 120
32 Final Remarks 121

IV Inductive Theorem Proving by Program Specialisation: Generating

proofs for ISABELLE uSing ECCE 123
33 Background 123
34 Infinite Model Checking by Program Specialisation 126
35 Specification of Petri nets inlSABELLE 127

36

37

38

39

40

41

42

43

44

45

Generatingl SABELLE theories usingecCEe

36.1 Generating Petri net specifications from logic programs
36.2 Generating specifications of the coverability graph from logic programs .

Proof Scripts

37.1 Rewriting e
37.2 Introduction and Elimination,
37.3 Automatic Reasoners
37.4 SCripts e e e e

Verifying ECCE
Automatic Generation of Hypotheses

Conclusion and Further Work

Abstract Domains Based on Regular Types
Background

Preliminaries

42.1 Tree Automataand Types o ittt
42.2 Deterministic and Non-deterministic Tree Automata
42.3 Operations on Finite Tree Automata

Analysis Based on Pre-Interpretations

43.1 Interpretations of the Core Semantics.
43.2 Abstract Interpretations L
43.3 Abstract Compilation of a Pre-Interpretation
43.4 Computation of the Least DomainModel

Deriving a Pre-Interpretation from Regular Types

Examples

45.1 Simple Lists
452 Simple Groundness e
45.3 Simple Lists with Groundness
45.4 Static, Dynamic and Non-variable Types for Binding Time Analysis

4

131
131.

1132

135
136
136
137
137

138
139

141

143
143

143

. 144

145.

147
148.
149

. 149

150

150

153
153
154
154
155

46

47

\Y

48

49

50

51

52

53

54

55

45.5 BTA types Combined with Program-specific Types
45.6 DetectingFailures,
45.7 Infinite-State Model Checking

Implementation and Complexity Issues

Related Work and Conclusions

Abstract Interpretation with Specialized Definitions

Introduction

48.1 Approximationvs. Execution.

Preliminaries

Specialized definitions

50.1 Equivalence of Definitions
50.2 TransformationRules
50.3 The Specialization Strategy

Abstract Interpretation with Specialized Definitions

51.1 CorreCctness e e

Termination

52.1 Termination in Abstract Interpretation
52.2 Termination in Program Specialization
52.3 Termination in the Integrated Framework

The Framework as a Specializer

System Description

54.1 LocalControl
54.2 GlobalControl
54.3 Instantiation w.r.t. Abstract Information
54.4 Code Generation,

A Running Example

......... 172

172

......... 172

56 Conclusions 183

Part |

A Framework for the Integration of Partial
Evaluation and Abstract Interpretation of
Logic Programs

Recently the relationship between abstract interpretation and program specialization has received
a lot of scrutiny, and the need has been identified to extend program specialization techniques
so to make use of more refined abstract domains and operators. This part of the document clari-
fies this relationship in the context of logic programming, by expressing program specialization
in terms of abstract interpretation. Based on this, a novel specialization framework, along with
generic correctness results for computed answers and finite failure under SLD-resolution, is de-
veloped.

This framework can be used to extend existing logic program specialization methods, such
as partial deduction and conjunctive partial deduction, to make use of more refined abstract
domains. Itis also shown how this opens up the way for new optimizations, as well as proving
correctness of new or existing specialization techniques in a simpler manner.

The framework has already been applied in the literature to develop and prove correct spe-
cialization algorithms using regular types, which in turn have been applied to the verification of
infinite state process algebras.

1 Background

Program specializatioraims at improving the overall performance of programs by perform-
ing source to source transformations. The central idea is to specialize a given source program
for a particular application domain, with the goal of obtaining a less general but more efficient
program. This is (mostly) done bywaell-automatedapplication of parts of the Burstall and
Darlington unfold/fold [19] transformation framework. Program specialization encompasses tra-
ditional compiler optimization techniques [163], suchcasstant foldingdi.e., the evaluation of
expressions whose arguments are constants)raliwing (i.e., the substitution of a procedure

call by the procedure’s body), but uses more aggressive transformations, yielding both (much)
greater speedups and more difficulty in controlling the transformation process. It is thus similar
in concept to, but in several ways stronger than highly optimizing compilers. A common ap-

7

proach, known apartial evaluationis to guide the transformation by partial knowledge about
the input. In the context of pure logic programs, partial evaluation is sometimes referred to as
partial deduction

Program analysis is about statically inferring information about dynamic program properties.
Abstract interpretatiorf35] was developed as a very general, formal framework for specifying
and validating program analyses. The main idea of using abstract interpretation for program
analysis is to interpret the programs to be analyzed over stosieact domain This is done in
such a way as to ensure termination of the abstract interpretation and to ensure that the so derived
results are aafe approximatiolof the programs’ concrete runtime behavior(s).

Abstract Interpretation vs. Program Specialization At first sightabstract interpretatiorand
program specializatiomight appear to be unrelated techniques: abstract interpretation focusses
on correct and precisanalysis, while the main goal of program specialization is to produce
moreefficient specialized codéor a given task at hand). Nonetheless, it is often felt that there

is a close relationship between abstract interpretation and program specialization and, recently,
there has been a lot of interest in the integration and interplay of these two techniques (see, e.g.,
[33, 184, 143, 102, 182, 192, 188, 74]).

From Partial Deduction to Abstract Partial Deduction In this paper we would like to make

the relationship between partial deduction and abstract interpretation more concrete, and pro-
vide a formal framework for integrating these two techniques. This will also pave the way for
new, much more powerful specialization (and analysis) techniques, e.g., by using more refined
abstract domains. Indeed, “classical”’ partial deduction turns out to be often too limited (see,
e.g., [66, 44, 143, 135] to name just a few) and a lot of extensions have been developed to rem-
edy its shortcomings (such as partial deduction with characteristic trees [60, 140], constrained
partial deduction [128], conjunctive partial deduction [129, 79, 42]). However, every time such
an extension is developed, correctness has to be re-established from scratch: a very tedious and
time-consuming process. By providing a very general framework, we want to reduce this work
to minimum (at the same time allowing more powerful extensions): when developing a new
instance of the framework one just has to prove some basic properties of the underlying ope-
rations and one can then re-apply the correctness results presented in this paper with minimal
effort. Finally, the framework also allows the tupling [24] and deforestation [215] capabilities of
conjunctive partial deduction to be added to abstract interpretation.

Overview After introducing the essence of partial deduction in Section 2, we investigate the
relationship between partial deduction and program analysis in Section 3. Then, we define the

8

notion of abstract domains in Section 4, we present in Section 5 the important concepts of abstract
unfolding and abstract resolution which will be at the heart of our framework. In Section 6 we
then show how these concepts can be used to develop atomic abstract partial deduction. In
Section 7 we then show how this can be extended to cover abstract conjunctions. In Section 8
we then formally prove our generic correctness results. In Section 9 we cast some existing
techniques into our framework. We show how success information propagation can be added
to our framework in Section 10. We conclude with a discussion of related and further work in
Sections 11 and 12.

This paper is based on the earlier conference paper [123].

2 Basics of Partial Deduction

In this section we present the technique of partial deduction, which originates from [111]. Other
introductions to partial deduction can be found in [112, 57, 125]. Note that, for clarity’s sake, we
deviate slightly from the original formulation of [152] and use the formulation from [127]. We
also restrict our attention to definite logic programs and the SLD procedural semantics.

In contrast to ordinary evaluation, partial evaluation is processing a given pragraiong
with only part of its input, called thestatic input The remaining part of the input, called the
dynamic inputwill only be known at some later point in time (which we calhtimg. Given
the static inputS, the partial evaluator then producespeecializedrersionPs of P which, when
given the dynamic inpub, produces the same output as the original progfanthe program
Ps is also called theesidual program

Partial evaluation [31, 106, 101, 161] has been applied to many programming languages: e.g.,
functional programming languages, logic programming languages, functional logic program-
ming languages, term rewriting systems, or imperative programming languages. In the context
of logic programming [4, 150], full input to a program consists of a goal? and evaluation
can be seen as constructing a complete SLD-tre@for{G}. For partial evaluation, the static
input takes the form of a go&!’ which is more general (i.e., less instantiated) than a typical goal
G at runtime. In contrast to other programming languages, one can still exBdoreG’ and
(try to) construct an SLD-tree faP U {G’}. So, at first sight, it seems that partial evaluation for
logic programs is almost trivial and just corresponds to ordinary evaluation. However(since
is not yet fully instantiated, the SLD-tree f&tU {G'} is usually infinite and ordinary evaluation
will not terminate. A technique which solves this problem is known under the narparvél
deduction Its general idea is to construct a finite number of finite, but possislympleteSLD
trees and to extract from these trees a new program that allows any instance of tté tgpdaed

9

executed.

Before formalizing the notion of partial deduction, we briefly recall some basics of logic
programming [4, 150]. Syntactically, programs are built from an alphabet of variables (as usual
in logic programming, variable names start with a capital), function symbols (including con-
stants) and predicate symbols. Terms are inductively defined over the variables and the function
symbols. Formulas of the form(¢, ..., t,) with p/n a predicate symbol of arity > 0 and
ty,...,t, terms are atoms. Aefinite clausés of the forma <— B where the head is an atom
and the bodyB is a conjunction of atoms. A formula of the formt B with B a conjunction
of atoms is alefinite goal Definite programsare sets composed of definite clauses. In analogy
with terminology from other programming languages, an atom in a clause body or in a goal is
sometimes referred to ascall. As we restrict our attention to definite clauses, programs, and
goals we will often drop the “definite” prefix and just refer to clauses, programs, and goals.

As detailed in [4, 150] aerivation stepselects an atom in a definite goal according to some
selection rule Using a program clause, it first renames apart the program clause to avoid variable
clashes and then computes a most general unifigd(between the selected atom and the clause
head and, if af€mgu exists, derives theesolvent a new definite goal. (We also say that the
selected atom igesolvedwith the program clause.) Now, we are ready to introduce our notion of
SLD-derivation. As common in works on partial deduction, it differs from the standard notion in
logic programming theory by allowing a derivation that ends in a nonempty goal where no atom
is selected.

Definition 2.1 Let P be a definite program ar@ a definite goal. ArSLD-derivatiorfor PU{G}
consists of a possibly infinite sequenGg = G, G, ...of goals, a sequencg,, (5, ...of
properly renamed clauses &1 a sequencé,, L, ... of selected atoms and a sequeficed-,
...of mgus such that each; ; is derived fromG; andC;,, using selected literal; andmgu

Ois1.

The initial goal of an SLD-derivation is also called theery. An SLD-derivation is a suc-
cessful derivation or refutation if it ends in the empty goal, a failing derivation if it ends in a goal
with a selected atom that does not unify with any properly renamed clause head, an incomplete
derivation if it ends in a nonempty goal without selected atom; if none of these, it is an infinite
derivation. In examples, to distinguish an incomplete derivation from a failing one, we will ex-
tend the sequence of a failing derivation with the ataih The totality of SLD-derivations form
a search space. One way to organize this search space is to structure it in an SLD-tree. The root
is the initial goal; the children of a (non-failing) node are the resolvents obtained by selecting
an atom and performing all possible derivation steps (a process that we ocatiftiéingof the

10

selected atom). Each branch of the tree represents an SLD-derivatitmviah tree is a tree
consisting of a single node —the root— without selected atom.
We now examine how specialized clauses can be extracted from SLD-derivations and trees.

Definition 2.2 Let P be a program(z =< (@ a goal,D a finite SLD-derivation ofP U {G}
ending in— B, andf the composition of thengus in the derivation steps. Then the formula
Q0 — B is called theresultantof D. Also, 6 restricted to the variables @) is called the
computed answer substitution (c.a.ef)D. If D is a refutation the® restricted to the variables
of () is also simply called aomputed answer

Note that the formul&)d <— B is a clause whef is a single atom, which will always be the
case for classical partial deductioGonjunctive partial deductiocf. Section 7) also allow§
to be a conjunction of several atoms. The relevant information to be extracted from an SLD-tree
is the set of resolvents and the set of atoms occurring in the literals at the non-failing leaves.

Definition 2.3 Let P be a prograny7 a goal, and- a finite SLD-tree foPU{G}. Let Dy, ..., D,
be the non-failing SLD-derivations associated with the branches ©hen theset of resultants
resultants(7), is the set whose elements are the resultant®,0f . ., D,, and theset of leaves
leaves(T), is the set of atoms occurring in the final goaldaf, . . ., D,,.

With the initial goal atomic, the extracted resultants are program clauses: the partial deduc-
tion of the atom.

Definition 2.4 Let P be a definite program4 an atom, and a finite non-trivial SLD-tree for
P U {< A}. Then the set of clausessultants(r) is called apartial deduction ofd in P. If A

is a finite set of atoms, thenpartial deduction of4 in P is the union of the sets obtained by
taking one partial deduction for each atomAn

In summary, the specialized program is extracted from SLD trees by constructing one spe-
cialized clause per non-failing branch. This can yield a more efficient progransjageresolu-
tion step with a specialized clause now corresponds to perforatiitige resolutions steps (using
original program clauses) on the associated branch. Also, failing branches have been completely
removed from the specialized program, which can lead to further efficiency improvements.

Example 2.5Let P be the following metainterpreter taken from [119], which counts resolution
steps:
solve([], Depth, Depth) «—

11

solve([mem (X, L)], D, R)

clause(mem(X, L), B), solve(B, s(D), I), solve(]], I, R)

|

clause(mem(X, L), B), solve(B, s(D), R)

™

solve(|],s(D), R) solve([mem(X,T'], s(D), R)

L

Figure 1: Incomplete SLD-tree for Example 2.5

solve([Head|T'ail], DSoFar, Res) « clause(Head, Bdy),
solve(Bdy, s(DSoFar), IntD), solve(Tail, IntD, Res)
clause(mem (X, [X|T)),[]) <
clause(mem (X, [Y|T]), [mem(X,T)]) «
clause(app([], L, L), []) <
Clause(app([HlX} [HI|Z]), [app(X,Y, Z)]) <
Figure 1 represents an incomplete SLD-trder P U {«— solve(mem(X, L), D, R)}. This tree
has two non-failing branches amesultants(7) thus contains the two clauses:

solve(mem (X, [X|L]), D, s(D)) <
solve(mem (X, [Y|L]), D, R) < solve(mem(X, L), s(D), R)

These two clauses are a partial deductiomef { solve(mem (X, L), D, R)} in P. Note that
the complete SLD-tree faP U {« solve(mem (X, L), D, R)} is infinite.

Observe how one resolution step in the partial deduction corresponds to three to four reso-
lution steps in the original program. This results in the specialized program being substantially
faster than the original one. E.g., on a typical Prolog system and for typical runtime queries the
specialized program is more than three times faster than the original.

In analogy with terminology in partial evaluation, the partial deductiomdh P is also
referred to as theesidual clause®f A and the partial deduction ofl in P as theresidual
program

1E.g., 3.4 times faster on Sicstus Prolog 3.8.7 running on a Powerbook G4 667 Mhz with 1 Gb RAM and Mac
0S X 10.1.4.

12

The intuition underlying partial deduction is that a progr&htan be replaced by a partial
deduction of4 in P and that both programs asguivalentwith respect to queries which are
constructed from instances of atoms4n Almost all works on partial deduction aim at preserv-
ing the procedural equivalence under SLD (and SLDNF). Before defining the extra conditions
required to ensure it, we introduce a few more concepts:

Definition 2.6 Let A, A,, As be three atoms, such thdt = A,0, and A; = A6, for some
substitutions); andd,. ThenA; is called acommon instancef A; andA,. Let A be a finite set
of atoms andS a set containing atoms, conjunctions, and clauses. PhisnAd-closediff each

atom inS' is an instance of an atom iA. Furthermore we say tha is independeniff no pair

of atoms inA has a common instance.

The main result of [152] about procedural equivalence can be formulated as follows:

Theorem 2.7
Let P be a definite program4 a finite, independent set of atoms, afda partial deduction
of Ain P. For every goalz such thatP’ U {G} is .A-closed the following holds:

1. P’ U{G} has an SLD-refutation with computed answeff P U {G} does.

2. P'U{G} has afinitely failed SLD-tree iff> U {G} does.

The theorem states th&t and P’ are procedurally equivalent with respect to the existence
of success-nodes and associated answersifolosed goals. The fact that partial deduction
preserves equivalence only fot-closed goals distinguishes it from e.g. unfold/fold program
transformations which aim at preserving equivalence for all goals. Note that the theorem does
not tell us how to obtaind, an issue which is tackled by tle®ntrol of partial deduction (see,
e.g., [127]).

In Example 2.5, we have that the partial deduction of thedset{ solve(mem (X, L), D, R)}
in P satisfies the conditions of Theorem 2.7 for the gealssolve(mem (X, [a]),0, R) and «
solve(mem(a, [X,Y]), s(0), R) but not for the goak— solve(app([],[], L),0, R). Indeed, the
latter goal succeeds in the original program but fails in the specialised one. Intuitively{it-}
is not.A-closed, then an SLD-derivation éf U {G} may select a literal for which no clauses
exist in P’ while clauses did exist i*. Hence, a query may fail while it succeeds in the original
program.

If A is not independent then a selected atom may be resolved with clauses originating from
the partial deduction of two distinct atoms. This may lead to computed answers that, although
correct, are not computed answers of the original program. However, this can be easily remedied

13

by arenamingtransformation, generating new predicate names for atoms which are not inde-
pendent [6]. To improve the efficiency of specialised programs, all partial deduction systems
we know of, perform renaming together with so-calfgring [59, 60, 145, 177], which filters

out constants and function symbols. E.g., for our Example 2.5, a filtered partial deductibn of

in P would be something like the following, which delivers an additional speedup of over 1.5
compared to the partial deduction in Example 2.5:

solve_1(X,[X|L], D, s(D)) «
solve_1(X,[Y|L], D, R) « solve_1(X, L, s(D), R)

In practice it is thus thel-closedness condition which is the most important one. Itis also this
condition which best illustrates the link between partial deduction and program analysis. Indeed,
as we will show in the next section, thé-closedness condition for the residual progr&mn
Theorem 2.7 ensures thagetherthe SLD-trees, from which the clausesithare derived, form
acomplete descriptionf all possible calls that can occur for all goélsvhich areA-closed.

3 Partial Deduction and Program Analysis

Below we denote bg® the power-set of some s6t by Clauses the set of all clauses, bytoms
the set of all atoms, and by the set of all conjunctions.

3.1 Partial Deduction as Program Analysis

In the context of a logic progran® there are plenty of program properties that are of interest,
such as, e.g., the logical consequences’ddr the computed answers éf. The following
property is a key concept in termination analysis [41] and will be of interest in relating partial
deduction and program analysis.

Definition 3.1 For a programP and a conjunctiorf) the call setof P U {<— @}, denoted by
calls(P, @), is the set of selected atoms within all possible complete SLD-tred3 fof — Q}.

We have seen in the previous section that thelosedness condition ensures correctness
of the specialised program and the condition must thus ensure that all possible calls that can
occur when running the specialised program have been taken into account by partial deduction.
It is thus to be expected that some relationship between partial deduction and call sets can be
established. The following proposition shows that under certain circumstances, the result of a
partial deduction can indeed be viewed as a program analysis inferring information about various
call sets.

14

Proposition 3.2Let P be a definite program and a conjunction. Lei4 be a finite set of atoms,
and P’ a partial deduction ofd in P such that”’ U {< @} is A-closed. If the SLD-trees whose
resultants make up’ are such that every SLD-tree has a depth of 1, i.e., every tree contains just
a single unfolding step, then the following holdsils(P, Q) C {A0 | A € A}.

In the above proposition we have restricted ourselves to very simple SLD-trees, containing
exactly one unfolding step. In fact, if one allows more than one unfolding step, then the rela-
tionship betweem and the call set becomes more complicated, detracting from the point we are
trying to make? Below we will describe a procedure which, givéhand Q, will construct.A
and P’ such thatP’ U {< Q} is A-closed.

Let us first illustrate Proposition 3.2 using an example.

Example 3.3Let P be the following program:
mem (X, [X|L]) —
mem (X, [Y|L]) < mem(X, L)

The partial deductio®’ of A = {mem(a, L)}, which we obtain by performing just a single
unfolding step forP U {< mem/(a, L)}, is as follows:

mem(a, [a|L]) <
mem(a, [Y|L]) < mem(a, L)

Note thatP’ U {<— mem/(a, L)#} is A-closed for any substitutiof. As stated by Proposi-
tion 3.2, for any substitutiof, all elements otalls(P, mem(a, L)0) are instances of an element
of A. Partial deduction has thus “deduced” structural information about the call set: all calls to
mem have the constant 'a’ in the first argument position.

Having identified one relationship between partial deduction and program analysis, we will
now formalize this process more precisely in the abstract interpretation framework. This will
clarify their relationship and pave way to an integration of abstract interpretation and partial
deduction.

3.2 Abstract Interpretation

Abstract interpretation [35] provides a general formal framework for performing sound program
analysis and has been successfully applied to the analysis of logic programs [36, 14, 91]. To

2Basically.4 then only contains information about calls at certain “program points” and infers information about
the calls on successful branches only, rather than about any call.

15

make program analysis tractable, abstract interpretation distinguishes between a concrete do-
main C of program properties and abstract domainAD of properties. The latter contains
finite, approximate representations of (sets of) concrete properties. The concrete properties are
used by a semantic functiosen which assigns to every prografm and a set of calfss its
(concrete) semanticgm (P, S) € 2¢. The abstract domain is linked to the concrete domain via
aconcretization functiony : AD — 2¢, which assigns to each abstract property the (possibly in-
finite) set of concrete properties it represents. Program analysis is then performed by abstractly
executing a progran® to be analyzed in the abstract domain rather than in the concrete one.
For this, abstract counterparts of the concrete operatio#slave to be developed. These ab-
stract operations have to besafe approximationin the sense that for every concrete operation
op : 2¢ — 2€, the corresponding abstract operatign, : AD — AD must satisfyy(op,(A)) D
op(+(A)).

Under certain conditions (see [35, 36]) the overall restit sem (P, A) of the abstract ex-
ecution of P for some abstract input valué is then also a safe approximation of the concrete
properties of the program, in the sense that:

v(abs_sem(P, A)) 2 sem(P,v(A))

3.3 Partial Deduction as Abstract Interpretation

Proposition 3.2 shows that we can view the set of (concrete) atdraga partial deduction
also as an abstract program property, approximating the cath8et If we try to view this in
abstract interpretation terms, we would have to ch@bseQ as concrete domain andiD = 29
as abstract domain. The proposition also suggests a concretization fupgtiatefined by

Yinst(S) = {A0 | A € S A 0 is a substitutioh

Thusv.:({p(X, X)}) contains, e.g.p(a,a), p(b,b), p(X, X), but notp(a,b). An atom in the

abstract domain thus represents all its instances in the concrete domain (and thus also itself).
Observe that i’ U {« @} is .A-closed then so i$’" U {< @0} for any substitutiord. We

can thus obtain an instance of our equationbs_sem(P, A)) O sem(P,~v(A)) above, by using

A ={Q}, sem(P,Qs) = Ugcqs calls(P, Q'), and by substitutingbs_sem(P, A) = A, yielding

the equation:

Vinst (A) 2 U calls(P, Q")
Q' €vinst({Q})

3Programs are usually analyzed for a set of calls rather than for an individual call. Also, sometimes the semantics
function is goal-independent and assigns every progPate concrete semanticem (P).

16

In other words, the sefl of atoms of a partial deduction is a safe approximation of the call set,
provided single unfolding steps are used &hd{<— Q} is .A-closed.

Controlling Partial Deduction

Can we also cast the process of constructihgn an abstract interpretation manner, i.e., as
executing abstract counterparts of concrete operations? To answer this question we first present
more details on how partial deduction is actually controlled.

We first need the following definition.

Definition 3.4 An unfolding ruleis a function which, given a prograi® and a conjunctior),
returns the resultantgsultants(7) of a finite, non-trivial SLD-tree- for P U {< Q}.

We also define the operatiaplit : 22 — 24 py

Next, the operatiomesolve : Clauses x Q — 29 resolves a clause with a conjunction and
is defined by

T@SOZU@(C,Al /\/\An) :{Al /\---Ai—l /\BQ/\AH_l/\An |
0 = mgu(H, A;) andH < B is a renamed apart version ©f}

The following is a typical way (see, e.g., [55, 57, 127]) of controlling classical partial deduc-
tion [152].

Procedure 1 (Classical Partial Deduction)
Input: A programP and a conjunctioid)
Output: A specialised progran?’ and a set of atomd; such that?’ U {< Q} is A;-closed.
Initialize: i =0, Ay = split(Q)
repeat
let R, :=={R | R € resolve(C, A)N A € A; N C € unfold(P, A)};
let Vi :== {N | N € split(Ri)A N & Yinst (Ai) };
let A;, 1 := generalize(A; UN;); leti:=i+ 1;
until A4;,_1 = A,
Let P’ = U, unfold(A)

17

The procedure is parametrized by two operations: an unfoldinguni@d (Definition 3.4)
and a generalization operatiganeralize. The former is usually referred to as the local control
while the latter embodies the so-called global control, and must satistygeneralize(S)) 2
vinst(S). This guarantees that if the procedure terminates, ten {<— @} is .4;-closed.
generalize is usually devised such that Procedure 1 terminates (cf, [127]), and can then be seen
as a widening operator in the abstract interpretation sense. More on that below.

The use of thesplit operation embodies the fact that classical partial deduction specializes
individual atoms and not conjunctions.

Fixpoints

Before formally defining our concrete semantics, we need the following concepts.

LetT be a mappin@” — 27, for someD. We then defingd” 1° (S) = S andT 17! (S) =
T(T 1° (S)). We also defind” 1 (S) = U, T 1° (5).

By the well known Knaster-Tarski fixpoint theorem we know thdf'its monotonic { C J
= T(I) C T(J)) thenT has a least fixpoint. Another well known fact is thafifis continuous
(i.e., T is monotonic and for every sequenkeC I; C ... we havel (U,,«,, 1) € Up<o T(1))
thenT 1« (0) is its least fixpoint. Furthermore, it is also easy to see (by applying the above to
Ts(I)=T(I)uS)thatT 1¢ (S) will be the least fixpoint containing.

Concrete Semantics

We can now formalize our concrete semantics, the call set from Definition 3.1, in terms of a least
fixpoint of a concrete operatdt, : 22 — 2< defined by

Rp(S)=5SU |J resole(C,Q)

QESNCEP

Rp is monotonic and continuous arft}> ¢ thus computes least fixpoints. The least fixpoint
Rp 1% (Q) of this operator does not yet give us the call @8ts(P, Q)); it computes all possible
subgoals forP U {< @}, not the selected atoms within the subgoals. To extract the selected
atoms we can use thelit operation introduced above, and we can express the call set in terms
of Rp as follows: calls(P, Q) = split(Rp 1¥ ({Q})).

18

Abstract semantics

We will now try to reformulate Procedure 1 as computing a fixpoint of an abstract versign. of
Let us first define the following abstract operafess : 2410ms — 24tms defined by
RH(S)=SU U resolve(C, A)
AeS A Ceunfold(P,A)

First, we would like to show thaR% is a sound approximation dkp and that a fixpoint
of R} safely approximates the least fixpoint Bf-. It is straightforward to show (e.g., using
Lemma 4.12 from [152]) that in the above definition and for single step unfolding, we can re-
place the conditiorC' € unfold(P, A) simply by C € P. Thus R¢% is actually identical to
Rp. However, we have to be careful &% works on the abstract domain, where every con-
junction represents all its instances. Thus, it does not immediately followApat a safe
approximation of Rp. To establish this, let us look at a single concrete resolution step per-
formed byresolve(C, A). As usual in abstract interpretation, we lift this concrete operation to
sets of atoms:resolve™(C,S) = {resolve(C, A) | A € S}. The abstract counterpart iR
is simply resolve,(C, A) = resolve(C, A), which is a sound approximation otsolve, i.e.,
Yinst(resolve,(C A)) D resolve™ (C,vimsi(A)). This is a corollary of Proposition 5.6 later in the
paper. We have thus that

Rp(Yinst(A)) € Yinst(Rp(A))

In other words % is a safe approximation @tp. Observe that, in general, we do not have equal-
ity betweeny,,,s; (resolve, (C, A)) andresolve™ (C, vinst (A)). Take, for examplel = p — ¢(X)
andA = p, and we havey(a) € s (resolve,(p — q(X),p)) while resolve™ (C, yinst(A)) =
{g(X)}.

In addition toR¢%, Procedure 1 also applies the operatigaseralize and split. The former
has the propertyy;.s;(generalize(S)) 2O v (S) but unfortunately, it is generally not the case
that~y,s: (split(S)) 2 Vinst(S). E.Q.,Yinst ({p(a), q(a)}) 2 vinst ({p(a) A g(a)}). In other words,
we cannot viewsplit as a generalization operator wi},,;, and the outpud; of Procedure 1 is
not a safe approximation of the least fixpoint/os.

To remedy this problem we have to use a different concretization fungfjonwhich ac-
knowledges the fact that conjunctions can be split up and which is defined by

For~/) .., split is a generalization operation;, ., (split(S)) 2 74 (S), and so igjeneralize:
oo (generalize(S)) 2 i (S). Also, the conditionV ¢ ~;,s(.A;) obviously does not affect
the concretizations afl;. This means that termination of Procedure 1 implies thais a se-
mantic fixpoint wrtv,, ., in the sense thaty), ,(A;) = v, (R%(A;)). Even when not using

19

Procedure 1,A-closedness of”’ in Theorem 2.7 ensures that is a semantic fixpoint oRR%:
Vinst (A) = Vinst (RB(A)).

Also, if an operation is a safe approximation wyt,; then it is also a safe approximation wrt
o - We have thus that

Rp(Vinst(A)) € Vinst (B (A))

In other words,R% is a safe approximation aRp wrt ~/, .., and one can establish using the
abstract interpretation framework that a fixpoint/sf safely approximates the least fixpoint of
Rp wrtyj,,.

From this we can thus conclude thétclosedeness o’ U{« @} in Proposition 3.2 ensures
that Rp 1“ (74...({@})) C 4. (A). As split is monotonic wrty), ., we can formally deduce
Proposition 3.2 as followscalls(P, Q) C calls(P, 5., ({Q})) = split(Rp 1% (74 ({@}))) C
SpLit (Vi (A)) = Yinst (A) = {A0 | A € A}

In summary, we have re-formulated partial deduction as a particular abstract interpretation,
where

— the abstract domain is simply the powerset of the concrete domain,
— the concretisation function simply instantiates variables,

— the concrete semantics is based on SLD resolution,

— and where we have used this to formally prove Proposition 3.2.

Extension to Conjunctive Partial Deduction

Having recast the program analysis aspect of classical partial deduction as a safe abstract inter-
pretation, it is actually not very difficult to extend this result to conjunctive partial deduction:
the only* modification to Procedure 1 is that instead of usipgt we use a partitioning func-
tion (cf., [42]) partition satisfyingv, ., (partition(S)) D vi .. (S). Whereassplit always splits
conjunctions into its individual atomsgartition does not have to do so. For example, while
split({q(X) Ap(X) Ar(Z2)}) ={p(X), q¢(X),r(Z)} we could havepartition({q(X) A p(X) A
r(2)}) = {p(X) A g(X),7(2)}.

The resultA4; of the thus adapted conjunctive partial deduction Procedure 1 still safely ap-
proximates the least fixpoint dtp wrt 7, ., but we no longer haveplit(v,..,(A;)) = Vinst (Ai)
as.A; now may contain conjunctions.

40One actually also has to extend Definition 2.4 to perform a renaming from conjunctions in heads of resultants
to atoms.

20

3.4 Discussion

Having established a strong relationship between partial deduction and abstract interpretation,
what sets partial deduction apart from abstract interpretation in general? The major difference is
linked to the use of the unfolding rute:fold within R% (see also [182, 192]):

e First, unless we use a simple one-step unfolding rule, this hides certain program points
from the analysis. These program points are not relevant from the point of view of partial
deduction, as they disappear within the residual program.

e Second, viaunfold partial deduction constructs residual code. While the analysis compo-
nent of partial deduction is a safe approximation of the call set, the requirements for the
residual code are stronger: it must teally correct As we have seen in Theorem 2.7
the residual code preservegactlythe computed answers (no over-approximation) and
the finite failures. This is something that the abstract interpretation framework does not
provide.

Thus, not all of partial deduction can be cast in an abstract interpretation framework. Apart
from those fundamental differences, there are further aspects that distinguish partial deduction
from techniques commonly used to perform abstract interpretation of logic programs.

e Partial deduction can make use of conjunctions [42] with relatively little effort. This can be
used to achieve optimizations such as tupling and deforestation, and can increase precision
by analyzing calls together, rather than in isolation. Logic program analysis techniques
typically do not analyze conjunctions, but analyze atoms in isolation (but have mechanisms
of propagating some information from one call to another). However, there are exceptions
such as [10] and to some extent also [155].

e The abstract domain of partial deduction is fixed and does not allow for very precise gen-
eralisation; e.g., the most specific generalisation possibjgofandp(b) is p(X). To
our knowledge, only one other abstract interpretation technique [154, 155] uses the same
abstract domain. The abstract domain has the advantage of being close to the concrete
domain, and we can obtain very precise results as long as we do not need generalisation
(in the absence of existential variables abstract execution will be identical to concrete exe-
cution).

¢ In abstract interpretation of logic programs one distinguishes between bottom-up methods,
based on approximating goal-independent, declarative semantics (usuatly model

21

based) and top-down methods based on abstracting a goal dependent, top-down semantics
(operational semantics or denotational).

Partial deduction uses the SLD procedural semantics as its basis (embodiedRyijhin

and is thus top-down. However, the use of the SLD procedural semantics is rather atypi-

cal. This makes it easier to generate residual code, but makes it difficult or impossible to

analyse certain other properties. Notably, no real information about the answers is derived
(just about the call set). Very few abstract interpretation techniques use the SLD procedu-
ral semantics as its basis (exceptions are, e.g., [107] and [29]). A more popular semantics
for top-down abstract interpretation is based on And-Or trees [14, 91, 97, 167, 115], where

it is easier to capture and propagate success information.

The various limitations of partial deduction have been realized by many researchers (e.g.,
[43, 66, 44, 184, 117, 138, 143, 182, 192]), and various extensions of partial deduction have
been developed over the years (e.g., [60, 128, 143, 140, 74]) which overcome this particular
limitation.

We have made the link of existing partial deduction techniques to abstract interpretation
clearer, and will use this as the basis of extending partial deduction and conjunctive partial de-
duction to new abstract domains. We will then provide generic correctness results for this new
setting of abstract partial deduction, and also illustrate the power of this new approach on practi-
cal examples.

4 Abstract Domains for Specialization

In this short section we introduce the concept of abstract domains as required for our framework.
First, we need the following definitions. Agxpressions either a term, an atom or a conjunction

of atoms. We usé’; < E, to denote that the expressi@n is an instance of the expressiaa.

By vars(E) we denote the set of variables appearing in an expregsiddy mgu we denote a
(deterministic) function which computes an idempotent and relévaost general unifief of

two expressiong’; and F, (and returnga:l if no such unifier exists).

As above, we denote [the set of all conjunctions. As we have seen, even when performing
classical partial deductions on atoms only, conjunctions will still appear, e.g., in the leaves of the
SLD-trees produced by the unfolding rules. This justifies why our concrete domain for abstract
partial deduction talks about conjunctions rather than atoms.

°l.e.,00 = 0 andvars(0) C vars(E1) U vars(E2). There can be several most general unifiers which satisfy that
criterion; the particular choice is, however, not important.

22

For Q we assume that the connectivds associative but not commutative nor idempotent.
In other words, for us a conjunction can also be viewed as a list of atoms, but not as a set or
multi-set of atoms. This assumption is of relevance mainly for Section 7, where we deal with
code generation for conjunctive (abstract) partial deduction.

Definition 4.1 An abstract domairf.AQ,) is a pair consisting of a setQ of so-calledabstract
conjunctionsand a totakoncretization function : AQ — 29, providing the link between the
abstract and the concrete domain, such thate AQ the following hold:

1. VQ € v(A) we have{Q¥0 | 6 is a substitutior} C ~v(A),

2. 3Q € 9 such thaty(A) C {Q0 | 0 is a substitution}.

Property 1 expresses the requirement that the imagé pis downwards closedTlhis means
that certain properties, such as) freeness (e.g., [166] cannot be captured, but downwards closede-
ness is required for our correctness proofs.

Property 2 expresses the fact that all conjunctions(iA) have the same number of con-
juncts and with the same predicates at the same position. This property is crucial to enable the
construction of (correct) residual code. A conjuncti@rsatisfying property 2 is called @on-
crete dominatoof A. An abstract conjunction such that its concrete dominators are all atoms is
called anabstract atom

Observe that property 2 still admits the possibility of a bottom elemewhose concretisa-
tion is empty.

One particular abstract domain, which arises in the formalization of (classical) partial deduc-
tion [152] and which we have encountered in Section 3.3, i$Pedomain defined as follows.

Definition 4.2 The PD-domain is the abstract domaji@, v;,s;) wherey,,,; is defined by:
’Yinst(@) = {Q/ | Ql = Q}

In other words, we havelQ = Q (i.e. the abstract conjunctions are the concrete ones)
and an abstract conjunction denotes the set of all its instances. For example, we can use the
(concrete) conjunctiop(X) A ¢(X) as an abstract conjunction in tflRD-domain withp(a) A
q(a) € Yinst(P(X) A q(X)) as well ap(X) A ¢(X) € Yinst (P(X) A ¢(X)), butp(a) A q(b) &

Yinst (D(X) A q(X)).

Using the concrete conjunctions as abstract conjunctions is potentially confusing, which has
probably obfuscated the relationship between partial deduction and abstract interpretation in the
past.

23

5 Abstract Unfolding and Resolution

Let us now try to remove one limitation of classical partial deduction in general and Procedure 1
in particular: its limitation to thé®D-domain. We will tackle the extension to conjunctive partial
deduction later in Section 7, although in the exposition below we will (whenever there is no harm
to clarity) keep the definitions as general as possible so as to simplify the move to conjunctive
partial deduction.

The result ofresolve(C, A) in Procedure 1 is actually the body of the resultdngenerated
by unfold for P U {< A}. Now, a subtle, but important point is that the body of a resultant is
thus used in two different ways: First, it is obviously part of the residual code. Second, it is used
as an abstract conjunctions in th&-domain, representing all possible resolvents. In summary,
the body of a resultant is not only used asancrete conjunctionvithin the residual code, it
is also used as aabstractconjunction for a program analysis of the call set (to ensure that all
possible calls are covered by the residual code).

In the more general setting we endeavor to develop, these two roles of the bodies of resultants
have to be separated out (the residual program still has to be expressed in the concrete domain
but we want to be able to use abstract domains different frorPfelomain). This has already
been prepared within Procedure 1 by using the two functierigld andresolve. All we have to
do now, is to generalize these two functions. In other words, if we want to specialize an abstract
atomA within a programp:

1. we have to compute a set of resultants, to be denoted:bfpld (P, A) which have to be
“totally correct” for all possible calls in(A), ensuring that no computed answers will be
lost or added within the specialised program (we will make this more precise below).

2. we have to compute, for each resultantin aunfold(P, A) anabstractconjunctionA;,
to be denoted byiresolve(C;, A), safely approximating all the possible resolvent goals
which can occur after resolving an element9fA) with C'.

We will call step 1abstract unfoldingand step 2abstract resolutionand will formally define
these concepts in Definitions 5.3 and 5.4 below. For this we need a few auxiliary concepts.
First, we want to be able to formally define when the resultants producedfyld(P, A)
for a particular abstract conjunctioh are correct, independently of how the rest of the spe-
cialised program looks like. In other words, we want a local correctness criterion, just consid-
ering the resultants generated f&r The problem is that these resultants are incomplete; they
will typically refer to other predicates defined somewhere else in the final specialised program
P’ and we cannot execute the resultamisfold(P, A) in isolation. We can, however, perform

24

single resolution steps on these resultants. Suppose, e.g—thak') resolves with a resultant
p(Z) «— q(Z) € aunfold(P, A) giving us the resolvent- ¢(Z) and themgué = {X/Z}. We
cannot viewd as a computed answer substitution frJ {«— p(X)}, but we can view the pair
(q(Z),0) as aconditional answefor P’ U {— p(X)}: if we manage to find a computed answer
substitutiory for P’ U {« ¢(Z)} thenfo restricted to the variabl& will be a computed answer
substitution forP’ U {« p(X)}.

So, in order to reason about correctness of resultants individually, we need to show that the
conditional answers obtained usingnfold(P, A) can be put into a one-to-one correspondence
with conditional answers of the original program. To be able to express this formally, we now
define the concept a@onditional answeras obtained from possibly incomplete SLD-trees in the
original program and from resultants.

Definition 5.1 (~,, ~z) Let P be a program and@ a conjunction. Given an SLD-treefor
PU{— Q} we denote by) ~, (L,) the fact that a leaf goat- L of can be reached frof
via c.a.sf. (L, 0) is also called @onditional computed answéor Q) in P.

Given a resultant? and a conjunctior) we denote by ~r (L,0) the fact thaty =
0" lvars@), L = B wheret’ = mgu(Q,H), H «— B is some variant of? which has no
variables in common witk), and¢’ | ,..so) denotes the restriction df to the variables ir).

If @ and the head oR are atoms) ~x (L, 0) is equivalent to saying that- @) resolves
with the clauseR via c.a.s.f yielding «— L as resolvent. For examplg(.X,b) ~,a,2)—q(2)
(q(b),{X/a}). The above definition can also be applie@ifs a conjunction and is a resultant
which is not a clause. Take for example= p;(a) Apa(Z) «— q(Z) andQ = p1(X) Apa(b). We
then obtain® ~x (q(b),{X/a}). This will be of relevance mainly when we consider conjunc-
tive partial deduction later on. Intuitively this treatment does not introduce a new computation
paradigm; it just corresponds to renaming conjunctions into atoms and general resultants into
Horn clauses and then applying ordinary resolution. In the above example, if we réhante
Q' = p'(X,b) andR into R’ = p'(a,Z) «— q(Z) we obtain the same partial computed answer
Q" ~r (q(b), {X/a}).

Observe thaf) ~. (L, §) implies that3R € resultants(7) such that) ~x (L,).

In order to define correctness criteria, we have to reason about equivalence of conditional
computed answers and computed answer substitutions in the original program and in the residual
program. However, substitutions (and renaming substitutions) within SLD-trees are notoriously
difficult to handle (see [109] or [47]), and proving identity of computed answer substitutions is
often very tricky or impossible to achieve. To avoid these technical problems we introduce the
following notion, characterizing when two conditional computed answers are equivalent (in the
context of a particular god)).

25

Definition 5.2 (~p) Given three conjunctiong, L, L' and two substitutions, §’ we say that
(L,0) =q (L',0') iff Q0 — Lisavariant ofQ¢’ «— L'.

For example, we havéy(Z), {X/Z}) ~yx) (a(V). {X/V,Z/V}) asp(Z) « q(Z) is a
variant ofp(V') « ¢(V).
We can now formalize the notion of abstract unfolding and resolution.

Definition 5.3 Let (Q, v) be an abstract domain. Aabstract unfoldingoperationaunfold for a
programP and(Q, v) maps abstract conjunctions to finite sets of resultants and has the property
that for allA € AQ and@ € ~(A) there exists a non-trivial SLD-treefor P U {< @} such
that:

Q~rs1 = 3C; € aunfold(P,A) | Q ~¢, sa N\ 517 S2 ()

Q~c; sa N C; € aunfold(P,A) = 3s1|Q~rs1 A 510 S2 (2)

Point 1 requests that the code generateddfold is completan the sense that every condi-
tional computed answey; can be reproduced by at least one of the resultanisitfold (P, A).
Point 2 additionally requestbundnesgas we want to have residual code whickoally correct
and not just a safe approximation), in the sense that every conditional computed ansaer
be achieved within the original program as well. Together, Points 1 and 2, thus express that there
must be ane-to-one correspondenbetween conditional computed answers in the original pro-
gram and the resultantainfold(P, A). Some of these points are illustrated in Figure 2 below
(wheres; = (L, 6) ands, = (L', 0")).

An SLD-treer for PU {— @} ResolvingQ@ with aunfold(P, A) ={C4,...,Cy}

S A
/\ ey \ c/ é\cn
l &

— L =L

(L,0) ~q (L',0)

Figure 2: One-to-one correspondence of conditional computed answers for abstract unfolding

Definition 5.4 Let (Q,) be an abstract domain. Aabstract resolutioroperationaresolve for
(Q,~) maps abstract conjunctions and concrete resultants to abstract conjunctions such that for
all A € A9, C; € aunfold(P,A), and@ € vy(A):

Q~c, (L0 = L' e€~(aresolve(A,C;)) (3)

26

Point 3 requires thad; = aresolve(A, C;) is a safe approximation of the possible resolvents
of C;, in the sense that every possible resolvenbof ~(A) with C; is a concretisation of\;
(but not necessarily vice-versa).

Unless explicitly stating otherwise, we suppose that the abstract unfoldinf@g/d and ab-
stract resolution operatorsesolve, along with the abstract domai®,), are fixed.

How to construct abstract unfoldings

aresolve is thus basically a safe approximation of a resolution step, and we can thus develop
aresolve by reusing abstract interpretation techniques. We will thus not discuss this issue in
much detail here, but refer the reader to the abstract interpretation literature.

The development of a correct abstract unfolding operation is another issue, and is not some-
thing that can be found within the abstract interpretation literature.

Note that the definition ofiunfold does not stipulate how the resultants are to be obtained;
it just describes how a “correct” set of resultants should look like. In particular, in contrast to
classical partial deduction, the resultantsxdbnecessarily have to be extracted from SLD-trees.

In classical partial deduction, we hawenfold(P, A) = resultants(7’) wherer’ is an SLD-tree

for PU {< A}, and the conditions of Definition 5.3 are thus trivially met (we have to choose as
T for P U {«— @} and “adapted” version af where some branches may be remove@as an
instance ofA).

Many unfolding techniques have been developed in the context of classical partial deduction.
Issues for concern are [127]: termination (i.e., building finite SLD-trees), achieving good spe-
cialization and avoiding slowdowns. To ensure termination, well-founded measures [16, 156]
and well-quasi-orders can be used [198, 8]. The well-quasi orders based on the homeomorphic
embedding relation [203, 122] have recently been very popular. To avoid slowdowns, determi-
nacy [60, 55], only selecting atoms that unify with a single clause head, has been successful. The
strategy can be refined with a so-called “look-ahead” to detect failure at a deeper level. We refer
the interested reader to [127] for a recent survey of these techniques.

For abstract partial deduction, we can always do a similar thing: gh/@mose a concrete
dominatorA of A (cf., Point 2 of Definition 4.1), construct an SLD-tredor P U {«— A} and
simply setaunfold(P, A) = resultants(7). This always satisfies Definition 5.3. The following
example illustrates this on tlf¢D-domain.

Example 5.5Let P be the following program checking equality of lists:

eq([,[)) —
eq([H]X], [H]Y]) — eq(X,Y)

27

Let A = eq([a|T], Z) in the PD-domain and letr be the SLD-tree depicted in Figure 3 for
PU{« eq([a|T], Z)} (i.e., we useA as a concrete dominator of itself). Let us perform abstract
unfolding in a classical manner, by taking the resultants: of

— aunfold(P, A) = resultants(t) = {C }, whereC; = eq([a| X], [a]Y]) < eq(X,Y),

— aresolve(A,Ch) = eq(X,Y)
These two definitions satisfy all points of Definitions 5.3 and 5.44or For example, let us
examine the 2 concretisations = eq([al, [b]) € Vinst(A)and Ay = eq([a,b],Y) € vinst(A) Of
A. Figure 3 shows that for each of those we can construct SLD-trees which satisfy Definition 5.3.
For example A, has a failed SLD-tree and, does not unify with the heael([a| X], [a|Y]) of
C, either. We thus trivially have the required one-to-one correspondence of conditional answers
(and satisfy Definition 5.4 as well). Fot; we haveAs ~¢, (eq([b],Y”),{Y/[a|Y’]}) and
As ~ory {eq([B],Y"), {Y/[alY"]})
We have(eq([b],Y"),{Y/[a|Y']}) ma, (eq([b],Y"),{Y/[a]Y"]}) and thus again the required
one-to-one correspondence.

T1- T2 T.
— eq(la], [b]) — eq([a,b],Y) — eq([alT], Z)
{Y/[alY"]} {Z/lalY],T/X,H/a}
fail
— eq([0],Y") —eq(X,Y)

Figure 3: SLD-trees for Example 5.5

While computingaunfold by taking the resultants from SLD-trees of concrete dominators
is correct, it does not yet make much use of the information within One can use the in-
formation within A to further instantiate those resultants; inspired by the more specific res-
olution steps [55] or the most specific versions of [154, 155]. For example, repléging
Example 5.5 byeq([H|X],[H|Y]) < eq(X,Y) is also correct. Also, even replacirg by
eq([Z]1X],[a]Y]) < eq(X,Y) is still correct. But note that this resultant is no longer sound for
calls which are not concretisations Af (e.g., the calk— eq([?], [a]) yields a conditional com-
puted answeteq([|,[]),{}) which cannot be matched by the original program). We will return
to this issue in Section 10.

One further possible improvement, is to remove freultants(7) all those resultantdd «

B which, although they resolve with, cannot resolve with any concretisation&f This again,
always satisfies Definition 5.3, as the following proposition shows.

28

Proposition 5.6Let Q be an abstract conjunction and {gtbe a concrete dominator f€). Let

7 be a SLD-tree fol? U {«— @} and letR C resultants(7) be a set of resultants such that for
all resultant)0 — B € (resultants(t) \ R) we have that no instance ff is in v(Q). Then
aunfold(P, Q) = R satisfies Definition 5.3.

Proof (Sketch) Let us first assume th@t= resultants(7), i.e., aunfold(P,Q) = {Q0; «— B, ...,
Q6 — By} are the resultants of a finite SLD-treg for P U {< Q}. Now takeQo € (@) and build
the SLD-treer for P U {«— Qo } according torg (i.e., selecting the same literals, to the same depth; some
branches might be missing inbecause of failed unifications). All the requirements of Definitions 5.3
and 7.1 are met:

— Point 1: This is a direct corollary of Lemma 4.12 in [152].

— Point 2: This is a direct corollary of Lemma 4.9 in [152] (cf., proof of Lemma 8.3 for more details).

— Point 4: Take®)’ = Q. This will unify with all Q6; via mgu o and we thus havé ~¢, (B;o, o).
body trivially satisfies Definition 5.4: if somé&)~ resolves withH via mgué we get the resolvenBf
which is a concretisation aB.

Now, if R C resultants(t) we only have to re-check Point 1. We can deduce that the head
every resultanC' € (resultants(t) \ R) does not unify withQo, because any instance #f is not in
~(Q) while any instance of)o is. Hence, again by Lemma 4.12 in [152] we can deduce that the branch
corresponding t@’' in 7 is finitely failed. O

The following simple example illustrates this possibility. (Note that we denoté! lilge
empty goal as well as the empty conjunction.)

Example 5.7Let P be the following program:

(C1) pla) «

(C2) p(f (X)) — p(X)

(C3) p(9(X)) — p(X)
Let A be an abstract atom within some abstract doni@ny) such thaty(A) = {p(a), p(g(a)),
p(g(g(a))),...}. Thenaunfold(P, A) ={C4,Cs}, aresolve(A, Cy) = Oandaresolve(A, C3) =
A is correct wrt Definitions 5.3 and 5.4. We were thus able to safely remove the redundant
clauseCs, in they style of [43, 66, 44] (which detects and removes redundant clauses as a post-
processing).

[73, 74] and [131] show how such abstract unfoldings can be developed for a particular
abstract domain based upon regular types. [131] also shows how resultants can be instantiated
using the regular type information.

But even more exotic abstract unfoldings are possible. Suppose for example that the com-
puted instances of some concrete dominataf A are a superset of(A). One can then just

29

create a single fact forunfold(P, A); e.g., ifA = p(f(X), Z) simply producesunfold(P, A) =
{p(X,Y) <.

Observe, that in Definition 5.3 above, nothing forces one to usesdngestructure (i.e.
same selected literal positions, same clausesalfahe concretisations oA. Indeed, this en-
ables some very powerful optimizations not achievable within existing “classical” specialization
frameworks. For instance, in the example below we are able to completely eliminate a type-like
check from the residual program.

Example 5.8Let P be the program from Example 5.5 aAdbe the set of all callsg(t, t) wheret
is a bounded list, i.e, a list whose skeleton is fixed but whose individual elements can be variables
or contain variables. For example;([], []) and eq([X], [X]) are iny(A) but noteq({], [a]) nor
eq([X|T1], [X|T]). This can obviously not be represented in BB-domain.
Thenaunfold(P,A) = C, = {eq(X,Y) <} andaresolve(A, Cy) = O are correct according to
the above definition! Take the concretisatiofis = eq(][],[]) and A2 = eq([a], [a]). We have
Ay ~e, (O,{}) and Ay ~¢, (O,{}) As can be seen in Figure 4 we can produce for each of
them an SLD-tree (with a different structure) which satisfies Definitions 5.3 and 5.4.
One can thus generate the residual program:

eq(X,Y) «—
Observe that this residual code is only sound for concretisations lmit not, e.g., for the call

eq(a, [])-

1 T2
— eq([], [)) — eq([a), [a))
/{} l{}
0 — eq([],)
0
O

Figure 4: SLD-trees for Example 5.8

To our knowledge, these powerful optimizations are not possible within existing partial de-
duction or partial evaluation techniques. It is related to the notion of abstract executability used
in [184, 186, 188]. In practice, such optimizations can be very useful and have already been
implemented, e.g., in the static assertion checker of the Ciao Prolog preprocessor [180, 178].

One can extend this approach to cover built-ins as well. E.g., if we know that a given variable
X represents an integer we can, e.g., specialize bthic(X) or number(X) into true. One

30

can imagine various other optimizations not possible in conventional techniques based upon the
PD-domain, like specializingrg or functor calls based upon type information of the arguments.
A similar idea has been used in [186, 188] to remove redundant tests and calls to builtins from the
residual program which analysis information allows abstractly executing to true, false, or error.
This technique has been applied to optimizing automatically parallelized programs.

In summary, we believe that our framework is very general, and has the potential to cover
many new, specialization techniques. While it is still far from trivial to develop those, proving
the correctness of such new specialization methods should now be much easier.

6 Atomic Abstract Partial Deduction

The definition of an abstract partial deduction is now very straightforward:

Definition 6.1 (abstract atomic partial deduction) Let P be a program,A a set of abstract
atoms andeunfold is an abstract unfolding rule. We then defile abstract atomic partial
deduction ofP wrt A and aunfold to be the progran® = {C' | C' € aunfold(P, A)\ A € A}.
We also callP’ an abstract atomic partial deduction &f wrt A.

6.1 Correctness of Atomic Abstract Partial Deduction

If we have an abstract unfoldinginfold at our disposal, all we have to figure out is which det

of abstract atoms should we use in the above definition, so as to obtain a correct partial deduction.
What we need is the abstract counterpart of. hhelosedness condition in Theorem 2.7. In other
words, we have to find a condition which ensures that every possibleiRctilat can occur

when running the residual program is covered by an appropriate abstrachatom such that

R € v(A). In Section 3.3 we have seen that theclosedness of classical partial deduction could

be reformulated agl being a fixpoint of the operatd®$, which is a safe approximation of the
concrete operatak » computing subgoals and calls. We will use that approach here.

We build uponaunfold andaresolve to extend thek operator from Section 3.3 into an op-
eratorR# mapping sets of abstract conjunctions to sets of abstract conjunctions in the following
way:

R2(S) = S U {aresolve(A,C) | A € SAC € aunfold(P,A)}

Intuitively, R4(A) is a safe approximation of all resolvents that can arise after a single res-
olution step of a concretisation of with a clause in the atomic partial deduction ®fwrt .4
using aunfold.

31

We could now say that we havé-closedness for abstract partial deductions {4 (.A)) C
7"(A), where, as in Section 3.3 we extend the concretisation fungtinto " (S) = {Q1 A... A
Q. | Q; € v(S)} so as to take into account that conjunctions can be split up by partial deduction.
From an abstract interpretation perspective this is sufficient, as it would ensusé ¢bhaers
all possible subgoals that can occur when executing any concretisatidrusing the partial
deduction ofP wrt A and aunfold. However, it is a bit too liberal in a partial deduction setting
as it would allow the concretisations of a single abstract atom or conjunction Withim)
to be covered by several abstract atoms witdin This would cause problems when applying
a renaming transformation which, as we have seen at the end of Section 2, helps overcome
the “independence” condition, improves performance, and is unavoidable for conjunctive partial
deduction. Suppose, for example, that= {A;, Ao}, RA(A) = {A;}, with aunfold(P, A,) =
{p(f(X)) < p(X)} andaunfold(P, Az) = {p(g9(X)) <} and thaty(A1) C y(Az2) U y(As)
while v(A;) € v(As) andv(A;) € ~(As). We do havey(A) = ~(Ra(A)) but it would
be impossible to perform a renaming transformation in the classical sense, as we cannot decide
whether the calp(X) within aunfold(P, A,) should be mapped to the renamed versioref
or A,.
In order to circumvent these problems, we introduce the following concepts.

Definition 6.2 Let (AQ,) be an abstract domain. First, we extentb sequences of abstract
conjunctions by defining

Y{Q1,- -, Qu) ={Q1 AN ... AQn |1 <i<n=0Q; € v(Qi)}

Let A be a set of abstract conjunctions. We say that an abstract conjugi®oovered by
A iff there exists a sequend€),, ..., Q,) of abstract conjunctions such that < i < n we
haveQ; € Aandy(Q) C v({Q1,-..,Qn)). A set A’ of abstract conjunctions sovered by4
iff every element of4’ is covered byA.

For example, in th@@D-domain, bottp(a) A g(a) A p(b) andp(b) A p(a) A q(a) Ap(c) Aq(c)
are covered byp(X) A ¢(X),p(b)} but notp(a) norp(a) A p(b) A q(a). Here it is of relevance
that we treat\ as associative, but not as commutative nor idempotent.

We can now define the abstract version of telosedness condition, which ensures that
renaming can always be performed. We also define the abstract version of the independence
condition from Definition 2.6 and Theorem 2.7.

Definition 6.3 We say that a setl of abstract conjunctions isoveredwrt P and aunfold iff
R4(A) is covered byA.
We say thatA is independeniff VA, A, € Awith A; # A, we havey(A;) Ny(Ay) = 0.

32

We need one more definition before formulating our first correctness theorem.

Definition 6.4 Given two expressions and L/, we write L ~ L’ to denote thatf. is a variant of
L.

Theorem 6.5Let P’ be an abstract atomic partial deduction/®fwrt an independent set of
abstract atomsl. Let.4 be covered wr? and aunfold and let@) € y(A). Then

1. If PU{« @} has an SLD-refutation with computed answeahen P’ U {<— @} has an
SLD-refutation with computed answeétrsuch thatQf ~ Q6'.

2. If P"U{< @} has an SLD-refutation with computed answéthenP U {< @} has an
SLD-refutation with computed answeisuch that)d ~ Q0'.

3. If P'U{+ @} has afinitely-failed SLD-tree then so doBsJ {— Q}.
4. If PU{< @} has afinitely-failed SLD-tree then so doBsU {+ Q}.

This theorem is a special case of the Theorems 8.2 and 8.7 which we present and prove later.

6.2 A Generic Procedure for Abstract Partial Deduction
We now define a generalisation operator for abstract conjunctions, suitable for our framework:

Definition 6.6 A generalisation operatois a functiof ageneralize : 249 — 242 such that4 is
covered byageneralize(A)) for all A € 242,

A generalisation operator is calledomicif for every S € 242, ageneralize(S) is a set of
abstract atoms.

An atomic generalisation operator thus embodies the functions ofdpbthand generalize
from Section 3.3. 1f4 is a fixpoint of U (S) = ageneralize(R4(S)) then this ensures that is
covered.

Based upon the notions introduced above, we can now present a generic procedure for top-
down program specialization, which tries to find such fixpoints, in a very concise manner:

Procedure 2 (Abstract Partial Deduction)
Input: A programP and an abstract conjunctiot
Output: A specialised progran®’
Initialize: ¢ =0, 4) = {A}
repeat

6It is of course possible to give extra parametersgeneralize, €.9., so that it can take the specialization history
into account.

33

let A, := ageneralize(Ra(A;)); leti =i+ 1;
until 4,1 = A;
Let P’ be an abstract partial deduction wit

It is obvious that if the above algorithm terminates;, is covered and hence, e.g., Theo-
rem 8.2 can be applied. By combining widening operators from the abstract interpretation lit-
erature with generalisation operators from the partial deduction literature, it is now possible to
ensure termination of this procedure.

One of the earliest [157] widenings for partial deduction for ##-domain was based on
the most specific generalisatioor least general generalisatioof a finite set of expressions
E, denoted bymsg(FE), is the most specific expressidi such that all expressions ifi are
instances ofl/. Themsgcan be effectively computed [114] and given an expresdidihere are
no infinite chains of strictly more general expressions [93]. More refined widenings, are based
upon well-founded orders, well-quasi orders and characteristic trees (see, e.g, [60, 140, 122], see
also [127]).

[73, 74] and [131] present non-trivial generalisation operators for abstract domains based
upon regular types.

7 Conjunctive Abstract Partial Deduction

Classical partial deduction, as defined in Definition 2.4 specialises @f atomsA. Even though
conjunctions of atoms may appear within the SLD-trees constructed for these atoms, only atoms
are allowed to appear withil. A similar picture holds for atomic abstract partial deduction,
introduced in the previous Section 6, where only abstract atoms are allowed to appear within
A of Definition 6.1. In other words, when we stop unfolding, every conjunction at the leaf is
automatically split into its atomic constituents which are then specialised (and possibly further
abstracted) separately. This restriction often considerably restricts the potential power of partial
deduction, e.g., preventing the elimination of unnecessary variables [176] (also called deforesta-
tion and tupling).

To overcome this limitation in the setting of classical partial deduction, [42] presents a rela-
tively small extension of partial deduction, callednjunctive partial deductianThis technique
extends the standard partial deduction approach by considering set$Cy, ..., C,} where
the elementg’; are nowconjunctionsof atoms instead of just single atoms. Conjunctive partial
deduction also solves a dilemma of classical partial deduction related to efficiency and precision
and makes the local control much easier (see, e.g., [127]).

34

All the definitions related to the abstract unfolding and abstract resolution operations (5.1,
5.2, 5.3, 5.4) already cater for abstract conjunctions. Definitions 6.6 and 6.3 also already cater
for sets of abstract conjunctions. Thus, to perform conjunctive partial deduction using Proce-
dure 2 we just have to remove the restriction th@ineralize is atomic. Of course, this raises
a new termination problem: in addition to having to worry about infinitely many atomic atoms
ageneralize NOW also has to worry about an infinite number of growing abstract conjunctions.
In other words, the generalisation operati@yeneralize has to be more refined. It has been
well studied how to devise such generalisation operators foPtRedomain [79, 42]. For ab-
stract conjunctive partial deduction, this has to be combined with widenings from the abstract
interpretation literature. [131] shows how to do this for an abstract domain based upon regular
types.

There is also the issue of code generation which becomes more involved. Indeed, the re-
sultantsC' = H,; < B; in Definition 6.1 are not necessarily Horn clauses (becdiisean be
a conjunction). To transform such resultants back into standard clauses, conjunctive partial de-
duction [42] employs aenamingtransformation, from conjunctions to atoms, which practical
partial deduction systems already perform anyway. We will do the same here, and present the
full details in Section 7.1.

7.1 Generating Residual Code for Conjunctive Partial Deduction

All that is missing to present a generic abstract specialization algorithm is a way of generating
executable residual code from the resultalifs— B; produced by the abstract unfolding. For

this we have to transform the resultants into Horn clauses. This can be achieved by mapping
the abstract conjunctions produced by the flow analysis to concrete atoms and then appropriately
renaming the headd; and the bodies3;.

Definition 7.1 An abstract unfoldingpperationaunfold is said to have theao-garbage property
iff the following equation holds:

VA € AQ VR € aunfold(P,A): 3s3Q" € v(A) | Q ~pg s (4)

This property preventsunfold from producing garbage resultants which unify with no con-
cretisation. From now on we suppose that all abstract unfolding operations satisfy this property.
This obvious requirement will simplify the code generation but it is not strictly necessary.

Before formalizing the whole renaming process, let us first examine on a simple example
how it can be achieved.

35

Example 7.2Suppose we have the sét= { A;, A, } of abstract conjunctions in tHféD-domain
with A; = p(a, X) andA, = p(b, Z) A p(Z, d). Suppose that a resultant fdy is

p(b,c) A p(c,d) « p(a,b) Ap(b,e) A p(e,d)

In order to translate this resultant into a Horn clause we have to rename all concretisations of
A, to atoms. For this we can chose an atom, gay”), which contains all the variables it

(viewed as a concrete conjunction). Now we can rename the head of the resultanpi intoy
instantiatingZ to the proper value. We now have a Horn clause, but we still have to rename
the body so that its conjunctions are renamed to call the proper residual predicates. For this we
split up the body into subconjunctiopsa, b), p(b, e) A p(e, d) so that each subconjunction is a
concretisation of an element j4. We can now rename each subconjunction to obtain:

pp(c) < pla,b) A pp(e)

In the above example we had to chose an atg4)) with the same variables as the abstract
conjunctionA, viewed as a concrete conjunction. Now, in general, an abstract conjunction can-
not be viewed as a concrete conjunction. Hence we introduce the following concept which allows
us to derive for every abstract conjunction a concrete one which covers all its concretisations.

Definition 7.3 Recall that aconcrete dominatoof an abstract conjunctioA is a concrete con-
junction@ such that all)’ € v(A) are instances af). A skeletorfor an abstract conjunctioA
is a maximally general concrete dominatorAof

A skeleton forA, in Example 7.2 i9(X1, X5) Ap(X3, X4). By Definition 4.1 of abstract do-
mains we know that a concrete dominator (and thus skeleton) exists for all abstract conjuhctions.
By [A] we denote some skeleton far.

Definition 7.4 An atomic renaming for a set of abstract conjunctiontreturns for evenA € A
an atomA, denoted by, such thatwars([A]) = vars(A). Also, for any@ < [A] we define
pa(Q) = A whered is such that) = [A]0.

For Ay = p(b, Z) A p(Z,d), of Example 7.2 we might havieds | = p(X1, X2) A p(Xs, X4),
pa, = pp(X1, Xo, X3, Xy). For@ = p(b, c) A p(c, d) we then havea, (Q) = pp(b, ¢, ¢, d).

Observe that for alt) < [A] we havepa (Q0) = pa(Q)0, vars(Q) = vars(pa(Q)), and
forall @' < [A] we can also assume thayu(Q, Q') = mgu(pa(Q), pa(Q’)) (see Lemma 8.5).

"There actually also exists a most specific concrete dominator (by existence of a most specific generalisation
msg of two terms [114] and the fact that the strictly more general relation is a well-founded order [93], ix@sd¢he
of all elements iny(A) exists). In thePD-domain this is the conjunction itself (viewed as a concrete conjunction).

36

Also, to avoid name clashes, we will always suppose that forAagy A’ the predicate symbols
used bypa andp,. are different.

Given a resultantl/; < B; € aunfold(P, A) we can now produce an actual Horn clause by
renamingH; and B;. RenamingH, is easy: we just calculates (H;) (which is always defined
asH; = [A] by the Point 4 of Definition 7.1 odunfold). If our flow analysis also containg;
= aresolve(A, H; — B;) (and thus code foA; will be generated) then renamirig is just as
easy: we just calculates, (B;). However, suppose that we have used generalisation and that we
actually did not specialisa; itself but rather the abstract conjunctidds, . . . , G, such thatA;
is covered by Gy, ..., Gy,) (just like in Example 7.2). In that cag® has to be split up and then
renamed using the renaming functions of the abstraction. We thus extend our atomic renaming
function so that it accomplishes this:

Definition 7.5 Given a concrete conjunctidB, an abstract conjunctiofl, and a se#d of abstract
conjunctions we define:

paa(B) = pa,(Bi) A ... A pa,(Bn)

whereA is covered by G, ..., G,) andB = B; A ... A B, is one possible way to split up
such thals; € AandB; < [G;] If no such partitioning exists then we leayg 4 (B) undefined.

Note, by Point 4 of Definition 7.1, we know that if we can find a sequeiie ..., G,)
which coversA, then we can also find a partitioning &f such thatB; < [G;]. Also observe
that Definition 6.2 of the “covers concept” and the fact that we do not congidemmutative,
imply that we not allow re-ordering of conjunctions within® It would be, however, relatively
straightforward to do so. One just has to be careful to usedheereordering forall concretisa-
tions of A (otherwise it will be impossible to synchronize the code generation with the abstract
resolution).

We can now define how to map resultants to Horn clauses so as to construct abstract partial
deductions:

Definition 7.6 (abstract partial deduction) Let A be a covered set of abstract conjunctions. We
then define ambstract partial deduction oP wrt A to be the set of clauses:
{pa(H)«—pana/(B)| H— B € aunfold(P, A)\N A’ = aresolve(A, H—B) N A € A}.

It is easy to see that, becaudeis covered, the renamings of the bodBswill always be
defined.
8Nor removal of duplicate calls. In general this does not preserve computed answers (but will produce more

general answers) but is, e.g., required for tupling the Fibonacci function. It is quite straightforward to add this
possibility to the framework.

37

Observe that, a skeleton always has distinct variables as its only terms. In other words, con-
trary to Example 7.2, we perform no filtering (i;&.f(a)) might get renamed intp’(f(a)) but
never intop’(a) or p’; cf., Section 2). Filtering could be achieved by using a concrete dominator,
ideally msg(v(A)), instead of the skeletopA | for the definition ofpa. This, however, makes
the exposition more trickyand would detract from the main points of the paper. Anyway, one
can always apply the technique of [59] (as well as the one from [145]) as a post-processing.

8 Generic Correctness Results

In this section we will present and prove two general correctness results (Theorems 8.2 and 8.7).

8.1 Correctness for Computed Answers

For technical reasons we have to introduce the concept of admissible renamings (as in [128]).

Definition 8.1 Let 9, @’ be two conjunctionsA a set of abstract conjunctions, anén atomic
renaming ford. Then()’ is called aradmissible renaming @ wrt A iff there exist conjunctions

@1, ...,Q, and abstract conjunctions,, ..., A,, such that:
1. Q:HQlu"an
2. A; € A

4. Q =—pa,(@Q1),--.,pa,(@n)
Any variant of)’ is called anadmissible renamed variant 6§ wrt A. A conjunction(for
which an admissible renaming exists is said ta@beered byA.

Theorem 8.2Let P’ be an abstract partial deduction Bfwrt a covered set of abstract conjunc-
tions A and letQ)’ be an admissible renamed variantpfvrt A. Then

1. If PU{< Q} has an SLD-refutation with computed answahen P’ U {< @’} has an
SLD-refutation with computed answérsuch thatQd ~ Q'¢'.

2. If P"U{« Q'} has an SLD-refutation with computed answéthen? U {— @} has an
SLD-refutation with computed answeésuch thatQd ~ Q'0’.

3. If PPU{+ @'} has a finitely-failed SLD-tree then so doBsJ {— Q}.

%Indeed, although all concretisations Afwill be an instance ofnsg(y(A)), this does not necessarily hold for
the headd{ and bodiesB generated by the abstract unfolding.

38

To prove the theorem, we first have to establish a series of lemmas and some useful notations.
We define, for a substitutiof = { X, /,,..., X, /t,}, the domaindom(0) = {X;, ..., X,,}

and the rangean(0) = vars(t1) U ... vars(t,). We also definears(6) = ran(0) U dom(0).
We start out with a useful lemma from

Lemma 8.3Let Q ~ @' and letr be an SLD-tree fo” U {< Q}. Also, letX be an arbitrary
finite set of variables. Then there exists an SLD-trefr P U {«— @'} such that

—Q~, (L,0) = Q ~p (L0) with Q8 — L~ Q0 — L'

—Q ~p (U0) = Q~ (L) withQf — L~ Q¢ — L'

— and all the variants of clauses Bfused inr’ have no variables in common withi.

Proof This is an obvious consequence from Lemma 4.9 in [152] which states that

Let R be the resultant of an SLDNF-derivatidhfrom a normal goal—), anda a
substitution. If there is a corresponding derivatiohfrom < Qa then its resultant
R’ is an instance oF.

We apply this Lemma 4.9 twice, once f@randQa = @' and then forQ’ andQa’ = Q. We
know that a “corresponding derivation” exists by (correct versions of) the lifting lemma (e.g.,
Lemma 4.1 in [152]). O

Corollary 8.4 Let @ ~. (L,0). Also, letX be an arbitrary finite set of variables. Then there
exists ar’ such that) ~. (L', ¢') with (L,0) ~¢ (L',6') and all the variants of clauses &f
used in7" have no variables in common withi. This also impliesars(6') N X C vars(Q).

Lemma 8.5Let p be an atomic renaming fod and letA € A, H < [A], Q@ < [A]. Then
mgu(H,Q) ~urg myu(pa(H), pa(Q)). We also have thatars(H) = wvars(pa(H)) and
pa(H)o = pa(Ho) for any substitution.

Proof wvars(H) = vars(pa(H)) is obvious from Definition 7.4, aga (H) = A6, H = [A]#,
andwvars(A) = vars([A]).

pa(H)o = pa(Ho) is again obvious from Definition 7.4. Indeed, we hawg Ho) = A¢’, with
Ho = [A]¢'. From this follows[A]0" = ([A]0)o, and thus, agars(A) = vars([A]), we
have thatd0’ = Ao, i.e.,pa(H)o = pa(Ho).

By the point above we have that every unifieof H# and@ must also be a unifier gfs (H) and
pa(Q) (indeed,pa (H)o = pa(Ho) = pa(Qo) = pa(Q)o) and vice versa. By uniqueness of
the mgu up to variable renaming we must thus havgu(H, Q) ~grg mgu(pa(H), pa(Q)). O

39

To simplify the presentation of the proofs below, we will from now on assume that e
is devised so that (this can always be achieved):

mgu(H, Q) = mgu(pa(H), pa(Q)) (5)

We are now in a position to prove our theorem.
Proof of Theorem 8.2Both the proof of soundness and completeness are by induction on the
length of the refutations.

FirstletQ,,...,Q, andA,,..., A, be the concrete and abstract conjunctions which satisfy
Definition 8.1 for@ and a variant)” of Q’. In particular we have) = Q1 A ...Q, with
Q; € v(A;). We know that for some renaming substitutiowe have:Q)’ = Q"0 = pa,(Q1)o A
e AL (Qn)o = pa, (Qro) A ... pa, (Qno) (by Lemma 8.5).
Point 2. (soundness of’):

We proceed by induction on the length of the refutatidor P'U{« pa, (Q1)A...pa,(Qn)}
Base Case:
The base casédn = 0 and thus, = 0 and«— @ =« @’ = 0O) is trivial.
Induction Step:
For the induction step let us examine the first resolution step rafsolving a selected atom
pa,(Q;o) in Q" with a clausepa,(H) < pap(B) via mgu ¢, and whereC' € aunfold (P, A;)
with C' =~ H «— B andB = aresolve(A;, C') (and wherel{ «— B is renamed apart wi’). The
resolventr’ of Q" in P’ is thus (c.f., Figure 5):

R, =< PA; (Qm)@l AL pA,B(B)Hl VAN pAn(Qna)Hl
= PA1(Q1091) ARE ‘pA,B(B)‘gl A ‘pAn(QnOﬂl)

P: P
Q= N...Qi...Qn —Q =pa,(Qo)A...pa,(Qi0)...pA,(Qn0)
lc |
R=— Q0" N...B"N...QuOR =— pa,(Q1001) A ...paB(B)01...pa,(Qnobr)

variant‘\ //admissible renaming

R=« Qo0 A...Bb;y...... Qnob;
Figure 5: lllustrating the proof of Theorem 8.2
Step 1.We will now show thatR’ is an admissible renaming of
R=« Qio6i A...BOA ...Q,00;

40

Below, in step 2., we will show that we can produce a resolvitt P which is a variant of?.
Together, this will allow us to apply the induction hypothesis.
Let us first examine the structure pf 5(B)6;. We have by Definition 7.5:

paB(B)01 = (pe, (B1) A ... pa, (Bk))0r = pa, (Bi61) A ... pe, (Bibh))

whereB = B; A ... By, Bis covered by(Gy, ..., Gy) with G; € AandB; < [G;]. Let us
now verify that the 4 points of Definition 8.1 are satisfied foand R:
1. R=«— Qio6i A ... B0\ ... By0; A ...Q,00, is a valid partitioning ofR into subcon-
junctions
2. We haveA; € A from the fact that)” is an admissible renaming 6f.
We haveG; € A from Definition 7.5.
3. We have);c6;, € v(A;) by downwards-closure of(.) and asl;o € v(A;) from the fact
that@” is an admissible renaming &f.
We haveB;0, € v(G;) by downwards-closure of(.) and asB; € v(G;) because by cor-
rectness ofiresolve we haveB € ~(B) (by Definition 7.6 we hav@ = aresolve(A;, C)
and we know®; € v(A;) from the fact that)” is an admissible renaming ¢f).
4. R = «— pa, (Q1001) A ... pg, (B101) A ... pg, (Bib1)) .. pa,(Qnobr)
Step 2.We will now show that a variank of R is a resolvent of) in P.
We know, by Lemma 8.5, thd is also anngu of Q;,c andH. Hence, by our assumption (5)
we know thatQ);o ~»¢ (B6;,0:), whered; = 01| yars(q,o-
As we haveQ;o ~¢ (B0, 0;), Point 2 of Definition 5.3 (definingunfold) therefore ensures
that we can find an SLD-treefor P U {— @0} such that

Qi ~, (B',0") with Q,;00, — B, ~ Q00 — B’ (6)

Now, as@); ~ ;0, by Lemma 8.3, we can deduce that we can find another SLD~trés
P U {« @;} such that

Qi ~ri (B",0") with Q0" — B ~ Q00 — B’ @)

By, Lemma 8.3, we can also always constrifcsuch that the clauses &f have not only been
renamed apart wi®; but wrt the entire). Hence, we can generate a resolvenh P which has
the following form (because we renamed apart wrt the etiend by the subderivation lemma
[152]):

R=— Q0" A...B"A...Q,0"

Let us now prove thaR is a variant ofR:

41

— By transitivity of ~ we know thatQ,0” «— B” ~ Q;06; «— B6,. Hence, we can find
substitutionsy and~~! such that(Q,;0”)y = Q,00y, (B")y = Bby, Q0" = (Q;00,)y™*
and B” = (BfA;)y~!. We can also choosg,y~! so that there are no superfluous bind-
ings, i.e.,dom(y) C vars(Q;0" «— B"), ran(y) C vars(Q;oc6, «— Bb;), dom(y~') C
vars(Q;o0; < Bb,), ran(y~1) C vars(Q;0" «— B").

— We know that)) = Q1 A ... Q, isavariant ofQo = Q.0 A ... Q,0. Hence we can find a
substitutions—! such tha{Qo)o™! = Q.

— We will now define two substitutions’ D v and~’~! D 4! such thatRy = R and
Ry~'=R.

i. By construction ofy andy~! we already havéB”)y = Bf, B” = (Bf;)y~!

ii. We now have to examine the conjunctiagpsr and@);, for j #: A1 > j > n,in R
andR respectively. A),0 and(); are variants we only have to examine the variable
positions inQ;o andQ);. Let X be a variable at some position {p;c andY the
corresponding variable at the same positiofin We have to show that we can map
X6, toY#” and vice-versa. There are two possibilities:

a) X € vars(Q;o) As we know that(Q;0")y = Q06 Q;0" = (Q;06,)y~! we can
deduce thatY ¢0")y = X0, Y0" = (X0,)y~.
b) X ¢ vars(Q;o) In that case we know that ¢ vars(Q;) (otherwiseq is not a
variant ofQc). Hence we canset = yU{Y/X}andy ' =~+"1U{X/Y}. 7 isa
properly defined substitution & cannot appear if6¢, and thus-an(v) because
— H «— Bisrenamed apart witars(Q') = vars(Qo) and
— 0, is arelevantmgu of Q;o andH.
~'~1in turn is also a properly defined substitutionascannot appear iB” by a
similar reasoning on theigu and renaming apart il (by our earlier assumption on
7/, stating that the clauses éfhave not only been renamed apart @rtbut wrt the
entire Q). We thus trivially havgY¢")y = X0, Y¢" = (X0,)y~'. Also, note that
~',~'~* will still satisfy the requirements of casg above.
We now simply define the final’ and+/~! to be the union of all the’,~'~! defined for
the cased) above. This is a properly defined substitution a8 = Y and Xo = 7
impliesY = Z, i.e., there can be no conflicts between the bindings) and we thus have
found substitutions such th&y = R andRy'~! = R.
Step 3.We can now apply the induction hypothesis, as we have proven that the res@l\ert’
is an admissible renamed variant of the corresponding resalv@nt”. Notably, we know that
for any computed answéh of R’ there exists a computed answeof R such thatkf ~ R’'0.
In summary, we havé) leads toR via #”, R has a c.a.9, ' leads toR’ via #,, R’ has a c.a.s.

42

f,. S0, we just have to prove th@y’6 ~)'0,60, to complete the soundness proof. We can use
Corollary 8.4 to ensure both

vars(fz) Nwvars(Q") C vars(R') and vars() Nvars(Q) C vars(R) (8)

In fact, we can easily establish thgt” ~ ()'6, because
— indeed the reasoning in poiit above is also valid fof = j [but only subcase) will
apply] and
— we can thus use the same substitutiohs’~! to showQ0"+' = Q'6, andQ8” = Q'0,~v'~*.
We thus simply examine every variable position(Jd” and the corresponding variable position
in Q'6,. Let X be a variable at some position @(6; andY the corresponding variable at the
same position irQ6”. We have to show that we can maf®, to Y# and vice-versa. There are
again two cases:
— If X &€ vars(R') thenX#' = X (asf is a c.a.s. folR', i.e., ran(0) C vars(R')) and we
must also haveX' € Qo6 andX & Q;ot; for j # i (pa,(Q;00:) for j # i all appear in
R’) and henc&” € Q;0" andY ¢ Q0" for j # i as well (asX~y~' = Y). This implies
Y & vars(R) (becaus&),0” — B" ~ Q;00, +— B0, i.e.,Y cannot appear i8”) and we
thus haveY0)y = X0, Y0 = (X0y)y .
— On the other hand, ik € vars(R’) thenY € vars(R) (if X € Q,;00, then this follows
from Q0" — B" = Q,06, — Bb,; otherwise ifX € Q;o6, with j # i then this follows
from X~y~! = Y and the fact);c6, features inR’) and we know we can maf 6, to
Y 6§ and back using the simplest substitutioffs+”~! which map back and forth between
R and R’ (i.e., R0y = R0, R'07/~' = R0, where alsodom(y") C wvars(R6), and
dom(~"~1) C vars(R'6s)).
Now, ~" U ~” is a well defined substitution because, by our assumption (8) above on renaming
apart of clauses, the variables in the tethi%, cannot be variables that appeaiiiz6; but not
in vars(R), i.e., there is no clash between the bindings/irand+”. By a similar reasoning,
vt u~""is a well defined substitution. We have thus established the induction hypothesis for
@ and(@’ and thus completed the soundness proof.
Point 1. (completeness of”’):
We now proceed by induction on the length of the refutatidor P U {<— Q1 A ...Q.}
which yields the computed answr The base caséefp = 0 and thus: = 0) is again trivial.
For the induction step, l&p; be the selected literal. AQ; € v(A;) we can apply Definition 5.3
of aunfold to deduce that there is an SLD-tredor P U {« ();} such that point 1 of Defini-
tion 5.3 holds. By independence of the selection rule ([4, 150]) we know that we do not lose any
computed answers by enforcing a particular selection rule. Without loss of generality, we can

43

thus assume that a prefix &is a branch in”’, i.e.,§ unfolds— @; in the manner prescribed by
7' of the soundness part of the prdéf.

We can now use point 1 of Definition 5.3 definiagnfold to show that when selecting the
atompa,(Q;0) in Q" and resolving it with the clausea,(H) «— pas(B) via mgu 0; we get
a resolventk’ which has exactly the same structure as in the soundness part of the proof (c.f.,
Figure 5). The proof thaf?’ is an admissible renamed variant Bfis then exactly as in the
soundness part (Steps 1 and 2). The same holds for applying the induction hypothesis to prove
QO"0 ~ Q'0,0, (Step 3). The completeness proof is thus complete.

Point 3. (soundness for finite failure)

We again do a proof by induction, but this time on the depth of the failed SLD-tree for
P U{— Q'}.
Base Case:
The SLD-tree has just a single node in which a literal has been selected which fails immediately,
i.e., does not unify with any clause iR’. This implies that the goal) finitely fails in P,
because by point 1 of Definition 5.3 we know we can find an SLD-trie which nos; satisfies
Q ~, s1, i.e., afinitely failed SLD-tree foP U {— Q}.

Induction Step:

We will do the exact same resolution step as in the proof for the soundness part: we suppose
that we select an atomia,(Q,;0) in Q. We we now resolve the selected atom with a clause
pa,(H) — pas(B) of P' we get exactly the same picture as in the soundness part (the proof in
the soundness part works for any resolvent!). So, we can re-use Steps 1 and 2 of the proof of the
soundness part for every resulta®itto establish thak' it is an admissible renamed variant of

the corresponding resolveftin P. We can thus apply the induction hypothesis to conclude that

for each resolvenk we can construct a finitely failed SLD-tree.

The only thing we have to establish, to be able to combine all the results into a big finitely
failed tree for@, is that the initial SLD-treer’ used in the soundness proof can be made to
be thesame for allresolventsk’. This can be easily ensured using Lemma 8.3 and because
Definition 5.3 provides us with a single SLD-treevalid for all resolvents!

We can thus combine, using the subderivation lemma [152], all failed SLD-trees for the resol-
vents into one big finitely failed SLD-tree fdr U {— Q}. O

101f we want to establish the preservation of finite failure it is vital that the unfoldings performedalg fair.
For computed answers, however, this does not matter.

44

8.2 Preservation of Finite Failure

In order to derive results about the preservation of finite failuré”’inve have to impose that

the unfolding operatiormunfold is in some senséir, i.e. when computinguunfold(P, A) it
eventually selects every conjunct §f € v(A) in every non-failing branch. Otherwise, the
unfolding aunfold might impose an unfair selection rule onto the specialised program, and finite
failure might no longer be preserved. For example, one should not be able to transform the
programP = {t « p A fail, p — p}into P' = {t — pf, pf — pf}, where, e.g.A =p A fail in
thePD-domain anga = pf. (This condition is quite similar to the local improvement condition

in [199] for functional programs.)

Definition 8.6 Letthe goal’ =« (AjA... A 1A BiA... ByAA; 1A .. A,)0 be derived via an
SLD-resolution step fromthe go&l =— A; A... A;A... A,, and the clausél — B; A... By,
with selected atomd;. We say that the atom&,0, ..., A, 10, A, .10, ..., A,0 areinherited from
G in G'. We extend this notion to derivations by taking the transitive and reflexive closure.

An complete SLD-tree for PU{G} is said to bdair iff every branch is either finitely failed,
or for every goal; in a non-failing branch there exists a descendansuch that no atoms are
inherited fromG; in G;. A finite, incomplete SLD-tree for P U {G} is said to befair iff no
atom in a leaf goal. of a non-failing branch of is inherited fromG in L.

We call an abstract unfolding rufair if we can always find a finite, fair SLD-treewhich
satisfies the points 1, 2 of Definition 5.3.

Note that a finite, complete SLD-tree is always fair. We can now present the following
theorem about the preservation of finite failure.

Theorem 8.7Let P’ be an abstract partial deduction Bfwrt a covered set of abstract conjunc-
tions A using a fair abstract unfoldingunfold, and letQ)’ be an admissible renamed variant of
Q wrt A.

— If PU{< @} has a finitely-failed SLD-tree then so doBsU {— Q'}.

Note that for atomic abstract conjunctions, every finite, non-trivial SLD-tree is fair. So, if we
just have atomic abstract conjunctions, finite failure will always be preserved (non-trivial trees
are disallowed in Definition 5.3). Hence Theorem 6.5 is a direct consequence of Theorems 8.2
and 8.7.

One can actually extend the result to allewnfold to be justweakly fair[129, 120]. Intu-
itively, this means thatunfold (P, Q) can be unfair for a certain number of atoms, as long as we
can be sure that these atoms will eventually be selected (for non-failing derivations) within other
abstract conjunctions.

45

The proof of the theorem is as follows:

Proof of Theorem 8.7We use the same assumptions about the structurg afd)’ as at
the beginning of the proof for Theorem 8.2. Notably, againQet...,Q, andAq,... A,

be the concrete and abstract conjunctions which satisfy Definition 8. famd a variant)”

of @’. Again, we have) = Q1 A ...Q, with Q; € v(A;) and we chose the same renaming
substitutions such that:Q’ = Q"0 = pa,(Q1)o A ... pa, (Qn)o = pa, (Q10) A ... pa, (Qno)
(by Lemma 8.5).

We know by Theorem 13.6 in [150][page 77] that if there exists a finitely failed SLD-tree for
P U {< Q} theneveryfair SLD-tree forP U {— Q} is finitely failed.

We proceed by induction on the depth of the finitely failed SLD-tregfof«— Q1 A... Q. }.

Let ; be the selected literal at the root. &5 € ~(A;) we can apply Definition 5.3 of
aunfold to deduce that there isfair SLD-treer’ for P U {+ @;} such that point 1 of Defini-
tion 5.3 holds.

Base Caself this SLD-tree7’ is finitely failed we are in the base case of our induction, and we
know by thatP U {< @'} fails immediately when selecting, (Q;o).

Induction Step: As 7’ is fair, we know that, without loss of generality, we can assumerthiat
the initial subtree of dinitely failed SLD-tree forP U {< @} (and always choosing suefi's
will lead to a finitely failed SLD-tree).

We now do the exact same resolution stepfou {<)’} as in the proof for the soundness
proof of Theorem 8.2: i.e., we select the atpm (Q;0) in Q)’. We we now resolve the selected
atom with all matching clauses,(H) < p4 s (B) of P’ and for every resolvent we get exactly
the same picture as in the soundness proof of Theorem 8.2 for some ledt goal (the proof
in the soundness part works for any resolvent!). So, we can re-use Steps 1 and 2 of the proof of
the soundness part for every result@to establish thak’ it is an admissible renamed variant
of the corresponding resolveftin P. We can thus apply the induction hypothesis to conclude
that for each resolveri®’ we can construct a finitely failed SLD-tree f6Y U {<— R'}.

The only thing we have to establish, to be able to combine all the results into a big finitely
failed tree for()’, is that the initial SLD-tree- used in the soundness proof Qs can be made
to be thesame for allresolventsk and R’. This can be easily ensured using Lemma 8.3 and
because Definition 5.3 provides us with a single SLD-treealid for all resolvents!

We can thus again combine, using the subderivation lemma from [152], all the failed SLD-
trees for the resolvents into one big finitely failed SLD-treefotJ {<— Q’}. O

46

9 Some Instances of Abstract Partial Deduction

In this section we show how some of the existing logic program specialization techniques can be
cast into our framework, and how easily the correctness results can be re-used. In fact, to re-use
our correctness results one has to prove that the partieutgbld under consideration satisfies
Definition 5.3, thataresolve satisfies Definition 5.4 and finally that the wideningeneralize
satisfiesageneralize(A) Jgpr A.

9.1 Classical and Conjunctive Partial Deduction

Classicalpartial deduction [152, 57] can be seen as an instance of our framework simply by
taking
— the PD-domain (i.e. the concrete domain is the abstract domain and an abstract element
represents all its instances) as our abstract domain,

— abstract unfolding is done by an unfolding rule as defined in Definition 3.4.akefpld
builds an SLD-tree and returns the resultants of the tree.

— abstract resolution simply returns the bodies of the above resultants:
aresolve(A, H «— B) = B.

— ageneralize is such that it only produce sets of atoms and the initial abstract conjunction
A is an atom.

To representonjunctivepartial deduction [129, 79, 120] we just have to drop the last re-
quirement.

As a corollary of Proposition 5.6, we know that we satisfy Definition 5.3 of an abstract
unfolding. The fact that abstract resolutiaresolve(A, H «— B) = B satisfies Definition 5.4
follows from our discussions in Section 3.3. We can thus apply Theorem 8.2. For classical partial
deduction of atoms, fairness afinfold trivially follows from the fact that is non-trivial. We
can hence also apply Theorem 8.7.

It can also be easily verified that the generalization operations used in existing classical or
conjunctive partial deduction techniques satisfy our requirements in Definition 6.6.

Removal of Redundant Clauses

[43, 66, 44] present a classical partial deduction approach, but where a re§idtant By is
removed fromaunfold (P, Q) if it can be proven by a bottom-up abstract interpretation at

fails. Such a resultant is calleddundant In caseB,, fails finitely, it is very easy to prove that

this extension of partial deduction satisfies Definitions 5.3 and 5.4 (simply use, in the proof of

47

Proposition 5.6, a tree’ instead ofr where all branches ending in a redundahtare fully
expanded until failure). In casB, fails infinitely, the situation is more complicated, and we
cannot directly use our top-down framework. We will return to the issue of combining bottom-
up and top-down approaches in Section 10.

9.2 Ecological and Constrained Partial Deduction

Ecologicalpartial deduction [117, 140, 120] (and its ancestor [60]) specializes sets of character-
istic atoms of the fornj A, 7), whereA is an ordinary atom and a characteristic tree (basically
a representation of the shape of an SLD-tree). Intuitiyelyr) represents all instances df
which haver as a characteristic tree. Ecological partial deduction can be seen as an instance of
the above generic framework by using an abstract doipa®, v) with

- AQ = (A, T), whereA is the set of atoms arifl is the set of characteristic trees [60, 55].

- v((A,7)) ={A" | A” < A" < AN A" has characteristic tree},
and where abstract unfolding and resolution are defined by

— aunfold(P, (A, 1)) is based on using the SLD-tree fBrU {« A} according to the shape

indicated byr (and removing the resultants which are not present gee [117, 140, 120]).

— aresolve((A, 1), A0 — B) = (B, ") wherer’ is the characteristic tree for an SLD-tree for
PU{< B}.

It is again very easy to prove that the above operations satisfy our requirements in Defini-
tions 5.3 and 5.4, thus making our correctness results immediately applicable.

Constrainedpartial deduction [128] specialises sets of constrained atoms of thedforn
whereA is an ordinary atom ana constraint on the variables i For e.g., the concretisation
function we havey(cdA) = {A0 | D = V(c#)}, whereD is the underlying constraint structure
and we can cast constrained partial deduction into the our framework and the correctness results
from [128] are again a special case of our generic results.

The present framework can now be used to easily extend both methods to handle conjunctions
or even to integrate all of these methods into one powerful top-down specialization method.

9.3 Partial Deduction using Regular Types

Regular types encoded as regular unary logic programs [217, 67] have proven to be successful
both for program analysis and specialization. Indeed, using regular types as an abstract domain
for specialization was already proposed in [182, 192].

Instances of our abstract partial deduction framework using regular types have recently been
developed. First, [73, 74] presents several atomic abstract partial deduction methods, one of

48

which is formally cast into our framework. An implementation has been produced, which has
been validated on practical examples.

Second, [131] presents an extension of [73, 74] which can specialize abstract conjunctions.
It is formally shown how to perform abstract unfolding and resolution in such a setting, and
the practical usefulness of combining regular types with conjunctions has been demonstrated on
several examples. An implementation, using HtecE system [119] has been developed and
applied to several examples; one of which we elaborate below. One possible application of the
method is the model checking [26] of process algebras.

We present some aspects of these instances of our framework below.

Definition 9.1 A canonical regular unary clausis a clause of the form:
to(f(Xy, ..., X)) «— t1(X1) Ao A E(X)
wheren > 0 and X4, ..., X,, are distinct variables. Aegular unary logic (RUL) progranis
a finite set of regular unary clauses, in which no two different clause heads have a common
instance, together with the single facty(X) <. Given a (possibly non-ground) conjunction
T and a RUL progranz, we write R |= V(T iff RU {« T} has an SLD-refutation with the
empty computed answer. Finally, the success set of a predicateRUL programR is defined
by successr(t) = {s | sis ground\ R |= V(t(s))}.

Example 9.2For example, given the following RUL-prograf®, we haveR |= V(t1([a])) and
R EY(11([X.Y])).

t2([D). any(X).
tL([H[T]) :- any(H),t1(T).

Definition 9.3 We define theRUL-domain(.4Q,) to consist of abstract conjunctions of the
form (Q, T, R) € AQ where(, T are concrete conjunctions aftis a RUL program such that:
T =t(X1) A... Atp(X,), Wherevars(Q) = { X7, ..., X, } andt; are predicates defined IR.
The concretisation functiony is defined as followsy((Q, T, R)) = {Q0 | R E V(T0)}. T is
called atype conjunction

Using R from Ex. 9.2 we have that((p(X),t1(X), R)) ={p([]), p([X]), p([a)]), . . ., p([X, Y]),
p([X, X]), p([a, X]), ...}. Note that abstract conjunctions from our RUL-domain are called R-
conjunctions in [74].

Full details on how to implement abstract unfolding, abstract resolution and concrete abstract
partial deduction procedures can be found in [73, 74] and [131].

The following example, which was worked out using the implementation presented in [131],
shows a particular verification example where conjunctions and regular types both play an im-
portant role.

49

Example 9.4 Take the following simple program, which simulates several problems that can
happen during model checking of infinite state process algebras. Here, the pradicat2
describes the possible traces of a particular (infinite state) systesyntn_trace/2 we de-
scribe the possible traces of two synchronized copies of this system, with different start states.

trace(s(X),[dec|T]) :- trace(X,T).
trace(0,[stop]).

trace(s(X),[inc|T]) :- trace(s(s(X)),T).
trace(f(X),[dec|T]) :- trace(X,T).
trace(f(X),[inc|T]) :- trace(f(f(X)),T).
trace(a,[inc,stop]).

sync_trace(T) :- trace(s(0),T), trace(f(a),T).

As one can see, the synchronizatiors(f) withf(a) will never produce a complete trace,
and henceync _trace will always fail. Classical partial deduction is unable to infer failure of
sync _trace , even when using conjunctions, due to the inherent limitation oftfledomain
to capture the possible states of our system, i.e., the possible first arguntestet® . Inthe
RUL domain we can retain much more precise information about the cailade/2 . E.g.,
our implementation was able to infer that the first argument to calteate/2 descending
from trace(f(a),T) will always have the typ&40 defined by:

t940(a):-true.
t940(f(_460)) :- t940(_460).

This is the residual program generateddmcE

sync_trace([inc,A|B]) :- p_conj__ 2(0,A,B,a).
sync_trace__1([inc,A|B]) :- p_conj__2(0,A,B,a).
p_conj__2(A,dec,[B|C],D) :- p_conj__3(A,B,C,D).
p_conj__ 2(A,inc,[B|C],D) :- p_conj__ 2(s(A),B,C,f(D)).
p_conj__3(A,dec,[B|C],D) :- p_conj__4(A,B,C,D).
p_conj__3(A,inc,[B|C],D) :- p_conj__2(A,B,C,D).
p_conj__4(s(A),dec,[B|C]L,f(D)) :- p_conj__4(A,B,C,D).
p_conj__4(s(A),inc,[B|C],f(D)) :- p_conj_ 2(A,B,C,D).

This program contains no facts and a simple bottom-up post-processing (e.g., the one imple-
mented inECCEbased upon [155]) can infer theync _trace fails.

Observe that a deterministic regular type analysis on its own (i.e., without conjunctions)
cannot infer failure olsync _trace . The reason is that, while the regular types are precise

50

enough to characterize the possible states of our infinite state system, they are not precise enough
to characterize the possible traces of the system! For example, the top-down regular type analysis
of the spsystem produces the following result for the possible answesgraf _trace

sync_trace__ans(X1) :- t230(X1).
t230([X1|X2]) :- t231(X1),t1232(X2).

t231(inc) :- true. t233(inc) :- true.
t231(dec) :- true. t233(dec) :- true.
t231(stop) :- true. t233(stop) :- true.

t232([X1|X2]) :- t233(X1),t232(X2).
t232([]) :- true.

In other words, the regular type analysis on its own was incapable of detecting the failure.
Using our approach, the conjunctive partial deduction component achieves “perfect” precision
(by keeping the variable link between the two copies of our system), and it is hence not a problem
that the traces cannot be accurately described by regular ¥ygéss underlines our hope that
adding conjunctions to regular types will be useful for a more precise treatment of synchroniza-
tion in infinite state systems. We also believe that it will be particularly useful for refinement
checking [195], where a model checker tries to find a tracihat can be performed by one
system but not by the other. Such refinement checking can be encoded by the following clause:

not_refinement_of(S1,S2,T) :- trace(S1,T), \+(trace(S2,T)).

This clause is similar to the clause defingygic _trace and a non-conjunctive regular type
analysis will face the same problems as above.

10 Propagating Success Information

In this section we address one remaining limitation of our framework compared to existing top-
down abstract interpretation approaches. Indeed, compared to the top-down abstract interpreta-
tion framework of [14],

1. our framework can use abstracinjunctionsnstead of abstract atoms, and can make use of
sophisticatedbstract unfoldingsather than just a single abstract resolution steps. Apart
from producing more efficient specialised programs, these features sometimes allow for a
more precise analysis [143].

1The non-deterministic regular type analysis of [76] actually is precise enough to capture these traces. However,
we believe that there will be more complicated system traces which it cannot precisely describe.

51

2. on the other hand, there is no propagation or inferenseicéeseformation in our frame-
work. The following examples explains and illustrates this limitation.

Example 10.1Consider the following tiny program:
p(X) — q(X) Ar(X)
q(a) —
(a) —
(b) —

<

<

Let us suppose we apply the instance of Algorithm 2 described in Section 9.1, i.e., classical
partial deduction within thé®D-domain. For a given query p(X), one possible (although
very suboptimal) outcome of the algorithm is the final det= {p(X), ¢(X), r(X)} of abstract
conjunctions and the SLD-trees, 7, and7s presented in Figure 6 (generateddynfold).

With this result of the analysis, the transformed program is identical to the original one. Note
that in, we have derived that the only answer foer ¢(X) is X/a. An abstract interpretation
algorithm such as the one in [14] would propagate this success-information to the lgaf of
yielding that (under the left-to-right selection rule) the call »(X) becomes more specific,
namely«— r(a). This information would then be used in the analysis of tli¢ predicate,
allowing to remove the right branch ef and thus the clause generated from it. This clause
is redundant, because for no concretisatior-ofp(X') will this clause appear in a successful
refutation.

o —p(X) 1 q(X) T3: — r(X) Thie— q(X)
l l X/a X/a X/b X/a
—q(X)Ar(X) O O | O —q(X)

Figure 6: SLD-trees for Example 10.1

The same picture holds even if we add the clause

q(X) — q(X)
to the above program, thus obtaining the tréén Figure 6 instead of,. Indeed, an abstract
interpretation [14] ofy(X) will return that the only possible computed answer substitution for
q(X)is {X/a}. Hence, assuming a left-to-right selection rule, the predicatevill again only
ever be called with its argument instantiated.to

52

The possibility to do such sideways and bottom-up information passing can actually be rel-
atively easily added to our framewotk. In fact, all we have to do is replace Definition 6.2,
defining the concretisation functionfor sequences of abstract conjunction, by the following
definition:

Definition 10.2 Let (AQ,) be an abstract domain. We defindor sequences of abstract con-
junctions in the context of a programinductively as follows:

- 7((A1)) =7(A1)
- 7(<A17 s 7An>) = {Qs A Qn | Q9 € 7(<A17 cee 7An—1>)’ Qn j [An—l and
(P EVY(Qs) = Qn € 7(An) }

Intuitively, for a conjunctiong(t) A r(t) to be a concretisation of a sequence;, A,) of
abstract conjunctions, the aton¥) must only be a concretisation af, in caseP = V(q(t)),

i.e., if ¢(t) is a computed instance.

For example, in thé@D-domain and in the context of Example 10.1 we haie A r(a) €
v({q(X),r(a))) but alsog(b) Ar(b) € v({q(X),r(a))), asP - q(b). Similarly, we havey(X) A
r(X) € v((¢(X),r(a))), asP [~ VX.q(X). Observe that neither(b) A r(b) norg(X) A g(X)
are an element of(¢(X) Ar(a)).

Using the revised Definition 10.2 we have thatX),r(a)) is an abstraction of(X) A
r(X) and Algorithm 2 can thus produce the outcare= {p(X), ¢(X), r(a)} and sideways and
bottom-up information passing has been achieved.

The change made in Definition 10.2 means that Theorems 8.2 and 8.7 will no longer hold for
any SLD-refutation and finitely failed SLD-tree, but only for LD-refutations and finitely failed
LD-trees (SLD-derivations and SLD-trees which follow a left-to-right selection rule are called
LD-derivations and LD-trees respectively). Furthermore, the abstract unfolding operation will
now have to satisfy the requirements of Definition 5.3 not for some SLD-+tregt for some
LD-treer.

Finally, it is possible to go even further and implement a stronger, selection rule independent,
bottom-up success propagation, that would not only instantigfe to r(a) in Example 10.1 but
also instantiate)(X) to p(a). Abstract partial deduction could then produce the outcoine
{p(a),q(a),r(a)} and the specialised program:

pla)
q(a)

r(a) —

2Another possible solution is to analyse the callX) andr(X) in conjunction, thus achieving “perfect” success
information passing. However, due to termination considerations this is not always possible or desirable.

53

Details of this approach are sketched in [123]. A variation of this approach has been used in
[131] to obtain a concrete specialization procedure and a practical implementation. We basically
can instantiate the resultants using bottom-up success information. However, this specialization
approach can change the termination characteristic of the program and no longer preserves the
finite failure semantics, because infinite failure can be replaced by finite one.

11 More Related Work

Abstract Interpretation of Logic Programs Table 1 presents a brief comparison of how the
specialization and abstract interpretation techniques discussed in the paper relate to each other.
The abbreviations in the table for the column headings are as follows:

— PD: stands for classical partial deduction [152]

— CPD: denotes conjunctive partial deduction [42]

— MSV: this is the most specific version abstract interpretation of [154, 155]

— TD-Al: is the top-down abstract interpretation framework of [14]

— Plai: is the already mentioned technique of [182, 192] which extends an existing abstract
interpreter for Prolog so that it produces specialised code. This can be seen as abstract
partial deduction on atoms, using arbitrary abstract domains (provided by the abstract in-
terpreter), and (contrary to [184, 188]) it can use an abstract unfolding which performs
more than one unfolding step.

— BU-ALI: this classical bottom-up abstract interpretation based on approximatingnd
computing a fixpoint of this abstraction.

— APD: this is abstract partial deduction as developed in this paper up until Section 8.

— APD™: this is the abstract partial deduction with success information propagation, as ex-
tended in Section 10.

The first row of Table 1 indicates which abstract domain can be used by the respective meth-
ods. The second row indicates whether the method can analyse conjunctions of atoms, while the
third row indicates whether the method can make use of an unfolding rule. The fourth row indi-
cates whether success information can be inferred and propagated, while the last row indicates
the semantics on which the abstractions are based.

Specialization and Transformation of Logic Programs We have already discussed in Sec-
tion 9 the relationship of our abstract partial deduction framework (namely “more general than”)

130nly in the journal version [155].

54

PD | CPD | MSV | TD-AI Plai | BU-Al | APD | APD"
Abs. Domain| PD | PD PD any any any any any

Conjunctions| no | yes | yes?3 no no no yes yes
Unfolding yes | yes no no yes no yes yes
Success Info| no no yes yes yes yes no yes

Semantics SLD | SLD | Tp | And-Or | And-Or Tp SLD | SLD+Tp

Table 1: A comparison of program specialization and abstract interpretation techniques

with classical partial deduction [152, 57], conjunctive partial deduction [129, 79, 120], ecologi-
cal partial deduction [117, 140, 120] (and its ancestor [60]), constrained partial deduction [128],
and partial deduction with removal of useless clauses [43, 66, 44].

The following techniques in the functional/logic setting, are also closely related. [69] presents
a variation of ecological partial deduction for functional and logic languages, using trace terms
instead of characteristic trees. [113] is a technique in the style of constrained partial deduction
for functional-logic programs. [3, 2] can be viewed as a conjunctive partial deduction technique
(i.e., abstract partial deduction in the classiPdP-domain) for functional-logic languages.

Another, strongly related work is [172], which uses an unfold/fold program transformation
approach to specialise logic programs in a gigentext This context is another predicate of
the logic program under consideration. In contrast to our general technique, [172] performs
syntactic transformations only, and has a more limited abstract unfolding possibility. Also, the
side-condition has to be expressed as a logic program predicate, i.e., it may not be obvious
how to easily handle characteristic trees from ecological partial deduction or more general con-
straints. Finally, the results of [172] are for the least Herbrand model semantics and not (yet)
for computed answer or finite failure semantics. Nonetheless, it should be possible to cast [172]
(or a suitably adapted version thereof) in our framework and thus gain correctness results for
computed answers and finite failure.

Functional Programming Supercompilation [205, 81], is very related to conjunctive partial
deduction (in fact, conjunctive partial deduction was in part inspired by supercompilation). In-
deed, the abstract domain for supercompilation can be seen as the concrete domain of functional
programming expressions augmented with variables (which already exist in the concrete domain
of logic programming). Tupling [24], deforestation [215], and generalized partial computation
[54] are also closely related to conjunctive partial deduction (see [42, 125], [204]) and thus ab-
stract partial deduction in the “classicd”’D-domain. We believe that it is possible to adapt the
present paper to a functional programming setting, thus making it possible to extend the above

95

techniques to use richer, more expressive abstract domains.

One of the earliest combinations of abstract interpretation and partial evaluation has been
developed by Consel and Khoo [33]. They give a framework for a first-order functional language
parametrised on algebras. Another related functional programming technique is type special-
ization [94]. It already uses a domain based upon types, richer tha@Thdomain. It is
still unclear whether a logic programming version of type specialization can be developed, and
whether it can then be cast into our framework.

Imperative Programming [105] presents a very generic framework which can model various
(non-conjunctive) partial evaluation and driving techniques in the context of imperative pro-
grams. It has a concept of abstract stores, which represent sets of possible concrete stores of the
imperative program. The paper also contains soundness and completeness criteria, and clarifies
the relationship between partial evaluation and driving (i.e., supercompilation). However, in con-
trast to our paper, it has more limited abstract unfolding: in essence every abstract unfolding step
must correspond to exactly one concrete step (there is, however, a post-processing compression
phase of transient transitions).

12 Future Work and Conclusion

Future Work A lot of avenues can be pinpointed for further work. First, on the practical side,
one should of course implement further, useful instances of the generic algorithms presented
in this paper. [73, 74] and [131] have already developed instances of our framework based
upon regular types, and some promising applications for infinite state model checking of process
algebras have been hinted at. These techniques can probably be further improved, by using the
possibilities opened up by our very general definition of abstract unfolding (cf., Section 5). It
should also be possible to move to more precise abstract domains, such as non-deterministic
regular types [76] without too much difficulty.

New abstract partial deduction techniques, based upon other abstract domains from the ab-
stract interpretation literature also look very promising for specialization purposes.

On the theoretical side, one could try to extend the language treated by our framework. We
can already handle definite logic programs with declarative built-ins sueh asll, functor,
arg, \ ==. This allows to express a large number of interesting, practical programs; one can even
implement and use certain higher-order features suehuag3. However, we cannot yet handle
normal logic programs with negation or constraint logic programs, and one should strive to ex-
tend our framework to handle such programs. Ideally, one should aim at making our framework

56

programming language independent and thus not only covering normal and constraint logic pro-
grams, but functional and imperative programs as well. This would provide a unified correctness
framework in which most specialization techniques could be cast.

One can also endeavor to cover ever more powerful, but ever more difficult to automate,
specialization methods such as goal replacement, specialization of disjunctions of conjunctions
[175] or specialization of conjunctions of unlimited length [171].

Conclusion In this paper we have presented a very generic framework for top-down logic
program specialization. We have established segaéric correctness resulend have cast
several existing techniques in our framework, thereby re-using the correctness results in a sim-
ple manner. We have also shown how the additional generality of our framework can be ex-
ploited in practice, for improved generalisation, unfolding and code-generation. Instances of our
framework, based upon regular types, have already been developed in the literature and their
usefulness has been demonstrated. In the course of this paper, we have also clarified the rela-
tionship of top-down partial deduction with abstract interpretation, establishtoghianon basis

and terminology. We believe we have made an important step towards a full reconciliation of ab-
stract interpretation and program specialization. In summary, the new framework with its generic
algorithm and correctness results, provides the foundation for new, powerful specialization tech-
nigues.

57

Part Il
Abstract Specialization and its
Applications

The aim of program specialization is to optimize programs by exploiting certain knowledge
about the context in which the program will execute. There exist many program manipulation
techniques which allow specializing the program in different ways. Among them, one of the
best known techniques [mrtial evaluation often referred to simply as program specialization,
which optimizes programs by specializing them for (partially) known input data. In this work
we describeabstract specializationa technique whose main features are: (1) specialization is
performed with respect to “abstract” values rather than “concrete” ones, aalog{2act interpre-
tationrather than standard interpretation of the program is used in order to propagate information
about execution states. The concept of abstract specialization is at the heart of the specialization
system inCiaoPP , theCiao system preprocessor. In this work we present a unifying view of
the different specialization techniques usedCiaoPP and discuss their potential applications

by means of examples. The applications discussed include program parallelization, optimization
of dynamic scheduling (concurrency), and integration of partial evaluation techniques.

13 Background

The aim of program optimisation is, given a progrdtrto obtain another program®’ which
is semantically equivalent t& but behaves better for some criteria of interest. One typical
way of optimizing programs is bgpecializingthem for some particular context. This allows
automatically overcoming losses in performance which are due to general purpose algorithms.
This situation is becoming more and more frequent due to the use of techniques such as reuse of
general-purpose programs and libraries, and software components, which facilitate development
but can result in large programs and even waste of computing resources. More precisely, the aim
of program specialization is, given a progrdmand certain knowledge about the context in
which P will be executed, to obtain a prograR) which is equivalent ta” for all contexts which
satisfy¢ and which behaves better from some given point of view.

In the case opartial evaluation[32, 99], the knowledge which is exploited is the so-called
staticdata, which corresponds to (partial) knowledge at specialization (compile) time about the
input data. Data which is not known at specialization time is callggamic The program is

58

optimised by performing at specialization time those parts of the program execution which only
depend on static data.

Another very general setting for specialization specially relevant in the context of logic pro-
grams, which has been proposed in [173], is to define the knowledge about the context as a
so-calledstatic propertyy(Xy, ..., X,), whereX,, ..., X, are the formal arguments of the top-
level procedure” and¢ is defined as a logic program. However, this approach suffers from an
important difficulty in using the context information in an automated and effective way.

The approach we follow iabstract specializatiors that the informatiorp available on the
context is captured by asmbstract substitutionOne advantage of this approach is that there are
well known techniques which allow handling information represented as abstract substitutions
by usingabstract interpretatioriechniques [35].

13.1 An Overview of Specialization Techniques

For the purpose of comparing different existing techniques, let us classify the existing special-
ization techniques according to how the final, optimised, program is obtained. Of course, this
classification is rather crude and many of the existing techniques can be seen as a combination
of the three approaches which we will discuss. The first approach which we describe, and which
we will call program with annotationsconsists of two phases. During the first phase, some
static program analysisechnique is used in order to annotate the program with analysis infor-
mation. In the second phase, the program is optimised using the information obtained. This
approach is conceptually simple, though either or both of the phases mentioned can indeed be
rather complex. A well known example of this kind of techniques is the “off-line” approach to
partial evaluation, in which &inding-time analysiphase is followed by another one in which

the residual program is generated.

The second class of techniques we consider, which we will caltréresformationalap-
proach, is based on program transformation techniques, such as fold/unfold transformations
(such as the ones developed in [20, 206]). In this scheme, a seriesahantic-preserving
program-transformation steps are performed such that initRally 7. Then, eachP,,, is ob-
tained fromP, by applying some transformatidfi, i.e., P, = T;(P;), which preserves the
semantics of the program. Finaly = P,,. Transformational techniques are very powerful, the
main difficulty being in automatically deciding a proper sequence of programs transformations
to perform in order to obtain (an optimal) progrdrh

The third and last possibility which we consider, and which we will denotesémeanticap-
proach, is based on the existence of an algorithmhich, given a progran® and some know-
ledge, builds a semantic representation of the progai, ¢) which captures the behaviour

59

of P in some precise way for all contexts which satigfyThen, there is a code generation algo-
rithm which builds the progran®,, from S(P, ¢) in a straightforward way. Often this semantic
representation can be seen as a graph. The kind of graph obtained depends on the particular
semantics used by the algorithm. The “on-line” approach to partial evaluation is, in our termi-
nology, a semantic approach since the behaviour of the program is precisely captured by the
partial evaluation algorithm.

A particular algorithm for the on-line partial evaluation of logic programgagtial deduc-
tion [148, 110]. Though on-line partial evaluation can be considered an instance of fold/unfold
transformations, the comparatively significant success of partial deduction techniques is proba-
bly due to the fact that they are often formalized as a semantic approach. I.e., an algorithm exists
which can be used to build the semantic representation of the program. The existing algorithms
for partial deduction [148, 57, 120] are parameterized by different control strategies. Usually,
control is divided into components: “local control,” which controls the unfolding for a given
atom, and “global control,” which ensures that the set of atoms for which a partial evaluation
is to be computed remains finite. Several strategies for global and local control have been pro-
posed which produce good-quality partial evaluations of programs [158, 139]. Regarding the
correctness of partial deduction, two conditions, defined on the set of atoms to be partially eval-
uated, have been identified which ensure correctness of the transformation: “closedness” and
“independence” [148].

13.2 Abstract Specialization through A Motivating Example

One of the distinguishing features of logic programming (LP) is that arguments to procedures
can be uninstantiated variables. This, together with the search execution mechanism available
(generally backtracking) makes it possible to haudti-directionalprocedures. I.e., rather than
having fixed input and output arguments, execution can be “reversed”. Thus, we may compute
the “input” arguments from known “output” arguments.

Example 13.1 Consider the logic program below. As usual in IpPedicategprocedures) are
referred to in the text asame/arity , where arity is the number of arguments of the predicate.
The predicatgground/1 is a boolean test which succeeds if and only if its argument is bound

at run-time to a term without variables, and the predica# (used as an infix binary opera-

tor) computes the arithmetic value of its second (right) argument and unifies it with its first (left)
argument.

plus(X,Y,Z):- ground(X),ground(Y),!,Z is X + Y.

plus(X,Y,Z):- ground(Y),ground(2),!,X is Z - Y.
plus(X,Y,Z):- ground(X),ground(2),!.Y is Z - X.

60

The procedureplus/3 defines the relation such that the third argument is the addition of
the first and second arguments. The proceduites/3 is multi-directional. For example,
the callplus(1, 2, Sum) can be used to compute the addition of 1 and 2. Also, the call
plus(Num, 2, 3) can be used to determine which is the numidemsuch that when added

to 2 returns 3.

Thus, the definition oplus/2 behavedeclarativelyas long as at least two of the input
arguments are ground. However, this good behaviqula$/3 when compared to a mono-
directional operation such &2 s at the expense of some overhead which is incurred at run-
time in order to select the appropriate clause to execute out of the three existing ones. Imagine
now that at compile-time it is known that the callgtus/3 will be of the formplus(1, 2,

Sum). In such case it is clear that the first clause will be selected and the execution will return
the value 3 for the argume®um This is a typical example of an execution which can benefit
from (traditional, “concrete”) partial evaluation whepds the knowledge that the initial call is
plus(X,Y,Z2) with X=1 andY=2.

In spite of the relative maturity of partial evaluation of logic programs, it is well known that
the technique has certain shortcomings. Imagine we are interested in optimizing the code:

p(X,Y,Res):- plus(X,Y,Tmp), plus(1,Tmp,Res).

whereplus/3 is defined as above. By observing the program we can conclude that after the
execution of the calplus(X,Y,Tmp) all three arguments are ground. As a result, the call
plus(1,Tmp,Res) can be optimised tRes is 1 + Tmp .

Unfortunately, in traditional partial evaluation no information on the value of the argument
Tmpis propagated to the cgllus(1,Tmp,Res) . The intrinsic problem underlying this short-
coming of partial evaluation is that the only information which can be captured about values of
arguments areoncretevalues. In the case of logic programming, values are capturesiby
stitutions This shortcoming of partial evaluation has been identified and several proposals exist
which try to overcome it. Our proposalbstract specializatioraddresses this problem directly.
Abstract specialization allows specializing calls with respeettisiract substitutionsistead of
concrete substitutionss in traditional partial evaluation. As will be discussed in Section 14, ab-
stract substitutions are in this context finite representations of possibly infinite sets of data. Each
such representation method is calledadnstract domainThe kind of information which can be
captured by abstract substitutions varies from one abstract domain to another. For example, we
can have an abstract domain which allows capturing type inform&ti@&uch domain can be

LAlternatively we could use an abstract domain which captures groundness information natively and obtain the
same optimised program.

61

used to determine that in the cplus(1,Tmp,Res) the argumentmpis bound to a number.
We can use this information in orderabstractly executthe two ground terms in the first clause
of plus/3 to the valudrue. We can even execute th®@ procedure call and eliminate the rest
of clauses foplus/3 1. We can thus optimise the original program to:

p(X,Y,Res):- plus(X,Y,Tmp), Res is 1 + Tmp.

Also, the callplus(X,Y,Tmp) can be optimised. SincEmpis a variable which is local to
the clause, it can be determined to be a free variable (and thus definitely not ground). Thus, the
program can be optimised to:

p(X,Y,Res):- plusl(X,Y,Tmp), Res is 1 + Tmp.
plusl(X,Y,Z):- ground(X),ground(Y),!,Z is X + Y.

whereplusl/3 is a specialized version plus/3 . Generalizing from the examples above we

can develop a specialization system which is able to perform the optimisations shown above. The
specialization system will be able to: (1) capture more general information than traditional sub-
stitutions, i.e., it will capture abstract substitutions, (2) propagate such information in a correct
way using a suitable semantics, and (3) carry out the optimisations enabled by the information
available.

14 Abstract Interpretation

Static Program analysiaims at deriving at compile-time certain properties of the run-time be-
havior of a program. We provide some background and notation on abstract interpretation [35],
which is arguably one of the most successful techniques for static program analysis.

In abstract interpretation, the execution of the program is “simulated” @bstnact domain
(D.) which is simpler than the actualpncrete domairgD). An abstract value is a finite repre-
sentation of a, possibly infinite, set of actual values in the concrete dominThe set of all
possible abstract semantic values represents an abstract dogaihich is usually a complete
lattice or cpo which is ascending chain finite. However, for this study, abstract interpretation
is restricted to complete lattices over sets both for the con¢eéteC) and abstractD,,, C)
domains.

Abstract values and sets of concrete values are related via a pair of monotonic mappings

15The procedure call0 is used to eliminate other alternatives.

62

(o, ~y): abstractiona : 2P — D,,, andconcretizationy : D, — 2P, such that
Vo € 2P y(a(z)) Dz and Vy € D, : a(y(y)) = y.

Note that in generdL is induced byC and« (in such a way thatA\,\' € D, : AC X <
v(A) € v(XN)). Similarly, the operations déast upper boun@_) andgreatest lower bound)
mimic those o2” in some precise sense.

Example 14.1 (A domain for mode analysis)Consider the following toy abstract domain,
which capturegnodeinformation (i.e., the state of instantiation of program variables upon pro-
cedure call). An abstract substitutionover a set of variableX = {X,..., X,,} assigns to
each variableX; a valuev in the set{ground, var, any} where each represents an infinite set
of terms. The fact that a variabl&; is assigned an abstract valueindicates thatX; will be
bound at run-time to some term belongingitayround is the set of all terms without variables;
var is the set of unbound variables (possibly aliased to other unbound variablesyrants
the set of all terms. The abstract domain is complemented by the abstract substituaods™.
As usual in abstract interpretation, denotes the abstract substitution such that) = (. The
substitutionT is such thaty(T) = D. In our domain,T corresponds to assigning:y to each
variable inX. O

Since our discussion will concentrate on logic programs, we also recall some classical defini-
tions in logic programming. Aatomhas the fornp(t4, ..., t,,) wherep is a predicate symbol and
thet, are terms. We often ugeo denote a tuple of terms. dauses of the formH:- By,..., B,
whereH, thehead is an atom and3y, . . ., B,,, thebody is a possibly empty finite conjunction
of atoms. Atoms in the body of a clause are often calitedals. A definite logic programor
program is a finite sequence of clauses.

14.1 Goal-Dependent analysis

Goal-dependentinalyses are characterized by generating information which is valid only for a
restricted set of calls to a predicate, as opposed to goal-independent analyses whose results are
valid for any call to the predicate. Goal-dependent analyses allow obtaining results which are
specializedrestricted) to a given context. As a result, they provide in general better (stronger)
results than goal-independent analyses. In addition, goal-dependent analyses provide informa-
tion on both the call and success states for each predicate, whereas goal-independent analyses
in principle only provide information on success states of predicates. For these reasons, and
since program specialization greatly relies on information about call states to predicates, we will
restrict the discussion to goal-dependent analyses.

In order to improve the accuracy of goal-dependent analyses, some kind of description of the
initial calls to the program should be givEhwith this aim, we will useentry declarations in

18predicate calls which are not initial will be calledernal.

63

| Property \ Definition | Sufficient condition |

L is abstractly RT(L,P) CTS(L,P) | 3N € Ars(B, D,) :
executable toruein P AL TN
L is abstractly RT(L,P) C FF(L,P) | 3N € App(B, D,) :
executable tdalsein P AL TN

Table 2: Abstract Executability

the spirit of [17]. Their role is to restrict the starting points of analysis to only those calls which
satisfy a declaration of the form+‘ entry Pred: Call.’ where Call is an abstract call sub-
stitution for Pred For example, the following declaration informs the analyzer that at run-time
all initial calls to the predicatgsort/2 will have a term without variables in the first argument
position:

- entry gsort(A,B) : ground(A).

Though our framework allows having several entry declarations (for the same or different
exported predicates), for the sake of clarity of the presentation we restrict ourselves to having
one entry declaration only. Als&iaoPP [87] supports a more general language, which in-
cludes properties defined in the source language [179]. In this setting, goal dependent abstract
interpretation takes as input (1) a progr&h(2) an atonp, (3) an abstract substitutioxin (4)
an abstract domai®, which describes restrictions on the initial values, and computes a set of
triples Analysis(P,p, A\, Do) = {{(p1, A{, A]), .., (pn, A%, A2)). In each triple(p;, XS, A?), p;
is an atom and\¢ and \; are, respectively, the abstract call and success substitdfiddse to
space limitations, and given that it is now well understood, we do not describe here how we com-
pute Analysis(P, p, A\, D,). More details can be found in [89, 187] and their references. Given
Analysis(P,p, A\, Dy) = {(p1, A, A]), ..., (pa, A%, A2)}, correctness of abstract interpretation

guarantees that the following propositions hold:

Proposition 14.2 (Correctness w.r.t. successedhe abstract success substitutions cover all the
concrete success substitutions which appear during executioryiie.l..n V0. € v(XS) if p;0.
succeeds P with computed answer substitutiénthend, € (7).

Proposition 14.3 (Correctness w.r.t. calls)The abstract call substitutions cover all the con-
crete calls which appear during executions describediy). l.e., for any concrete calt

Actually, the analyzers used in practice generate information not only @iréloicate levelas stated here for
simplicity, but also at thelause literallevel.

64

originated from an initial goalpt) s.t. & € v(\) : 3(p;, \§,A}) € Analysis(P,p, A, D,) S.t.
c=p;0"andd’ € y(\5).

Proposition 14.3 is related to the closedness condition [148] required in partial deduction. A
tuple (p;, A5, L) indicates that all calls to predicape with substitutiont € () either fail or
loop, i.e., they do not produce any success substitutions. An analysis is saidndthariant
if more than one triplelp, A\{, A7), ..., (p, A\, A3) n > 1 with A # \§ for somei, j may be
computed for the same predicate

15 Abstract Executability

The concept oabstract executability77, 189] allows reducing at compile-time certain program
fragments to the valudsue, false or error, or to a simpler program fragment, by application of
the information obtained via abstract interpretation. This allows optimizing and transforming the
program (and also detecting errors at compile-time in the casgar).

For simplicity, we will limit herein the discussion to reducing a procedure call or program
fragment/L (for example, a “literal” in the case of logic programming) to eitkrere or false
Each run-time invocation of the procedure dalill have alocal environmentvhich stores the
particular values of each variable infor that invocation. We will usé to denote this envi-
ronment (composed of assignments of values to variables, i.e., substitutions) and the restriction
(projection) of the environmetdtto the variables of a procedure célis denoted| ;..

We now introduce some definitions. Given a procedurelcadl a predicate which performs
no side-effects in a progra® we define therivial success sedf L in P as:

TS(L,P)={0|. : LO succeeds exactly once inwith empty answer substitutiofa) }

Similarly, given a procedure call from a programP we define thdinite failure setof L in P
as:
FF(L,P)={6|. : L0 fails finitely in P}

Finally, given a procedure call from a programP we define theun-time substitution setf
Lin P, denotedRT'(L, P), as the set of all possible substitutions (run-time environments) in the
execution state just prior to executihgn any possible execution of prografh

Table 2 shows the conditions under which a procedure Ical abstractly executable to
eithertrue or false In spite of the simplicity of the concepts, these definitions are in general
not directly applicable in practice sing&l’(L, P), T'S(L, P), and F'F'(L, P) are generally not
known at compile time. However,@llecting semantics generally used as concrete semantics
for abstract interpretation so that analysis computes for each procedufeicdhe program an

65

abstract substitution;, which is a safe approximation ét7'(L, P),i.e.VL € P . RT(L, P) C
Y(AL).

Also, under certain conditions we can compute either automatically or by hand sets of abstract
valuesArs(L, D,) andArr (L, D,) whereL stands for thiase fornof L, i.e., all the arguments
of L contain distinct free variables. Intuitively, they contain abstract values in domaimhich
guarantee that the executionbtrivially succeeds (resp. finitely fails). Soundness requires that
VYA € Ars(L, Do) v(\) € TS(L, P) andV\ € App(L, D) v(\) € FF(L, P).

Even though the simple optimisations illustrated above may seem of narrow applicability,
in fact for many builtin procedures such as those that check basic types or which inspect the
structure of data, even these simple optimisations are indeed very relevant. Two non-trivial
examples are their application to simplifying independence tests in program parallelization [189],
discussed in Section 17, and the optimisation of delay conditions in logic programs with dynamic
procedure call scheduling order [181], discussed in Section 18.

Also, the class of optimisations which can be performed can be made to cover traditional
lower-level optimisations as well, provided the lower-level code to be optimised is “reflected”
(i.e., is made explicit) at the source level or if the abstract interpretation is performed directly at
the object level.

16 Abstract Multiple Specialization

The traditional approach used in analysis-based optimizing compilers is to first analyze the
program and then use the information Amalysis(P, p, A, D,,) to annotate the program with
information which is then used for optimisation. Often, the underlying analysis algorithm is
multi-variant. However, analysis information for the different versions of a procedure call is
“flattened”, i.e., “lubbed” together before being used for optimisation. Though this approach
allows important optimisations, it produces optimisations which may be suboptimal when com-
pared with the optimisations which could be achieved if separate specializations were imple-
mented for the different versions considered by multi-variant analysis. More precisely, suppose
{Pj, AL A, (P, A5, A8) } o > 1 are the tuples iMnalysis(P, p, A, D,,) for predicatep;.
Generally, only one version far; is implemented, which is equivalent to specializimgw.r.t.
AfUAS, . LAS.

The main idea that we will exploit is to generate a different versiop;dfor each tuple
(p;, A, A7), Then, each version can be specialized wxXitregardless of the rest of the call
substitutions\; V;j # i. Hopefully, this will lead to further opportunities for optimisation in each
particular version. Note that if analysis terminates the number of tuplésddysis(P, p, A, D,,)

66

for each predicate must be finite, and thus the resulting program will be finite. We will refer to this
kind of specialization aabstract multiple specializatiof185, 189]. An important observation
here is that abstract multiple specialization is npt@gram with annotationapproach but rather
asemantia@approach in the terminology of Section 13.1.

16.1 Analysis And-Or Graphs

Traditional, goal dependent abstract interpreters for logic programs based on Bruynooghe’s ana-
lysis framework [13] construct, in order to computealysis(P,p, A, D,), an and—or graph
which corresponds to (or approximates) the abstract semantics of the program. We will denote
by AO(P,p, \, D) the and—or graph computed by the analyzer for a progPamith calling
pattern(p, \) using the domairD,,. Such a graph can be viewed as a finite representation of the
(possibly infinite) set of and—or trees explored by the (possibly infinite) concrete execution. Con-
crete and-or trees which are infinite can be represented finitely through a widening into a rational
tree. Also, the use of abstract values instead of concrete ones allows representing infinitely many
concrete execution trees with a single abstract analysis graph. Finitends3(&fp, \, D,,)
(and thus termination of analysis) is achieved by considering an abstract dOpaiith certain
characteristics (such as being finite, or of finite height, or without infinite ascending chains) or
by the use of avideningoperator [35].

The graph has two type of nodes: those which correspond to atoms (oaledde$ and
those which correspond to clauses (cabed—nodes Or—nodes are triple®;, A, A$). As be-
fore, \{ and \; are, respectively, a pair of abstract call and success substitutions for the atom
p;- For clarity, in the figures the atom; is superscripted with\° to the left and\® to the
right of p; respectively. For example, the or-no@e¢A), {},{A/a}) is depicted in the figure as
Up(A){4/a}, And—nodes are pairdd, H) whereld : inv02 — puebla.tex,v1.92004/01/1911 :
50 : 17asap — sotExp is a unique identifier for the node ard is the head of the clause to
which the node corresponds. In the figures, they are represented as triangléssadepicted
to the right of the triangles. Note that the substitutions (atoms) labeling and—nodes are concrete
whereas the substitutions labeling or—-nodes are abstract. Finally, squares are used to represent
the empty (true) atom. Or—nodes have arcs to and—nodes which represent the clauses with which
the atom (possibly) unifies. And—nodes have arcs to or-nodes which represent the atoms in the
body of the clause. Note that several instances of the same clause may exist in the analysis graph
of a program. In order to avoid conflicts with variable names, clauses are standardized apart
before adding to the analysis graph the nodes which correspond to such clause.

Intuitively, analysis algorithms are just graph traversal algorithms which, gik/en), and
D, build AO(P, p, \, D,,) by processing program clauses from left to right, adding the required

67

{} {A/&}

P(A)
p(X)
" {X/a} {X/a}
Y900 %)

a@ ET acy) l r@)
{3 {Y/a} ; { t}
acy) --

Figure 7. And—or analysis graph for a recursive program

nodes, and computing success substitutions until a global fixpoint is reached. For &given
and D, there may be many different analysis graphs. However, there is a ueigsteanalysis
graph which gives the most precise information possible. This analysis graph corresponds to
the least fixpoint of the abstract semantic equations. Each time the analysis algorithm creates a
new or—node for somg; and \{ and before computing the correspondixfg it checks whether
Analysis(P, p, A\, D,) already contains a tuple for (a variant pfJand\$. If that is the case, the
or—node is not expanded and the already compnfestored inAnalysis(P,p, A\, D,,) is used
for that or—-node. This is done both for efficiency and for avoiding infinite loops when analyzing
recursive predicates. As a result, several instances of the same or—node may apgjgeaboun
only one of them is expanded. We denoteskyansion(V) the instance of the or—-nodé which
is expanded. If there is no tuple fprand\¢ in Analysis(P,p, A\, D,), the or—node is expanded,
A7 computed, andp;, \§, A7) added tadnalysis(P, p, A, D,). Note that the success substitutions
A? stored inAnalysis(P, p, A, D,,) are tentative and may be updated during analysis. Only when
a global fixpoint is reached the success substitutions are safe approximations of the concrete
success substitutions.

For clarity of the presentation, in the examples below we use the concrete domain as abstract
domain. However, this cannot be done in general since analysis may not terminate. We will
present other examples with more realistic domains later in the paper.

Example 16.2 Consider the simple example program below taken from [120]. Figure 7 depicts
a possible result of analysis for the initial cal{ A) with A unrestricted. The dotted arc indicates
that the corresponding or—nodes have renamings of the same abstract call substitution.

P(X):- a(X), r(X).

qa(a).

a(X):- a(X).

r(a).

68

Algorithm 16.1 (Code Generation) Given Analysis(P,p, \, Dy,) and
AO(P,p,\, D,) generated by analysis for a progran? an atom p with
abstract substitution\ € D, do:

e For each tupleN = (a(t), A, *) € Analysis(P,p, A\, D,) generate a dis-
tinct predicate with nameredy = name({a(t), \°, *)).

e Each predicaterredy is defined by the sequence of clauses

— (predy(ty) - b)) ... (predy(ty,) - b))
whereexpansion(N, AO) = Oy and
children(On, AO) = (Idy,pi(t1)) = ... = Idy,pi(ts)) = ... =

(Ldn, pn(tn))
e Each body, is defined as

= U = (predi(tir), - . ., preda, (ti,;))

WherepT’Gdij = name((a,-j (fij),)\fj, /\f]>>1 and

children({Id;, p:(t;)), AO) = (an(tin), Aq, Af)

Figure 8: Algorithm for Code Generation

r(b).

Clearly, in the example program above the clafbg¢ is useless and could be eliminated.
Note that analysis has determined that in all successge9f, and thus in calls to(X) , the
argumenX will be bound to the valua. This is achieved by performing a fixpoint computation
on the success values@@X) . This is why in Figure 7 the or—node(X), {X/a},{X/a}) only
has one child (and—node).

16.2 Code Generation from an And—Or Graph

After introducing some notation, Algorithm 16.1 which generates a logic program from an analy-
sis and—or graph is presented in Figure 8. Given a non-root No#es denote byarent(N, AO)

the nodeM € AO such that there is an arc froif to N in AO, andchildren(N, AO) is the
sequence of node¥; :: ... :: N, n > 0 such that there is an arc fro to N’ in AO iff

N’ = N, for somei andVi,j = 0,...,n. N; is to the left of N; in AO iff i < j. Note

that children(NV, AO) may be applied both to or— and and—nodes. We assume the existence of
an injective functiommame which (1) givenAnalysis(P,p, A, D) returns a unique predicate
name for each tuple and (8xme({q(?), \°, *)) = ¢ iff ¢q(¢) = p (the exported predicate) and

69

A¢ =) (the restriction on initial calls), to ensure that top-level — exported — predicate names are
preserved.

Let AO(P,p, A\, D,) be an and—or graph. We denote By = code_gen(AO(P, p, A\, D,))
that P’ is the program obtained by applying Algorithm 16.140(P, p, A, D,,).

Basically, the algorithm for code generation shown in Figure 8 creates a different version
(predicate) name for each different (abstract) call substitutido each predicatg; in the orig-
inal program. This is easily done by associating a version to each or—node. Note that in principle
such versions are identical except that atoms in clause bodies are renamed to always call the
appropriate version. Correctness of this multiply specialized program is given by the correctness
of the abstract interpretation procedure, as the extended program is obtained by simply materi-
alizing the (implicit) program with multiple versions from which the analysis has obtained its
information.

Example 16.3 The program generated by the code generation algorithm for the and—or graph
in Figure 7 is shown below. The useless cla(p¢ has been eliminated.

P(X):- a(X), r(X).

q(a).

a(X):- a(Xx).

ra).

The example above shows how the use of and-or graphs allows removing useless clauses. The
example below shows how generating multiple specialized versions of a predicate can lead to
optimisations which are not possible if only one version were implemented.

Example 16.4 Consider the progran® in Example 13.1. The and-or graptO(P,p, T, D,,)
where D,, is a domain which captures mode information will have two or-nodes for predicate
plus/3 with different abstract call substitutions (we abbreviateund by g):

(plus(X"Y", Z"),{Z' Jvar},{X'/9,Y" /9, 2"/ g})
and

(plus(X",Y", Z"),AX")g,Y" g}, {X")9, Y"]9, 2" | g})

Now each of these call patterns can be optimised separately by abstractly executing the ground-
ness tests. The final specialized program obtained is shown below:

p(X,Y,Res) :- plusl(X,Y,Tmp), plus2(1,Tmp,Res).
plusl(X,Y,Z) :- ground(X), ground(Y), !, Z is X+Y.
plus2(X,Y,Z) :- Z is X+Y.

70

mmultiply([],_,[1).
mmultiply([VO|Rest],V1,[Result|Others]) :-

(ground(V1),
indep([[VO,Rest],[V0,0Others],[Rest,Result],[Result,Others]])
-> multiply(V1,VO,Result) & mmultiply(Rest,V1,0thers)
; multiply(V1,V0,Result), mmultiply(Rest,V1,0thers)).

multiply([],_.[D).
multiply([VO|Rest],V1,[Result|Others]) :-

(ground(V1),
indep([[VO,Rest],[VO,0Others],[Rest,Result],[Result,Others]])
-> vmul(VO,V1,Result) & multiply(Rest,V1,0thers)

; vmul(VO0,V1,Result), multiply(Rest,V1,0thers)).

Figure 9: Parallel mmatrix

Note that this program could be further improved by unfolding thepdal2(1, Tmp,Res)

This will be further discussed in Section 19. Also, two versions have been generated for predi-
cateplus/3 , namelyplusl/3 andplus2/3 . In order to avoid code explosion our system
performs a minimizing step a posteriori on the and—or graph in order to produce the minimal
number of versions while maintaining all optimisations [189].

17 Program Parallelization

The final aim of parallelism is to achieve the maximum speed (effectiveness) while computing
the same solution (correctness) as the sequential execution. The two main types of parallelism
which can be exploited in logic programs are well known: or-parallelism and and—parallelism.
In this work we concentrate on the case of and—parallelism. And-parallelism refers to the parallel
execution of the literals in the body of a clause. See, for example, [82] and its references. If only
independent goalare executed in parallel, both correctness and efficiency can be ensured [90].

17.1 The Annotation Process and Run-time Tests

The annotation (parallelization) process can be viewed as a source—to—source transformation
from standard Prolog to a parallel dialect. Herein, we will use&loperator [86]. Execution of
literals separated b& is performed in parallel if sufficient processors are available. Otherwise
they will be executed sequentially.

The automatic parallelization process is performed as follows [164]: firstly, if requested by

71

the user, the Prolog program is analyzed using one or more global analyzers. Secondly, since
side—effects cannot be allowed to execute freely in parallel, the original program is analyzed
using the global analyzer described in [165] which propagates the side—effect characteristics of
builtins determining the scope of side—effects. Finally, #mmotatorsperform a source—to—
source transformation of the program in which each clause is annotated with parallel expressions
and conditions which encode the notion of independence used. In doing this they use the infor-
mation provided by the global analyzers mentioned before.

17.2 An Example: Matrix Multiplication

A Prolog program for matrix multiplication is shown below. The declaration:
:-module(mmatrix,[mmultiply/3]).

is used by the (goal dependent) analyzer to determine that only cafisitdtiply/3 may ap-

pear in top-level queries. In this case no information is given about the arguments in calls to the
predicatemmultiply/3 (however, this could be done using one or menery declarations

[17]).

:-module(mmatrix,[mmultiply/3]).

mmultiply([], SID.
mmultiply([VO|Rest], V1, [Result|Others]):-

multiply(V1,VO,Result), mmultiply(Rest, V1, Others).

multiply([], S

multiply([VO|Rest], V1, [Result|Others]):-
vmul(V0,V1,Result), multiply(Rest, V1, Others).

vmul([],1,0).

vmul([H1|T1], [H2|T2], Result):-
Product is H1*H2, vmul(T1,T2, Newresult),
Result is Product+Newresult.

If, for example, we want to specialize the program for the case in which the first two argu-
ments ofmmultiply/3 are ground values and we inform the analyzer about this, the program
would be parallelized without the need for any run-time tests. In our case the analyzer must in
principle assume no knowledge regarding the instantiation state of the arguments at the module
entry points.

Figure 9 contains the result of automatic parallelization under these assumptions. Conditions
are written agcond -> then ; else) , I.e., using standard Prolog syntax. The predicate
vmul/3 is not shown in Figure 9 because automatic parallelization has not detected any prof-
itable parallelism in it (due to granularity control) and its code remains the same as in the original
program.

72

Figure 10: Call Graph of Specialized mmatrix

It is clear from Figure 9 that a good number of run-time tests has been introduced during the
parallelization process. If the tests succeed the parallel code is executed. Otherwise the original
sequential code is executed. The booleanitelp(X,Y) succeeds if and only XandY have
no variables in common. For conciseness and efficiency, a series ofngsgX1,X2),

..., Indep(Xn-1,Xn) Is written asndep([[X1,X2], ..., [Xn-1,Xn]])

Clearly, these tests may cause considerable overhead in run-time performance, to the point
of not even knowing at first sight if the parallelized program will offer speedup, i.e., if it will run
faster than the sequential one. We will use abstract multiple specialization in order to reduce the
run-time overhead and increase the speedup of parallel execution.

It is important to mention that abstract multiple specialization is able to automatically detect
and extract some invariants in recursive loops: once a certain run-time test has succeeded it does
not need to be checked in the following recursive calls [77]. Figure 10 shows the call graph of
the specialized parallel program. The program itself is not shown for space limitations but can

be found in [189]. In the figurannmstands fommultiply/3 andmfor multiply/3 . Inthe
and—or graph computed by analyis there are two or—nodes for predicatdtiply/3 , four
for multiply/3 , and eight fovmul/3 . The minimization algorithm collapses all or-nodes

for vmul/3 into one since the different call patterns do not lead to interesting optimisations.
However, two versions are generatedfam mmandmmland four form In Figure 10 edges are
labeled with the number of tests which are avoided in each call to the corresponding version with
respect to the non specialized program. For exangpt@ means that each execution of this

73

specialized version avoids a groundness and three independence tests. It can be seen in the figure
that once the groundness test in anynofiml, or m2 succeeds, it is detected as an invariant,

and the more optimised versionam]l m3 andm4 respectively will be used in all remaining
iterations.

18 Optimisation of Dynamic Scheduling

Most “second-generation” logic programming languages provide a flexible scheduling in which
computation generally proceeds left-to-right, but some calls are dynamically “delayed” until
their arguments are sufficiently instantiated. This general form of scheduling, often referred to
asdynamic schedulingwvhich can be seen as a (restricted) class of concurrency, increases the
expressive power of (constraint) logic programs. Unfortunately, it also has a significant time and
space overhead.

In this section we present by means of examples two different classes of transformations. The
first class simplifies the delay conditions associated with a particular literal. The second class
of transformations reorders a delayed literal and moves it closer to the point where it wakes up.
Both classes of transformations essentially preserve the search space and hence the operational
behavior of the original program. However, reordering may change the execution order of de-
layed literals that are woken at exactly the same time. Note that this order is system dependent
and it is rare for programmers to rely on a particular ordering.

Using theCiaoPP system we have built a tool which automatically optimises logic programs
with delay using the above transformations. Initial experiments suggest that simplification of
delay conditions is widely applicable and can significantly speed up execution, while reordering
is less applicable but can also lead to substantial performance improvements.

18.1 Programs with Delaying Conditions

In dynamically scheduled languages the execution of some literal can be delayed until a particular
delay condition holds. Alelay condition Cond, takes the current run-time environment and
returnstrue or false indicating if evaluation can proceed or should be delayed. Typical primitive
delay conditions arground(X) andnonvar(X) . The latter holds iffX is bound to a non-
variable term. Delay conditions can be combined to allow more complex delay behaviour. They
can be conjoined, writter({ond; , C'onds), or disjoined, written C'ond;; Conds).

A delaying literalis of the formwhen(Cond, L), whereCond is a delay condition and is
a literal. Evaluation of. will be delayed untilC'ond holds for the current constraint store. Delay
information can beredicate-basedndliteral-based In the former, the delaying literal appears

74

as a declaration before the definition of the predicate, each instance of the predicate inheriting
the delay condition. In the latter, the delaying literal appears in the body of some clause only
affecting the literalL. It is straightforward to use predicate-based declarations to imitate literal-
based delay, and vice versa. For simplicity, we will restrict ourselves to literal-based delay.

In logic programs with dynamic schedulingligeral is either an atom or a delaying literal.
We are assuming that all rule heads are normalized, since this simplifies the examples and cor-
responds to what is done in the analy¥eThis is not restrictive since programs can always be
normalized. However, so as to preserve the behaviour of the original program under dynamic
scheduling, the normalization process must ensure that head unifications are performed simulta-
neously, that is, grouped together in one primitive constraint.

18.2 Simplifying Dynamic Scheduling

Delay conditions may be evaluated each time a variable is touched. Simplifying such conditions
can then lead to significant performance improvement. Essentially the behaviour of a delay
condition is only relevant during the lifetime of the delaying literal. Hence, we can replace one
delay condition by another (more efficient) condition if they are equivalent for all constraint
stores that occur during the lifetime of the delaying literal.

Example 18.1 Dynamic scheduling can be used in order to obtain much more general code.
Consider for example the following program for naive reverse:
- module(nrev,[nrev/2]).

nrev([],[])-
nrev([X|Xs], Rs) :- nrev(Xs, R), app(R, [X], Rs).

app([].L.L).
app([X|Xs], Ys, [X|Zs]) :- app(Xs, Ys, Zs).

Thenrev/2 predicate can be used to reverse a list. For exanmpéy([1,2,3],Y)
will return Y=[3,2,1] . Since this program does not contain any impurities, we may in prin-
ciple use it backwards, i.e., a call suchrasv(X,[1,2,3]) should returny=[3,2,1]
In fact, any Prolog system would compute that. However, if we ask for a second solution, the
execution loops! One possible solution to avoid this behaviour is to reorder the two literals in the
recursive clause afrev/2 , i.e.,nrev([X|Xs], Rs) :- app(R, [X], Rs), nrev(Xs,
R). However, now this program cannot be used forwards. This problem can be solved by
means of dynamic scheduling which allows having a definitionref/2 which works in both
directions. Such a program is shown below:

nrev([],[]).

18CiaoPP does not need to normalize programs in order to analyze them, except for programs with dynamic
scheduling.

75

nrev([X|Xs], Rs) :-
when((nonvar(Xs);ground(R)),nrev(Xs, R)),
when((nonvar(R);nonvar(Rs)),app(R, [X], Rs)).

app([l.L.L).
app([X|Xs], Ys, [X|Zs]) :-
when((nonvar(Xs);nonvar(Zs)),app(Xs, Ys, Zs)).

This has the disadvantage that dynamic scheduling may introduce important run-time over-
head. However, we can use abstract specialization in order to optimise the above code for the
required usage. In fact, our prototype specializer for dynamic scheduling [181] is able to opti-
mise the program back to the original code without delays shown in Example 18.1 if it can infer
that at the call the first argument is definitely ground. Also, it will reorder the two literals in
the recursive clause of append if analysis guarantees that calls have a free variable in the first
argument and the second argument is ground.

18.3 Reordering Delaying Literals

In spite of the apparent simplicity of the specialization of dynamic scheduling, it is indeed rather
involved. First, the analysis has to be able to handle logic programs with dynamic scheduling.
Doing so accurately is a complex task. Second, the purpose of specialization is not that the final
program can be executed without delays but rather that the operational semantics, i.e., the search
space, of the program is maintained.

Example 18.2 In order to illustrate this we show the following example in which a naive algo-
rithm for sorting lists is presented. It is based on the specification of the sorting algorithm: the
resulting list must be a permutation of the input list and be sorted.

naive_sort(List, Sorted) :-
when(nonvar(Sorted),sorted_list(Sorted)),
permute(List, Sorted).

sorted_list([]).
sorted_list([Fst|Oths]) :-
when(nonvar(Oths),sorted_list1(Fst, Oths)).

sorted_list1(_, []).

sorted_listl(Fst, [Snd|Rest]) :-
when((ground(Fst),ground(Snd)),Fst =< Snd),
when(nonvar(Rest),sorted_list1(Snd, Rest)).

permute([],[]).
permute(List,Result):-

when((nonvar(List);nonvar(Oths)),

76

delete(Elem, List, Oths)),
Result = [Elem|Perm1],
permute(Oths, Perm1).

delete(Elem, [Elem|Oths], Oths).

delete(Elem, List, Oths):-
head(List,Oths) = head([Fst|TM],[Fst|R]),
when((nonvar(TM);nonvar(R)),delete(Elem, TM, R)).

Thanks to the use of dynamic scheduling the code above has the following desirable features:
() it can be used in order to sort a list; (2) if the second argument is ground, it can be used in
order to generate all the possible lists (permutations) of a given sorted list; (3) though it is not
a fast sorting algorithm, it behaves relatively well for small lists due to co-routining: generation
of the permutation is interleaved with tests of its sortedness as new items are added to the partial
solution, i.e., it is &est while generatalgorithm rather than generate and tesine.

Of course, another alternative would have been to write by hand a program which checks
sortedness of partial solutions explicitly. This has the disadvantage that it separates the code
apart from its specification and that the obvious resulting code is once again not reversible.

Example 18.3 In a call such ashaive _sort([1,2,3],L) , the literal:
when(nonvar(Sorted),sorted_list(Sorted))

will delay at the execution of predicataive_sort/2 whereas it will definitely not delay after
the execution of the litergdermute(List, Sorted) . We may thus be tempted to reorder it
across the following literal in the clause, obtaining:
naive _sort(List, Sorted) :-

permute(List, Sorted), sorted _list(Sorted).
which no longer needs dynamic scheduling. However, this resulting program would definitely be
much less efficient than the original one since this changes the co-routining behaviour and thus
the search space, and we end up in the generate and test algofithm.

Though our specializer reordered the literals in the naive reverse example, it does not in this
one. This is because the specializer only reorders a delaying litetaitil after literal L, ; if
either (1) L; is guaranteed not to wake up during the executioh.Qf or (2) if it does, it can
only wake up in program points df;,; which arefinal. More details can be found in [181]. The
program obtained by our specializer when the first argument is ground is shown below:

naive_sort(List,Sorted) :-
when(nonvar(Sorted),sorted_list(Sorted)),
permute(List,Sorted).

sorted_list([]).
sorted_list([Fst|Oths]) :-

7

when(nonvar(Oths),sorted_list1(Fst, Oths)).

sorted_list1(_, []).

sorted_listl(Fst, [Snd|Rest]) :-
when((ground(Fst),ground(Snd)),Fst =< Snd),
when(nonvar(Rest),sorted_list1(Snd, Rest)).

permute([],[]).
permute(List,Result) :-

delete(Elem,List,Oths),
Result=[Elem|Perm1],
permute(Oths,Perm1).

delete(Elem, [Elem|Oths], Oths).
delete(Elem, List, Oths):-
head(List,Oths) = head([Fst|TM],[Fst|R]),
delete(Elem,TM,R).

18.4 Automating the Optimisation

In order to perform the optimisations discussed, the abstract interpretation framework used has to
handle dynamic scheduling. Different analysis frameworks have been proposed for this. In our
prototype we use the approach of [40]. For reordering, the analyzer needs to provide, in addition
to a description of calling contexts, a description of the set of waking up literals at each program
point.

The experimental results in [181] demonstrate that both simplification and reordering can
lead to an order of magnitude performance improvement, and that they give reasonable speedups
in most benchmarks. This is important because dynamic scheduling looks set to become in-
creasingly prevalent in (constraint) logic programming languages because of its importance in
implementing constraint solvers and controlling search as well as for implementing concurrency.
In all these contexts, delay declarations are automatically introduced by the compiler. This has
the advantage that it avoids the tedious and error prone task of having to do it by hand. Also,
they are a clear target for abstract specialization.

19 Integration with Partial Evaluation

Most of the practical algorithms for program specialization use, to a greater or lesser degree,
information generated by static program analysis. As already mentioned, one of the most widely
used techniques for static analysis is abstract interpretation [35]. In fact, some of the relations

78

between abstract interpretation and partial evaluation have been identified before [62, 77, 56, 34,
185, 143, 103, 183, 124, 192, 37].

However, the role of analysis is so fundamental that it is natural to consider whether partial
evaluation could be achieved directly by a generic, top-down abstract interpretation system.

19.1 And-Or Graphs Vs. SLD Trees

Almost all existing approaches to the (on-line) partial evaluation of logic programs use the same
operational semantics, i8LD resolution for both program execution and partial evaluation.
Different alternative derivations of SLD resolution which may occur during execution constitute
different branches in th8LD tree See for example [147]. In partial deduction a slight modifi-
cation to this semantics is required in order to allow incomplete derivations and thus incomplete
SLD trees.

However, it is known [143] that the propagation of success information during partial evalua-
tion is not optimal compared to that potentially achievable by abstract interpretation. The higher
accuracy of abstract interpretation has already been hinted in Example 16.2.

We now show a further example of the power of abstract interpretation. This time, rather
than the concrete domain we will use the abstract domi@rmg213] currently implemented in
the CiaoPP system, and which is based on the concept of regular types [65]. Note that in this
example the concrete domain cannot be used straight away, since the set of values which need to
be represented is infinite.

Example 19.1 Consider the following program and the initial ca(lX)
r(X) :- a(X).p(X).
q(a).
q(f(x)) - a(X).
p(a).
p(f(X)) :- p(X).
P9(X)) - p(X).
It can be observed that the third clause focan be eliminated in the specialized program,
since the call substitution fgu(X) (i.e., the success substitution f@iX)) is of the formX=a
or X=f(a) or X=f(...f(a)...) . Thus, the clausp(g(X)) :- p(X). is useless. Our
implementation of the abstract domatermss able to determine that the valueXin any call
to p(X) is described by the regular type whose definition as a regular unary Prolog program
follows:
rt(a).
rt(f(A)) :- rt(A).

Our specializer is in fact able to use this information in order to remove the useless clause men-
tioned above. Note that standard partial evaluation algorithms based on unfolding will not be

79

able to eliminate the third clause fpt since an atom of the forma(X) will be produced, no
matter what local and global control is us€d.

In addition to allowing the elimination of useless clauses, our specialization system is able to
perform more aggressive optimisations, as shown in the example below.

Example 19.2 Consider the following definition of tHfatten _and _sort/2 predicate.

flatten_and_sort(Struct,Sorted_List):-
sorted_int_list(Struct),
Sorted_List=Struct.
flatten_and_sort(Struct,Sorted_List):-
int_list(Struct),
sort(Struct,Sorted_List).
flatten_and_sort(Struct,Sorted_List):-
list of int_lists(Struct),
flatten_list(Struct,Unsorted_List),
sort(Unsorted_List,Sorted_List).
flatten_and_sort(Struct,Sorted_List):-
tree(Struct),
flatten_tree(Struct,Unsorted_List),
sort(Unsorted_List,Sorted_List).

The argumen$truct is a data structure which can be: a sorted list of integers, a list of integers,

a list of lists of integers, or a tree which stores an integer in each non-leaf node. The predicate
first determines which of the four possibilities mentioned above is the case and then, if needed,
it uses the appropriate procedure for flattening before sorting the list of arguments, which is the
output of the procedure. Clearly, if the input data structure is a list of integers there is no need for
flattening the list. Furthermore, ifitis already sorted, there is no need to sort it either. Though we
could define a flatten predicate which is able to flatten both lists and binary trees, it is often the
case that distinct predicates for flattening lists and for flattening trees already exist (in different

libraries).
We show below the Prolog definition of the propersested _int _list/1 ,int _list/1
andlist _of _int _lists/1 . It can be observed that the last two predicates are indeed unary

logic programs which correspond to deterministic regular types. This is indica@@dd®P with
the declaratiomegtype

sorted_int_list([]).
sorted_int_list([N]):- int(N).
sorted_int_list([A,B|R]):- int(A), int(B),

A =< B, sorted_int_list([B|R]).

- regtype int_list/1.

19Conjunctive partial deduction [144] can solve this problem in a completely different way.

80

int_list([]).
int_list([HIL]):- int(H), int_list(L).

- regtype list_of int_lists/1.
list_of_int_lists([]).
list_of int_lists([H|L]):-

int_list(H), list_of_int_lists(L).

- regtype tree/l.
tree(void).
tree(t(L,N,R)):- int(N), tree(L), tree(R).

Theregtype declaration is checked §iaoPP against the code defining the property. If
the code does not correspond to a deterministic regular type, an error message is issued. If it
is, this information can be used by the specializer in order to be able to abstractly execute to
the value true the whole execution of the predicate. The sufficient conditions for this are (1)
the predicate does not perform any side-effects, and (2) the calling abstract substitution must
be equal or more particular than the success substitution for the predicate. Note that abstractly
executing a predicate call to false using regular types does not neeejtigpe declaration.
Any call to a predicate can be abstractly executed to false if (1) executiop &f guaranteed
not to perform any side-effects (2) the call substitution is incompatible with the success substi-
tution of p or equivalently, the success substitution using goal-dependent analygigufior;
is the empty substitutiori.. This is further discussed in Section 19.3. For example, if we call
sorted _int _list(Struct) with Struct bound to a binary tree, the system can determine
that this call is incompatible with the success typsafted _int _list , which for the regular
type analysis is approximated byt _list

For example, the above program when specialized usingtiiensdomain for the call
main/0 , defined as:

main:-int _list(L),append(L,[3],L1),flatten _and _sort(L1,).

optimises the definitions dfatten _and _sort/2 andint _list/2 as shown below.

flatten _and _sort(Struct,Sorted _List) :-
sorted _int _list(Struct), Sorted _List = Struct.
flatten _and _sort(Struct,Sorted _List) :-
sort(Struct,Sorted _List).

sorted _int _list([]).
sorted _int _list([N]).
sorted _int _list(JA,B|R]) :- A=<B, sorted _int _list([B|RY]).

81

{} {}
pP(A)

pP(X)
P

{3 {3 {3 {3
q(Xx) r(x)
a(a q(b) r(a r(b)
[E RS {} {3 {3 {3 {}
} {3 }
Y p(af p(A)

4{ X p(b) (@ p(b)
(b) o Lo ol o
AO
r(a) r(b)

Figure 11: Example Node Unfoldings

AQO”’

Since analysis usingtermsinfers that the call tdlatten _and _sort/2 has got a non-
empty list of integers as first argument, the specializer is able to abstractly execute the tests for
list _of _.int _lists/1 andtree/l to false, since they are incompatible with their call-
ing types. In addition, thést/1 test in the second clause fibatten _and _sort/2 has
been abstractly executed to true, the same asithger/1 testsinsorted _int _list/1
This is an example in which abstract execution allows “executing” at compile-time a test whose
execution would require traversing the data structure at run-time.

The examples above show that and—or graphs allow a level of success information propaga-
tion not possible in traditional partial evaluation. This observation already provides motivation
for studying the integration of full partial evaluation in an analysis/specialization framework
based on abstract interpretation.

19.2 Partial Evaluation using And—-Or Graphs

We now discuss how the global and local control aspects of on-line partial evaluation appear in
the setting of abstract interpretation algorithms.

82

19.2.1 Global Control in Abstract Interpretation

Effectiveness of traditional partial deduction greatly depends on the set of Atem§A;, ..., A, }
for which (specialized) code is to be generated. This set is mainly determined by the global con-
trol used. However, in abstract specialization the role of the atonss is played by the set
of or—-nodesAnalysis(P, p, A\, D,). The choice of abstract domain and widening operators (if
any) will determine the number of or-nodes (equivalendly, The finer-grained the abstract
domain is, the larger the sdt will be. In conclusion, the role of so-called global control in
partial evaluation is played in abstract interpretation by our particular choice of abstract domain
and widening operators (which are strictly required for ensuring termination when the abstract
domain contains ascending chains which are infinite — as is the case for the concrete domain and
for domains based on regular types).

Note that the specialization framework we propose is very general. Depending on the kind
of optimisations we are interested in performing, different domains (and widening operators)
should be used and thus differeltsets would be obtained.

19.2.2 Local Control in Abstract Interpretation

Local control in partial evaluation determines how each atosh should be unfolded. However,

in traditional abstract interpretation frameworks each or—node is related by just one (abstract)
unfolding step to its children. This corresponds to a trivial local control (unfolding rule) in
partial evaluation.

Note that if we use abstract domains for analysis which allow propagating enough informa-
tion about the success of an or—node, it is possible to perform useful specialization on other
or-nodes. This requires that theb operator not lose “much” information, for example by al-
lowing sets of abstract substitutions. The advantage of this method is that no modification of
the abstract interpretation framework is required. An example of this has been shown in Ex-
ample 19.1. Such specialization is not possible by methods based on unfolding (unfolding is a
standard program transformation technique in which an atom in the body of a clause, i.e., a call
to a procedure, is conceptually replaced by the code of such procedure).

Another approach to overcoming this limitation of abstract interpretation is the usmlef
unfolding[192]. Node-unfolding is agraph transformation technique which given an and—or
graphAO and an or—nod&V in AO builds a new and—or graphO’. Such graph transformation
mimics the effect of traditional unfolding.

Example 19.3 Consider the program below. The analysis graph generated without performing
any node-unfolding is shown in Figure 11 46, using the concrete domain as abstract domain

83

and themost specific generalizatigmsg) as lub operator for summarizing different success sub-
stitutions into one. As discussed in Section 19.2.3 below, the msg is a rather crude lub operator.
However, we use it for the sake of clarity of the example.

p(X):- q(X), r(X).

q(a).

q(b).

r(a).

r(b).

AO' is an analysis graph for the same program but this time the or-red¥€), {}, {}) has
been unfolded. Finally, grapAdO” in the figure is the result of applying node-unfolding twice
to AO’, once w.r.t.(p(a),{},{}) and another one w.r.{p(b),{},{}). The code generated by
code_gen(AQO") is the program:

p(a).
p(b).

An important question is the moment at which node-unfolding is performed, i.e., during or
after building AO. The simplest possibility is to perform node-unfolding of an or—node prior
to computing its success substitution. This corresponds to what is done in partial deduction:
local control is performed first and then atoms are passed to global control. It allows performing
node-unfolding after computing the success-substitution of an or-node, even after computing the
final and—or graph. This allows having more information prior to deciding whether to unfold a
node or not. Thus, we consider it a more challenging approach. The main difficulty lies in being
able to efficiently rebuild the analysis and—or graph so as to reach a fixpoint after the graph is
modified by node-unfolding. We believe that this cost can be kept quite reasonable by the use of
incremental analysis techniques such as those presented in [89, 187].

19.2.3 Abstract Domains and Widenings for Partial Evaluation

We now address the features which an abstract domain (and associated widening operators)
should have in order to be appropriate for performing partial evaluation within the abstract spe-
cialization framework. They should (1) simulate the effect of unfolding, which is how bindings
are propagated in partial evaluation. The abstract domain has to be capable of tracking such bind-
ings. This suggests that domains based on term structure are required. In addition, the domain
(2) needs to capturdisjunctive information This makes it possible to distinguish, in a single
abstract substitution, several bindings resulting from different branches of computation. A term
domain whose least upper bound is based omtbg(most specific generalization), for instance,
will rapidly lose information about multiple answers since all substitutions are combined into
one binding.

We now discuss two classes of domains which have the above mentioned features. One

84

class is based on sets of deptlsubstitutions with set union as the least upper bound operator.
However, uniform depth bounds are usually either too imprecisei@ftoo small) or generate

much redundancy if larger values bfare chosen. One way to eliminate the depth-bokind

in the abstract domain is to depend on a suitable widening operator which will guarantee that
the set of or—nodes remains finite. Many techniques have been developed for global control of
partial evaluation. Such techniques make use of advanced data structures chataeteristic
trees[61], [118] (related taneighborhood$208]), trace-termg68], andglobal treeq158], and
combinations of them [139]. Thus, it seems possible to adapt these techniques to the case of
abstract interpretation and formalize them as widening operators.

The second class of domains are those based on regular-types [65, 83, 213] and seem very
good candidates, their main drawback being that inter-argument dependencies are lost. Inde-
pendently of our work irCiaoPP , recently there has been a lot of interest in the application of
regular types for improving partial evaluation [70, 130]. The use of non-deterministic regular
types [71] presents an interesting trade-off since on one hand they allow improved accuracy but
on the other they require a higher computational cost and their applicability to program special-
ization should be further explored.

19.3 Code Generation using Success Substitutions

One important feature of abstract specialization not available in partial evaluation is that for each
or-node, in addition to a call substitution, there is also an abstract substitution which describes the
success of the call. If the properties captured by the abstract domain are downwards closed (as is
the case with variable bindings), it is natural to consider specialization w.r.t. success substitutions
rather than call substitutions (only). We first recall some notation from [192].

Definition 19.4 (partial concretization) A functionpart_conc : D, — D is a partial con-
cretizationiff VA € D, V0" € v(\) 30" s.t. 0" = part_conc(\)0".

part_conc(\) can be regarded as containing (part of) the definite information about concrete
bindings that the abstract substitutiarcaptures. Note that different partial concretizations of
an abstract substitutiohwith different accuracy may be considered. For example if the abstract
domain is a depth-k abstraction ahd= { X/ f(f(Y))orX/f(a)}, a most accurateart_conc(\)
is{X/f(Z)}. Note also thapart_conc()\) = € wheree is the empty substitution, is a trivially
correct partial concretization of any

It is straightforward to modify Algorithm 16.1 in order to exploit answer substitutions as
well. Such algorithm can be found in [192]. Specialization w.r.t. answers will in general pro-
vide further specialized (and optimised) programs as in general the success substitution (which

85

describes answers) computed by abstract interpretation is more informative (restricted) than the
call substitution. However, this cannot be done for example if the program contains calls to
extra-logical predicates such aar/1

Specializing w.r.t answer substitutions enables optimisations which are not possible to achieve
by finite unfolding. For example, abstract interpretation can detect both finite and infinite failure
of a predicaten. In both cases, the abstract success substitutiop vatl be L. If p does not
perform side effects, the definition pfgenerated by our specializerp$ ¢):- fail. , as it
is known to produce no answers. Even if the success substitdtidor (p, A°, A*) is not L,
individual clauses fop whose success substitution_is(useless clauses) for the consideréd
are removed from the final program.

Note that the specialized program may fail finitely while the original one loops. We believe
this kind of optimisations are desirable in most cases. However, optimisation w.r.t. answers is
optional in our system.

20 Related Work

Abstract specialization is a framework which can be used successfully in different contexts. We
have discussed its application to program parallelization and optimisation of dynamic schedul-
ing. The framework is generic in that it can be instantiated with different abstract domains which
provide different kinds of information according to the optimisations which we aim at perform-
ing. If the abstract domain captures term structure then it is possible to obtain information which
can then be used to perform optimisations which are very related to those which take place during
partial evaluation.

The integration of partial evaluation and abstract interpretation has been attempted before,
both from the partial evaluation and the abstract interpretation perspectives. Some preliminary
studies are [62, 56] in which an integration is attempted from the point of view of partial eval-
uation. Another integration in the context of functional programs is presented in [34]. On the
other hand, the drawbacks of traditional partial evaluation techniques for propagating success
information are identified in [143] and some of the possible advantages of a full integration of
partial evaluation and abstract interpretation are presented in [103].

From an abstract interpretation perspective, the integration has also received considerable
attention. The first complete framework for multiple specialization based on abstract interpre-
tation is presented in [216]. The first implementation and experimental evaluation appears in
[185]. However, these systems do not perform unfolding.

To the best of our knowledge, the first relatively satisfactory framework for the integration of

86

abstract interpretation and partial evaluation is [183, 192].

A completely different framework for the integration of partial deduction and abstract in-
terpretation is presented in [124]. In this formulation a top-down specialization algorithm is
presented which assumes the existence aftatract unfoldingand anabstract resolutiorope-
ration and which generalizes existing algorithms for partial evaluation. Such framework provides
interesting insights on the problems involved together with correctness conditions which can be
used to prove that a given specialization framework, which possibly uses abstract interpreta-
tion, is correct. One important difference is that in our approach a single (and already existing)
top-down abstract interpretation algorithm augmented with an unfolding rule performs propaga-
tion of both the call and success patterns in an integrated fashion, whereas in [124] the success
propagation used is added in an ad hoc way and is not multivariant, and thus less precise.

Another difference between the two approaches is that [124] is capable of dealing with con-
junctions and not only atoms.

The need for more general information than the concrete substitutions handled by partial
evaluation has been identified repeatedly in previous work, such as [34, 173]. Though the aims
of abstract specialization and those of [173] are quite similar, the means proposed to achieve
them are completely different. Also, abstract interpretation is not used and it sticks to the more
traditional SLD semantics.

More recently, [37] presents a very general view which integrates program transformation
and abstract interpretation. This result allows formalizing partial evaluation as an abstract inter-
pretation (as done by abstract specialization). This new formalization of program transformation
may enable other novel program optimisation techniques.

21 Conclusions

Abstract specialization can be seen as a semantic approach much in the same way as existing
frameworks for partial deduction [148, 110, 57, 120] and also as other attempts at the integration
of partial evaluation and abstract interpretation of logic programs [124, 70, 130]. One of the main
differences between abstract specialization and the aforementioned techniques is the underlying
semantics. Abstract specialization is based on and—or trees whereas the rest are based on SLD
trees. Though SLD-trees have the conceptual advantage that the semantics used for program
specialization is almost identical to that used during program execution, our approach has other
practical and conceptual advantages. For example, optimisations based on and—or trees can be
done to preserve number and order of solutions, an issue often overlooked by traditional partial
deduction systems. Furthermore, they allow performing optimisations not achievable by means

87

of unfolding, including the detection of infinite failure.

A pragmatic motivation for this work is the availability of off-the-shelf generic abstract in-
terpretation engines such as the on€inoPP [87]%° which greatly facilitate the efficient im-
plementation of analyses. Such analysis can deal with all features of real programs [17] in an
accurate way, including builtins, libraries and modules [190]. But, more generally, we argue that
the existence of such an abstract interpreter in advanced optimizing compilers isdikdlthus
using the analyzer itself to perform partial evaluation can result in a great simplification of the
architecture of the compiler.

2OMore information orCiao andCiaoPP is available atvww.clip.dia.fi.upm.es

88

Part Ill
More Precise Yet Efficient Type Inference
for Logic Programs

Type analyses of logic programs which aim at inferring the types of the program being analyzed
are presented in a unified abstract interpretation-based framework. This covers most classical ab-
stract interpretation-based type analyzers for logic programs, built on either top-down or bottom-
up interpretation of the program. In this setting, we discuss the widening operator, arguably a
crucial one. We present a new widening which is more precise than those previously proposed.
Practical results with our analysis domain are also presented, showing that it also allows for
efficient analysis.

Furthermore, we introduce an abstract domain consisting of atomic formulas constrained by
linear arithmetic constraints (or convex hulls). This domain is used in an algorithm for special-
ization of constraint logic programs. The algorithm incorporates in a single phase both top-down
goal directed propagation and bottom-up answer propagation, and uses a widening on the con-
vex hull domain to ensure termination. We give examples to show the precision gained by this
approach over other methods in the literature for specializing constraint logic programs. The
specialization method can also be used for ordinary logic programs containing arithmetic, as
well as constraint logic programs. Assignments, inequalities and equalities with arithmetic ex-
pressions can be interpreted as constraints during specialization, thus increasing the amount of
specialization that can be achieved.

22 Background

In type analyses, the widening operation has much influence in the results. If the widening is
too aggressive in making approximations then the analysis results may be too imprecise. On the
other hand, if it is not sufficiently aggressive then the analysis may become too inefficient.

Widening operators are aimed at identifying the recursive structure of the types being in-
ferred. All widening operators already proposed in the literature are based on locating type
nodes with the same functors, which are possible sources of recursion. However, they disregard
whether such nodes come in fact from a recursive structure in the program or not. This may orig-
inate an unnecessary loss of precision, since the widening result may then impose a recursive
structure on the resulting type in argument positions where the concrete program is in fact not
recursive. We propose a widening operator to try to remedy this problem.

89

This part of the deliverable is organised as follows: We first revisit regular types (Section 23)
and, in particular, deterministic ones. Then, we focus on deterministic types for ease of pre-
sentation; however, there is nothing in our widening which prevents it to be applicable also to
non-deterministic types. The abstract interpretation framework is set up in Section 24. Sec-
tion 25 reviews previous widenings in the literature, and Section 26 presents ours. In Section 27
experimental results based on our widening operator are presented. A constraint domain based
on linear arithmetic equalities and inequalities is reviewed in Section 28.1. The structure of
the specialization algorithm is presented (Section 29), along with examples illustrating its key
aspects. In Section 30 more examples of specialization using the domain of linear arithmetic
constraints are given. Comparisons with related work are provided in Section 31 while, finally,
some remarks and pointers for future work are considered in Section 32.

23 Regular Types

A regular type[39] is a type representing a class of terms that can be described by a regular
term grammar. Aregular term grammaror grammar for short, describes a set of finite terms
constructed from a finite alphabgt of ranked function symbolsr functors A grammarG =
(S,7,F,R) consists of a set of non-terminal symb@lsone distinguished symbdél € 7, and
a finite setR of productionsl” — rhs, whereT' € 7 is a non-terminal and the right hand side
rhs is either a non-terminal or a terif(73, . . ., 7,,) constructed from an-ary function symbol
f € F andn non-terminals.

The non-terminalg” aretypesdescribing (ground) terms built from the functorsin The
concretizationy(7') of a non-terminall’ is the set of terms derivable from its productions, that
is,

1T) = U alrhs)

(T—>rhs)ER
V(T 1)) = {f(t . ta) [t €y(Th)}

The types of interest are each defined by one grammar: ‘Baishdefined by a grammar
(T;, T;, F,R;), so that for any two types of interegt and7; on F, 7, N 7, = (). Sometimes,
we will be interested in types defined by non-terminals of a gramiffigf , 7, R) other than the
distinguished non-termindl. This is formalized by defining a tygg € 7 as the grammar

(T, {T € T | T, "L TV, F,{(T — rhs) € R | T, 2, T1))

*
where all the non-terminals are renamed aﬁéﬁ‘tﬂ?R is the reflexive and transitive closure of
reach

—>Rand
T, SR Ty iff Ty —r Ty or Ty —m f(., Ty,).

90

A grammar is innormal formif none of the right hand sides are non-terminals. A particular
class of grammars are deterministic ones. A grammaeterministicif it is in normal form
and for each non-termindl the function symbols are all distinct in the right hand sides of the
productions foff".

Deterministic grammars are less expressive than non-deterministic ones. Deterministic gram-
mars can only express sets of terms whichtapte-distributive informally speaking, which are
“closed under exchange of arguments”. l.e., if the set contains two terms of the same functor,
then it also contains terms with the same principal functor obtained by exchanging subterms of
the previous two terms in the same argument positions. Basically, no dependencies between
arguments of a term can be expressed with deterministic grammars.

Example 23.1Consider the typ& denoting the seftf(a, b), f (¢, d)}, which is non-deterministic,

T — f(AAB) A — a (C — ¢
T — f(C,D) B — b D — d

A deterministic typel” with a concretization which includeg(7") would also have to include
{f(c,b), f(a,d)}, thatis,
" — f(AC,BD) AC — a BD —
AC — ¢ BD — d
To facilitate the presentation non-terminals with a single production will often be “inlined” and
multiple right hand sides combined so tifaabove will be writtenll” — f(a,b) | f(c,d) and
T' as
" — f(AC,BD) AC — al|lc BD — b|d
To be able to describe terms containing numbers and variables we introduce two distinguished
symbolsnum andany, plus an additional . The concretization aium is the set of all numbers,
the concretization odny is the set of all terms (including variables), and the concretizatiah of
is the empty set of terms. These symbols are non-terminals but they are considered terminals to
the effect of regarding a grammar as deterministic.
Let G be the set of all grammars, T, 75 belong tog, the relationl; = T, < ~(T}) =
v(T») is an equivalence relation. The quotient §¢t= is a complete lattice with top element
any and bottom element. based on the relation afontainmentor typeinclusion for every
T\, T, € G/ =T\ CTy & v(T1) C ~(Ty). We will denoteT; simply byT;.
The least upper bound is given by typeion, (73 UT5), and the greatest lower bound by type
intersection (7, M T5) [39]. It can be shown that intersection describes term unification:

t1 CSy(T) Nt; CSH(Te) A0 = ta = (110)" C (11 N Ty)

wheret* denotes the set of ground terms which are instances of thetterm

91

24 Abstract Domain for Type Inference

In an abstract interpretation-based type analysis, a type is used as an abstract description of a set
of terms. Given variables of intere§t,, ..., x,}, any substitutiod = {x; <« t,...,2, < t,}
can be approximated by atstract substitutioqx; «— T,,...,z, « T, } wheret;, € v(T,,)
and each typd,, € G/ =. We will write abstract substitutions as tuplég,,...,T,), and
sometimes also abbreviate a tuple simplyas

Concretization is lifted up to abstract substitutions straightforwardly,

y({(Th, ..., T,)) = {{x1—t1,...;0n —t,} | t; €v(T;) }

as well as the equivalence relatisn Additionally, we consider a distinguished abstract substi-
tution L as a representative of ayj, . . ., 7,,) such that there i%; = L. Of course;y (L) = 0.

An ordering on the domain is obtained as the natural element-wise extension of the ordering
on types:

4 c T
(T T) ¢ 1
<T1,...,Tn> C <T1,,,T7g> < vlgignﬂgﬂl

The domain is a lattice with bottom elementand top element{Ty, ..., T,) such thatl} =
... =T, = any. The greatest lower bound and least upper bound domain operations are lifted
also element-wise, as follows,

Lurr=Trul = 1"
(Ty,....T)YU(T,....,T)) = (TyUT,....T,uT)

LnT=Tnl = 1
(Ty,...,T,) N (T},.... T = (LNT,,... . T,NT)

Using the adjointy of v as abstraction function, it can be shown tf#t, o, €2, v) is a Galois
insertion, where is the domain of concrete substitutions dh¢hat of abstract substitutions.

The following abstract unification operator can be shown to approximate the concrete one.
Let z = t be a concrete unification equation, witha variable; any term, and™ the current
abstract substitution, and lgf, j = 1,...,m be the variables of, the new abstract substitution
is:

amgu(T",x =t) = T"[T,/T,, T, /T, -, Ty, /T,

Ym]

(10)

e
with eachT replaced byl” in the tuple,7, = T, Mtu, p = {y1 — Tyyy- o, Ym — Ty}

andsolve(t,T,) = {y1 = T,,,...,ym = T, 1}, a set of equations that define the types of the

92

variables of a term € v(77), obtained as:

{t=T} if tisavariable
solve(t,T) = U U solve(t;, T,) if tis f(ty, ..., 1)

In this abstract interpretation-based setting, analysis with a monotonic semantic function can
be easily shown correct. However, it is not guaranteed to terminate (3inae infinite ascending
chains. To guarantee termination, a widening operator is required.

Example 24.1Consider the following program which defines the regular type lists of lists of
numbers:

list_of_lists([]). num_list([]).

list_of lists([L|Ls]):- num_list([N|Xs]):-
num_list(L), number(N),
list_of lists(Ls). num_list(Xs).

For the argument afum.list , without a widening operator, an analysis would obtain the
following first three approximations:

o — | 7. — [| .(num,Tp) T, — [| .(num,Ty)

where eacli; represents a list afnumbers. Analysis will never terminate, since it would keep
on obtaining a new type representing a list with one more number. A widening operator would
be required that over-approximates some typw something like

T, — [| .(num, T;)

which is the expected type, and allows termination of the analysis.

25 Widenings

The widening operation is required to guarantee that an analysis terminates when the abstract
domain has infinite ascending chains as is the case of regular types.

Functor Widening This is probably the simplest widening operator which still keeps informa-
tion from the recursive structure of the program that “produces” the corresponding terms. The
idea behind it is to create a type and a production for each functor symbol in the original type.
All arguments of the function symbols are replaced with the new types [159].

93

Example 25.1Consider predicatést _of lists of Example 24.24.1, its argument should
ideally have the following type:

Ty — [1.(11,Th) I, — [.(num,T))
but the functor widening will yield

T — [| num | .(T,T)

Type Jungle Widening A type jungle is a grammar where each functor always has the same
arguments. It was originally proposed as a finite type domain [146] , since in a domain where all
grammars are of the type jungle class all ascending chains are finite. However, it can be used as
a subdomain to provide a widening operator.

Example 25.2Applying this widening to the previous tygg;, the following will be obtained:
T — || .(Th,7) 77 — []|num|.(T},7)

Note that this widening is strictly more precise than the functor widening. In the example,
the new type captures the upper level of lists, but it loses precision when describing the type
of the list elements. This is due to the restriction of forcing functors to always have the same
arguments.

Shortening A grammar can be seen as a graph where the nodes correspond to the non-terminals
(or-nodes) and to the right hand sides of productions (and-nodes), and the edges correspond to
the production relation or the relation between a functor and its arguments in a right hand side of
a production. Given an or-node, psincipal functorsare the functors appearing in its children
nodes.

Example 25.3The typeT;, of the previous examples can be seen as the graph:

[] []
/
e

94

Gallagher and de Waal [65] defined a widening which avoids having two or-nodes, which
have the same principal functors, connected by a path. If two such nodes exist, they are replaced
by their least upper bound.

Example 25.4In the above example graph, nodgésand7; have the same principal functors ([]
and .) so that they are replaced, yielding:

T — || (11, T) 71 — []|num|.(num,T)

Note the precision improvement with respect to the result in the previous example. Note also
that still the result is imprecise.

Restricted Shortening Saglam and Gallagher [196] propose a more precise variant of the pre-
vious widening. Shortening is restricted so that two or-nddesd7” which are connected by a
path fromT to 7" and have the same principal functors are replaced ofly if 7. If this is the
case, onlyl” needs be replaced, since the least upper boufd is

Example 25.5Continuing previous examples, since nodgsand7; have the same principal
functors butl; IZ Ty, the widening operation will make no change. In this case, the most precise
type is achieved.

Note, however, that restricted shortening does not guarantee termination in general (and thus,
it is not, strictly speaking, a widening). There are cases in which analysis may not terminate
using only this widening operator [159].

Depth Widening Janssens and Bruynooghe [98] proposed a type analysis in which the widen-
ing effect is achieved by a “pruning” of the type depth up to a certain bound. A parameter k
establishes the maximum number of occurrences of a functor in-depth in a type. The idea is sim-
ilar to the well-known depth-k abstraction for term structure analysis. The resulting type analysis
uses normal restricted type graphs, which are basically deterministic types satisfying the depth
limit. Obviously, precision of this analysis depends on the value of the parameter k.

Example 25.6The widening of our previous tygg; with k=1 will yield the same result than the
functor widening (Example 25.25.1), whereas with k=2 will yield the same result as restricted
shortening (Example 25.25.5).

95

Topological Clash Widening Van Hentenryck et al. [212] proposed the first widening operator
that takes into account two consecutive approximations to the type being inferred. After merging
the two —i.e., calculating their least upper bound, the result is compared with the previous
approximation to try to “guess” where the type is growing. This is done by locatimgjogical
clashes functors that differ or appear at different depth in each type graph. The clashes are
resolved by replacing them with the recently calculated least upper bound.

Example 25.7Consider the program:

sorted([])-
sorted([_X]).
sorted([X,Y|L]):- X =<, sorted([Y|L]).

and the moment during analysis when the final widening is performed. The resulting type for
the argument oforted/1 is the one on the left below for the first two clauses, and the one on
the right for the last one:

To — [.(any,[]) Ty — .(num,.(num,7}))
i — [.(num,T))

Their least upper bound i&, on the left below, which exhibits a clash wiffy in the second
argument of functor/2. Thus, the result of widening i&;:

T, — ||y,) T, — [.(any,T)

All widening operators are based on locating recursive structures in the type definitions where
there are nodes with the same functors. This may originate an unnecessary loss of precision, since
the widening may impose a recursive structure on the resulting type in argument positions where
the concrete program is in fact not recursive. In the following section we present a new widening
operator that tries to remedy this problem.

26 Structural Type Widening

In this section we define an extended domain for type analysis which incorporates a widening
operator aimed at improving the precision of the analysis. The domain is defined so as to keep
track of information on the program structure, so that recursion on the types produced by the
analysis is imposed by the widening operator only in the cases where it corresponds to a recursive
structure in the program being analyzed. To this end, type names will be used.

A type namas roughly a (distinguished) non-terminal that represents a type produced during
the analysis. Type names are created for each variable in each argument of each variant of

96

each program atom for each predicate (note how this is different from, for example, set-based
analyses [22], where variants are not taken into account).

Type names provide information on how types are being formed from other types during
analysis. This makes it possible to precisely identify places where to impose recursion on the
types: in a subterm of the type which happens to refer to the name of that type. To this end,
type names contain references to the position of its constituent types. To determine positions,
selectors are used, as defined below.

Definition 26.1[selector] Define /s, the subterm of a concrete tetmeferenced by aelectors,
inductively as follows. The empty selectorefers to the term, that is,t/e = t. If t/s = t/, t' IS
acompound ternf (¢, ..., t;, ..., t,) (Wheref is ann-ary function symbol) thetys- (f.i) = t,
1< <n.

For every two selectors p, if t/s =t and ift’/p exists thert/s - p = ¢’ /p. The initial ¢ of
a non-empty selector will often be omitted, sap will be written simply asp.

We define a set of type namaésuch that\' NG = () and a se2V*9 of relationsX’ € 2V*9
between type names and types, of the fornt NV x G.

Definition 26.2label] Let X a relation between type names and types. Given a type ngnae
selectors, and a type nam@”’, a tuple(s, N') is alabelof N iff (N,T) € X, (N',T') € X, and
T'CT/s.

Labels of a type nam#’ indicate subterms of the ty@édefining N where other type names
occur.

Example 26.3Let arelationt suchthaf (A, T}), (B,T>)} C X, and letgrammar&ly, 7;, F, R4)
and(T», 73, F, R»), such that the only rule fdF; is (77 — f(b)) € Ry and(Ty — g(c, T3)) €
Ro, (T5 — b f(b)) € Ro. Consider alabel(g.2), A) of B. We have thaiy C 1,/(g.2) = Ts.

Definition 26.4[type descriptor] Ley a set of types (regular term grammaraj,a set of type
names, andt C N x G. A type descriptoris a tuple(N, E,T) whereN € N, T € g,
(N,T) € X, andFE is a set of labels oN.

In the new domain, type descriptors will be used instead of types.DLe¢ the set of all
type descriptors from given sets of typ@sand of type named/. Concretization is defined as
v((N, E,T)) =~(T). The domain ordering and operationsBrare the same as ghexcept for
type names. In this case, they have to take into account the possible labels of the tygé name.

2INote that these operations do not manipulate the type names: they are assigned independently during analysis.
In particular, the namé/ of the type resulting from union and intersection is always a hew name.

97

Inclusion (N, By, T1) C (Ny, By, Ty) < Ty T Ty A By C Es.
Union (N, E,T) = (Nl,El,Tl) LJ (NQ, EQ,TQ) ST=TIUT,ANE = FE; U Es.
Intersection (N,E,T) = (Nl, El,Tl) M (NQ,EQ,TQ) ST=T NIy NE =E, U E;.

Again, we may be interested in types defined by non-terminals other than the distinguished
non-terminall’ of a gramman7,7,F,R). A type descriptor N;, E;, T;), whereT; € T, is
formally defined from(V, E, T') as follows:T; is the grammar of Equation %; is a new type
name, and

E;={{p, Ny |(s-p,N)e ENT/s =T,}.

Abstract substitutions for variables of interést, .. ., z,,} are now defined as tuples of the
form (Ny, By, T,), ..., (N, En, Ty,)). Concretization and the domain ordering and operations
are lifted to abstract substitutions element-wise, in the same way as in Section 24, including the
widening operator defined below. If ndwis the domain of type descriptors, it can be shown that
(29,0, Q,7) is a Galois insertion, where is the adjoin ofy. Abstract unification is defined as
in Equation 10, but using type descriptors instead of types. During unification, all type names in
the “input” abstract substitution™ to amgu are preserved; in the labels, the selectors for those
names are changed so as to refer to the resulting type graph instead of tofhat of

Definition 26.5structural widening] The widening between an approximafigro type name
N and a previous approximatiai to N is (N, Ey,T1) <7 (N, Ey, T3) = (N, Ey U E,, T'), such
that 7" is defined by(T,7,F,R) where7 = {T, | T —% T;}, andR is obtained by the
following algorithm:

T':=T, UT, defined by(7", 7", F,R’)

S:={s|(s,N) € FyUEy}

Seen := ()

for each (7" — f(A4,...,A,)) € R'add to R production
T — f(widen (A, R, (f.1)),...,widen (A,,R,(f.n)))

widen (N, R/, Sel) :
if N =anyreturn any
if IM(N,M) € Seenreturn M
let M a new non-terminal
Seen := Seen U {(N, M)}

98

for each (N — f(4;,...,4,)) € R'add to R production
M — f(widen (A;,R',Sel-(f.1)),...,widen (A4,, R, Sel-(f.n)))

if Sele Sthen
add to R producton M —T
return M

Structural widening basically identifies subterms of the new #pe 7> where a reference
to the typeN being widened appears, and makes this “self-reference” explicit in the definition of
the new type. Note that the widening operation starts with the least upper bound and, basically,
adds new grammar rules to that type. Therefore, the result is always a correct approximation
of such an upper bound. This justifies its correctness. Moreover, this approach based on type
names is potentially more precise than any of the previous widening operators discussed, as the
following examples show:

Example 26.6Consider programorted in Example 25.25.7. A top-down analysis with topo-
logical clash was roughly described there. Let us now look at analysis using restricted shortening.
The resulting type happens to be the same one.

Analysis of program atorsorted([Y|L]) approximates variabl¢ always asaium, both
in the calls and in the successes. The first two success approximations for varaelg and
.(num, []). Their lub (and widening) is:

I — [(num,[)

The next approximation to the type bfis .(num, 7}). Its lub with 7} is T, — || | .(num, 77),
and sincel, and7; have the same functors, afi@is included inT5, the widening of75 is:

T3 — [] | .(num, T3)

i.e., list of numbers. The next approximation to the typé a$.(num, 73) (i.e., a list with at
least one number). It is included 3, so fixpoint is reached.

The success of principal goabrted(X) is approximated after analyzing the two non-
recursive clauses i), — [| | .(any, []). Analysis of the third clause yield&hum, .(num, 73)).
Its lub with T}, is 75 — [] | .(any, T3). The widening off; finds that7; and7; have the same
functors andlz C T5, sincenum C any. Thus, the result of widening is:

Ts — [| -(any, Tg)

i.e., list of terms. This is the final result after one more iteration. Note that the information about
successes where the tail of lists of length greater than one is a list of numbers is lost.

99

Let us now consider structural widening. Analysis of ateonted([Y|L]) always ap-
proximates the type oY by (Ny3, (), num). For variableL the two first approximations are
(N14,0,[]) and(Ny4, E14, .(num, [])), where the set of labels is:

E14 == { (’.’ .1, ng), (’.’ .2, N14> }
The result of widening i$ V14, F'14, 1), whereT] is defined as:
i — [.(num,Ty)

i.e., list of numbers. This is the final result after one more iteration.

The success of principal goabrted(X) is approximated after analyzing the two non-
recursive clauses byVs, (), T») whereT, — [] | .(any, []). Analysis of the third clause yields
(N3, E3, .(num, .(num, 77))), where

Es = {() 2707 1,Ng), (V270 2, Ny}
Its widening with the previous approximatid® is (N5, E5, T3), where
Ty — [I].(any,Ty)

which amounts to their lub, since the widening operator does not produce any change, because
N3 is not among its own labels. Therefore, the final result, after one more iteratity vidhere
indeed lists of length greater than one have a tail which is a list of numbers.

However, structural widening does not guarantee termination. It is effective as long as the
new approximation is built from the previous approximation of the type being inferred. This case
is identified, in essence, by locating a reference to the type name of the previous approximation
within the definition of the new one. However, there are contrived cases in which a type is
constructed during analysis which loses the reference to the previous approximation. In these
cases, a more restrictive widening has to be applied to guarantee termination.

Example 26.7Consider the program:

main:- p(a). p(a). g(a,f(a)).
p(X):- a(X,Y), p(Y). q(f(2).f(L)):- a(Z,L).

The calling substitution for atop(Y) is the sequence
T — fla) T, — [f(f(a)) Iy — f(f(f(a)))

whereas the typ& — f(a) | f(T') correctly describes such calls. However, the analysis is not
able to infer such a type.

100

The problem in the above example is that none of the approximaiiccentains a reference
to the previous approximation. This is originated in the program fact for predi¢atevhich
causes the loss of the reference to the previous approximation because of the double occurrence
of constant.

In our analysis, termination is guaranteed by a bound on the number of times the widening
operation can be applied to a type name. A counter is associated to each type name, so that when
the bound is reached a more restrictive widening that guarantees termination is applied.

27 Type Inference Analysis Results

We have implemented analyses based on most of the widenings discussed in this paper, including
structural widening. The implementation is in Prolog and has been incorporated to the CiaoPP
system [85, 84], which uses the top-down analysis algorithm of PLAI. The analysis of [65],
based on regular approximations, which uses a bottom-up algorithm, is also incorporated into
the system. This analysis uses shortening. We want to compare the top-down and bottom-up
approaches with the same widening and similar implementation techridlagyyell as the pre-
cision and efficiency, within the same analysis framework, of the widening operators previously
discussed.

We have used two sets of benchmark programs: the one used in the PLAI framework and that
used in the GAIA [23] framework. A summary of the benchmarking follows. The analysis times
in miliseconds are shown in Table 3. The first columul () is for the regular approximation
analysis and the other three for the PLAI-based analyses: cadtom for shortening, column
clash for topological clash, and colunsiruct for structural widening.

Table 4 shows results in terms of precision. The precisiostfct is never improved
by any of the others. The improved precisionstfuct has been measured as follows. The
left subcolumns undeul |, short , andclash show the number of types with a more precise
definition inferred bystruct . The right subcolumns show the number of types where the
previous ones appear (and are thus, also, more precise). The former are types directly inferred
from program predicates; the latter are types which are defined from the former, due to the data
flow in the program.

The following conclusions can be drawn from the tables. First, the regular approximation
approach seems to behave better in terms of efficiency than the program interpretation approach,
at least for the bigger programs. This conclusion, however, has to be taken with some care, since

22gjmilar in the programming technique. Of course, the regular approximation method is rather different from
the method of program interpretation on an abstract domain: Evaluating this difference is part of the aim of the
comparison.

101

| Program || rul [short |clash |struct |

aiakl 568 469 529 900
bid 1480 2209 2529 4730
boyer 3450 3890 4989 9629
browse 758 380 389 539
CcsO 3840 1889 2689 2580
CSr 18549| 10720| 24479 19560
disj.r 4468 1819 6399 2440
gabriel 1549 1430 1870 1760
grammar 330 160 160 190
hanoiapp 620 719 1889 1150
kalahr 1520 79 79 89
mmatrix 310 190 209 119
occur 380 219 330 289
palin 590 840 980 850
pg 839 2020 2980 3990
plan 1138 819 960 1009
progeom 979 1840 2530 3640
gsort 310 590 659 680
gsortapp 369 1000 2898 1210
queens 329 179 190 180
query 720 360 370 410
serialize 478 810 969 899
witt 2929 4890 1399 1169
zebra 560 3490| 14958 12830

Table 3: Timing results

the current implementation ofil performs some caching of the type grammars that the PLAI-
based analysis does not. This should be subject of a more thorough evaluation, which is out of
the scope of this paper. The fact that it improves in bigger programs seems to suggest that the
effect of this caching is most surely not negligible.

Regarding the analyses based on program interpretation, it can be concluded that the better
the precision the worse the efficiencghort takes less thanlash , and this one takes less
thanstruct ; this one is more precise thatash , which is more precise thahort . This
conclusion seems evident at first sight, but it is not: in analysis, an improvement in precision
can very well trigger an improvement in efficiency. This can also be seen in the tables in some
cases, the most significant probably bergdpra . Overall, one can arguably conclude that the
efficiency loss found is not a high price in exchange for the gain in precision.

102

| Program|| rul || short [clash ||

aiakl 1] 1)1 1
bid 9129 12
CcsSo 41181 4| 18| 2 9
CSr 41281| 4| 28| 2| 19
disj_r 6136 13
mmatrix || 2| 2| 2 2
occur 1] 11 1
palin 2| 412 4
pg 1) 11 1
gsort 1] 11 1
serialize|| 2| 4| 2 4
zebra 3| 3|3 31 1

Table 4: Precision results

We have also carried out another test. For practical purposes, the CiaoPP system includes
a back-end to the analysis that simplifies the types inferred, in the sense that equivalent types
are identified, so that they are then reduced to a single type. This facilitates the interpretation
of the output. It is the case that the structural widening includes certain amount of type sim-
plification, so that the analysis creates less different types which are in fact equivalent. For this
reason, we have included the same tests as above, but adding now the times taken in the back-end
simplification phase.

The times including the simplification are shown in table 5. The columns read as before. It
can be seen that in this case structural widening outperforms all of the other analyses, except,
in some casesyl . It can also be observed thatl behaves usually better thahort also
when simplification is included. This seems to suggest that incorporating our widening into the
regular approximation approach would probably give the best results in prattice.

28 Convex Hull Abstractions in Specialization of CLP Pro-
grams

Program specialization is sometimes regarded as being achieved in three phaxgpescessing

of the program, analysiand program generation During pre-processing the input program

may be subject to some minor syntactic analyses or changes, ready for the analysis phase. The
analysis computes some data-flow and control-flow information from the program and the spe-

23This, however, may not be trivial. It is subject for future work.

103

Program || rul

| short

| clash | struct

|

aiakl 697 3009 3738 1409
bid 2899 | 31278 35949 15259
boyer 19620| 201169| 206917 92117
browse 987 2848 2987 1698
CcsO 11958| 17389| 32959 4878
Csr 50760| 303430| 238788 30169
disj.r 6508 | 18598| 26077 6408
gabriel 2098 | 13388| 22379 5208
grammar 759 3169 3169 1279
hanoiapp 840 3988 | 13738 3378
kalahr 2069 1187 1188 888
mmatrix 757 1769 2078 488
occur 530 1647 2628 767
palin 997 8520| 11878 2180
pg 1349 | 15380| 22870 7370
plan 1587 6167 6559 2288
progeom| 1358| 12800| 17598 6679
gsort 520 3439 4168 1409
gsortapp 569 7789 9669 2900
queens 457 1128 1138 429
query 1627 | 22458| 22788 11818
serialize 937 8429| 11957 2217
witt 3438 | 188419, 42699 25709
zebra 717 | 55100| 189949 44540

Table 5: Timing results (including simplification)

cialization query. Finally, at program generation time the result of the analysis is used to produce

a residual program reflecting the result of the analysis. In off-line specialization the three phases
are consecutive, whereas in on-line specialization and driving the analysis and program genera-
tion phases are merged or interleaved.

The use of abstract interpretation techniques to assist program specialization is well-established
[63, 57,104, 123, 193] and goes back to the invention of binding time analysis to compute static-
dynamic annotations [100]. More complex and expressive abstract domains have been used such
as regular tree structures [162, 64, 75, 132].

In this paper we focus on an abstract domain based on arithmetic constraints. Abstract inter-
pretations based on arithmetic constraints have already been developed [38, 7, 197]. We show
how the analysis phase of a specialization algorithm can benefit from advances made in that field.

104

We introduce an abstract domain consisting of atomic formulas constrained by linear arithmetic
constraints (or convex hulls [38]). The operations on this domain are developed from a standard
constraint solver.

We then employ this domain within a generic algorithm for specialization of (constraint) logic
programs [75]. The algorithm combines analysis over an abstract domain with partial evaluation.
Its distinguishing feature is the analysis of the success constraints (or answer constraints) as well
as the call constraints in a computation. This allows us to go beyond the capability of another
recent approach to use a linear constraint domain in constraint logic program specialization [51].

The specialization method can also be used for ordinary logic programs containing arith-
metic, as well as constraint logic programs. We can reason in constraint terms about the arith-
metic expressions that occur in logic programs, treating them as constraints (for instasce
Expr is treated a§X = Expr }). In addition, the algorithm provides a contribution to the
growing field of using specialization for model checking infinite state systems [141].

28.1 A Constraint Domain

Approximation in program analysis is ubiquitous, and so is the concept of a domain of properties.
The analysis phase of program specialization is no exception.

Linear Arithmetic Constraints Our constraint domain will be based on linear arithmetic con-
straints, that is, conjunctions of equalities and inequalities between linear arithmetic expressions.
The special constraintsue andfalse are also included. This domain has been used in the design
of analysers and for model checking infinite state systems. Here we use it for specialization of
(constraint) logic programs.

Let Lin be the theory of linear constraints over the real numbersClLand D be two linear
constraints. We writ€' C D iff Lin = V(C — D). C' andD areequivalentwrittenC' = D,
iff C T DandD C C. LetC be a constraint antl’ be a set of variables. Themoject,, (C)
is the projection of constrairt’ onto the variable¥’; the defining property of projection is that
Lin = VV(IV'.C < project,, (C)), wherelV’ = vars(C)\ V. Given an expressionlet us denote
vars(e) as the set of variables occurringdnlf vars(e) = V, we sometimes refer troject, (C')
rather tharproject,, (C') when speaking of the projection 6f onto the variables of.

Arithmetic constraints can be presented in their simplified form, removing redundant con-
straints. Constraint simplification serves as a satisfiability check: the result of simplifying a
constraint isfalse if and only if the constraint is unsatisfiable. If a constraihis satisfiable,
we write sat(C'). Because we used the CLP facilities of SICStus Prolog all these operations
(projection, simplification and checking for equivalence) are provided for the domain of linear

105

constraints over rationals and reals. We refer the interested reader to a survey on CLP [96] for a
thorough discussion on the subject.

Intuitively, a constraint represents a convex polyhedron in cartesian space, namely the set of
points that satisfy the constraint. L&tbe a set of linear arithmetic constraints. Tduavex hull
of S, written convhull(S), is the least constraint (with respect to theordering on constraints)
such that/S; € S.S; C convhull(S). Soconvhull(S) is the smallest polyhedron that encloses all
members of5. Further details and algorithms for computing the convex hull can be found in the
literature [38].

Constrained Atoms and Conjunctions Now we must define our abstract domain. It consists
of equivalence classes ofatoms which are constrained atoms. Each c-atom is composed of
two parts, an atom and a linear arithmetic constraint.

Definition 28.1 [c-atoms and c-conjunctions}A c-conjunction is a paikB, C'); B denotes a
conjunction of atomic formulas (atoms) aida conjunction of arithmetic constraints, where
vars(C') C vars(B). If B consists of a single atom the pair is called a c-atom.

(Note that c-conjunctions are defined as well as c-atoms, since they occur in our algorithm.
However, the domain is constructed only of c-atoms).

Given any arithmetic constraidt and atomA, we can form a c-atomiA, C’), whereC’ =
project ,(C'). Any atom A can be converted to a c-atofd’, C') by replacing each non-variable
arithmetic expression occurring ihby a fresh variab®, obtainingA’. Those expressions which
were replaced together with the variables that replace them are added as equality constraints to
the constraint par€ of the c-atom. For example, the c-atom obtained frgifi(3),Y + 1) is
(p(f(X1),X2), (X1 =3, Xo=Y +1)).

A c-atom represents a set of concrete atoms. We definedheretizationfunction v as
follows.

Definition 28.2 [v]
Let A = (A, C) be a c-atom. Define the concretization functipas follows.

V(A):{A

0 is a substitution A
Vp.sat(Chy)

~ is extended to sets of c-atomg(.S) = U{v(A) | A € S}.

24By parsing the arguments the desired terms can be selected.

106

There is a partial order on c-atoms defined Ay C A, if and only if v(A;) C v(As). Two
c-atoms.A; and A, are equivalent, writtepd; = A, if and only if 4; C A, and A, C A;.
Equivalence can also be checked using syntactic comparison of the atoms combined with con-
straint solving, using the following lemma.

Lemma 28.3Let A; = (A, C,) and A, = (A,, Cs) be two c-atoms. LetA;, C,) and(A,, Cy)
be the c-atoms obtained by removing repeated variables froand A, and adding constraints
to C; and(C; in the following manner. If a variabl& occurs more than once in the atom, then
one occurrence is replaced by a fresh varidibleand the constraink = W is added to the
corresponding constraint part.

Then A, = A, if and only if there is a renaming substitutiensuch that4,0 = A, and
0 = C,.

Now we are in a position to define the domain and the operations on the elements of our
domain. The relatiors on c-atoms is an equivalence relation. The abstract domain consists
of equivalence classes of c-atoms. For practical purposes we consider the domain as consist-
ing of canonicalconstrained atoms, which are standard representative c-atoms, one for each
equivalence class. These are obtained by renaming variables using a fixed set of variables, and
representing the constraint part in a standard form. Hence we speak of the domain operations as
being on c-atoms, whereas technically they are operations on equivalence classes of c-atoms.

Next we define the upper bound of c-atoms which combinesibet specific generalization
operator (msg)194] on terms and theonvex hull[38] on arithmetic constraints. The idea is
to compute thansgof the atoms, and then to rename the constraint parts suitably, relating the
variables in the original constraints to those inttigg before applying the convex hull operation.

The following notation is used in the definition. Létbe a substitution whose range only
contains variables; the domain and rangé afedom(#) andran(#) respectivelyalias(f) is the
conjunction of equalities = Y such that there exist bindings/Z andY/Z in 6, for some
variablesX, Y andZ. Letd be any substitution such thasm(f) = ran(§) and X069 = X for
all X ¢ ran(#). (Thatis,d = ¢~! wherey is some bijective subset éfwith the same range as
0).

The following definition is a reformulation of the corresponding definition given previously
[197].

Definition 28.4 [Upper bound of c-atoms,L] Let A; = (A;,C4) and Ay, = (Ay, Cy) be c-
atoms. Their upper bound; LI A is c-atomA; = (A3, C3) defined as follows.

1. A3 = msg(A;, As), wherevars(As) is disjoint fromvars(A;) U vars(As).

107

2. Let, = {X/U | X/U € mgu(A;, As),U is a variable}, for i = 1,2. Then(C; =
project 4, (convhull({alias(6;) U Ci6; | i = 1,2})).

LI is commutative and associative, and we can thus denot& 5y the upper bound of the
elements of a set of c-atonss

Example 28.5Let 4; = (p(X, X),X > 0) andA; = (p(U,V),-U = V). Then A, U A, =
(p(Z21,22), Zy = —Zy). Here,mgu(p(X,X),p(U,V)) = p(Z1,25), b1 = {Z:1/X, Z>/ X},
0y = {Z,/U, Zy)V'}, alias(6h) = {Z, = Z,}, alias(f) = 0, 6, = {X/Z,} (or {X/Z,}) and
0, = {U/Z,,V/Z,}. Hence we compute the convex hull of the §gt;, = Z,, Z; > 0), (=27, =
Zy)}, whichisZy > —Z;.

Like most analysis algorithms, our approach computes a monotonically increasing sequence
of abstract descriptions, terminating when the sequence stabilizes at a fixed point. Because
infinite ascending chains may arise during specialization it is not enough to have an upper bound
operator, in order to reach a fixpoint. An operator calldeningmay be interleaved with the
upper bound to accelerate the convergence to a fixpoint and ensure termination of an analysis
based on this domain. When widening we assume that the c-atoms can be renamed so that their
atomic parts are identical, and the widening is defined solely in terms of widening of arithmetic
constraintsV .. [38]. This is justified since there are no infinite ascending chains of atoms with
strictly increasing generality. Hence the atom part of the c-atoms does not require widening.

Definition 28.6 [Widening of c-atoms, V] Given two c-atoms4; = (A;,C) and A, =
(As, Cy), WwhereA; and A, are variants, sayl; = A;p. The widening of4, and.4,, denoted as
A1V A; is c-atomA; = (As, Cs) whereCs = C1p V. Cs.

For instance, the widening @¢H(X), X > 0,X < L)and(p(Y),Y > 0,Y <2)is (p(Y),Y >
0).

29 An Algorithm for Specialization with Constraints

In this section we describe an algorithm for specialization, incorporating operations on the do-

main of convex hulls. The algorithm is based on one presented previously [75], where we used a
domain of regular trees in place of convex hulls, and the operations namatls andanswers

are taken from there. The operatiangndaunf* (which is used in the definition afalls) were

taken from Leuschel’s top-down abstract specialization framework [123]. The answer propaga-
tion aspects of our algorithm are different from Leuschel’'s answer propagation method, though.

108

There is no counterpart of theswers operation in Leuschel's framework. The differences be-
tween the approaches were discussed in our previous work [75].

The structure of the algorithm given in Figure 12 is independent of any particular domain
of descriptions such as regular types or convex hulls. The operations concerning convex hulls
appear only within the domain-specific operatieals, w, V andanswers.

INPUT: a programP and a c-aton4
OUTPUT: two sets of c-atoms (calls and answers)

begin
So = {A}
To = {}
1:=0
repeat
Si+1 = UJ(CQIIS(SZ‘, E), Sz)
Tiv1 = T;Vanswers(S;, T;)
=1+ 1
until S; = Si_1 and,_z—; =T,4
end

Figure 12: Partial Evaluation Algorithm with Answer Propagation

29.1 Generation of Calls and Answers

The idea of the algorithm is to accumulate two sets of c-atoms. One set represents tlvaket of
that arise during the computation of the given initial c-atdmThe other set represents the set
of answerdor calls.

At the start, the set of callS, contains only the initial goal c-atom, and the set of answers
T, is empty. Each iteration of the algorithm extends the current Setand 7; of calls and
answers. The diagram in Figure 13 illustrates the process of extending the sets. All existing
calls A = (A, C) € S; are unfolded according to some unfolding rule. This yields a number
of resultantsof the form (A,C)0 «— By,...,B;,C’, where A) — By,..., B, is a result of
unfolding A andC” is the accumulated constraint; that ¢, is the conjunction of”9 and the
other constraints introduced during unfoldingsdt(C") is false then the resultant is discarded.
The unfolding process is performed in the algorithm by the operatiofi, defined as follows.

Definition 29.1 [aunf, aunf*] Let P be a definite constraint program asd= (A, C) a c-atom.
Let {A0, — L,,C4,...,Ab, — L,,C,} be some partial evaluation [149] of in P, where

109

Generate abstract call (B Bn,C")
(Bit19,project, , 4((C1,- ., C) A CO19)) b
where(Bs, ..., By) has answer c-atoms
(A1,C1), ..., (A, Cy) and Generate abstract answer
moU(B1, ..., Bi), (A1, Ax) = ¢) (4829, project g, (C1, -, Cn)é 1 CO620))
where(Bj, ..., By) has answer c-atoms
(Al, Cl>, ey <An7 Cn> and
mgu(Bi,. .., Bn>7 (A1, An> =9)

Figure 13: The generation of calls and answers
C;, L;(1 < i < n) are the constraint and non-constraint parts respectively of each resultant body.
Then define

aunf(A) = { A6; — L;, (C; A COi)| 1 <i < n,sat(Ci A CO) |-

Let S be a set of c-atoms. We definenf*(.S) as:

aunf*(S) = { (L, projecty(C")) Al — L,C" € aunf(A)

(A,C) € S }

In the following examples, assume that the unfolding rule selects the leftmost atom provided that
it matches at most one clause (after discarding matches that result in an unsatisfiable constraint),
otherwise selects no atom.

Example 29.2Consider the following simple program.

s(X,Y.,2) <-
p(X,Y,2), q(X,Y,Z) q(?,ZZ,i) 0<}-

p(oloyo) <-

p(X,Y,2) <- qx,Y,2) <-
{X:X1+1, Y=Y1+1, Z=Z1+1 }, {E(X]-:YXZ:I.]S]., Z=71+1 },
p(X1,Y1,21) q(X1,Y,

Let S be {(s(X,Y,Z),X > 2)}. Thenaunf*(S) = {(p(X1,Y,21),q(X,Y,2),(X > 2,X = X1 +
3,Z = Z1 + 3)}. The unfolding rule results in four steps: the unfolding of the asgXY,Z)
followed by three unfoldings ob, since the initial constrairit > 2 implies that the base case
p(0,0,0) cannot be matched so long as the first argumeptisfgreater than zero.

110

Note that the range of the functiaanf* is the set of c-conjunctions. The current answers from
T; are then applied, from left to right, to the c-conjunctions generatedibfy. If there is some
prefix By ..., By (k < [) in a c-conjunction, having a solution i}, then a call to an instance
of By, is generated. More precisely, we define a functieifs as follows. We first define the
notion of a “solution” of a conjunction with respect to a set of c-atoms.

Definition 29.3 [solution of a conjunction]Let (By, . . ., B;) be a conjunction of atoms aritbe

a set of c-atoms. Thefp, C) is a solution for By, . .., B;) in T if there is a sequence of c-atoms
(Aq, ..., A)whered; = (A;,C;) € T,1 < j <I,suchthatgu((B,...,B), (A,..., 4)) =
@, andsat(C) (whereC = (Cy A -+ A C))).

Definition 29.4 [calls] Let S; be a set of call c-atoms arid be a set of answer c-atoms. Define
calls(S;, T;) to be the set of c-atomB,. 1, project, .(C' A C'p)) where

1. (By,...,B;,C") € aunf*(S;), and

2. there is a conjunctio(\By, . . ., By) (k <) which has a solutiofip, C') in T}, andsat(C' A
C'y).

Example 29.5Let P be the program from Example 29.2 and$ebe {(s(X,Y,Z),X > 2)}. Let
T = {(p(X1,Y1,21),X1 = 0,Y1 = 0,Z1 = 0)}. Then:

calls(S, T) = {(p(X1,Y,Z1), true), (q(X,Y,Z),X = 3,Y = 3,Z = 3)}

Note that the call t@ arises from applying the solution fgrand simplifying the accumulated
constraints.

An answer is derived by finding a resultatd < By, ..., By, C’ whose body has a solution
in the current set of answers. The functionwers is defined as follows.

Definition 29.6 [answers] Let S; be a set of call c-atoms arif} be a set of c-atoms. Define
answers(S;, T;) to be the set of answer c-atorfidfy, project 4,,,(C' A C'¢)) where

1. A=(A,C) e S;,and
2. AQ «— By,...,B;,C" € aunf(A), and
3. (By,..., By) has asolutiofy, C) in T;, andsat(C A C"p).

Example 29.7Let P be the program from Example 29.2 and febe {(p(X, Y, Z), true) }. Let
T = {(p(X1,Y1,Z1),X1 = 0,Y1 = 0,Z1 = 0) }. Thenanswers(S,T) = {(p(X,Y,Z2),X =1,Y =
1,Z=1)}.

111

An important feature of the algorithm is that no call to a body atom is generated until the
conjunction of atoms to its left has an answer. One effect of this is to increase specialization
because the propagation of answers for some atom restricts the calls to its right. Secondly,
answers can only be generated for called atoms, and no answer to an atom is generated until
there is an answer to the whole body of some resultant for that atom. There can exist abstract
calls that have no corresponding answers; these represent concrete calls that either fail or loop. In
fact, infinitely failed computations are not distinguished from finitely failed computations, with
the result that programs that produce infinitely failing computations can be specialized to ones
that fail finitely. The examples later in this section illustrate this point.

29.2 Approximation Using Convex Hulls and Widening

Call and answer c-atoms derived using¢hks andanswers functions are added to the sétsand

T; respectively. There is usually an infinite number of c-atoms that can be generated in this way.
The purpose of thes andV functions in the algorithm is to force termination. Thadunction
computes a safe approximation of the calls and answers, usingptivex hulland widening
operations, both of which are standard in analyses based on linear arithmetic constraints.

On each iteration, the sets of call c-atoms are partitioned into sets of “similar” c-atoms. The
notion of “similar” is heuristic: the only requirements are that the definition of similarity should
yield a finite partition, and that all c-atoms in one subset should have the same predicate name.
In our implementation we partitioned based on tifaee termsor “unfolding patterns” of the c-
atoms [72]. We assume a function that partitions &seftc-atoms into a finite s€ts;, ..., S}
of disjoint subsets af, and computes the upper bound of each subset. The funetitition(.S)
is defined agartition(S) = {LI(S1),...,U(S)}. Itis desirable though not essential th4tS)
belongs to the same set 8s

Even if the patrtition is finite, a widening is required to enforce termination. The widening
step is defined between the sets of c-atoms on two successive iterations of the algorithm. Let
S, S’ be two sets of c-atoms, where we assume that Bosimd S” are the result of gartition
operation. Defing’V .S to be

AeS AeS AeS
A/VA) Y A 7
{ ‘ A’, A are in the same set }U{ ‘ AA’ € S’ in the same set as A }

Finally the operatiow can be defined as(S, S’) = S'Vpartition(.S). This ensures termination
if the number of sets returned Ipgrtition is bounded. The definition states that each element
of S is replaced by the result of widening with the element front’ from the same set, if such
an element exists.

112

29.3 Generation of the Specialized Program

After termination of the algorithm, the specialized program is produced from the final sets of
calls and answerS andT respectively. It consists of the following set of clauses.

A=(A,C) e S,
rename(A6 Lo, C'p) Al — L,C" € aunf(A),
’ 7% %/ L has solution {p,C)inT,

sat(C' A C'p)

That is, each of the calls is unfolded, and the answers are applied to the bodies of the resultants.
Note that we do not add the solution constraifit® the generated clause, so as not to introduce
redundant constraints. Thename function is a standard renaming to ensure independence of
different specialized versions of the same predicate, as used in most logic program specialization
systems (see for example [57] for a description of the technique).

Example 29.8Consider again the example from Example 29.2. We specialize this program
with respect to the c-atons(X, Y, Z), true) assuming the usual left-to-right computation rule.
Note that the concrete gog(X,Y,Z) does not have any solutions, although with the standard
computation rule the computation is infinite.

After the first few iterations of the algorithm the answer [i§X,Y,Z) is computed, after
widening the successive answe(9,0,0), p(1,1,1), p(2,2,2),
This in turn generates a call g{X,Y,Z) . The c-atom describing the answers igK,Y,Z)
is (p(X,X,X),X > 0) and thus the cal{g(X,X,X),X > 0) generated. Further iterations of the
algorithm show that this call tq has no answers. Concretely, the call would generate an infinite
failed computation. When the algorithm terminates, the complete set of calls obtained is:

{(s(X,Y,2),true), (p(X,Y, Z), true), (q(X,X,X),X > 0)}

The set of answers igp(X, X, X), X > 0)}. Thus we can see that there are some calls (namely, to
g ands) that have no answers.

To generate the specialized program from this set of calls and answers, we generate resultants
for the calls, and apply the answers to the bodies. Since there is no answgXf¥rZ)
in the resultant fos(X,Y,Z) , s(X,Y,Z) fails and the specialized program is empty. The
specialized program thus consists only of the resulgaf@®,0) andp(X,X,X) <- {X =
Y+1}, p(Y,Y,Y) . The failure of the original goal is immediately apparent since there are no
clauses for predicate.

113

Example 29.9More insight into the nature of the approximation can be gained by considering
the same program as in the previous example, except that the body goals are reversed in the clause
for s. In this case(X,Y,Z) is called first, and the answers fgrconstrain the calls tp. The
call (q(X,Y,Z), true) results in the abstract answer c-atoqX, Y,Z),X > 0,Y > 0,Z =X+ Y).
Again, widening is essential to derive this answer. Note that the solg{®0,0) isincluded
as a result of the convex hull approximation, even though this is not a concrete solution.
This answer is then propagated to the calptdence there is a call c-atofp(X,Y,Z),X >
0,Y > 0,Z = X+Y). Specialization of this call tp gives the abstract answgr(X, X,X),X > 0).
The specialized program corresponding to this set of calls and answers is the following.

s(0,0,0) <-
4(0.0.0), P(0.0,0). RN
p(0,0,0) <-
] aix,Y,z) <-
P(X,Y.2) < (X = X1+1, z=71+1 }
{X=X1+1, Y=Y1+1, Z=Z1+1 }, (XLY.Z1) ’ ’
p(X1,X1,X1) qALY
The instance of the clause feris obtained by conjoining the answers for the body goals
a(Xx,)Y,z), p(X)Y,2) ,thatis,X > 0, X =Y, X =2Z,Y > 0,Z = X + Y, which simplifies to

the constraink = 0,Y = 0,Z = 0. The above program does not make the failurs(&f,Y,2)

explicit; a non-trivial post-processing such as another run of the specialization algorithm would
be needed to discover the failure of the cg0,0,0) . The general point here is that the convex
hull approximation loses the information thg0,0,0) is not a solution foq(X,Y,Z)

The two examples taken together show that the direction of propagation of answers affects preci-
sion. It would be possible to design an algorithm incorporating more sophisticated propagation,
but post-processing or re-specialization is a practical alternative for experimental studies.

Note that the above presentation of the algorithm is naive in the sense that the sets of calls
and answers need not be totally recomputed on each iteration. We use standard techniques to
optimize the algorithm, focusing on the “new” calls and answers on each iteration. We can
also use the recursive structure of the target program to optimize the iterative structure of the
algorithm. Instead of one global fixpoint computation, we compute a series of fixpoints, one for
each group of mutually recursive predicates.

29.4 Correctness of the Specialization

A program that has been specialized with respect to a c-atom (A, C) produces the same
answers as the original program for any terminating computation for any quetydin Note
that the proposition below states nothing about the preservation of looping computations in the

114

original program. A goal that loops in the original program can finitely fail in the specialized
program.

Proposition 29.10Let P be a definite CLP program and a c-atom. LetP’ be the specialized
program derived by the algorithm described above, with initial c-atbniet S andT" be the
sets of call and answer c-atoms returned by the algorithm. Then for anygeal B, ..., B;
suchthat = 1---k andB; € (A’) forsomeA’ € S, P U {G} has an answey if and only if
P"U{G} has an answer. Also, if P U {G} fails finitely thenP’ U {G} fails finitely.

Proof Suppose there is a terminating (possibly failed) derivatioR’af {G'}. We argue by
induction on the length of the derivation. If the derivation has length 0, ¢h&xls immediately.
We know that there is somd’ = (A’, C’) in S such thatB; € ~(.A’), since the first call c-atom
is (By,true), and soS should contain an element’ such that(B,, true) = A’. So a failure
means that (i) there are no resultants My or (ii) that no resultant body has an answer, or (iii)
that there is a resultant’d «— L with an answerp for L given by the set of answer c-atoms,
but B; does not unify withA’6p. In the case of (i) there is a finitely failed computation tree of
P U{G}. In the case of (ii) or (iii) there is either a finitely failed computation treé’af {G},
or the computation tree fa? U {G} is infinitely failed.

If the derivation has length 1, with answer substitutigthenG =« B; and there is some
unit clause inP’ whose head unifies with; with substitutionp. Now, unit clauses i’ may
come from two sources: either they are alreadyir they are the result of successfully un-
folding the body of a non-unit clause, also ifh Hence by definition of the residual program
construction the mgus are equivalent modulo variable renaming.

If all derivations of length at most: in P’ have a corresponding derivation iy then we
show that all derivations of lengthh + 1 in P’ do as well. Suppose the first clause used in the
derivation isA’'0 < L, mgu(B;, A'0) = p and(L, Bs, ..., Bx)e has a derivation i?’ of length
at mostm. By the induction hypothesis there is a corresponding derivatiofVfoB,, . . ., Bx)y
in P. Then clearly there is a derivation A corresponding to the: + 1 step derivation in”’,
obtained by concatenating the steps corresponding to the clétise L.

The above argument establishes soundness. For completeness, a sketch of a proof is provided.
For each terminating derivation 6fU{G} we can construct a terminating derivation?fJ{G}.

The clauses i’ that are needed to construct such a derivation exist by virtue of the closedness
of the sets of calls and answers. Thabis= w(calls(S,7'), S) andT = T'Vanswers(S,T'). Fur-
thermore, the answers produced by successful derivatioR<an be reproduced by derivations

in P’ by virtue of the correctness of the unfolding functeamf, and the procedure for computing

the solution of a conjunction with respect to a set of answer c-atoms. O

115

sat(_,true) <-
sat(_,false) <- fail
sat(E,P) <- prop(E,P)
sat(E,and(F,G)) <-
sat(E,F),
sat(E,G)
sat(E,or(_F,G)) <-
sat(E,G)
sat(E,or(F,_G)) <-
sat(E,F)
sat(E,not(F)) <-
not(sat(E,F))
sat(E,en(F)) <-
trans(_Act,E,Ei),
sat(Ei,F)
sat(E,an(F)) <-

not(sat(E,en(not(F))))

sat(E,eu(F,G)) <-
sat_eu(E,F,G)

sat(E,au(F,G)) <-
sat(E,not(eu(not(G),
and(not(F),not(G))))),
sat_noteg(E,not(G))
sat(E,ef(F)) <-
sat(E,eu(true,F))
sat(E,af(F)) <-
sat_noteg(E,not(F))
sat(E,eg(F)) <-
not(sat_noteg(E,F))
sat(E,ag(F)) <-
sat(E,not(ef(not(F))))
sat_eu(E, F,G) <-
sat(E,G)
sat_eu(E,F,G) <-
sat(E,F),
trans(_Act,E,Ei),
sat_eu(Ei,F,G)
sat_noteg(E,F) <-

sat(E,not(F))
sat_noteg(E,F) <-
not((trans(_Act,E,Ei),
not(sat_noteg(Ei,F))))

Figure 14: CTL metainterpreter

30 Examples

We implemented the algorithm described in the previous section, using the SICStus Prolog linear
arithmetic constraint solver. Next we present some examples where on-line specialization as
presented here is used for verifying some formulas in CTL [27].

Specialization can be seen as an approach to model-checking infinite systems [141, 52] and
in this context our more powerful specialization techniques are highly relevant. We used the CTL
metainterpreter shown in Fig. 14 (also used by M. Leuschel et al. [141]).

The set of transitiorf§(predicaterans/3 in the figure) of the system to be verified in the form

of a (C)LP program is appended to this metainterpreter. Also, the property (prepliopt@

in the CTL metainterpreter) with respect to which verification is to be carried out should be
specified. Finally, the specialization query provides the initial state and the CTL formula which
is to be verified for the given system and initial state.

25 transition system may be that of a Kripke structure or a Petri Net, for instance.

116

Specialization Strategy Before applying the convex hull specialization, we performed a trivial
top-down specialization with respect to the given goal. The main effect of this stage was to unfold
the calls to the transition relatiamans/3 . In principle, this unfolding could be performed
during the execution of the main specialization algorithm. However, the overall process is faster
and easier to control when doing the specialization in two stages.

Example 30.1 Consider for instance the following transition system, where

trans(t,[X,Y],[Z,W]) holds iff state[Z,W] may be obtained from stafX,Y] using
transitiont .
trans(t1,[P1,P2],[X,P3]) <- trans(t2,[P1,P3],[P4,P2]) <-

X is 0, P1>=0,

P1>=1, P2>=0,

P2>=0, P4 is P1+2,

P3>=0, P3 is P2+1

P3 is P2+1

The encoding of an unsafe state propgXyY] with X>=3 is added as another clause in
the CTL metainterpreter.

prop([X,Y],p(unsafe)) <- X>=3

The specialization query, taking into consideration the initial &f¥] with X=1,Y=0,
for CTL formula ef(p(unsafe)) 26 is <- sat([1,0],ef(p(unsafe))) . As a result
of specializing the CTL metainterpreter with a description (transition system) of the system and a
state property with respect to the query above, we obtained the empty program. This is equivalent
to saying that there is no residual program in which staf@] may reach statgX,Y] with
X>=3. Had we obtained a residual program we would have interpreted the residual program as
the set of traces which lead from the initial state to the unsafe state, as above.

This behaviour may be regarded as that of a model checker, hence we argue that our special-
izer may be used as a model checker for some infinite state systems. The only requirement is that
those systems may be expressed as definite (constraint) logic programs and the CTL formulas
does not use negation.

Example 30.2Figure 15 depicts a Petri net modeling one process with its critical secson (
and a semaphoraséma) controlling access to it. The definition of predicatens/3 corre-
sponding to the transition relation of the Petri net above, follows.

26Meaning that there exists a state in the future such that state propesage holds.

117

sema

X enter /Czé@‘\exit cs y restart c
ST TR TS

Figure 15: Petri Net with one semaphore

trans(enter_cs,[X,Sema,Cs,Y,C],[X1,Semal,Csl,Y,C]) <-
X>=1, X1 is X-1,
Sema>=1, Semal is Sema-1,

Cs>=0, Csl is Cs+1
trans(exit_cs,[X,Sema,Cs,Y,C],[X,Semal,Cs1,Y1,C]) <-
Sema>=0, Semal is Sema-+l1,

Cs>=]1, Csl is Cs-1, Y>=0, Y1 is Y+1
trans(restart,[X,Sema,Cs,Y,C],[X1,Sema,Cs,Y1,C1]) <-

X>=0, X1 is X+1,

Y>=1, Y1 is Y-1,

C>=0, C1 is C+1

Next, we may specify with the following clause the unsafe property of more than two pro-
cesses being in their critical sectiars() at the same time:

prop([_X,_Sema,Cs, Y, C],p(unsafe)) <- Cs>=2.
Now, for the specialization query, with constramx>=1:

<- sat([X,1,0,0,0],ef(p(unsafe)))

we obtained the empty program, thus denoting that there is no path from the initial state
([X,1,0,0,0]), with X>=1 leading to a state where propeggunsafe) holds.

Example 30.3Another way of specifying concurrent systems was proposed by U. A. Shankar [200].
Delzanno and Podelski [46], in turn, propose a systematic method to translate such specifications
into CLP programs. Our translation is similar to theirs, differing only in the form of the clauses
produced, mainly due to the meaning of the predicate employed.

Figure 16 below contains a specification of the bakery algorithm for two processes using the
technique above cited.

Such a specification may be readily translated into the following definition ofrémes
predicate:

2’For every token in the place with nar¥ave associate a process, thus the const@iatl.

118

Control variables pq, p, : {think, wait, usé

Data variablesturn,, turn, : int

Initial condition p; = think A p, = think A turn; = turny, = 0

Events condp; = think actionp| = waitAturn] = turny +1

cond p; = wait A turn; < action p] = use

turn, .
action p| = use

condp; = wait A turny =0) _
action p; = think A turn; =0

condp; = use

. symmetrically for Pro-
cess 2

Figure 16: The bakery algorithm

trans(f,[think,A,P2,B],[wait,A1,P2,B]) <- A>=0, Al is B+l
trans(f,[P1,A,think,B],[P1,A,wait,B1]) <- B>=0, Bl is A+l
trans(s,[wait,A,P2,B],[use,A,P2,B]) <- A>=0, A<B
trans(s,[P1,A,wait,B],[P1,A,use,B]) <- B>=0, B<A
trans(s,[wait,A,P2,B],[use,A,P2,B]) <- B=0
trans(s,[P1,A,wait,B],[P1,A,use,B]) <- A=0
trans(t,[use,A,P2,B],[think,A1,P2,B]) <- A>=0, A1=0
trans(t,[P1,A,use,B],[P1,Athink,B1]) <- B>=0, B1=0

Consequently, an unsafe property for the previous system would be a state where the two pro-
cesses are in their critical section (denotedses) at the same time. This property is denoted as
the clause:

prop([use,A,use,B],p(unsafe)) <-

Furthermore, verifying that there is no state of the above mentioned system where such an unsafe
state holds amounts to obtaining an empty program for the following query:

<-sat([think,0,think,0],ef(p(unsafe)))

where the variables denoting the turn of each process, nafBlyare initially constrained by
A=B=0. As aresult of the specialization we obtained the empty program thus verifying that there
is no unsafe state in any path beginning from the initial state described in figure 16.

119

In a similar way we verified some correctness property [141] of the producers and consumers
algorithm [5] for one producer, one consumer and a buffer of size one. The authors [141] could
not successfully specialize this last example.

Assessment Here we have shown some applications of our specialization strategy to infinite
state model checking. Compared to other approaches using specialization for the same pur-
pose, we believe our approach sheds some insight into the field. The example of the bakery
protocol was also verified by Fioravanti et al. [52]. As opposed to their approach we show the
actual specialization strategy and its use in other related examples. We depart from a general
CTL metainterpreter whereas Fioravanti et al. present a somehow specialized version of a CTL
metainterpreter.

For the other examples of this section M. Leuschel et al. [141] have a four stage model
checker, as opposed to ours which is just one specialization step. That is, M. Leuschel et al.
first pass through an off-line specializer, then one or more specialization passes of their on-line
specializer and finally one pass through a most-specific-version analyser.

Admittedly examples 30.2 and 30.3 in this section do not propagate answers, and require
a simple unfolding prior to specialization with answers. By contrast, example 30.1 and the
producer-consumer of [141] do not need any prior unfolding and have some limited answer
propagation. That is, specialization with answers could be applied directly to the metainterpreter
(together with the transition definition and the property), to yield the expected verification results.
The running example of Section 29 does indeed need and use answer propagation.

31 Related Work

Despite the fact that unfold-fold approaches to program transformation and program special-
ization based on a fixpoint calculation are not directly comparable, there are some unfold-fold
methods related to our techniques.

In [153] the authors propose the use of convex-hull analysis to enable optimization/special-
ization of CLP programs. Their removal, refinement and reordering may be rendered as trans-
formation rules. The fairness of comparing our technique with theirs is dubious because theirs
is used for compilation and ours for specialization, and potentially the former is a special case
of the latter one. A weak form of their method was later dubbed by Fioravanti et al. [51] as
contextual specialization.

Peralta and Gallagher [170] use arithmetic constraints (convex hulls) to specialize CLP pro-
grams, especially an interpreter for imperative programs.

120

Their specialization abstract domain is the same as that one used here, but the specializer
only propagates information top-down and cannot achieve the effects of answer propagation.

Fioravanti et al. [51] (without reference to [92, 170]) argue an automatic specialization method
based on folding and unfolding among other transformation techniques. They use a domain of
atomic formulas constrained by arithmetic expressions with upper bound based on widening
alone, rather than the combination of convex hull and widening which is known to give better
approximations. The aspects of their method concerned with specialization resemble a top-down
on-line specializer with a subsequent “contextual specialization”, and thus does not in general
achieve the effects of answer propagation.

Another application of specialization using abstract interpretation over polyhedral descrip-
tions followed by a contextual specialization was given by Hawval. [92]. This approach
is similar in being based on abstract interpretation over a domain of polyhedra. Its bottom-up
analysis of answers is not as powerful as ours, which combines top-down and bottom-up propa-
gation.

Conjunctive Partial Deduction (CPD) [201] aims to solve the answer propagation problem in
a different way. The approach is to preserve shared information between subgoals by specializ-
ing conjunctions rather than atoms. It is not yet clear whether CPD or answer propagation via
atoms, or some combination of both, will be most effective. In the extreme case of CPD, no
resolvent is ever split, and no answer propagation is needed. However in general resolvents can
be of unbounded size, some splitting is therefore needed, and answer propagation is required to
preserve shared information between conjunctions.

32 Final Remarks

We have presented a new widening operator on regular types within an abstract interpretation-
based characterization of type inference. The idea behind it is similar to set-based analyses [53,
22] in that we assign and fix type names, but it is applied here with more generality. The most
comparable aproach among the set-based analyses would be [71]. It can be seen as a general-
ization of the idea of “guessing” the growth of the types during analysis which is behind [212].
Instead of guessing, our technique determines exactly where the type is growing. The resulting
widening operator has been presented on deterministic regular types. However, its extension to
non-deterministic regular types should be straightforward.

Our operator is more precise than previous approaches, but it is still efficient. This has been
shown with (preliminary) practical results. However, it does not guarantee termination. We are
currently working on the non-termination problem. A moded type domain will help in this. The

121

idea is to enhance abstract unification so that it is able to identify the “transference” of type
names from the input to the output types, so that the names are not dropped. This will remedy
the problem of Example 26.7 and, hopefully, allow us to prove termination of analyses with the
proposed widening operator.

We have also presented an algorithm for specialization of defi(@LP programs. Its
main novelty is the propagation of calls and answers described by atoms whose arguments are
described by convex hulls. The use of answer propagation with an expressive domain like convex
hulls gives increased specialization. By interpreting Prolog arithmetic as constraints we can also
apply the algorithm to “non-constraint” programs.

Future Work This work has revealed two issues that may be worth investigating for practical
purposes: the impact on the efficiency of analysis of the different implementation techniques for
different analysis methods, and of the simplification of types.

Because negation in CTL is interpreted as negation in (constraint) logic programs, this re-
stricts us to model checking of safety properties, as opposed to liveness properties. Extending
the presented techniques to include negation is the focus of our current research.

Scalability of our specialization method is one avenue into which we plan to extend the
current proposal, thus making our specialization techniques applicable to larger systems.

Also, in order to improve precision of our specialization with answers, more sophisticated
domains are sought.

28At the moment we can only specialize definite (constraint) logic programs.

122

Part IV

Inductive Theorem Proving by Program
Specialisation: Generating proofs for
|SABELLE USINgQECCE

In this part we discuss the similarities between program specialisation and inductive theorem
proving, and then show how program specialisation can be used to perform inductive theorem
proving. We then study this relationship in more detail for the particular problem of verifying
infinite state systems in order to establish a clear link between program specialisation and in-
ductive theorem proving. IndeedCCEis a program specialisation system which can be used to
automatically generate abstractions for the model checking of infinite state systems. We show
that to verify the abstractions generateddmycewe may employ the proof assistaisABELLE.
TherebyeECCEis used to generate the specification, hypotheses and proof SCrgtBEILLE’S

theory format. Then, in many casesABELLE can automatically execute these proof scripts and
thereby verify the soundness BECES abstraction. In this work we focus on the specification
and verification of Petri nets.

33 Background

The relation between program specialisation and theorem proving has already been raised several
times in the literature [209, 78, 210, 174]. In this paper we will examine in closer detail at the
relationship between partial deduction and inductive theorem proving.
Partial Deduction The heart of any technique fpartial deductionis a program analysis phase.
Given a progran and an (atomic) goal A, one aims to analyse the computation-flow/of
for all instances— A# of — A. Based on the results of this analysis, new program clauses are
synthesised.

In partial deduction, such an analysis is based on the construction of finite and usually in-
completé®, SLD(NF)-trees. More specifically, following the foundations for partial deduction
developed in [152] (see also [127] for an up-to-date overview), one constructs

e a finite set of atoms = {4,,...,A,}, and

e afinite (possibly incomplete) SLD(NF)-tregfor each(P U {— A;}),

29As usual in partial deduction, we assume that the notion of an SLD-tree is generalised [152] to allow it to be
incomplete: at any point we may decide not to select any atom and terminate a derivation.

123

such that:
1) the atomA in the initial goal— A is an instance of somé; in S, and

2) for each goak— B, ..., By labelling a leaf of some SLD(NF)-treg, eachB; is an in-
stance of somel; in S.

The conditions 1) and 2) ensure thagetherthe SLD(NF)-treesr, ..., 7, form acomplete
descriptionof all possible computations that can occur for all concrete instance$ of the
goal of interest. At the same time, the point is to propagate the available input datadiras
much as possible through these trees, in order to obtain sufficient accuracy. The outcome of the
analysis is precisely the set of SLD(NF)-trdes, . . ., 7, }: a complete, and hopefully as precise
as possible, description of the computation-flow. Finally, a code generation phase produces a
resultant clausdor each non-failing branch of each tree, which synthesises the computation in
that branch. The approach has been generalised to specialising aspjwifctiongather than
just atoms in [42]. An overview of control techniques that are used in partial deduction, such as
determinacy, homeomorphic embedding, and characteristic trees, can be found in [127].

Let us illustrate conjunctive partial deduction on the following simple program.

even(0).
even(s(X)) :- odd(X). odd(s(X)) :- even(X).

Conjunctive partial deduction can specialise this program for the gaegyen (X)Aodd (X)
by constructing the incomplete SLD-tree for it depicted in Fig. 17. The&'saentioned above
would simply beS = {even(X) A odd(X)}. The specialised program we obtain, is:

even_odd(s(X)) :- even_odd(X).

It is immediately obvious thatven_odd(X) will never succeed, and hence that no number
is even and odd at the same time. The partial evaluata@e [140, 42] will basically produce
the same result (slightly more involved as it does not re-order atoms by default) and can also
automatically infer the failure ofven_odd (X') by applying its bottom up more specific program
construction phase [155] in the post-processing.
Inductive Theorem Proving Now, the above result corresponds to an inductive proof showing
that no number can be both even and odd. The left branch of Fig. 17 corresponds to exam-
ining the base cas® = 0, while the right branch corresponds to the induction step whereby
even(s(Y)),odd(s(Y')) is rewritten into the equivalentdd(Y"), even(Y') so that the induction
hypothesis can be applied.

124

even(X),odd(X)

| instance
, (after re-ordering)
/

v oo"
fail odd(Y),even(Y)

Figure 17: Specialisation of even-odd

In a sense the conjunctive partial deduction has identified a working induction schema and
the bottom-up propagation [155] has performed the induction proper. This highlights a similar-
ity between partial deduction amaductive theorem provingndeed, in the induction step of an
inductive proof one tries to transform the induction assumption(s) feit using basic inference
rules so as to be able to apply the induction hypothese(s) and complete the proof. In partial de-
duction, one tries to transform the atoms4rfor conjunctions for conjunctive partial deduction)
by unfolding so as to be able to “fold” back all leaves. The set of atdrtisus plays the role of
the induction hypotheses and resolution the role of classical theorem proving. In summary,

e there is a striking similarity between the control problems of partial deduction and in-
ductive theorem proving. The problem of ensuring A-closedness is basically the same
as finding induction hypotheses where the induction “goes through’.” Many control tech-
niques have been developed in either camp (e.g., [18] for inductive theorem proving) and
cross-fertilisation might be possible.

e if basic resolution steps correspond to logical inference rules one may be able to perform
inductive theorem proving directly by partial deduction. For examplece can fully
automatically prove associativity of addition [121] (see also[143)])..

The only difference is that resolution is not guaranteed to decrease the induction parameter,

so this is only guaranteed to work if the predicates to be specialised are inductively defined.

In the next sections we show homccCE can be used to perform inductive theorem prov-
ing as applied to verification tasks and how the induction schemas produceddscan be
automatically translated for the proof assistant Isabelle [168].

125

34 Infinite Model Checking by Program Specialisation

In recent work it has been shown that logic programming based methods in general, and partial
deduction in particular, can be applied to model checking [26] of infinite state systems. As this
problem can also be tackled by inductive theorem proving [168] we choose this as the basis of
a more formal comparison. Indeed, one of the key issues of model checking of infinite systems
is abstraction[28]. Abstraction allows to approximate an infinite system by a finite one, and
if proper care is taken the results obtained for the finite abstraction will be valid for the infinite
system. This is related to finding proper induction schemas for inductive theorem proving, which
in turn is related to the control problem of partial deduction.

In earlier work we have tried to solve the abstraction problem by applying existing techniques
for the automaticcontrol of (logic) program specialisation126] and modelling the system to
be verified as a logic program by means of an interpreter [80, 142]. Thereby, the interpreter
describes how the states of the system change by executing transitions. By applying partial
deduction to the interpreter we expect a finite abstraction of the possibly infinite state space
of the system to be generated. This abstraction may then be used to verify system properties
of interest. This approach proved to be quite powerful as it was possible to obtain decision
procedures for the coverability problem, if “typical” specialisation algorithms, as for example
implemented in theccesystem [140, 119], are applied to logic programs that encode Petri nets
[137]. It is even possible to precisely mimic well known Petri net algorithms (by Karp—Miller
[108] and by Finkel [48]) when the program specialisation techniques are slightly weakened.
The results of [137] refer tiorward algorithms only, i.e. algorithms which construct, beginning
from some initial state, an abstract representation of the whole reachability tree of a Petri net.
However, for some classes of systems such exhaustive algorithms are not necessary or even not
precise enough to decide coverability [1, 49, 50]. In such cases partial deduction may often be
successfully applied as well [136], thereby mimicking well kndvatkward algorithm$49].

Technically, the dynamic system specified in the input for the partial deduction algorithm can
also be viewed as an inductive system describing the set of finite behaviours, i.e. the set of finite
paths Thereby, the set of initial states form the inductive base and each transition represents
an inductive step. For the output of the partial deduction algorithm to be a sound abstraction
each of the states reachable by a path must be contained in a state representation of the output.
It is desirable to verify this property if we cannot ensure that the partial deduction algorithm
is correctly implemented. The goal of this work is to show that such proofs can be generated
and executed automatically. To this end we employ the partial deduction sgsteatfor the
automatic generation of the theory and the proof scripts. The proof assistB®LLE [169] is
used to execute the proof scripts.

126

If we can use $ABELLE to verify the soundness of the output of the partial deduction method
we may also ask whether it is possible to generate the hypotheses automatically and thereby use
ISABELLE directly as a model checker of infinite systems. To this end, similar to the partial
deduction system,SIABELLE needs to perform some kind of abstraction while searching for a
proof of some dynamic property such as safety.

In this paper we focus on the specification and verification of Petri nets. This is due to their
simple representation as a logic program as well as snaELLE theory. The following section
describes how we can specify Petri netssagELLE. Then we discuss how such specifications
are generated usirgcCE, and howeCCEoutput can be translated inteABELLE. In Section 37
we demonstrate how proof scripts can be usedskBELLE for automatic theorem proving. In
Section 38 we demonstrate the complete verification process using an example specification. The
above mentioned automatic generation of hypotheses and some efficiency issues are discussed
in Section 39. The last section gives a conclusion and proposes some further work. All relevant
source code of theccEsystem can be found in the technical report [116].

35 Specification of Petri nets inl SABELLE

The proof assistantsIABELLE [168] has been developed as a generic system for implementing
logical formalisms. Instead of developing an all new logic for our purposes we will use the
specification and verification methods realised by the implementation of Higher Order Logic
(HOL) in IsAaBELLE. HOL allows to express most mathematical concepts and, in contrast to,
for example, First Order Logic, it allows the specification of and the reasoning about inductively
defined sets. This latter feature is crucial for our purposes. Hence, strictly speaking, we will
develop specifications irshBELLE/HOL. Furthermore, the currens ABELLE system provides

the languagedAR for the specification of theories and the development of proof scripts. In this
work we will use BARinstead of BABELLE’S implementation language ML sinceAR is much
easier to use as it hides most implementation detailsaBELLE. However, the possibilities

to develop proof tactics usinghAR only are very limited. Consequently we conjecture that for
efficient automatic theorem proving the use sAR allone is insufficient (see also Section 40).

ISABELLE allows specifications as part tifeories A theory can be thought of as a collec-
tion of declarations definitions andproofs ISABELLE/HOL is a typed logical language where
the base typesesemble those of functional programming languages such as ML. To specify
new types $ABELLE providestype constructorsfunction typesandtype variables We will
introdce the particular concepts as we will use them and refer for additional information to the

127

Isabelle/Isar Reference Manial

Termsare formed by applying functions to arguments, e.d. ig a function of typer, = n
andt a term of typer; then ft is a term of typer,.

Formulasare terms of base tyg®ool . Accordingly, the usual logical operators are defined
as functions whose arguments and domain are of iyoé .

We specify the Petri net theofgN as a successor of the thedWain which is provided
by ISABELLE/HOL. Main contains a number of basic declarations, definitions, and lemmas
concerning often required basic concepts such as lists and sets. Thereby, every part of the theory
Main becomes automatically visible PN

theory PN = Main:

To simplify the specification and to increase readability of the theory we define the type
state which corresponds to a notion in Petri net theory:stateor markingis a vector of
natural numbers representing the numbeto&Enson theplacesof a Petri net. The number of
dimensions of the vector corresponds to the number of places of the particular reXBELLE
we use the type constructerto define the typstate as a product over the base typat :

types
state = "nat x nat x.. x nat"

Based on the typstate we declare the functionsaths , trans , andstart . The func-
tion start represents thaitial state of the Petri net. Note that since we allow parameters in
the definition ofstate it actually may represent a set of initial states. The functrans
describes how the firing ofaansitioncan change the state of a Petri net. The additional param-
eter of typenat is used to refer to a particular transition of the net. The set of finite possible
sequences of transitons starting in the initial state is representeathy . Note that the decla-
ration oftrans andpaths is independent of the particular considered Petri net.

consts

start 1 "nat = .. = nat = state"
trans : “(state x state x nat) set"
paths :: "(state list) set"

By assigning a unique number the transition names are defined as a of enumeration type.
Consequently, for each transitiomve include a declaration of the following form:

consts
t : "nat"

30Lawrence C. Paulson. The Isabelle Reference Manual. http://isabelle. in.tum.de/doc/ref.pdf.

128

The initial statestart is defined by a ternferm of type state:

defs
start _def [simp]: “start list of variables = term"

The optional[simp] controls the strategy ofsSIABELLE’s built-in simplifier to apply this
definition whenever possible. For our purposas will be always a tuple of terms built using
the unary successor functi@uc, 0, and variables appearing in thiet of variables (the number
of variables in this list must correspond to the number of parameters in the declarattart of.

The transition function is defined as a set of transitions of the Petri net. Thereby each tran-
sition is represented as a tuggley,n) , wherex andy are tuples of terms built bguc and
variables of the correspondirgt of variables. The termn is the name of the transition.

defs

trans _def: "trans = {(x,y,n).
(3 list; of variables. (X,y,n) = transition
V (3 listy of variables. (X,y,n) = transitiony
V (3 list, of variables. (X,y,n) = transition,, }"

One of the important features a§ABELLE/HOL is the possibility of inductive definitions.
We definepaths inductively using the following two rules:

inductive paths

intros
zero: "[(start list of variables)] € paths"
step: " [(y,z,n) € trans; y#l € paths | = z#(y#) € paths"

The first rule defines all initial states to be paths. The second rule allows the construction of
new paths by extending an arbitrary path by a new state if there exists a transition from the state
at the head of the path to the new state.

Finally, each transition is defined as follows, wheneis a unique natural number:

defs
t_def [simp]: " t

Il
S,

The following example shows the the specification of a Petri net according to this scheme.

Example 35.1We encode the Petri net depicted below 8aBELLE/HOL. The initial state is
defined by one token on each of the plag@sand p3, and the parametek representing an
arbitrary number of tokens on plagé (p1, p2, p3 correspond to the first, second, and third
dimension, respectively, of the state vector.

129

theory PN = Main:

types

state = "nat x nat x nat x nat x nat"
consts

start ;@ "nat = state"

trans :: "(state x state x nat) set"
paths :: "(state list) set"

1 "nat"

t2 :» "nat"

3 & "nat"

4 "nat"

defs

start _def [simp]: “start = (B,(Suc 0),(Suc 0),0,0)"
trans _def: "trans = {(x,y,n).

t1 _def [simp]: "tl1
t2 _def [simp]: "t2
t3 _def [simp]: "t3
t4 _def [simp]: "t4

inductive paths

intros
zero: "[(start B)]

(3 EDC B A. (xy,n)
vV (3 EDCB A (xy,n)
vV (3 EDCB A (xyh)

vV (3 EDCB A (xyn)

€ paths"
€ trans; y#l

130

€ paths | = z#(y#)

=(((Suc A),(Suc B),(Suc C),D,E),
(A,(Suc B),C,(Suc D),E),t1))
=(((Suc A),(Suc B),(Suc C),D,E),

(A,B,(Suc C),D,(Suc E)),t2))
=((A,B,C,(Suc D),E),

((Suc A),B,(Suc C),D,E),t3))
=((A,B,C,D,(Suc E)),

((Suc A),(Suc B),C,D,E),t4))

€ paths"

36 Generatingl SABELLE theories usingeccE

Since we aim to verify the partial deduction resultsafcE, we have integrated the generation
of the ISABELLE theory directly intoECCE The generatedslABELLE theory consists of three
parts:

1. the specification of the Petri net,
2. the specification of the coverability graph as generateddyr,
3. the lemma to be verified together with a proof script.

In this section we deal with the first two parts while the third part is discussed in Section 37.

36.1 Generating Petri net specifications from logic programs

The ISABELLE theory generator integrated BECCE assumes that the transitions of a Petri net
are specified by a set of clauses of a ternary predicate. The first parameter represents a transi-
tion name, the second represents the set of states where the transition can be applied, and the
third how the state changes if the transition is executed. Technically, the second and the third
parameter of each clause are lists of the length corresponding to the number of places. Rely-
ing on unification, conditions and changes can be easily expressed. For example, the condition
that at least two tokens are on plaeein a Petri net with five places is expressed by the term
[X0,X1,s(s(X2)),X3,X4] (therebys can be interpreted as the successor function on nat-
ural numbers). Similarly, the state change can be expressed: the removal of one token on place
p3 and generation of two tokens o is represented gs(s(X0)),X1,s(X2),X3,X4]

The initial state is simply represented as a single clause where the last parameter must be a list
of the length corresponding to the number of places. Each element of the list can be constructed
using0, the unary functiors, and variables.

Example 36.1The following logic program encodes the Petri net of Example 1.
trans(t1,[s(X0),s(X1),s(X2),X3,X4],[X0,s(X1),X2,5(X3),X4]).
trans(t2,[s(X0),s(X1),5(X2),X3,X4],[X0,X1,5(X2),X3,5(X4)]).
trans(t3,[X0,X1,X2,5(X3),X4],[s(X0),X1,5(X2),X3,X4]).
trans(t4,[X0,X1,X2,X3,s(X4)],[s(X0),s(X1),X2,X3,X4]).

start([B,s(0),s(0),0,0]).

131

The implementation of the theory generator is part of the file “cgeleerator.pro” and can be

found in [116]. The generation is initiated by a call to the clamset _specialised

program _isa . In a user dialog the name of the file containing the Petri net specification,
and the names of the predicates representing transitions and initial state, respectively are deter-
mined. The 8ABELLE specification is generated by the subsequent cafisraf _isa _header |,

print _isa _type _decl , print _isa _path _decl(Data) , andprint _isa _path _def(Data)

in the body ofprint _specialised _program _isa . For example, thedABELLE theory of
Example 1 has been generated from the logic program of Example 2.

36.2 Generating specifications of the coverability graph from logic pro-
grams

To use partial deduction techniques for model checking we need to specify also the verifica-
tion task as a logic program. To this end we may implement the satisfiability relation of some
temporal logic as a logic program. However, the generation of a coverability graph (by partial
deduction or other techniques) is not effective for all tasks that can be expressed with a pow-
erful temporal logic. However, one of the tasks where it is effective is the checkisgfety
properties To express safety properties we only require the definition oEtlie@perator of the
temporal logicCTL:

infinite_model_check(basic_safety,Formula) :- start(_,S),
Formula = sat(S,eu(true,p(unsafe))).

sat(E,p(P)) :- prop(E,P).

sat(E,eu(F,G)) :- sat _eu(E,F,G).

sat_eu(E,_F,G) :- sat(E,G).

sat_eu(E,F,G) :- sat(E,F), trans(_ActE,E2), sat_eu(E2F,G).

Depending on the safety property we are interested in we define when a state is considered
to be unsafe. For example the claysep([X0,X1,X2,s(X3),s(X4)],unsafe) defines a
state of a Petri net to be unsafe when there exist at least one token on each of the4jotauks
o.

Note that simply calling the clausefinite =~ _model _check(basic _safety,Formula)
in Prolog would force the system to explore an infinite derivation. Due to the potentially infinite
state space of a Petri net also methods like tabeling would be in general insufficient to deal with
this problem.

Before we apply the partial deduction systemcewe will first perform a preliminary com-
pilation of the particular Petri net and task. Thereby we will get rid of some of the interpretation

132

overhead and achieve a more straightforward equivalence between markings of the Petri net and
atoms encountered during the partial deduction phase. We will us®theN offline partial de-
duction system [134] to that effect (but any other scheme which has a similar effect can be used).
This system allows one to annotate calls in the original program as either reducible (executed by
LOGEN) or non-reducible (not executed and thus kept in the specialised programdur case

we will annotate all calls ttorans andstart as reducible. After that, theoGEN system will
(efficiently) produce a compiled version: As can be seen in Example 3, the compilation gives us
a predicatesat _eu__2 with one argument each for the transition name and the result, plus one
argument per Petri net place. Observe tt@atEN (andeccEas well) adds two underscores and

a unique identifier to existing predicate namgat _eu__2 contains one clause per transition of

the Petri net plus one fact (for the marking reached). The initial marking is encoded in the one
clause forssat __0 which callssat __1.

Example 36.2Applying LOGEN to the Petri net specification of Example 2 and the above task
implementation generates the following clauses:

sat_ eu_ 2(B,C,D,s(E),s(F)).

sat_eu__ 2(s(G),s(H),s(1),J,K) :- sat_eu_ 2(G,s(H),l,s(J),K).
sat_eu_ 2(s(L),s(M),s(N),O,P) :- sat eu_ 2(L,M,s(N),O,s(P)).
sat_eu_ 2(Q,R,S,s(T),U) :- sat_eu_ 2(s(Q),R,s(S),T,U).
sat_ eu_ 2(V,W,X)Y,s(2)) :- sat_eu_ 2(s(V),s(W),X,Y,2).
sat__1(B,C,D,E,F) :- sat eu_ 2(B,C,D,E,F).

ssat_ 0 :- sat_ 1(B,s(0),s(0),0,0).

O

After this precompilation we can appiscCEto the resulting program. To this end we aim to
specialise the predicatsat __0. The result of applyingeCCEto the program of Example 3 is
given in Example 4:

Example 36.3

ssat 0 :- ssat 0 1.

/* ssat _ 01 --> [ssat_ 0] */
ssat__ 01 :- sat_1_ 2(A).

[* sat_ 1 2(A) --> [sat_ 1(A,s(0),s(0),0,0)] */
sat_ 1 2(A) :- sat_ eu_ 2 3(A).

/* sat_ eu_ 2 3(A) --> [sat_eu_ 2(A,s(0),s(0),0,0)] */
sat_ eu_ 2 3(s(A)) :- sat eu_ 2 4(A).

31 oGEN s offline: the control decisions have been taken beforehand (and are encoded in the annotations).

133

sat_eu_ 2 3(s(A)) :-sat_eu_ 2 5(A).

/* sat eu_ 2 4(A) --> [sat_eu_ 2(A,s(0),0,s(0),0)] */
sat_ eu_ 2 4(A) :- sat_eu__2_ 3(s(A)).

/* sat eu_ 2 5(A) --> [sat_eu_ 2(A,0,s(0),0,s(0))] */
sat eu_ 2 5(A) :- sat_eu_2 3(s(A)).

O

From the output oECCEwe generate arslABELLE theory representing the generated cover-
ability relation. Independent of the particular domain this relation is declared as a set of pairs of
states:

consts
coverrel:: “(state x state) set"

For each predicate name of a clause in the specialised program, which represents a set of
states we add a declaration of the form:

consts

name .. nat = ... = nat = state"

Thereby the number of parameters of tyja@ corresponds to the number of variables in the
head of the clause. The definitions have the form:

defs

name_def: " name list of variables = term"

For our purpose&rm will be always a tuple of terms built using the unary successor function
Suc, 0, and variables appearing in tiet of variables (the number of variables in this list must
correspond to the number of parameters in the declaratioamd).

Finally, the coverability relation is defined as a set of pairs of states. In the specialised
program every clause of the formame,,(args,,) - name,(args,) corresponds to such a
pair. Formally, in the $ABELLE theory each pair is represented as a tplg) , wherez and
y are tuples of terms built bguc and variables of the corresponditigt of variables:

defs
coverrel _def: ‘"coverrel =
{(xy). 3 list; of variables. X = state;; A Y= state;s}
U {xy). 3 listy of variables. X = states; A Y= statess}
U {(xy). 3 list,, of variables. X = state,,; N Y= statepa}"

134

The theory generator (cf. [116]) produces automatically the specification of the coverabil-
ity relation from the specialised program. To this end the predicate nhames characterising the
coverability relation in the specialised program are determined by a user dialog (only the unspe-
cialised names have to be provided, e.g. in the above exasaple 1 andsat _eu__2). In the
body ofprint _specialised _program _isa the calls toprint _isa _cover _decl and
print _isa _cover _
def generate the necessary declarations and definitions, respectively.

Example 36.4r'he following theory was generated by the theory generator [116] from the pro-
gram of Example 4:

consts

coverrel:: “(state x state) set"
sat __1_2 :: "nat = state"

sat _,eu_2_3 :: "nat = state"

sat .eu_2_4 :: "nat = state"
sat _.eu__2_5 :: "nat = state"
defs

sat _1_2 def: "sat _1.2 A = (A(Suc 0),(Suc 0),0,0)"

sat eu_2_3.def: "sat eu_.2_3 A (A,(Suc 0),(Suc 0),0,0)"
sat eu_2_4 def: "sat eu_.2_4 A (A,(Suc 0),0,(Suc 0),0)"
sat eu_2_5.def: "sat eu_.2_5 A (A,0,(Suc 0),0,(Suc Q)"

coverrel _def: ‘"coverrel = {(xy). 3 A x=(sat _1.2 A)
A y=(sat eu_2_3 A)}
U {(xy). 3 A x=(sat _eu_2_3 (Suc A))
A y=(sat eu_2_4 A)}
U {(xy). 3 A x=(sat eu_2_3 (Suc A))
A y=(sat eu_2_5 A)}
U {(xy). 3 A x=(sat .eu_2_4 A)
A y=(sat _eu_2_3 (Suc A)) }
U {(xy). 3 A x=(sat eu_2_5 A)

A y=(sat _eu_2_3 (Suc A)) }"

37 Proof Scripts

In this section we demonstrate how we can prove theorems usk®gLLE/I SARand how we

can write proof scripts for automatic execution. Thereby we focus only on some of the “execution
style” proof commands ofdABELLE/Isar. These commands can be considered to be the classical
way of writing ISABELLE proofs although the actuaBABELLE proof methods are wrapped

135

within the ISAR language. Note however thasAR allows also a more “mathematical style”
notation of proofs than the one we use here (sedsthigelle/Isar Reference Manufar details).

Furthermore we discuss only the proof methods we are going to apply in order to solve the
verification task ofecCE Keep in mind that $ABELLE/ISAR provides a much wider range of
methods.

The proof mode of $ABELLE/ISAR is initiated by executing &mma. When entering the
proof mode EABELLE/ISAR generates a single pending subgoal consisting of the lemma to be
proven. The list of subgoals can be altered, mainly by execytiogf methodsProof methods
are executed using the proof commaaqply . Thereby the list of subgoals defines theof
state The proof mode can be left by executidgne in the case that there are no pending
subgoals (the proof state is the empty list of subgoals, in which casgeL LE/I SAR printsNo
subgoals!).

Note that all proof methods described below only transform the first subgoal of the proof
state. For finding a proof this may be inconvenient. Theref@eBELLE/ISAR provides com-
mands to change the order of the subgoals. However, our aim in this paper is the automatic
execution of proof scripts, not their interactive development.

37.1 Rewriting

To rewrite a subgoal using existing definitions and lemmas automatically we may execute |
ABELLE’s simplifier: apply(simp) . For the simplifier to automatically attempt to use new
defintions and lemmas they have to be accompanied by the dptiop] . Such defined sim-
plification rules are then applied from left to right. However, we have to take care if we define
simplification rules in such a way as they may slow the simplifier down considerably or even
cause it to loop. Instead of defining a general simplification rule we may also use the simplifier
to only apply certain, explicitely stated definitions. E.g., the execumply(simp only:

r.def) causes to rewrite using the definitionrobnly.

37.2 Introduction and Elimination

Based on reasoning usimgtural deductiorthere are two types of rules for each logical symbol,
such asv: introduction ruleswhich allow us to infer formulas containing the symbol (e\9,
andelimination ruleswvhich allow us to deduce consequences of a formula containing the symbol
(e.g.V).

In ISABELLE an introduction rule is usually applied lapply(rule r) . Assumer being
a rule of the form:

136

where(is a formula containing the introduced logical symbol while the formitas. . ,P,
in the premise do not. Then,ifis applied as introduction rule the current first subgoal is unified
with @ and replaced by the properly instantiated. . . ,P,.

An elimination rule is usually applied usirapply(erule r) . Assumer being a rule of
the above form and the current first subgoal of the fetm. .., A,, = S. Then, ifris applied
as elimination rulé is unified with) and some4; is unified with P;. The old subgoal is replace
by n — 1 new subgoals of the forr,, ..., A; 1, Aiy1,..., A = Bowith2 < k < n.

In our verification proofs we will use explicitely only the elimination rublisjg for dis-
junction andpaths.induct for induction over the length of paths.

37.3 Automatic Reasoners

Most classical reasoning of even simple lemmas can require the application of a vast amount
of rules. To simplify this taskdABELLE provides a number of automatic reasoners. Here we
will make use oblast which is the most powerful ofdABELLE’s reasoners. Additionally, we
will employ clarify which performs obvious transformations which do not require to split
the subgoal or render it unprovable. The metlotatify and the explicit application of the
elimination ruledisjE (see above))) was necessary to tune the proof process. This tuning was
necessary to complete the verification proofs of even very small Petri nets using the available
computing resources.

Additionally to the two classical reasoners we also employ the simpsfrap as an au-
tomatic proof tool as it can also handle some arithmetics. Furthermore, for some cases in our
verification tasksimp succeeded faster théatast if it was able to eliminate a subgoal at all.

37.4 Scripts

To improve the handling of large proofs and to allow a higher flexibility of a proof proof scripts
can be extended by the following operators:

e method,,..., method,: a list of methods represents their sequential execution;
e (method) : mainly used to define the scope of another operator;
e method?: executesnethod only if it does not fall,

137

e method,|...| method,,: attempts to executmethod, only if eachmethod; with i < k
failed;

e method+: method is repeatedly executed until it fails.

For our verification task the lemma and proof script are generated automatically by the theory
generator [116] (by calls tprint _isa _lemma andprint _isa _proofscript in the body
of print _specialised _program _isa). The execution of the script in the example below
is illustrated in the next section.

Example 37.1The following lemma and script corresponds to the one automatically generated
by EccEfor the Petri net specification of Example 1.:

lemma "I € paths = Jy. ((hd l)y) € coverrel"

apply(erule paths.induct)
apply(simp only: start_def
coverrel_def)
apply(simp only: sat__1_ 2 def
sat eu_ 2 3 def
sat eu 2 4 def
sat_ eu_ 2 5 def)
apply(simp)
apply(blast)
apply(simp only:trans_def)
apply(clarify)
apply(((erule disjE)?,
simp only: coverrel_def,
simp,
((erule disjE)?,
simp only: sat 1 2 def
sat eu 2 3 def
sat eu_ 2 4 def
sat eu_ 2 5 def,
simp|blast)+)+)

38 \Verifying ECCE

In this section we illustrate the automatic verification of theCE output by the $ABELLE
system. To this end the theory, lemma and proof script as generated ¢y for the Petri

net of Example 1, are executed (the complete input consists oSteEL LE specifications of
Example 1, Example 5, and lemma and proof script of Example 6). Full details can be found in

138

the technical report [116]. After this, we can also apply the steps required to prove the lemma for
transitiontl in a similar fashion to the remaining transitions. The following proof script attempts
precisely this. Again, the elimination rutBsjE is not applicable for the last transition. Hence,

we perform a test using before applying this method in the first line.

apply(((erule disjE)?,
simp only: coverrel_def,
simp,
((erule disjE)?,
simp only: sat 1 2 def
sat eu 2 3 def
sat eu_ 2 4 def
sat eu_ 2 5 def,
simp|blast)+)+)
For our example all cases could be verified, hers?eELLE answers:

No subgoals!

O
Consequently, the coverability relation generatedelngk for the Petri net of Example 1
covers indeed all states reachable by any path (under the condition that the theory generated by
the automatic theory generator as implementegldoEis correct).

39 Automatic Generation of Hypotheses

Instead of defining the coverability as a relation as illustrated in Subsection 36.2 we may view
the coverability graph as an inductive definition of a set of states which covers the actual state
space of the Petri net. For our example a correspondingiLLE/I SAR definition could look
as follows:
consts

coverstates:: "state set"

inductive coverstates

intros
zero : "(sat _1_2 A) € coverstates"
stepl : " [3 A. (sat eu_2_3 (Suc A)) € coverstates | =

(sat _.eu_2_4 A) < coverstates”
step2 : " [3 A. (sat eu_2_3 (Suc A)) € coverstates | =

(sat _.eu__2_5 A) € coverstates"
step3 : " [3 A. (sat eu_2_4 (Suc A)) € coverstates | =

(sat ,eu_2_3 A) € coverstates"
stepd : " [3 A. (sat eu_2_5 (Suc A)) € coverstates | =

(sat eu_2_3 A) € coverstates”

Similarly, instead of using the concept of paths, we may directly specify the set of reachable
states inductively indABELLE/ISAR. For our example the following specification would fit the
purpose:

139

consts
reachstates:: "state set"
inductive reachstates

intros
zero : “(start B) € reachstates"
stepl : " [3 A B C D E. ((Suc A),(Suc B),(Suc C),D,E) € reachstates | =
(A,(Suc B),C,(Suc D),E) € reachstates"
step2 : " [3 A B C D E. ((Suc A),(Suc B),(Suc C),D,E) € reachstates | =
(A,B,(Suc C),D,(Suc E)) € reachstates”
step3 : " [3 A B C D E. (AB,C,(Suc D),E) € reachstates | =
((Suc A),B,(Suc C),D,E) € reachstates"
step4 : " [3 A B C D E. (AB,C,D,(Suc E)) € reachstates | =
((Suc A),(Suc B),C,D,E) € reachstates"

Then, the lemma to be verified to show the soundness of the coverability relation is

lemma "x € reachstates — X € coverstates"

However, lets assume that the specificatiorcoverstates is unknown and has to be
generated bydABELLE. To this end we may attempt to prove the following lemma:

lemma "3 coverstates. X € reachstates —> X € coverstates"

Thereby it is notimportant to find a proof, since there are many sets which fulfill this criterion
(e.g. the (minimal) seeachstates and the (maximal) set of all states). Instead it is important
to find a proof, which generates the induction steps of the above specificatonerbktates
as (or as parts of) subgoals. In other words, the question is whethBelLLE’s proof methods
can imitate the behaviour @cce (or other model checkers for Petri nets).

The most important elements BECES partial deduction method to generate the coverability
graph arecoverability testunfolding whistling abstraction The coverability test can easily be
defined in BABELLE/ISAR, e.9.:

[xe state; y € state; x <y] = covers(y,X)

where< is defined as an order on the set of states. We may also check whether a set of states
is covered by another set of states, e.g.:

v B. 3 A. covers((0,0,0,A,0),(0,0,0,(Suc B),0))

Similarly, we may definavhistlingfor two states (state sets) or even for the states on a path
(a whistle blows if a newly encontered state is (in some sense) bigger than any of its predecessors
on the path, thereby it indicates a potentially infinite growth).

Theunfoldingcorresponds indABELLE simply to the rewriting of a subgoal using a defini-
tion, in case of Petri nets the definition of the transition function.

The most difficult element to imitate seems to be #bstraction Given a certain subgoal
ISABELLE’s proof method has to replace this subgoal by a more general one. E.g., if unfolding

140

of a transition has led to a subgoal containing the s@&®0,(Suc 0),0) and the whistle
has blown due to a preceding state of the fdh0,0,0,0) , then we have to replace the
subgoal by a new one containing a state of the f@r0,0,A,0) (whereAis all quantified).
The only proof rule which is capable of introducing an all quantified variable ABELLE/I SAR

iS spec :
Vx.P
Plt/2]
And indeed, by applyingpec as an introduction rule we may indeed introduce perform a
generalisation. For example, assume the following subgoal:
1. "(0,0,0,0,0) € coverstates"
Executingapply(rule spec) and backtracking (using the proof commadratk) gen-
erates as the 30th possibility (out of 38):

1. Vv x. (0, 0, 0, x, 0) € coverstates

However, we did not succeed yet in implementing a complete proof script using this rule as
the search for the appropriate alternative subgoal has to be controlled by the proof script. Within
the execution oriented proof style we have focusedsSMBELLE/I SAR does not seem to provide
enough control without implementing new proof tactics @BELLE'S ML-implementation
level.

40 Conclusion and Further Work

We have shown the similarity between controlling partial deduction and inductive theorem prov-
ing. We have formally established a relationship between the program specaliseand the

proof system $ABELLE when applied to verifying infinite state Petri nets. We have shown that
verification of ECCE output using the proof systensABELLE can be achieved for small nets.

The execution of the proof script of Section 38 on a Pentium 11/400 needed about 90s and the
underlying PolyML required 80MB of memory. However, as further experiments with a net con-
taining 14 places and 13 transitions reveiled, more specific proof methods have to be employed
as the use of the methddlast required more than the available 200MB of main memory and
therefore had to be canceled. One way of tuning the proof process further is by restricting the
number of rules potentially applied ljast . However, while rules can easily be removed from
and added to the list of simplification rules IBABELLE/I SAR, a similar simple manipulation of

the “blast rules” without rewriting underlying$ABELLE proof tactics seems not possible. An
indirect way of restricting the search spacebte#st could also be to derive the theoPN not

from Main but from (sets of) more basic theories.

141

A way of improving the readability of the proof script could be to employ the mathematical
proof style instead of the execution oriented style. In the mathematical proof style higher-order
pattern matching can be used to control the proof. This may also increase the flexibility of the
proof significantly, in particular if the results have to be generalised for other specifications than
those of Petri nets.

Finally, for ISABELLE to automatically generate the coverability relation from the specifica-
tion of the Petri net we believe that it is necessary to implement a new proof rule/proof method
at ISABELLE's implementation level which allows to automatically backtrack over potential hy-
potheses which are more general than the subgoal to be shown. Another option worth exploring
might be to attempt to define a proof scheme using the higher-order pattern matchisg of |
ABELLE/ISAR, which performs the abstraction on proof level: E.g., if a state description matches
a certain pattern we attempt to prove a lemma concerning a similar pattern where a constant is
replaced by some variable.

142

Part V
Abstract Domains Based on Regular Types

We show how to transform a set of regular type definitions into a finite pre-interpretation for a
logic program. The core of the transformation is a determinization procedure for non-deterministic
finite tree automata. The derived pre-interpretation forms the basis for an abstract interpretation
for logic programs. This approach provides a flexible way of building program-specific analysis
domains. For a given set of types, precision is strictly improved compared to regular type ana-
lysis and set constraint analysis. The work also shows how various instantiation modes such as
ground variable andnon-variablecan be expressed as regular types and hence integrated with
type analysis. We highlight applications in binding time analysis for offline partial evaluation
and infinite-state model checking.

41 Background

Regular types are a familiar way of describing sets of terms. They may be either declared (pre-
scriptive typing) or inferred (descriptive typing). Types are widely used in logic program devel-
opment and analysis. Usually, we think of types as specifications of data structures such as lists,
trees and so on.

There is a well-established connection between regular types and finite tree automata (FTAS).
Roughly speaking it may be said that FTAs are specifications of regular types. However, FTAs
can define sets that are not usually thought of as types, and type definition notations do not
usually exploit the full expressiveness of FTAs. The method described in this paper uses general
FTAs, even when the programmer uses restricted types, since the given types are transformed to
disjoint types using standard algorithms from FTA theory.

In Section 42, the essential concepts from types and FTAs are introduced. Section 43 contains
a review of the approach to logic program analysis based on pre-interpretations. In Section 44 it
is shown how to derive a pre-interpretation from a given set of type definitions, and compute a
model based on the pre-interpretation. Section 45 contains some examples. Implementation and
complexity issues are discussed in Section 46.

42 Preliminaries

Tree automata are “machines” that recognise terms.Xlie¢ a set of function symbols. Each
function symbol inX has a rank (arity) which is a natural number. Whenever we write an

143

expression such g&t4, .. .,t,), we assume that € ¥ and has arity:. We write f” to indicate
that function symboj has arityn. If the arity of f is 0 we often write the terny() asf and call
f aconstant

The set ofground termgor treeg Termy, associated witht is the least set containing the
constants and all term&t4, ..., t,) such that, ..., t, are elements ofermy and f € ¥ has
arity n.

Finite tree automatarovide a means of finitely specifying possibly infinite sets of ground
terms, just as finite automata specify sets of strings. A finite tree automaton (FTA) is defined
as a quadruple, Qs, X, A), where() is a finite set calledtates) C () is called the set of
accepting (or final) stateg; is a set of ranked function symbols addis a set oftransitions
Each element oA is of the formf(qy,...,q,) — ¢, wheref € ¥ andq, ¢1,...,q, € Q.

FTAs can be “run” on terms ifiermsy,, a successful run of a term and an FTA is one in which
the term isacceptedy the FTA. The details are omitted here, except to say that whenever a term
is accepted, it is associated with one of the final states of the FTA. Implicitly, a tree automaton
defines a set of terms, that is, a tree language, deridtgyl as the set of all terms that it accepts.

FTAs can be extended to allowtransitions, without altering their expressive power. An
transition is of the formy — ¢’ whereq andq’ are states. Such transitions can be eliminaed from
A, after adding all transition$(qi, . . ., ¢,) — ¢’ such that there is a transitigfiy,, ..., ¢,) — ¢
in A and a chain oé-transitionsy — -+ — ¢'.

42.1 Tree Automata and Types

A type is simply regarded as an accepting state of an automaton. Given an autdinaton
(Q,Qr, 2, A), andq € @y, define the automatoR, to be(Q, {¢}, >, A). The languagé.(R,)

is the set of terms corresponding to typeWe say that a terrs of typeq, writtent : ¢, if and
onlyif g € L(R,).

Example 42.1In the following examples, lIeE = {[|° [.| %, leaf!, tree?,0°, s'}, and letQ =
{list, listnat, nat, zero, one, bintree, any, list0, list1, list2}. We define the sed,,,, to be the
following set of transitions.

n times

{f(any, ... any) — any | " € X}

o QQ; = {listnat}, A = {[] — listnat, [nat|listnat] — listnat,0 — nat, s(nat) — nat}.
The typelistnat is the set of lists of natural numbers in successor notation.

o Qf = {list}, A = Aypy U{[] — list, [any|list] — list}. The typelist is the set of lists
of arbitrary terms inferms.

144

o Qy = {list2}, A = {[|] — list0, [one|list0] — listl,[zero|listl] — list2,0 —
zero, s(zero) — one}. The typelist2 is the set consisting of the single teftns(0)].

o Q) = {bintree}, A = Ay, U{leaf(any) — bintree, tree(bintree, bintree) — bintree}.
The typebintree is the set of binary trees whose leaves are any ternisrinsy.

o Qy = {listl}, A = {[] — listl,[one|listl] — listl, [zero|list0] — listl,[] —
list0, [zero|list0] — list0,0 — zero, s(zero) — one}. The typelistl is the set of lists
consisting of zero or more elemerntf)) followed by zero or more elements(such as
[s(0), 0], [s(0),s(0),0,0,0],[0,0],[s(0)],...).

42.2 Deterministic and Non-deterministic Tree Automata

There are two notions of non-determinism in tree automata: bottom-up and top-down.

It can be shown that (so far as expressiveness is concerned) we can limit our attention to
FTAs in which the set of transition& contains no two transitions with the same left-hand-side.
These are callebdottom-up deterministi@inite tree automata. For every FTR there exists a
bottom-up deterministic FTA&' such that.(R) = L(R').

Bottom-up deterministic FTAs define disjoint types, since each term is accepted by at most
one accepting state. The transformation to bottom-up deterministic form can introduce an ex-
ponential number of new states, in the worst case. However, it is often useful and practical in
the context of types. Example 42.2 illustrates the derivation of disjoint types from overlapping
types.

An automato? = (@, Q)r, 3, A) is calledcompletéf it contains a transitiorf (¢1, . . . , ¢,) —

g for all n-ary functionsf € ¥ and stategy,...,q, € . We may always extend an FTA
(Q,Q,%, A) to make it complete, by adding a new stateo . Then add transitions of the

form f(qi,...,q,) — ¢’ for every combination of and states, . .., ¢, (including¢’) that does

not appear inM\. Note that a complete bottom-up deterministic finite tree automaton in which ev-
ery state is an accepting state is one which partitions the set of terms into disjoint subsets (types),
one for each state. In such an automagboan be thought of as the error type, that is, the set of
terms not accepted by any other type.

Example 42.2Let ¥ = {[]°,[|]%,0°}, and letQ = {list,listlist,any}. The setd,,, is de-
fined as before. leQ; = {list,listlist}, A = Agpy U {[] — list, [any|list] — list,[| —
listlist, [list|listlist] — listlist, [listlist|listlist] — listlist}. The typelist is the set of lists
of any terms, while the typEstlist is the set of lists whose elements are of tyjse or listlist.

The automaton is not bottom-up deterministic; for example, three transitions have the same
left-hand-side, namely] — list,[] — listlist and|] — any. So for example the terrfi0]]

145

is accepted byist, listlist andany. A determinization algorithm can be applied, yielding the
following. Intuitively, we can think ofy; as the typeiny N list N listlist, g2 as the typelist N
any) — listlist, andgs asany — (list Ulistlist). Thusgy, ¢ andgs are disjoint. The automaton is
given by@ = {q1, g2, g3}, ¥ as beforeQ; = {q1, 2} andA = {[] — a1, [a1|la1] — q1, [q2]q1] —

q1, [Q1|QQ] — (2, [QQ|QQ] — (2, [QS|Q2] — (2, [QS‘%] — (2, [QQ\%] — (s, [Q1\CJ3] — (s, [QB‘Q?)] -
q3,0 — g3 }. This automaton is also complete.

This determinization algorithm for this example will be discussed in more detail is Section 44.

A more restrictive kind of deterministic automaton can be defined, which is also highly rele-
vant in the context of types. An FTA tep-down deterministid it has no two transitions with
both the same right-hand-side and the same function symbol on the left-hand-side (for example
f(q1,92) — qandf(g2,41) — q). When constructing a top-down derivation in a top-down de-
terministic automaton, there is thus at most one transition that can be used to construct a move
for each leaf. Thus checking whethee L(R) for such an automatof can be done i (|¢|)
steps.

Top-down determinism introduces a loss in expressiveness.ntitige case that for each
FTA R there is a top-down deterministic FTR such that.(R) = L(R’). Note that a top-down
deterministic automaton can be transformed to an equivalent bottom-up deterministic automaton,
as usual, but the result might not be top-down deterministic.

Example 42.3Take the final automaton from Example 42.1. This is not top-down determinis-
tic, due to the presence of transitiojasec|listl] — listl,[zero|list0] — listl. No top-down
deterministic automaton can be defined that has the same language.

Now consider the automaton with transitioas,,, U {[] — list, [any|list] — list}. This
is top-down deterministic, but not bottom-up deterministic (sifice> list and[] — any both
occur). Determinizing this automaton would result in one that is not top-down deterministic,
since we would have disjoint types correspondingt6andq = any — list. This would lead to
transitiongq|list| — list and[list|list] — list which violates top-down non-determinism.

Despite the reduced expressiveness most type systems assume top-down deterministic types
[160, 218].
42.3 Operations on Finite Tree Automata

Tree automata have a number of desirable properties and operations. The relevant ones in the
present context are summarised below. Eef?,, R, be FTAs and a term. Thent € L(R)
is decidable and.(R) = () is decidable. We can construct the product automadorx R,

146

whereL(R; X Ry) = L(R;) N L(Rs), and the union automataR; U Ry, whereL(R; U Ry) =
L(R;) U L(Ry). The complement automaton &fcan also be constructed, which accepts those
terms not accepted bj.
Most importantly for our purposes, given an automakba bottom-up deterministic automa-
ton R’ can be constructed, such thatR) = L(R'). Also, givenR a complete automatoR’ can
be constructed, such thatR) = L(R’). The algorithms for determinization and completion will
be examined in more detail in Section 44.
Further details on FTAs and their properties and associated algorithms can be found else-
where [30].

43 Analysis Based on Pre-Interpretations

We now define the analysis framework for logic programs. Bottom-up declarative semantics
captures the set of logical consequences (or a model) of a program. The theoretical basis of this
approach to static analysis of definite logic programs was set out in [12], [11] and [58]. We
follow standard notation for logic programs [151].

Let P be a definite program ant the signature of its underlying languade A pre-
interpretationof L consists of

1. a non-empty domain of interpretatidp;
2. an assignment of am-ary functionD™ — D to eachn-ary function symbol it (n > 0).

A pre-interpretation with a finite domaify over a signature: defines a complete bottom-up
deterministic FTA over the same signature. The dondais the set of states of the FTA. L¢t
be the functionD™ — D assigned tg' € 3 by the pre-interpretation. In the corresponding FTA
there is a set of transition&dy, .. . ,d,) — d, foreachd,, ..., d,,d such thatf(dl, coydy) =d.

Let J be a pre-interpretation of with domainD. Let V be a mapping assigning each
variable inL to an element oD. A term assignmerit) (¢) is defined for each terras follows:

1. TV (z) = V(=) for each variabler.

2. TV (f(t1,. .. tn) = f(TY(t1),...,TY(tn)), (n > 0) for each non-variable term
f(t1,...,t,), wheref’ is the function assigned byto f.

Definition 43.1Domain atom
Let J be a pre-interpretation of a languagewith domainD, and letp be ann-ary function
symbol fromL. Then a domain atom fof is any atony(ds, ... ,d,) whered; € D,1 <i < n.

147

Letp(t4,...,t,) be an atom. Then domain instancef A with respect to/ andV is a domain
atomp(TY (t1),...,TY (t,)). Denote by|A]; the set of all domain instances dfwith respect
to J and soméd’/.

The definition of domain instance extends naturally to formulas. In particula€/ le¢ a
clause. Denote b{(]; the set of all domain instances of the clause with respegt to

The core bottom-up declarative semantics is parameterised by a pre-interpretation of the lan-
guage of the program.

Definition 43.2Core bottom-up semantics functi@iy
Let P be a definite program, anfla pre-interpretation of the language®fwith domainD.
Let Atomp be the set of domain atoms with respect/to

Tj.g . 2AtomD _ 2AtomD

A<—B1,...7BnEP
TH(I)={ A| A —B],. .. B clA—B,...,B,,
{Bl.....B}C I

M [P] = Ifp(T)

M“[P] is the minimal model of” with pre-interpretation.

43.1 Interpretations of the Core Semantics

The usual declarative semantics is obtained by taking be the Herbrand pre-interpretation,
which we callH. M| P] is the minimal Herbrand model d?.

In order to capture information about the occurrence of variables, a modified versidn of
is taken, which will be called theoncrete semanticsLet L be the language of program,
with signature. We extend- with an infinite set of extra constants= {vg, v1,vs,...}. The
Herbrand pre-interpretation over the extended language is ddlled

M#V[P], the minimal model with this pre-interpretation, is a set of terms that represents the
set ofatomic logical consequence$ P. More precisely, lef) be some fixed bijective mapping
from V to the variables in.. Let A be an atom; denote b (A) the result of replacing any
constanty; in A by 2(v;). Then the least model with respect&b is the set of atomic logic
consequence. More precisely,c MEV[P] iff P = V(Q(A)).

The modelM“V[P] is also known as the Clark semantics [25]. In practice (and in the
rest of this paper) we ignore thHe function and treat the constantg, v,, v, ... as variables

148

when they occur in elements 847V [P]. E.g. an atonp(vy, f(a,vs),v1) is interpreted as
p(xy, f(a, z2), r1) Wherezy, x, are variables. In this case we can simply state thatM?V [P]
iff P = VA.

A slightly simpler but more abstract version of the concrete semantics is defined by adding
only a single special constantrather than an infinite set, v, v-,.... This is sufficient for
capturing information about occurrence of variables (see Section 45). Let us call this pre-
interpretationt,,.

43.2 Abstract Interpretations

Let J be any pre-interpretation arfd a program. It can be shown thislt’ [P] is a model based
on.J.

Definition 43.3 [Concretisation of a model]
Let M’[P] be a model of” based on pre-interpretatioh The concretisation d¥1/[P] is a
set of atoms defined as follows:
Y(M[P]) = { A (4], € W[P]
M7[P] is an abstraction of the atomic logical consequence?, arfi the following sense.

Proposition 43.4Let J be a pre-interpretation o U V and M’[P] be the least model of
based on/. ThenM#V[P] C ~(M’[P]).

A similar proposition holds if we replacé UV by ¥ U {v} andHV by H,.

43.3 Abstract Compilation of a Pre-Interpretation

The idea of abstract compilation was introduced first by Debray and Warren [45]. Operations on
the abstract domain are coded as logic programs and added directly to the target program, which
is then executed according to standard concrete semantics. The reason for this technique is to
avoid some of the overhead of interpreting the abstract operations.

A pre-interpretation can be defined by two predicatleszain/1 anddenotes/2. They are
given suitable definitions as follows.

e domain(d) is true iff d is in the domain of interpretation.

e denotes(f(dy,...,d,),d) is true if the pre-interpretation of the-ary function f maps
(dy,...,dy)t0d

149

These two predicates are incorporated directly in the program to be analysed. Each clause of the
program of the form is transformed by

1. repeatedly replacing non-variable subterfis,, ..., r,,) in the clause by a fresh variable
u and adding the atondenotes(f(r1,...,rm), u) to the clause body, until the only non-
variables in the clause occur in the first argumentafotes;

2. addingdomain(z) to the body of each clause in which variabl®ccurs in the head but
not the body.

If P is the original program, the transformed program is calfed

When specific definitions ofomain/1 anddenotes/2 defining a pre-interpretatiod are
added taP, the result is @omain progranfor J, calledP’. Clearly P/ has a different language
than P, since the definitions oflomain/1 anddenotes/2 contain elements of the domain of
interpretation. It can easily be shown that the minimal Herbrand modeV (festricted to the
original program predicates) is isomorphichd [P].

43.4 Computation of the Least Domain Model

The least modeW’/[P] = Ifp(T}) is obtained by computintfp(75,), and then restricting to the
predicates inP (that is, omitting the predicate¬es anddomain which were introduced in
the abstract compilation). Optimised algorithms for compulip@/») for an arbitrary program
P have been developed (see Section 46).

44 Deriving a Pre-Interpretation from Regular Types

An algorithm for transforming a non-deterministic FTA (NFTA) to a deterministic FTA (DFTA)
is presented in [30]. The algorithm is shown here in a modified version that is more suitable for
implementation:

input: NFTA R = (Q, Qy, X, A),
begin
SetQ, to ()
SetA/; to ()
repeat
SetA,; = A
foreachf™ € ¥
for each choicey, ..., s, € Qg

150

foreachq,...,q, € s1 X ... X $p,
s={qeQ|f(q,...,q) — g€ A}
if s # (0 then
SetAL, = AL U{f(s1,...,8,) — s}
SetQ; to Q, U {s}
end if
end for each
end for each
end for each
until A, = Ay
SetQq, to{s € Qa | sNQa, # 0}
output: DFTA Ry = (Q4, Qu;, X, Aa)
end

Description: The algorithm transform the NFTA from one that operates on states, to one that
operates on sets containing states from the NFTA. The NFTA allowed multiple occurrences of
the same state on the left hand side of a transition. In the DFTA, which is the output of the
algorithm, all reachable states in the NFTA are contained in sets that makes up the new states -
these are contained in the §gt. A state in the NFTAcanoccur in more than state in the DFTA.
Potentially every non-empty subset of set of states of the NFTA can be a state of the DFTA.
The sets i, and the new set of transitions,;, are generated in an iterative process. In
an iteration of the process, a functignis chosen from¥. Then a number of sets;, ..., s,
corresponding to the arity of, is selected from, - the same set can be chosen more than
once. The cartesian product is then formed,x - - - x s,,), and for each element in the cartesian
product,qi, . . ., g, such that a transitiofi(qy, . . ., ¢,) — ¢ exists,q is added to a set. When
all elements in the cartesian product have been selected, thsssetded td@), if sis non-empty
and not already id),;. A transitionf(sy,...,s,) — sis added tQ\, if s is non-empty.
The algorithm terminates whep, is such that no new transitions are added. Initié)lyis
the empty set, so no set containing a state can be choserfy@amd therefore only the constants
(O-ary functions) can be selected.

Example 44.1In example 42.2 a non-deterministic FTA is shovih;,= {[]°,[.|]%,0°}, Q =
{list, listlist,any}, A = Agpy UA{[] — list, [any|list] — list,[| — listlist, [list|listlist] —
listlist, [listlist|listlist] — listlist}.

A step by step application of the algorithm follows:

151

Step 1:Q, = 0, Ay = 0. Choosef as aconstanf; = [|. Nows={ge Q|][] > qg€ A} =
{any, list, listlist}. Add s to), and the transitiofl — {any, list, listlist} to A,.

Step 2: Choosef = 0. Nows = {g € Q | 0 — g € A} = {any}. Add s to Q; and the
transition0 — {any} to A,.

Step 3: Choosef = [| |, s1 = s = {any,list,listlist}. Nows = {qg € Q | Jq1 €
S1,3q2 € So,|q1 | @] — q € A} = {any,list, listlist}. Add s to @, and the transition
{any, list, listlist} | {any, list, listlist}] — {any, list, listlist} t0 A.

Step 4: Choosef = [_|], s1 = s = {any}. Nows = {g € Q | Iq1 € s1,Tq2 € 2, [q1 |
@] — q € A} = {any}. Add s to Q, and the transitiof{any} | {any}] — {any} to A,.
Step 5: Choosef = [- | |, s1 = {any},se = {any,list,listlist}. Now s = {q €

Q| g1 € 51,32 € s9, (1 | 2] — q € A} = {any,list}. Add s to @, and the transition
{any} | {any, list, listlist}] — {any, list} to Ay.

Step 6: Choosef = [- | |, s1 = {any,list, listlist},ss = {any}. Nows = {q €
Q| ¢ € 51,32 € so, (1 | 2] — ¢ € A} = {any}. Add s to @, and the transition
{any, list, listlist} | {any}] — {any} to A,.

Step 7 to 11:No new sets added @,. New transitions added{any, list} | {any, list}]| —
{any, list}, [{any,list} | {any,list,listlist}] — {any, list,listlist}, [{any, list, listlist} |
{any, list}] — {any,list}, [{any} | {any,list}] — {any,list}, [{any,list} | {any}] —
{any}.

Resulting DFTA: ¥ = {[|%[|]% 0%}, Qa4 = {{any,list,listlist}, {any}, {any, list}},
Qa; = {{any,list, listlist}, {any,list}}, Aq = {[] — {any,list,listlist},0 — {any},
{any, list, listlist} | {any, list, listlist}] — {any, list, listlist}, [{any} | {any}] — {any},
{any} | {any, list, listlist}] — {any, list}, [{any, list, listlist} | {any}] — {any},

{any, list} | {any, list}] — {any, list},
{any, list} | {any, list, listlist}] — {any, list, listlist}, [{any, list, listlist} | {any, list}] —
{any, list}, [{any} | {any, list}] — {any, list}, [{any, list} | {any}] — {any}}.

The states i), are equivalent to the states ¢, g3 in example 42.2¢, is equivalent to the
typeany N list N listlist represented iR, as the sefany, list, listlist}, g2 is equivalent to the
type (list N any) — listlist represented by the s@iny, list} and finallygs is equivalent to the
typeany — (list U listlist) represented by the sginy}.

In a naive implementation of the algorithm where every combination of arguments to the
chosenf would have to be tested in each iteration, the complexity lies in forming and testing
each element in the cartesian product, for every combination of statgg. ift is possible to
estimate of the number of operations required in a single iteration of the process, where an

152

rev([];).
rev([X|Xsl], Zs) < rev(Xs,Ys),app(Ys, [X], Zs).

app([],Y's,Ys).
app([X|Xs],Y's, [X|Zs]) <« app(Xs,Y's, Zs).

Figure 18: Naive Reverse program

operation is the steps necessary to determin whethgr. .., q,) — g € A. SinceA is static,

an operation can be considered to be of constant time. The number of operations can be estimated
by the formula#op = (s*e)®, wheres is the number of states i@, ¢ is the number of elements

in a single state id); (possibly an estimate) ands the arity of the chosefi. Every time a state

is added tay,, an iteration in the algorithm will require additional operations. Worst case is if

the algorithm causes an exponential blow-up in the number of states[30].

45 Examples

In this section we look at typical examples involving types and modes. It will be seen how types
and modes can be mixed. The usefulness of this approach in a binding time analysis (BTA) for
offline partial evaluation will be shown. We also illustrate the applicability of the domains to
model-checking and failure detection.

To align with typical type notations, types will be defined using type rules, which are alter-
native syntax for FTAs. LeE be a set of function symbols, each with an arity, @ndbe a set
of types. A type rule is of the formm — Ry |---| Ry, (K > 0), wheret € N is a type and
{Ry,..., Ry} C Termyyy. This is sometimes written dstype rulest — Ry, ...,t — Ry.

In all the following examples, the typeny is defined by the set of all rules of the form

n times

any — f(any, ..., any) for eachn-ary functionf € 3. We assume that includes one special
constant (see Section 43). That is, the type rulesdey include the ruleiny — v.

45.1 Simple Lists

Consider the usual definition of lists, and assume that the signature contains at least one function
other than] and].|.].

list — [] | [any|list]

153

Together with the rules farny, this is (bottom-up) non-deterministic, since we have Both—

[andany — []. The determinization algorithm of Section 44 yields two stdtesy, list}

and {any}, representing the set of lists and the set of non-lists (whielis— list). Let us
abbreviate these @&t andnonlist respectively. Analysis of the naive reverse program in Figure

18 with predicatesev/2 andapp/3 yields the modekrev(list, list), app(list, X, X)} (where

X is list or nonlist), indicating thatrev/2 succeeds only with lists in both arguments, while
app/3 succeeds with a list in the first argument, while the second and third arguments are either
both lists or both nonlists.

45.2 Simple Groundness

Recall that the concrete semantics is defined over an extended language containing an extra
constant representing variables. Using this information, we can define the set of ground terms
as those that do not include any occurrence of the extra constant. The type rules for a type

n times

ground are all rules of the fornground — f(ground, ..., ground) for everyn-ary function f
apart from the special constantThus the typeround represents a subset of the typey.

The typeground is already bottom-up deterministic, but not complete, since any terms con-
taining the special constantare not recognised. Completion adds a new type (catleel-) and
type rules definingther, includingother — v andother — f(..., other, ...) for each function
symbol.

Analysis of naive reverse with respect to this pre-interpretation is isomorphic to the POS
abstract domain of boolean groundness dependencies. For the naive reverse program the abstract
model is

{rev(ground, ground), rev(other, other),

app(ground, X, X), app(other, other, other), app(other, ground, other)}.

45.3 Simple Lists with Groundness

Consider the set of type rules fground, list and any as given in the previous examples.
Note that the typegist and ground intersect. After determinization, we obtain four states
{any, ground, list}, {any, list}, {any, ground}, {any}, representing (i) ground listgd) (ii)
non-ground lists#{g!) (iii) ground non-lists gnl) and (iv) non-ground non-liste{her) respec-
tively. Analysis of the naive reverse program yields the following abstract model:

{rev(gl, gl),rev(ngl, ngl),
app(gl, X, X), app(ngl, gl, ngl), app(ngl, ngl, gnl),
app(ngl, gnl, other), app(ngl, other, other)}.

154

45.4 Static, Dynamic and Non-variable Types for Binding Time Analysis

Binding time analysis (BTA) for offline partial evaluation in Logen [133] distinguishes between
various kinds of term instantiationsStatic corresponds t@round, anddynamic to any. In
addition we add a typear with the single type rulear — v, wherew is the special extra
constant.

Determinization of these types yields three stdégamic, static}, {dynamic,var} and
{dynamic}, representing three disjoint types containing respectively ground terms{(d),
variables (ar) and non-variable non-ground termsv(.g). Analysis of naive reverse yields the
following model.

{rev(ground, ground), rev(nvng, nong),
app(ground, var, nung), app(ground, var, var), app(ground, ground, ground),

app(ground, nung, nung), app(nvng, X, nvng)}.

The presence afar in an argument indicates possible freeness, or alternatively, the absence of
var indicates definite non-freeness. For example, the answersda@re definitely not free, the

first argument ofipp is not free, and if the second argumentupp is not free then neither is the
third. Such dependencies allow accurate propagation of binding time information.

45.5 BTA types Combined with Program-specific Types

The types described above can be added to user-defined or automatically inferred types defining
data structures. Adding the typest — [| | [dynamic|list] and determinizing results in the
generation of types representing static lists (ground lists) and non-ground lists, in addition to the
types of the previous example. More refined types such as lists of lists, lists of integers and so on
can be added.

45.6 Detecting Failures

Regular type analysis has been used to detect unsuccessful (failing or looping) computations.
Building a type domain as described in this paper allows extra precision to be obtained, from the
same set of types.

For example, consider the set of lists, and the set of lists of elemértte respective types
are

list — [] | [any|list]
lista — [] | [atypellistal
atype — a

155

Determinization of these types, along with the typey (which includes the rulesny — « and
any — b) yields four state§any, list, lista}, {any, list}, {any, typea} and{any} namely, lists
of a (which we will call lista) other lists (istnona), the constant (typea) and nona non-list
terms ¢ther). Consider the followingnemb program.

memb(X, [X|Y]).
memb(X, [Z|Y]) < memb(X,Y)

Analysis of the standarghemb program with respect to the determinized types yields the model

{memb(typea, lista), memb(typea, listnona), memb(lista, listnona),

memb(listnona, listnona), memb(other, listnona), memb(A, other))}

Note that the atomnemb(other, lista) is not present. From this, it can be concluded that, for
example, the goal- makeLista(X), memb(b, X) fails, wheremakeLista(X) is assumed to
succeed only with a list af. This is becauskgis of typeother, and the atommemb(other, alist)

is not in the abstract least model@kmb.

Note that techniques such as set-based analysis and regular type inference could also detect
such failures. However a top-down analysis of the goal would be required. In the example
above, a bottom-up analysis of theemb predicate is sufficient, independent of the goals for
memb. This is because the abstract domain is condensing [95] and so the same precision is
gained by restricting a bottom-up analysis to a given goal as for performing a goal-dependent
analysis.

45.7 Infinite-State Model Checking

The following example is by Charatonik and Podelski [21]; it is a simple model of a token ring
transition system. A state of the system is a list of processes indicatédcabgl 1 where a0
indicates a waiting process andi andicates an active process. The initial state is defined by

the predicatgen and the the predicateachable defines the reachable states with respect to the
transitiontrans. The required property is that exactly one process is active in any state. The
state space is infinite, since the number of processes (the length of the lists) is unbounded. Hence
finite model checking techniques do not suffice. The example was used in [21] to illustrate set
constraint techniques for infinite-state model checking.

gen([0, 1]).
gen([0[X]) < gen(X).

156

trans(X,Y) « transl(X,Y).
trans([11X],[0|Y]) « trans2(X,Y).

trans1([0,1|T], [1,0|T]).
trans1([H|T], [H|T1]) « trans1(T,T1).

trans2([0], [1]).
trans2([H|T], [H|T1]) < trans2(T,T1).

reachable(X) < gen(X).
reachable(X) « reachable(Y), trans(Y, X).

We define simple regular types defining the states. The set of all lists of ones and zeros is called
list and the set of “good” states in which there is exactly bimegoodlist. The typezerolist is
the set of list of zeros.

one — 1

zero — 0

list — [] | [zerol|list] | [one|list]

goodlist — [zero|goodlist] | [one|zerolist]

zerolist — || | [zero|zerolist]

Determinization of these types along wiihy results in six states representing disjoint types:
{any, one}, {any, zero}, the good listd any, list, goodlist}, the zero listd any, list, zerolist},

the non-goodlist, non-zerolist listany, list} and{any} for all other terms. We abbreviate these
asone, zero, goodlist, zerolist, badlist andother respectively. The least model of the above
program over this domain is as follows.

{gen(goodlist),

trans2(badlist, badlist), trans2(other, other),

trans2(goodlist, badlist), trans2(goodlist, goodlist)

transl(goodlist, goodlist), transl(badlist, badlist),transl(other, other),
trans(goodlist, goodlist), trans(badlist, badlist), trans(other, other),
reachable(goodlist) }

The key property of the model is the presencedifchable(goodlist) (and the absence of other
atoms forreachable), indicating that if a state is reachable then it iscadlist. Note that the
transitions will handléadlist andother states, but in the context in which they are invoked,
only goodlist states are encountered.

157

46 Implementation and Complexity Issues

The implementation is based on three components; thed€términizatioralgorithm described
in Section 44, thabstract compilatiotransformation and thigxpointalgorithm for computing
the least model.

We have implemented all three components. The determinization algorithm is a prototype
based on a relatively direct implementation of the algorithm as presented in Section 44: it is
clearly amenable to major optimization. Nevertheless the scalability of the determinization algo-
rithm in Section 44 is a critical topic for future study and experiment.

Abstract compilation is a simple transformation with no serious complexity or implementa-
tion problems.

The computation of the least model is an iterative fixpoint algorithm. Various optimisations
have been applied. Thedicate dependency grapha program has the predicates of a program
as nodes, and there is a directed arc frota q to iff ¢ appears in the body of a clause in which
pisin the head. A directed graph can be split istmngly connected compone&CCs). The
SCCs are the largest sets of nodes such that there is a path from any element in a set to any other
in the same set.

The iterations of the basic fixpoint algorithm, which terminates when a fixed point is found,
can be decomposed into a sequence of smaller fixpoint computations. Each subcomputation
returns the solution of a group of mutually recursive predicates. Breaking down the computation
in this way has several advantages.

¢ Relatively few clauses are solved on each iteration.
e Not every atom in a clause body needs to be resolved on each iteration.

e The fixed point for non-recursive groups is found in one iteration.

An algorithm, linear in the size of the graph, for finding the SCCs of a directed graph was
discovered by Tarjan [207]. Furthermore, the algorithm naturally returns the SCCs in a sequence
consistent with the graph. (There is more than one possible sequence). In other words, if there is
a path from node to nodey in the graph, then eitherandy are in the same component,ds
component precedes component.

In addition to the SCC optimisation, our implementation incorporates a variant sethe
naiveoptimisation [211], which makes use of the information about new results on each iteration.

A clause body containing predicates whose models have not changed on some iteration need not
be processed on the next iteration.

158

Our fixpoint implementation has been extensively used on programs with up to 4000 clauses.
The key finding is that if the SCCs are relatively small (mutually recursive groups with more
than 2 or 3 predicates are rare) then the analysis is roughly linear in the number of SCCs.

47 Related Work and Conclusions

The approach described in this paper provides an integration of regular type abstractions with
discrete abstract domains expressed as pre-interpretations. We showed how to transform any
given regular type into a pre-interpretation, using standard algorithms on Finite Tree Automata,
namely, determinization and completion.

The domain of the pre-interpretation is a set of disjoint types, partitioning the set of terms.
The least model under this pre-interpretation provides accurate information about the success
types, including type dependencies, with respect to these disjoint types (and hence with respect
to the original types from which they were derived).

The analysis domain induced by the pre-interpretation is condensing, which implies that a
bottom-up analysis (usually much cheaper and more scalable than goal-dependent analysis) can
be used as the basis for goal-directed analysis, with no loss in precision.

Applications in binding time analysis for offline partial evaluation have been investigated,
with promising results. As noted in Section 45 various mode analyses can be reproduced with
this approach, including the well-known POS analysis.

The potential of this method for model-checking, by detecting unreachable states (repre-
sented as predicates which are proved unsolvable) seems to be considerable, since the approach
seems both faster and more precise than set constraint analysis, which is already useful [21].

159

Part Vi

Abstract Interpretation with Specialized
Definitions

The relationship between abstract interpretation and partial deduction has received considerable
attention and (partial) integrations have been proposed from both the partial deduction and ab-
stract intepretation perspectives. In this work we present what we argue is thdlfirgegration

of abstract interpretation and partial deduction from an abstract interpretation perspective. The
proposed framework can be used both for analysis and specialization of logic programs and pro-
vides results which are strictly more precise than those achievable by the individual techniques.
Interestingly, the central idea in this framework is simple: the abstract interpretation algorithm is
modified in such a way that calls in the program are not analyzed w.r.t. the definition of the proce-
dure in the original program but rather w.r.sgecialized definitioof the procedure for the given

call. The process of obtaining a specialized definition from the original definition corresponds to
the transformations performed during on-line program specialization, including unfolding. This
apparently simple modification to the analysis algorithm has important consequences. First, the
analysis process can be improved both in terms of efficiency and accuracy. Second, the set of
specialized definitions computed during analysis provide a powerful partial evaluation of the
program. Third, the new features of the framework introduce non-trivial termination and control
issues which are studied in the paper. The framework has been implemented in the context of the
CiaoPP analysis and specialization system. We briefly describe this implementation.

48 Introduction

Abstract interpretation [35] is a well known technique for static analysis of programs. It allows
obtaining at compile-time safe approximations about the run-time behavior of the program. The
information obtained by means of abstract interpretation has long been used for both program
optimization and verification. A typical approach to abstract interpretation-based program opti-
mization is to analyze the program in order to obtain a safe approximation of the states at which
the correspondingrogram pointcan be reached. This is done by annotating the program points

of interest with abstract substitutions which are guaranteed to be safe approximations. Then,
these annotations are used to optimize the code as much as possible. Such optimizations can
be performed both at the source-level and afterward at the compiled-code level. If the abstract
interpretation framework isultivarianton calls, the same program procedure can be analyzed

160

for different (abstract) call patterns. This has two effects. On one hand it may allow improving
the accuracy of analysis results since different call patterns do not need to be collapsed on a
single one. On the other handmaultiply specializeghrogram [189] may be achieved by expand-

ing the program in such a way that a different implemented version is generated by each pair
(procedure, call pattern).

Partial evaluation[99]—often referred to simply as program specialization—optimizes pro-
grams by specializing them for (partially) known static data. Essentially, partial evaluators are
non-standard interpreters which evaluate the known data while enough information is available
and produce residual code otherwise. The partial evaluation of logic programs, also known as
partial deduction152, 57], has received considerable attention. The shortcomings of traditional
partial deduction when compared to abstract interpretation techniques have been identified early
on, and several partial solutions to overcome these limitations have been proposed in the litera-
ture. The shortcomings are related to two sources of precision loss during partial deduction. One
is related to the lack of information propagation among different concrete call patterns (often
refereed to astomg once they are transferred to the global control. The second one is related
to the usage of the most specific generalization operator as a means of generalizing call pat-
terns in order to guarantee that the set of atoms which are specialized remains finite. Existing
improved partial deduction systems are available which overcome some of these problems by
different means. However, to the best of our knowledge, no system actually has overcome all the
previously mentioned shortcomings simultaneously.

More recently, a very general framework calbdabstractpartial deduction [124] has been pro-
posed which provides very interesting insights into the way an integrated framework should look
like. This formalization departs from traditional partial deduction in several ways. It includes
the use of an abstract domain and replaces the classical unfolding operation by two operations,
abstract unfolding and abstract resolution. These can be defined in different ways and this work
provides the conditions which these operations have to satisfy in order for the whole special-
ization system to be correct. It is proved that several frameworks, including traditional partial
deduction, are instances of this more general one.

There has also been significant progress following the alternative approach of starting from
an abstract specialization perspective. In [192] the relationship between partial deduction and
abstract interpretation is studied from this point of view. This work identifies the need to allow
performing unfolding steps during analysis time and proposes several possibilities for the prac-
tical integration of such unfolding. However, it also identifies that the questions of when and
how to perform unfolding in the integrated framework are not trivial at all. In fact, that is the
central motivation of this work. Summarizing, our answer to the question of “when to perform
unfolding” is to do it right before analyzing the particular call. And our answer to the question of

161

“how to perform unfolding” is to do it by obtaining a specialized definition of a predicate from
the original one and then letting the analyzer process the specialized definition. The resulting ab-
stract interpretation-based specialization framework, which we propose herein, requires almost
no modification to existing analyzers, other than the addition of a way to obtain the specialized
definitions from the original ones. However, the modifications introduced in the new framework
have a big impact in terms of efficiency and accuracy thanks to the combinagsxeaftiorand
approximationduring specialization.

48.1 Approximation vs. Execution

Traditional partial deduction is characterized éyecuting(concrete) atoms and goals for pro-
ducing resultants—i.e., specialized rules—in which the partial computed answer substitution is
actually applied to the resultant. On the other hand, abstract interpretation is characterized by
simulatingthe execution of the program using abstract substitutions instead of concrete ones.
Both approaches have advantages and disadvantages. An important advantage of partial evalua-
tion is that of efficiency: propagating and applying substitutions is straightforward to implement
on a (constraint) logic programming system and very efficient to execute. The disadvantage is
that no information can be propagated about unbound variables. Another advantage of execu-
tion is that it improves accuracy when compared to abstract interpretation under certain circum-
stances. If concrete information is available, it will in general be more precise than abstract
descriptions, In contrast, abstract interpretation allows obtaining safe approximations of the ac-
tual values in situations in which concrete execution would not capture any information, either
because it corresponds to a variable or because the set of concrete values which would require to
be handled would be infinite or too large to be practical.

Given this situation, it seems difficult to design a system which integrates abstract interpreta-
tion and partial deduction by using concrete substitution or abstract substitution only. For exam-
ple, abstract partial deduction introduces abstract substitutions to the partial deduction algorithm,
since concrete substitutions are not enough. From the point of view of abstract interpretation it
may seem feasible to capture both concrete and abstract values by using a refined abstract do-
main.

In this work we advocate for a hybrid approach which allows propagating both concrete and
abstract substitutions. This has both theoretical and practical advantages: it allows conceptually
separating the information generated as a result of specializing definitions, which uses concrete
bindings, from that approximated by the analysis algorithm, which remains abstract. The prac-
tical advantage is that the analysis algorithm remains basically unmodified and there is no need
to implement new abstract domains which capture both concrete and abstract values separately.

162

On the other hand, the specializer will mostly work with concrete information, though abstract
information can also be used in order to remove useless rules from the specialized definition or
to perform abstract execution of some of the literals in the specialized definitions.

49 Preliminaries

This section recalls preliminary concepts on logic programming and abstract interpretation [35].
Terms are constructed from variables (e.y), functors (e.g.,f) and predicates (e.gp). We
denote by{ X; — ty,..., X,, — t,} thesubstitutiors with o(X;) = ¢; forall: = 1,..., n (with

X, # X, if i # j)ando(X) = X for any other variableX, wheret; are terms. We denote by
vars(O) the set of variables in a syntactic objéet

An atom A has the formp(¢y, ..., t,) wherep is a predicate symbol, and tligare terms.
Functionpred(A) returns the predicate symbofor the atomA. We useAtomsto denote the set
of atoms. We say that an ataris more general than another atothand we denote i’ C A
if 3 a substitutiord s.t. A’ = Af. A goalis a finite sequence of atoms;, ..., A,. Aruleis
of the formH — B whereH, thehead is an atom and3, thebody; is a possibly empty finite
sequence of literals. Arogram is a finite set of rules. Aenamed apartule for a ruleR in a
programpP is another ruleR’ such thatars(R') Nvars(P) = () and there is a renamingsuch
that R = Rp. Given an aton¥ and a progran®, we denote byDef (A, P) the set of renamed
apart rules for the rule¥ < B in P with pred(A) = pred(H), such that unifies with A.

In this work, we assume a top-down operational semantics for logic programs under the
standard (Prolog) left-to-right computation rule, i.e., LD resolution. At each stage, the current
goal G can be represented by o;(A;,...,A,) whereo; = 6;...0, is the composition of
the substitutions applied so far (tleecumulatedsubstitution). For the initial goal, we have
thato, = id, the empty substitution. To perform3LD derivation stepthe computation rule

selects the leftmost subgoal(A;). The search rule selects a rule — By, ..., B,, renames
it apart and unifies the heall with 0;(A;). If the unification is successful withmgu 6,1,
then the goal statemert o,,1(By,..., By, As, ..., A,) is derived witho;,; = 0,0;,1. An

SLD-derivationconsists of a possibly infinite sequenGg = G, GGy, . . . of goals, a sequence of
C1,Cy, ... of properly renamed rules d?, a sequencé,, f,, . .. of mgus such that eacty;

is derived fromG; andC;; with mgu 60,,,. Given a finite SLD derivatiorD of P U {<— G}

ending in— B andf the composition ofngus in the derivation steps, we say tlfatestricted

to the variables of7 is the computed answer substitutidn.a.s). A derivationD is a SLD
refutation, orsuccessfutlerivation if it ends in the empty goal. In such caéeestricted to the
variables ofG is also simply called @omputed answerA derivation D is failed if the current

goal is nonempty and no derivation step can be performed. The operational semantics of an

163

atom A is defined in terms of its computed answers, i.e., for a progfarwe write [A], =
{A0|0 is a computed answer fot in P} to denote the semantics of the goal for the program.

Static program analysiaims at deriving at compile-time certain properties of the run-time
behavior of a program. Abstract interpretation [35] is arguably one of the most successful tech-
niques for static program analysis. In abstract interpretation, the execution of the program is
“simulated” on ambstract domair{D,,) which is simpler than the actuapncrete domairiD).
An abstract value is a finite representation of a, possibly infinite, set of actual values in the con-
crete domain D). The set of all possible abstract semantic values represents an abstract domain
D, which is usually a complete lattice or cpo which is ascending chain finite.

The abstract domaifD,,, C) and the powerset of the concrete dom@H, C) are related via
a pair of monotonic mappingsy, v): abstractiona : 2 — D,,, andconcretizationy : D, —
2P such that

Vo € 2P y(a(z)) Dz and Vy € D, : aly(y)) = .

Note that in generdL is induced byC and« (in such away thatA\, N € D, : AC X &
v(A) € y(XN)). Similarly, the operations déast upper boun@_) andgreatest lower bound)
mimic those of2” in some precise sense.

50 Specialized definitions

A distinguishing feature of our framework is that, as will be presented later, analysis for an atom

A and an abstract substitutionis performed w.r.t. &pecialized definitionf the A rather than

the original definitions for it. In order to guarantee the correctness of the analysis framework,
we need to demonstrate the semantegplivalencéetween the original and specialized defini-
tions. The aim of Sect. 50.1 is to formalize the particular notion of equivalence necessary for this
purpose. The process of creating specialized definitions can be vieweaasf@armation se-
guencdan which an original definition is transformed into another, equivalent one, by means of a
series of transformations. Sect. 50.2 presents a number of semantics-preserving transformations
used for the construction of specialized definitions. Finally, Sect. 50.3 introduces the notion of
specialized definitioand states its correctness.

50.1 Equivalence of Definitions

This section presents our notion @fuivalencéetween two definitions for the same predicate.
By adefinitionwe mean a set of rules for the same predigetach thap is one of the predicates

in programP. First, we give a (non-standard) definition of the operational semantics of a set of
rules in a program.

164

Definition 50.1[semantics of a rule] LeP be a program anél < B be a rule such that-ed(H)
is defined inP. We define the semantics éf < B in P as follows:

[H < B]p, ={H0 | 3 acomputed answérfor B in P}

The semantics of a definitiopf/; — By, ..., H, < B,} withn > 1 is defined as the union
of the semantics of the individual rules.

The notion of specialized definition is the subject of the next subsection. Nevertheless, we antic-
ipate that a specialized definition is generated for a particular context which includes ad atom
and an abstract substitutiorfor A. This is to say that we specialize the definition of a predicate

for its (restricted) use within the context of the pait, \). Therefore, the specialized definition

has to preserve the original semantics only for the context w.r.t. the specialization has been per-
formed. A first step to formalize our notion of equivalence is to restrict the semantics of Def. 50.1
to atoms.

Definition 50.2semantics of rules restricted to an atom] Ketbe an atom such thated(A) = p
and P be a program. Let{ < B be a rule such thatred(H) = p. We define the semantics of
H < Bin P restricted to the atom as follows:

[H «— B]s = {A' € [H «— B] |30 with A’ = A9}

The semantics of a definitiop{; <— By, ..., H, < B,} with n > 1 restricted to an atom is
[H; — B]]P

zln

Intuitively, the semantics of a set of rules restricted to an atom is formed by only those computed
answers for the rules which unify with the atom (while the rest are discarded).

In our framework, the specialization context includes an additional parameteabstract
substitutior—which distinguishes our method from traditional specialization techniques. Infor-
mally, the abstract substitution allows expressing some properties in the selected abstract domain
which can restrict further the specialization context. Thus, we now need to introduce the notion
of semantics of rules restricted to the context of an aamiehan abstract substitution.

Definition 50.3semantics of rules restricted to an atom and abstract substitutior bet an
atom andP be a program. Lehk be an abstract substitution far. Let H < B be a rule such
thatpred(H) = p.We define the semantics &f < B in P restricted tad and\ as follows:

[H — B]S"N = {A' € [H — B]330 € v(\) with A’ = A9}

The semantics of a definitiop, <— B, ..., H, «— B,} with n > 1 restricted to an atorl
and abstract substitutionis U;_, _, [H; — B; }]<A N,

165

Roughly speaking, we now select from the computed answers for the rules and atom (as stated in
Def. 50.2) those which are compatible with the abstract substitution, i.e., the computed answers
which satisfy the properties ik.

Finally, the next definition provides a notion @fjuivalencéetween definitions. This equiv-
alence can be restricted to an atom or to both an atom and an abstract substitution.

Definition 50.4equivalent definitions] LefP be a programA an atom and\ an abstract sub-
stitution. LetD and D’ be two definitions for the same predicate= pred(A). We have the
following notions ofequivalencdetweenD and D'":

1. D =p D'iff [D], = [D'] .

2. D=3 D'iff [D]5 = [D']5.

3. D =" Driff [D]EMNY = DM

50.2 Transformation Rules

As already mentioned, our goal is, given a definitionto obtain another definitio®’ which

is a specialized w.r.t. an atom and an abstract descriptionsuch thatD E;A’M D' (and D’

is in some sense preferred 19). In our setting, the initial definitionD,, will be formed by

the set of ruledef (A, P). Then, we perform a series of transformation steps and construct the
next definitions(Dy, Dy, ..., Dy) in the sequence. Each definitidn is obtained fromD;_; by
applying one of the rules listed below.

Definition 50.5instantiation] LetD, be a definition and leti be an atom. The result of applying
instantiationto D), w.r.t. A is

Dy11 = instantiation(Dy, A) = {(H «— B)8 | (H «— B) € Dy and30 = mgu(A, H)}

Informally, instantiation returns the subset of rulegipwhose head unifies witA and applies
themgu to them. Thus, instantiation filters out those rules which are not directly applicable for
the given atom and further instantiates the remaining rules.

We now present the well-know unfolding transformation. As usual, by unfolding a rule w.r.t.
an atom, we replace the rule by a set of new (unfolded) rules. In particular, as many new rules as
clauses inP are applicable for the atom which is unfolded.

166

Definition 50.qunfolding] Let D, be a definition and leR : (H «— A, G) be arule inD;, where
Ais an atom and~ a (possibly empty) conjunction of atoms. L@&tbe a variant of a rule iP
such thawars(R) Nvars(C) = {} and the atom#&d(C') and A are unifiable with mgy. The
unfolding of R usingC'is the rule(H — bd(C), G)6. LetCy, ..., C, withn > 1 be the renamed
apart variants of rules i whose headad(C;) are unifiable withA.

The result of applying unfolding t&, w.rtrule R € Dy is

Dk+1 = unfold(Dk, R) = Dk - {R} @) {Ul, ceey Un}

where eaclv; is the rule resulting from unfolding usingC;.

Now we proceed to introduce a transformation which is able to exploit the information available
in an abstract description. For this purpose, we applyptimtial concretizationof the abstract
substitution to the definition. Given an abstract dom@jy we say that a functiopart_conc :

D, — D is apartial concretizatiof192] iff VA € D, V&' € () 30" s.t.0" = part_conc(\)0".

Definition 50.7[instantiation with abstract information] Lé?, be a definition, letA be an atom,
and let\ be an abstract substitution farin D,. Letd = part_conc()). The result of applying
instantiationwith_absinfo to D;, w.r.t. A and\ is

Dy1 = instantiation with_abs_info(Dy, A, \) = instantiation(Dy, A9)

All the transformations proposed are semantic preserving. Some of them preserve the seman-
tics in general, and others are correct for the particular context described by the pgir The
next theorem states the correctness of the above transformations.

Theorem 50.8correctness] Letd be an atom and be a program. Leh be an abstract sub-
stitution for A. Let (D,, ..., D,) be a transformation sequence obtained by applying the above
transformations witlD, the set of rules irDef (G, P). Then,D, E}A’” D,.

Proof [sketch] All the transformation proposed are semantic preserving. In particular, unfolding
preserves the semantics of definitions in general, whereas instantiation (resp. instantiation with
abstract information) are correct for the particular context described by the/atoesp. the pair

(A, A\)). In any case, after any number of transformations, the semantics is always preserved.

167

50.3 The Specialization Strategy

Though all the transformation presented above preserve the semantics of definitions and generate
definitions which are more specialized, we now propose a given orderstoatagy in which

such transformations should be performed in order to obtain the best possible specialization
results.

Definition 50.9specialization strategy] Le® be a program and- A be the initial atomic query.
Let A be an abstract description f@rin a given domainD,,. Our specialization strateggom-
putes a transformation sequeniée,, ..., D,,) obtained as follows:

1. Dy = Def(A, P)

2. Dy =instantiation(Dy, A)

3. D, = instantiationwith_absinfo(D;, A, \)

4. the remainingDs, ..., D,, are generated by — 2 unfoldingtransformations.

We useD = specialized_definition(A, A, P) to denote thaD is the result of specialization using
the strategy presented above.

An interesting point to note is that neither the original prog@mor the atomA are modified
through the specialization process. The specialization can be seen as the generation of a new,
additional, definition fopred(A). Since the rules for the definition being specialized are kept
separate from the rules in the original program, there is no problem in having additional rules for
an already existing predicate. However, if we would like to have a program which contains both
the original and specialized definitions fdrtogether, the new definition can be safely added

to the original progranP by renamingboth the head of the new clauses and the initial query

A with a fresh predicate name. This guarantees that the semantics is preserved, since the new
definition will only be used to resolve the initial query. In the following, we assume that function
ren performs this renaming.

Theorem 50.1(correctness] Letd be an atom and® be a program. Leh be an abstract sub-
stitution for A. Let D = specialized_definition(A, A\, P). Let D’ = ren(D). Then,[A], =

[ren(A)] popr-

Proof [sketch] This result is a particular instance of Theorem 50.8. O

168

51 Abstract Interpretation with Specialized Definitions

In this section we present a generic analysis algorithm which is a modified version of that in [89].
In essence this analyzer producepragram analysis graphvhich can be viewed as a finite
representation of the (possibly infinite) set of (possibly infinite) AND-OR trees explored by the
concrete execution [13]. The graph has two sorts of nodes: those belonging to rules (also called
“AND-nodes”) and those belonging to atoms (also called “OR-nodes”). The rules are annotated
by descriptions at each program point when the rule is executed from the calling pattern of the
node connected to the rules. The program points are at the entry to the rule, the point between
each two literals, and at the return from the call. Atoms in the rule body have arcs to OR-nodes
with the corresponding calling pattern. If such a node is already in the tree it becomes a recursive
call.

How this program analysis graph is constructed is detailed in Figure 19. This algorithm
differs from the original algorithm mainly in that it analyzegecialized definitiongather than
the original ones.

Intuitively, the analysis algorithm is just a graph traversal algorithm which places entries in
ananswer tableanddependency arc tablgs new nodes and arcs in the program analysis graph
are encountered.

e Answer table: The answer table contains entries of the fadm CP — AP. A is an
atom, CP is the calling pattern and P is the answer pattern. Each entry in the answer
table corresponds to an OR-node in the analysis graph of the{fdrnCP — AP). Itis
interpreted as the answer pattern for calls of the f@iAto A is AP.

e Dependency arc tableA dependency arc is of the forifi, : CPy, = [CPy] By; : CP.
This is interpreted as follows: if the rule witH,, as head is called with descripti@P,
then this causes literdd ; to be called with descriptio€P,. The remaining parCP;
is the program annotation just befol, ; is reached and contains information about all
variables in rules. CP; is not really necessary, but is included for efficiency. Dependency
arcs represent the arcs in the program analysis graph from atoms in a rule body to an atom
node.

The program analysis graph is implicitly represented in the algorithm simply by means of the
answer table and the dependency arc table. In the sense that, given the information in these, it is
straightforward to construct the graph and the associated program point annotations.

To capture the different graph traversal strategies used in different fixed-point algorithms, we
use gpriority queuewhich is the final structure used in our algorithm. It handles events of three
forms:

169

analyze _sp_defs (S,P)
foreachA:CPe S
add_event(newcall(A : CP))
main _loop (P)

main _loop (P)
while E ;= next_event()
if (£ = newcall(A : CP))
new_calling _pattern
elseif(E = updated(A : CP))
add _dependent _rules (A:CP)
elseif(E = arc(R))
process _arc (R)
endwhile
remove _useless_calls(S)

(A:CPP)

new_calling _pattern (A :CP,P)
' .= specialized_definition(A,CP,P)
foreachrule Ay :- Byi,..., By, in P
CP' := Acalltoentry(A, CP, Ay)
Chy =
Aextend(CP',vars(Bga, ..., Bin,))
CP; := Arestrict(CPy, vars(By.1))
add _event (arc(
Ay, : CP = [CPy] By, : CPy))
AP :=initial_guess(A : CP)
if (AP £ 1)
add_event(updated(A : CP))
addA : CP — APto answer table

add dependent _rules (A:CP)
foreacharc of the form

H, - CPO = [Cpl] Bkﬂ‘ : CPQ
in graph

where there exists renaming
St.A:CP= (B, : CP)o

add_event(arc(
H, - CPO = [Cpl] Bk,i : CPQ))

process _arc (Hy : CPy = [CPy] By, : CP,)
if (By,; is not a unification)
adde : CP() = [Cpl] Bkﬂ' : CPy
to dependency arc table
W =vars(Ag - Bgi,...,Brn,)
CPs; := get_answer(B,; : CP,, CPy, W)
if (CP; #£ L andi # ny)
CP; := Arestrict(CPs, vars(Byit1))
add _event (arc(
H; - CP() = [Cpg] Bk,i—l—l : CP4))
elseif(CP; # 1 andi = ny)
AP; := Arestrict(CP;, vars(Hy))
insert _answer _info (H : CPy — AP)

get _answer (L : CP,,CP;, W)
if (L is a unificationt; = t,)
return Aunif(ty, to, CPy)
else
AP, :=lookup _answer (L : CP,)
AP; := Aextend (AP, V)
return Aconj(CP,, AP;)

lookup _answer (A : CP)

if (there exists a renamings.t.
o(A : CP) — APin answer table)
return o~ (AP)

else
add_event(newcall(c(A : CP)))
whereo is a renaming s.t.
o(A) isin base form
return L

insert _answer _info (H : CP— AP)
AP, :=lookup_answer(H : CP)
AP, := Alub(AP, AP,)
if (AP, # APy)
add(H : CP— AP;) to answer table
add_event(updated(H : CP))

Figure 19: Abstract Interpretation with Specialized Definitions.

e newcall(A : CP) which indicates that a new calling pattern for ateghwith description

CP has been encountered.

e arc(R) which indicates that the rule referred to fineeds to be (re)computed from the

170

position indicated.

e updated(A : CP) which indicates that the answer description to calling patténwith
descriptionCP has been changed.

The main procedure of the algorithmasalyze _sp _defs , which is defined in terms of six
abstract operations on the description dom@jnof interest:

e Acalltoentry(A;, CP, A,) performs the abstract unification df; and A, and returns the
abstract descriptio@P in terms ofAj;

o Arestrict(CP, V) performs the abstract restriction of a descriptinito the set of variables
in the setl”, denotedvars(V);

o Aextend(CP, V) extends the descriptioc@P to the variables in the séf;

e Aunif(ty, tp, CP) performs the abstract unification of termsandt, in the context of de-
scriptionCP;

e Aconj(CPy, CP,) performs the abstract conjunction of two descriptions;
e Alub(CP;, CP;) performs the abstract disjunction of two descriptions.

Apart from the parametric description domain-dependent functions, the algorithm has several
other undefined functions. The functioadd_event andnext_event respectively add an event

to the priority queue and return (and delete) the event of highest priority. When an event being
added to the priority queue is already in the priority queue, a single event with the maximum
of the priorities is kept in the queue. When an &¢ : CP = [CP"|By; : CP is added to

the dependency arc table, it replaces any other arc of the fyrm CP = [|B;; : _in the

table and the priority queue. Similarly when an enffy : CP — AP is added to the answer

table, it replaces any entry of the forfy, : CP — _. Note that the underscore) (natches any
description, and that there is at most one matching entry in the dependency arc table or answer
table at any time.

The functioninitial_guess returns an initial guess for the answer to a new calling pattern.
The default value isL but if the calling pattern is more general than an already computed call
then its current value may be returned.

The algorithm centers around the processing of events on the priority queteannoop,
which repeatedly removes the highest priority event and calls the appropriate event-handling
function. When all events are processed it calmnove_useless_calls. This procedure traverses
the dependency graph given by the dependency arcs from the initial calling pat@ndsmarks

171

those entries in the dependency arc and answer table which are reachable. The remainder are
removed. More details on the algorithm (without specialized definitions) can be found in [89].

As already mentioned, the main difference of our analysis algorithm of Fig. 19 w.r.t. the
original algorithm of [89] is that we analyze the program by using the specialized rules computed
by functionspecialized_definition of Def. 50.9 rather than the original rules.

51.1 Correctness

In this section we discuss whether the analysis results obtained by the proposed analysis frame-
work are correct.

Theorem 51.1correctness] Lef be a program and led : C'P be an initial call pattern irb.
Let A : CP — AP be the answer pattern computed by the analysis algorithm in Fig. 19. Then,
AP is a correct answer pattern fdr: CP, i.e.,y(A, AP) D [A]\“P).

Proof By Theorem 50.8, we know that specialized definitions always preserve the concrete
semantics of the original one. As a result, since the analysis algorithm is guaranteed to obtain a
safe approximation of the success set, the analysis obtained by analyzingla ¢aft w.r.t. the
specialized definition is guaranteed to be also a safe approximat[ptj]b"rcp),

O

In addition to obtaining results which are correct, we conjecture that the proposed framework
allows obtaining more precise results than those achieved by traditional abstract interpretation
algorithms. Several examples already show a gain in accuracy although the formal proof is a
subject of further research.

52 Termination

In this section we recall the termination problems which appear in both abstract interpretation
and partial deduction and then relate these problems in the context of the integrated framework
we propose.

52.1 Termination in Abstract Interpretation

As it is well known, termination of traditional algorithms for abstract interpretation of logic
programs [13, 89] is achieved by using abstract domains with certain characteristics and possibly
the use ofvideningoperators. More precisely, two termination problems can be considered:

172

A.1 the success computation problem: when computing an answer pattern for a call pattern
A : CP, different tentative answer patterasP,, AP, ..., AP, with AP, C AP, C
... C AP, can be computed until a fixpoint is reached.

A.2 the call computation problem: if analysis is context-sensitive and multivariant, several call
patterns{A4, : CPy,..., A, : CP,} with pred(A;) = ... = pred(A,) = p can be
generated during analysis for the same predipate

Intuitively, A.1 is related to the complexity of computing the final answer pattefy for a
given call patterrd : C'P. Problem A.2 is related to keeping finite the number of call patterns
which are analyzed, i.e., the answer table must be finite. Termination w.r.t. A.1 is guaranteed by
using abstract domains without infinite ascending chains or by the use of widening operators.

Definition 52.1[widening] We say that an operat®f is a widening iff for any increasing chain
ag C ay; C ap C ... then chainy = agVay, ...,b;11 = b;Va,,1, ... IS not strictly increasing for
C, that is, it should be a stationary sequence.

In addition to being used for ensuring termination, widening operators can be used in abstract
domains with finite ascending chains to accelerate convergence.

Termination w.r.t. A.2 does not represent a problem if the analysis algorithm is context-
insensitive or monovariant. However, if the domain is infinite, the ascending chain finite con-
dition is not enough for guaranteeing termination w.r.t A.2. In this situation, some way to limit
multivariance is needed in order to guarantee termination.

Let us discuss this problem in more detail. Given a predipaiae order to guarantee ter-
mination w.r.t. A.2 it is required that the number of call patterns of the fdrmC'P such that
pred(A)=pwhich are handled by analysis, i.e., for which an entry in the answer table is computed
must be finite. It is important to observe that, each atbm a program encodes a concrete sub-
stitution 6 defined ag)=Inst(A)=mgu(A,basdorm(A)). Thus, each call patterd : C' P can be
seen as a tripléase_form(A), Inst(A), CP). As a result, the number of combinations of con-
crete and abstract substitutions for which we would like to analyze a program procedure must be
finite. In traditional abstract interpretation this is obtained by first fixing the maximum number
of concrete substitutions for which a procedure can be analyzed and then by using some multi-
variance control strategy which guarantees that the number of abstract substitutions for which a
concrete atom can be analyzed always remains finite.

Many frameworks for abstract interpretation of logic prograraamnalizeprograms prior to
analysis. A program is normalized if all atoms only contain distinct variables. This is in general
not restrictive since all logic programs can be normalized. A normalized representation allows

173

simplifying both the formalization and the implementation of the algorithm. In particular it
limits the number of concrete substitutions for which a procedure can be analyzed to just one per
procedure.

Other analysis frameworks, such as the one we prdfode not require programs to be
normalized. For this, an additional abstract operatirglltoentryin our case, has to be added
to the algorithm. This design decision has several consequences: it augments the multi-variance
level of the analysis since calls which correspond to different concrete atoms will be analyzed
separately. This will have an impact both on the accuracy and the efficiency of the analysis.
On the accuracy side, more accurate results will be obtained since it allows eliminating from
Def(A, P) those rules whose head unifies withseform(A) but does not unify with the atom
A to be analyzed. On the efficiency side, more call patterns will have to be analyzed, which
means that more analysis time will be required. Note, however, that even in this scenario, the
set of concrete substitutions for which a procedure can be analyzed is also fixed (and finite)
since it is limited to the atoms which explicitly appear in the program to be analyzed. Thus, in
both cases (normalized and unnormalized programs) termination w.r.t. A.2 is guaranteed by the
use of a multi-variance control strategy which guarantees that the set of abstract substitutions
{CP,,...,CP,} for a given concrete ator is finite.

52.2 Termination in Program Specialization

Termination of program specialization is often split in two levels:

S.1 the so-calledocal termination: this is the problem of ensuring that a finite number of un-
folding steps are performed for a given initial call patteirn C'P.

S.2 and theglobal termination:in this case, we have to ensure that the number of atbm&' P
for which a specialized definition is to be computed remains finite.

The topic of local and global termination has received considerable attention in the partial de-
duction community. It is not the goal of this work to present a thorough study of local and global
control strategies. We present however in Section 54 the different control strategies currently
available in our implementation of the framework.

Definition 52.2generalize] A functiorgeneralizedtoms x 24*°™ — Atoms is any function
such that for any atord and set of atomgl generalize(A4) O A.

320ne important difference between the algorithm herein presented and that in [89] is that the current algorithm
allows analyzing programs which are mairmalized

174

In other words, the functiogeneralizereturns a generalization of atorh The more in-
formationgeneralizeloses, the faster global termination will be achieved. However, the more
information is lost the less productive specialization will in principle be. On the other extreme,
the identity function is trivially a corre@eneralizefunction which loses no information. How-
ever, termination is not guaranteed and more conservative functions will be used in practice.

52.3 Termination in the Integrated Framework

Since our framework performs both specialization and abstract interpretation, it is natural that
the four termination problems mentioned above appear in this context.

Problem S.1 appears because the algorithm now contains an additional phase which is that
of specializing definitions and it corresponds to guaranteeing that the executspecfl-
ized definitionterminates. Note that it may often be the case that an infinite number of unfolding
steps may be performed.

Intuitively, problem S.2 appears because the program to be analyzed during abstract inter-
pretation with specialized definitions is not fixed, but rather is dynamically generated during
analysis. Since the process of specializing definitions may introduce new concrete bindings, the
assumption that the number of concrete atoms per predicate is fixed no longer holds.

Note that clearly, problem (S.2) is indeed very related to the problem (A.2). S.2 is solved
in program specializers by keeping the number of concrete substitutions per predicate finite, by
means of the application ofgeeneralizeoperation during global control. A.2 is solved in abstract
interpretation by first fixing a set of atoms and then keeping the number of abstract substitutions
per atom each atom finite by means of multi-variance control. As a result both a terminating
global control strategy and a terminating multi-variance control strategy are required in order to
guarantee termination of our integrated approach.

Even if local termination is guaranteed, for example by applying zero unfolding transfor-
mations, global termination (S.2) is threatened as soon as we appigtahtiation instantia-
tion_with_abs subs andunfolding

Note that termination of abstract interpretation is guaranteed w.r.t. both S.1 and S.2 since no
unfolding steps are performed and instantiation nor partial concretization are applied, i.e., the
atomA is always analyzed w.r.tD, = Def(A, P).

In order to guarantee terminationanalyze _sp _defs while still allowing performing any
of the transformations presented in Section 50.2, we need to introduce the possibility of using
a global control strategy which will abstract away part of the concrete information in an atom
before applyingnstantiation

For this we have to augment the algorittamalyze _sp _defs in several ways. We will

175

spec _def _glob _control (A,CP,P)

(A" : CP):=generalize (A,CP)

add(A : CP) ~ (A’ : CP) to generalization table

if (there exists a renamings.t.
o(A : CP) — SDin specialization table)
return SD

else
SD:=specialized _definition (A’',CP,P)
add (4’ : CP) — SDto specialization table
return SD

Figure 20: Adding global control

add two more global data structures:

e Specialization tableit contains entries of the forrd : CP — D, whereA : CPis a call
pattern andD is a definition forpred(A). It should be interpreted &3 is the specialized
definition which has been obtained by specialization wA.t.CP.

e Generalization table:it contains entries of the form : CP ~ A’ : CP. It should be
interpreted as: the call patterh: CPis analyzed w.r.t. a definition g@fred(A) which has
been specialized w.r.td’ : CP. Correctness of analysis requires thdt: CP) C (A’ :
CP).

The specialization table is useful in two ways. The most obvious one is to record the set of
call patterns for which a specialized definition has already been computed. This is exactly the
role usually played by the set of atoms during global control of partial deduction. The second one
is more a practical reason: since several call patterns may share the same specialized definition,
it can be a good idea to store the result of specialization. Also, in contrast to partial deduction,
abstract interpretation often has to iterate and process body clauses several times until a fixpoint
is reached, thus storing the specialized clauses is often a good idea.

The generalization table actually stores the results of generalization obtained up to the present
moment. In contrast to the specialization table, it is not actually required for termination of the
algorithm. However, this table together with the dependency arc table allow implementing an
efficient and accurate code generation scheme which is strictly more accurate than that used in
partial deduction.

Figure 20 shows the definition of the functispec _def _glob _control which special-
izes definitions while performing global control. Note that this function should be called instead
of specialized _definitions in algorithmanalyze _sp _defs . Both the specialization

176

table and the generalization table are global arguments. The specialization table is implicitly
used by theyeneralize function.

53 The Framework as a Specializer

As already mentioned, the integrated framework we propose has applications both in program
analysis and specialization. In fact, it is natural to consider the possibility of using the specialized
definitions which were generated during the executioanaflyze _sp _defs (S, P) rather than

the original progran®P.

Since when abstract interpretation terminates the set of call patterns analyzed is guaranteed
to be covered, itis possible to use the rules which correspond to specialized definitions and throw
away the original program altogether.

As usually done in partial deduction and also in abstract specialization, we will use different
names for each different specialized version of each predicate. This will make it possible to have
a multiply specialized program without introducing run-time tests to select among the different
implementations for the predicate. This will also guarantee the independence condition among
atoms usually required in partial deduction.

Given that we will rename program rules, the main difficulty now is to also rename calls in
body atoms so that the corresponding version is used. In partial deduction, deciding which is the
correct version to use is often based on the abstraction operator used during the specialization
phase. In our case, the dependency arc table together with the generalization table can directly
be used in order to determine precisely which is the version to be used in each literal of each rule
of the specialized program.

There are other interesting question to take into account. One is that the results of analy-
sis, i.e., the answer table may contain entries which corresposutiouscall pattern. These
corresponds to tentative call patterns which are not really used in the final analysis graph. In
our algorithm, the spurious call patterns are removed right after reaching a fixpoint by the
remove _useless _calls operation. Another important thing to mention is that the use of
a generalization operation allows using the same specialized definition for different call patterns.
This will help to reduce the size of the final program.

In spite of this, more powerful techniques for minimizing the size of the final program could
be used. We are in fact investigating the possibility of extending the minimization algorithm
already used in abstract specialization [189] for its appliaction in this context.

177

54 System Description

CiaoPP [88] is the abstract interpretation-based preprocessor dfi&e multi-paradigm con-
straint logic programming system. It uses modular, incremental abstract interpretation as a fun-
damental tool to obtain information about the program. A version of the analysis engine ex-
isting in CiaoPP has been extended in order to cope with specialized definitions, as explained
throughout the paper. The new framework is fully integrated into the latest distribution of the
CiaoPP system. This section shows the different options of a typical session with the new exten-
sion of the analyzer. Firs€iaoPP is started by loading the libragiaopp in aCiao shelf3.

use_module(library(ciaopp)).

There are several fixpoint algorithms coexisting in @iaoPP system. Our contribution has
been integrated with the so-calledi*” fixpoint, which corresponds to théepth independent
fixpoint algorithm described in [187]. It is selected by setting up the fibggpint to the
valuedi as follows.

set_pp_flag(fixpoint,di).

Then, we have a good number of options for controlling the local and global levels in the special-
ization process. We also have the possibility of applying the partial concretization of the abstract
properties to the concrete atoms (see Sect. 50). Finally, we show the instructions to generate the
code of the specialized program. The next sections discuss these options in more detail.

54.1 Local Control

In order to ensure the local termination of the algorithm, we must incorporate some mechanism to
stop the construction of the unfolding process. For this purpose, there exist several well-known
techniques in the literature, e.g., depth-bounds, loop-checks [9], well-founded orderings [15],
well-quasi orderings [202], etc. We have incorporated an unfolding ru@anPP which can

be controlled by three different strategies:

e Off : corresponds to not computing specialized definitions.
e inst : instantiation is performed, but no unfolding steps take place.

e det : this strategy allows the expansion of unfolding while derivations are deterministic
and stops them when a non-deterministic branch is required;

33More detailed information o€iaoPP can be found in [88].

178

e emb: the non-embedding unfolding rule, which uses the homeomorphic embedding order-
ing to stop the unfolding process;

The desired strategy can be selected by settingptted _control flag:

set_pp_flag(local_control,strategy).

wherestrategy corresponds temb, det , inst , oroff as explained above. Notice that the
strategydet is non-terminating but it is included for efficiency purposes.

The selection of local control is necessary in order to perform analysis with specialized defi-
nitions. If local control is turned off, we just have the standard analysis regardless of the options
selected for global control.

54.2 Global Control

As a result of the specialization performed at the local control level, new patterns are produced
and subject to be analysed. The global control is constrained to continue iteratively with the
analysis of those patterns which are notveredyet by the previously analyzed patterns. Since

this process can be infinite, we include some strategies to improve (and in some cases ensure)
the termination behavior of analysis:

e Off : thisis equivalent to not usinggeneralizgunction, i.e., we specialize all call patters
which we receive.

e id : this strategy allows specializing a new pattern provided it is not equal (modulo renam-
ing) to a formerly analyzed one.

e inst : this strategy allows us to specialize a new pattern if it is not an instance of a previous
pattern.

e hom_emhb the nonembedding abstraction operator uses the homeomorphic embedding
ordering to detect when a pattern is covered and, thus, stop the iterative process;

The desired strategy can be selected by setting the corresponding flag:
set_pp_flag(global_control,strategy).

wherestrategy can be one of the above options. Out of the four strategies, amtyemb
always ensures the termination of the process. Althougldthandinst strategies are more
efficient and terminating in many practical cases.

179

54.3 Instantiation w.r.t. Abstract Information

We claim that more specialization can be achieved in some cases by appstangiationwith_abs info
instead ofinstantiationin order to specialize a definition. In order to be able to select between
those two possibilities, we can use theert_conc flag as follows.

set_pp_flag(part_conc,on).

The flag can be deactivated with the vabfé at any time.

54.4 Code Generation

Once the different settings have been selected, we can load the program subject to be specialized
(the initial data is written by means of amtry declaration in the same file where the program
resides):

module(app).

Then, the analysis is started with the desired domain (e.getétens domain):

analyze(eterms).

In order to generate a specialized program from the analysis results, we have to perform the
so-calledcodegen transformation:

transform(codegen).

The specialized program can be written in a file (e.g..abput _file) by calling the predi-
cateoutput as follows.

output(output_file).

55 A Running Example

Example 55.1

Let us consider the program in Fig. 55.1 which generates lists of “valid” numbers, i.e., lists
formed by a certain combination dfs and2’s. Predicateg generates a non-empty list made
up of 2’s and ending withl. The intermediate predicapeis used to obtain a value indicating
whether this list is empty (returr®) or contains at least one number (retufi)s Then, a call
to app concatenates the constant [$2,1] with the one generated ly. Finally, the test
validlist checks whether the resulting list is of typealidlist " which represents a

180

myapp(Res):- L1=[L2],q(L),p(L,L2),app([1,2|L1],L,Res),validlist(Res).

q([1]).
q([2/Xs]):- a(Xs).

p(X,Y):- r(X,Y).

r((1,0).
@ 1-13).

app([],Y,Y):- validlist(Y).
app([X|Xs],Y,[X|Zs]):-app(Xs,Y,Zs).

- regtype validlist/1.

validlist([]).
validlist([X|Xs]):- valid(X),
validlist(Xs).

.- regtype valid/1.

valid(1).
valid(2).

Figure 21: Running Example

valid list of 2’s and1’s. The definitions of these two regular types are declared by means of a
regtype declaration, followingCiaoPP syntax.

Now, we proceed to specialize the above program without any input data (neither concrete
nor abstract) irCiaoPP by using theeterms domain. During this process, the specialized def-
initions are generated by using the deterministic local control and applying partial concretization
(see Sect. 54). Let us see as example the generation of the specialized rule forgfiglc2)l
in the definition of predicatenyapp. After analyzing the first two atoms, we obtain the abstract
descriptionrtO(L1), rt6(L) where the new regular types are definedtke

- regtype rt6/1.
rt6([A|B]) :- valid(A),validlist(B).

34We refer to [214] for a detailed description of analysis ustteyms . It is outside the scope of this work.

181

- regtype rtO/1.
rtO([A]) :- term(A).

If we proceed to generate a specialized definition for the next ai@nt2) , we first apply
the partial concretization transformation of the previous description w.r.t. the atom, which gives
p([A],L2) . Now, we instantiate the rule definipgwith this atom and obtaip([A],Y):- r([A],Y)
It is unfolded by using the second rule definm@nd we get the specialized ripgA],1) for
the atom.

Similarly, the specialization of the different atoms has been performed. By analyzing their
specialized definitions, the resulting program is:

myapp(A) - _1(B),B=[3| 4],A=[1,2,1, 3| A4].

q-1([1]).
q-1([2|A]) -q -1(A).

Note that in order to obtain this specialized program it is required: (1) to use an abstract
domain which captures regular types, (2) to compute approximations of success substitutions,
(3) to perform aggressive unfolding, (4) to be able to eliminate rules which are incompatible
with a given abstract call pattern, and (5) to be able to abstractly execute calls to predicates
which are regular types.

Traditional partial deduction would not be able to optimize this program very much. It can
perform (3), but none of the four other requirements. Abstract interpretation without special-
ized definitions would not be able to infer accurate enough information so as to detect that the
validlist tests are redundant. Abstract specialization cannot perform (3) and thus would not
be able to fully optimize the program.

Note that having all this features simultaneously in the framework further improves the results
obtained by the individual techniques. Having (1) and (2) allow performing instantiation with
abstract information which improves the results of unfolding ofhis in turn may generate new
bindings which may improve the analysis results, and so on. Thus, the fine-grained integration
we propose allows improving simultaneously the benefits of program analysis and specialization.

Another example of the power of the combination is the optimization of the capippo The
system infers that the first list contains three constant elements and an unknown one. After four
unfoldings its definition disappears. Also, the teatidlist is abstractly executed by our
system the list resulting from the concatenation since it is inferred frdhthatB is a valid list.
Clearly, the first three elements also satisfy the test.

182

56 Conclusions

Several works have witnessed the need of unifying the techniques of abstract interpretation and
partial evaluation in a single framework able to obtain highly specialized programs. There has
been a parallel development of frameworks which integrate notions of abstract interpretation in
a partial evaluation algorithm [124, 70] and others which incorporate a code generation phase
within an abstract interpreter [191, 192]. However, we are not aware of any practical algorithm
able to combine and improve the power of the individual techniques.

The first approach establishes the conditions that the operations of abstract unfolding and
abstract resolution must fulfill in order to have a correct framework, but does not give an actual
algorithm. In the latter approach, it is specified how to generate code from the program and the
analysis results but not specify how to perform unfolding. Indeed, [192] points out the need
of integrating an unfolding rule in the abstract interpreter for the purpose of specialization and
mentions several possibilities for doing it.

Our work studies an efficient and practical way of interleaving unfolding and abstract inter-
pretation so that we unify the advantages of the individual techniques. In particular, we present
an on-line, specialization algorithm for logic programs, whose behavior is parametric w.r.t. the
local control strategy, the generalization operatgeneralize and the abstract domaib,,
(together with a widening operator when needed). In particular, the analysis algorithm can be
formulated as:

analyze(D,, V,, local_control(p), generalize)

Useful instances of this generic algorithm can be easily defined by instantiating the above four
parameters. In this work, we have considered the case of partial evaluation which usually depends
only on the unfolding rule and the generalization operator. Then, it happens that:

analyze(D/, (), local_control(inst + unfold), generalize)

is a PE procedure if the domail), assignsT to all terms and no widening operator is used.
Thus, by using more refined abstract domains, it has been shown that our algorithm is a reason-
able improvement over pure PE. Another instance of the algorithm is obtained by considering
the off local control rule. In such case, there is no need for a global control rule. We can
use thed value, for example. Thus, the algorithmalyze(D,, V,, local_control(off), Id)
corresponds to the abstract interpreter of [89]. Some examples demonstrate that by considering
advanced unfolding rules and abstraction operators we can increase the accuracy of [89]. Conse-
guently, we think that our method can give support and induce new research in hybrid approaches
to specialization.

183

Acknowledgements

The authors would like to thank Maurice Bruynooghe for the valuable feedback he provided on
the ACM TOPLAS paper, as well as the anonymous referees of such a paper, whose detailed
comments and constructive criticisms have substantially improved the article.

The authors also greatly benefited from discussions with Danny De Schreye, Stefan Gruner,
Neil Jones, Jesper Jgrgensen, Helko Lehmann, Bern Martens, Torben Mogensen, Jens-Peter
Secher, Morten Heine Sgrensen, and comments of anonymous referees of JICSLP’98.

Thanks to Francisco Bueno and Pediapkz for their help in the implementation of the tools
herein presented, to M. Gaecde la Banda, P J. Stuckey, and K. Marriott who have participated
in the development of some of the applications presented, and to Claudio Vaucheret for his
implementation of thetermsdomain.

184

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

P. A. Abdulla, K.Cerns, B. Jonsson, and Y.-K. Tsay. General Decidability Theorems
for Infinite-state Systems. Ihlth IEEE Symposium on Logic in Computer Sciepages
313-321, 1996.

E. Albert, M. Alpuente, M. Falaschi, P. Jah, and G. Vidal. Improving control in func-
tional logic program specialization. In G. Levi, editor, Static AnalyBigoceedings of
SAS'98LNCS 1503, pages 262-277, Pisa, Italy, September 1998. Springer-Verlag.

M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.
ACM Transactions on Programming Languages and Syst2@4):768-844, 1998.

K. R. Apt. Introduction to logic programming. In J. van Leeuwen, edittandbook of
Theoretical Computer Sciencehapter 10, pages 495-574. North-Holland Amsterdam,
1990.

K. R. Apt and E.-R. Olderog. Verification of Sequencial and Concurrent Programs
Springer-Verlag, 1991.

K. Benkerimi and P. M. Hill. Supporting transformations for the partial evaluation of logic
programs.Journal of Logic and Computatioi(5):469-486, October 1993.

F. Benoy and A. King. Inferring argument size relations in CRIP(In Proceedings of
the 6th International Workshop on Logic Program Synthesis and Transformatames
204-223, Sweden, 1996. Springer-Verlag, LNCS 1207.

R. Bol. Loop checking in partial deduction.The Journal of Logic Programming
16(1&2):25-46, 1993.

R. Bol. Loop Checking in Partial Deductiodournal of Logic Programmingl6(1&2):25—
46, 1993.

D. Boulanger and M. Bruynooghe. Deriving fold/unfold transformations of logic pro-
grams using extended OLDT-based abstract interpretafiontnal of Symbolic Compu-
tation, 15(5&6):495-521, 1993.

D. Boulanger and M. Bruynooghe. A systematic construction of abstract domains. In
B. Le Charlier, editorProc. First International Static Analysis Symposium, SASV@d
ume 864 ofSpringer-Verlag Lecture Notes in Computer Sciempages 61-77, 1994.

185

[12] D. Boulanger, M. Bruynooghe, and M. Denecker. Abstractisgmantics using a model-
theoretic approach. In M. Hermenegildo and J. Penjam, edifns;. 6" Interna-
tional Symposium on Programming Language Implementation and Logic Programming,
PLILP’94, volume 844 ofSpringer-Verlag Lecture Notes in Computer Sciepeges 432—
446, 1994.

[13] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs.
Journal of Logic Programmingl0:91-124, 1991.

[14] M. Bruynooghe. A practical framework for the abstract interpretation of logic programs.
The Journal of Logic Programming0:91-124, 1991.

[15] M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding Infinite
Unfolding. New Generation Computind1(1):47-79, 1992.

[16] M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite
unfolding during partial deductiorNew Generation Computind1(1):47-79, 1992.

[17] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard
Prolog Programs. IfEuropean Symposium on Programmimgimber 1058 in LNCS,
pages 108-124, Sweden, April 1996. Springer-Verlag.

[18] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: a heuristic
for guiding inductive proofsAtrtificial Intelligence 62:185-253, 1993.

[19] R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-
grams.Journal of the ACM24(1):44-67, 1977.

[20] R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-
grams.Journal of the ACM24(1):44-67, 1977.

[21] W. Charatonik and A. Podelski. Directional type inference for logic programs. In G. Levi,
editor, Proceedings of the International Symposium on Static Analysis (SAS’98), Pisa,
September 14 - 16, 1998olume 1503 ofSpringer LNCS pages 278-294. Springer-
Verlag, 1998.

[22] W. Charatonik, A. Podelski, and J.-M. Talbot. Paths vs. Tress in Set-based Program Ana-
lysis. In Principles of Programming Languagepages 330-338. ACM Press, January
2000.

186

[23] B. L. Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for PrologACM Transactions on Programming Languages and
Systemsl6(1):35-101, 1994.

[24] W.-N. Chin and S.-C. Khoo. Tupling functions with multiple recursion parameters. In
Proceedings of the Third International Workshop on Static Analysisiber 724 in LNCS
724, pages 124-140, Padova, Italy, Sept. 1993. Springer-Verlag.

[25] K. Clark. Predicate logic as a computational formalism. Technical Report DOC 79/59,
Imperial College, London, Department of Computing, 1979.

[26] E. M. Clarke, O. Grumberg, and D. Peléddodel CheckingMIT Press, 1999.
[27] E. M. Clarke, O. Grumberg, and D. Peleddodel CheckingThe MIT Press, 2000.

[28] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future direcAQi.
Computing Survey28(4):626—-643, Dec. 1996.

[29] M. Comini and M. C. Meo. Compositionality properties of sld-derivatiombeoretical
Computer Scienc®11(1 & 2):275-309, Jan. 1999.

[30] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applicatiohgp://www.grappa.univ-lille3.fr/tata, 1999.

[31] C. Consel and O. Danvy. Tutorial notes on partial evaluation. Ptaceedings of
ACM Symposium on Principles of Programming Languages (POPL{8®8)es 493-501,
Charleston, South Carolina, January 1993. ACM Press.

[32] C. Consel and O. Danvy. Tutorial Notes on Partial Evaluation. AGM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages POPh&@@s 493-501,
Charleston, South Carolina, 1993. ACM.

[33] C. Consel and S. C. Khoo. Parameterized partial evaluath@M Transactions on Pro-
gramming Languages and Systehs(3):463—493, 1993.

[34] C. Consel and S. Koo. Parameterized partial deduct#@@M Transactions on Program-
ming Languages and Syster8§(3):463—-493, July 1993.

[35] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints.Faurth ACM
Symposium on Principles of Programming Languageges 238-252, 1977.

187

[36] P. Cousot and R. Cousot. Abstract interpretation and application to logic progfdres.
Journal of Logic Programmingl3(2 & 3):103-179, 1992.

[37] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks
by Abstract Interpretation. IROPL'02: 29ST ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languaggsages 178-190, Portland, Oregon, January 2002.
ACM.

[38] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables
of a program. InProceedings of the Conference Record of the 5th ACM Symposium on
Principles of Programming Languaggsages 84-97, Albugquerque, New Mexico, 1978.

[39] P. Dart and J. Zobel. A Regular Type Language for Logic Program3ypes in Logic
Programming pages 157-187. MIT Press, 1992.

[40] M. G. delaBanda, K. Marriott, and P. Stuckey. Efficient Analysis of Constraint Logic Pro-
grams with Dynamic Scheduling. 995 International Logic Programming Symposjum
pages 417-431, Portland, Oregon, December 1995. MIT Press, Cambridge, MA.

[41] D. De Schreye and S. Decorte. Termination of logic programs: The never ending story.
The Journal of Logic Programming 9 & 20:199-260, May 1994.

[42] D. De Schreye, R. @ick, J. Jargensen, M. Leuschel, B. Martens, and M. H. Sgrensen.
Conjunctive partial deduction: Foundations, control, algorithms and experindecthal
of Logic Programming41(2 & 3):231-277, November 1999.

[43] D. A. de Waal and J. Gallagher. Specialisation of a unification algorithm. In T. Clement
and K.-K. Lau, editors, Logic Program Synthesis and Transformakooceedings of
LOPSTR’'9] pages 205-220, Manchester, UK, 1991.

[44] D. A. de Waal and J. Gallagher. The applicability of logic program analysis and transfor-
mation to theorem proving. In A. Bundy, editdwtomated Deduction—CADE-1j2ages
207-221. Springer-Verlag, 1994.

[45] S. Debray and D. Warren. Automatic mode inference for logic progrdmsnal of Logic
Programming 5(3):207-229, 1988.

[46] G. Delzanno and A. Podelski. Model Checking in CLP. In W. R. Cleaveland, e8ttor,
International Conference on Tools and Algorithms for the Construction and Analysis of
Systemgpages 223-239. Springer-Verlag, LNCS 1579, 1999.

188

[47] K. Doets. Levationis lausJournal of Logic and Computatioi(5):487-516, 1993.

[48] A. Finkel. The minimal coverability graph for Petri neté.ecture Notes in Computer
Science674:210-243, 1993.

[49] A. Finkel and P. Schnoebelen. Fundamental Structures in Well-structured Infinite Tran-
sition Systems. IProceedings of LATIN'98volume 1380 ofLNCS pages 102-118.
Springer-Verlag, 1998.

[50] A. Finkel and P. Schnoebelen. Well-structured Transition Systems everywheeeleti-
cal Computer Scien¢d999. To appear.

[51] F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specialising con-
straint logic programs. In K.-K. Lau, editatPQth International Workshop on Logic-based
Program Synthesis and Transformatjgrages 125-146. Springer-Verlag, LNCS 2042,
2000.

[52] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite state
systems by specializing constraint logic programs. Technical Report DSSE-TR-2001-
3, Department of Electronics and Computer Science, University of Southampton, 2001.
Proceedings of the Second International Workshop on Verification and Computational
Logic (VCL01).

[53] T. Fruawirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for logic
programs. IrProc. LICS’91 pages 300-309, 1991.

[54] Y. Futamura, K. Nogi, and A. Takano. Essence of generalized partial computatien-
retical Computer Scien¢®0(1):61-79, 1991.

[55] J. Gallagher. A system for specialising logic programs. Technical Report TR-91-32,
University of Bristol, November 1991.

[56] J. Gallagher. Static Analysis for Logic Program Specialization\Wbrkshop on Static
Analysis WSA'92pages 285-294, 1992.

[57] J. Gallagher. Tutorial on specialisation of logic programsPtaceedings of PEPM’93,
the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation pages 88-98. ACM Press, 1993.

189

[58] J. Gallagher, D. Boulanger, and H.dam. Practical model-based static analysis for
definite logic programs. In J. W. Lloyd, editd?roc. of International Logic Programming
Symposiunpages 351-365, 1995.

[59] J. Gallagher and M. Bruynooghe. Some low-level transformations for logic programs.
In M. Bruynooghe, editorProceedings of Meta90 Workshop on Meta Programming in
Logic, pages 229-244, Leuven, Belgium, 1990.

[60] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program specialisa-
tion. New Generation Computing(3 & 4):305-333, 1991.

[61] J. Gallagher and M. Bruynooghe. The derivation of an algorithm for program specialisa-
tion. New Generation Computing(1991):305-333, 1991.

[62] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP Programs
Using Abstract InterpretatioNew Generation Computing(2—3):159-186, 1988.

[63] J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP programs using
abstract interpretatioNew Generation Computing:159-186, 1988.

[64] J. Gallagher and D. de Waal. Deletion of redundant unary type predicates from logic pro-
grams. In K. Lau and T. Clement, editotsygic Program Synthesis and Transformation
Workshops in Computing, pages 151-167. Springer-Verlag, 1993.

[65] J. Gallagher and D. de Waal. Fast and precise regular approximations of logic programs.
In P. Van Hentenryck, editoRroc. of the 11th International Conference on Logic Pro-
gramming pages 599-613. MIT Press, 1994.

[66] J. Gallagher and D. A. de Waal. Deletion of redundant unary type predicates from logic
programs. In K.-K. Lau and T. Clement, editors, Logic Program Synthesis and Transfor-
mation.Proceedings of LOPSTR’9pages 151-167, Manchester, UK, 1992.

[67] J. Gallagher and D. A. de Waal. Fast and precise regular approximations of logic programs.
In P. Van Hentenryck, editoRroceedings of the Eleventh International Conference on
Logic Programmingpages 599-613. The MIT Press, 1994.

[68] J. Gallagher and L. Lafave. Regular approximation of computation paths in logic and
functional languages. In O. Danvy, R.iigk, and P. Thiemann, editoRartial Evaluation
volume 1110, pages 115 —136. Springer Verlag Lecture Notes in Computer Science, 1996.

190

[69] J. Gallagher and L. Lafave. Regular approximations of computation paths in logic and
functional languages. In O. Danvy, R.iigk, and P. Thiemann, editoiRartial Evaluation,
International SemingrLNCS 1110, pages 115-136, Schlof3 Dagstuhl, 1996. Springer-
Verlag.

[70] J. Gallagher and J. Peralta. Using regular approximations for generalisation during partial
evaluation. InProc. of the SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulatigrpages 44-51. ACM Press, 2000.

[71] J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite Tree
Automata for Set-Based Analysis of Logic ProgramsFaarth International Symposium
on Practical Aspects of Declarative Languagaamber 2257 in LNCS, pages 243-261.
Springer-Verlag, January 2002.

[72] J. P. Gallagher and L. Lafave. Regular approximation of computation paths in logic and
functional languages. In O. Danvy, R.igk, and P. Thiemman, editofBartial Evalua-
tion, pages 115-136. Springer-Verlag, LNCS 1110, 1996.

[73] J. P. Gallagher and J. C. Peralta. Using regular approximations for generalisation during
partial evaluation. In J. Lawall, editoRroceedings of PEPM'Q0pages 44-51. ACM
Press, 2000.

[74] J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain in program
specialisation.Higher Order and Symbolic Computatioh4(2—3):143-172, November
2001.

[75] J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain in program
specialisationHigher-Order and Symbolic Computatioiv(2-3):143-172, 2001.

[76] J. P. Gallagher and G. Puebla. Abstract interpretation over non-deterministic finite tree au-
tomata for set-based analysis of logic programs. In S. Krishnamurthi and C. R. Ramakrish-
nan, editorsPractical Aspects of Declarative Languages, 4th International Symposium,
PADL 2002, Portland, OR, USA, LNCS Vol. 22p@ges 243—-261. Springer Lecture Notes
in Computer Science, January 2002.

[77] F. Giannotti and M. Hermenegildo. A Technique for Recursive Invariance Detection and
Selective Program Specialization. Rroc. 3rd. Int'l Symposium on Programming Lan-
guage Implementation and Logic Programmjimgimber 528 in LNCS, pages 323-335.
Springer-Verlag, August 1991.

191

[78] R. Gluck and J. Jgrgensen. Generating transformers for deforestation and supercompila-
tion. In B. Le Charlier, editof?roceedings of SAS’9&NCS 864, pages 432—-448, Namur,
Belgium, September 1994. Springer-Verlag.

[79] R. Gluck, J. Jgrgensen, B. Martens, and M. H. Sgrensen. Controlling conjunctive partial
deduction of definite logic programs. In H. Kuchen and S. Swierstra, edRayseedings
of PLILP’96, LNCS 1140, pages 152-166, Aachen, Germany, September 1996. Springer-
Verlag.

[80] R. Gluck and M. Leuschel. Abstraction-based partial deduction for solving inverse prob-
lems — a transformational approach to software verificatiorPrbteedings of the Third
International Ershov Conference on Perspectives of System Informeticene 1755 of
LNCS pages 93-100, Novosibirsk, Russia, 1999. Springer-Verlag.

[81] R. Gluck and M. H. Sgrensen. Partial deduction and driving are equivalent. In
M. Hermenegildo and J. Penjam, editoRspgramming Language Implementation and
Logic Programming. Proceedings, Proceedings of PLILR19XCS 844, pages 165-181,
Madrid, Spain, 1994. Springer-Verlag.

[82] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execution of
Prolog Programs: a Survef\CM Transactions on Programming Languages and Systems
23(4):472-602, July 2001.

[83] P.V.Hentenryck, A. Cortesi, and B. L. Charlier. Type analysis of prolog using type graphs.
Journal of Logic Programming22(3):179 — 210, 1994.

[84] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Gamte la Banda, P.&pez-
Garda, and G. Puebla. The Ciao Logic Programming Environmentinternational
Conference on Computational Logic, CL200aly 2000.

[85] M. Hermenegildo, F. Bueno, G. Puebla, and Bpéz-Gara. Program Analysis, De-
bugging and Optimization Using the Ciao System Preprocessot998 International
Conference on Logic Programmingages 52—66, Cambridge, MA, November 1999. MIT
Press.

[86] M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent And-
Parallelism.New Generation Computing(3,4):233-257, 1991.

[87] M. Hermenegildo, G. Puebla, F. Bueno, and Bpkz-Gara. Program Development
Using Abstract Interpretation (and The Ciao System Preprocessdithrinternational

192

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Static Analysis Symposium (SAS')08)mber 2694 in LNCS, pages 127-152. Springer-
Verlag, June 2003.

M. Hermenegildo, G. Puebla, F. Bueno, and Bpez-Gar@. Program Development
Using Abstract Interpretation (and The Ciao System PreprocessoBrotn of SAS’'03
pages 127-152. Springer LNCS 2694, 2003.

M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Con-
straint Logic Programs.ACM Transactions on Programming Languages and Systems
22(2):187-223, March 2000.

M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in
Logic Programs: Correctness, Efficiency, and Compile-Time Conditimsnal of Logic
Programming 22(1):1-45, 1995.

M. Hermenegildo, R. Warren, and S. K. Debray. Global flow analysis as a practical com-
pilation tool. The Journal of Logic Programming 3(4):349-366, 1992.

J. Howe and A. King. Specialising finite domain programs using polyhedra. In A. Bossi,
editor, Logic-Based Program Synthesis and Transformation (LOPSTR/@®)me 1817
of Springer-Verlag Lecture Notes in Computer Sciemages 118-135, April 2000.

G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems.Journal of the ACM27(4):797-821, 1980.

J. Hughes. A type specialisation tutorial. In J. Hatcliff, T. ££. Mogensen, and P. Thie-
mann, editorspPartial Evaluation: Practice and TheonLNCS 1706, pages 293-325,
Copenhagen, Denmark, 1999. Springer-Verlag.

D. Jacobs and A. Langen. Static analysis of logic programs for independent and-
parallelism.Journal of of Logic Programmingl3(2&3):291-314, 1992.

J. Jaffar and M. J. Maher. Constraint logic programming: A sur¥ée Journal of Logic
Programming 19(20):503-581, 1994.

G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of program
variables by means of abstract interpretatidhe Journal of Logic Programmind 3(2 &
3):205-258, 1992.

193

[98] G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Program
Variables by means of Abstract Interpretatialournal of Logic Programmingl3(2 and
3):205-258, July 1992.

[99] N. Jones, C. Gomard, and P. Sest&firtial Evaluation and Automatic Program Genera-
tion. Prenctice Hall, New York, 1993.

[100] N. Jones, C. Gomard, and P. Sestéfurtial Evaluation and Automatic Software Genera-
tion. Prentice Hall, 1993.

[101] N. D. Jones. An introduction to partial evaluatiohkCM Computing Survey28(3):480—
503, September 1996.

[102] N. D. Jones. Combining abstract interpretation and partial evaluation. In P. Van Henten-
ryck, editor,Static Analysis, Proceedings of SAS'@RNCS 1302, pages 396-405, Paris,
1997. Springer-Verlag.

[103] N. D. Jones. Combining Abstract Interpretation and Partial Evaluatiotdtic Analysis
Symposiupnumber 1140 in LNCS, pages 396—405. Springer-Verlag, 1997.

[104] N. D. Jones. Combining abstract interpretation and partial evaluation. In P. Van Hen-
tenryck, editorSymposium on Static Analysis (SAS;90lume 1302 ofSpringer-Verlag
Lecture Notes in Computer Scienpages 396-405, 1997.

[105] N. D. Jones. The essence of program transformation by partial evaluation and driving.
In Proceedings of the Third International Ershov Conference on Perspectives of System
Informatics LNCS 1755, pages 62—79, Novosibirsk, Russia, 1999. Springer-Verlag.

[106] N. D. Jones, C. K. Gomard, and P. Sestd?artial Evaluation and Automatic Program
Generation Prentice Hall, 1993.

[107] N. D. Jones and H. Sgndergaard. A semantics-based framework for the abstract inter-
pretation of Prolog. In S. Abramski and C. Hankin, editokbstract Interpretation of
Declarative Language<hapter 6, pages 124-142. Ellis-Horwood, 1987.

[108] R. M. Karp and R. E. Miller. Parallel program schemakaurnal of Computer and System
Sciences3:147-195, 1969.

[109] H.-P. Ko and M. E. Nadel. Substitution and refutation revisited. In K. Furukawa, editor,
Logic Programming: Proceedings of the Eighth International Confergpages 679-692.
MIT Press, 1991.

194

[110] J. Komorovski. An Introduction to Partial Deduction. In A. Pettorossi, editbeta
Programming in Logic, Proceedings of META9%0lume 649 ofLNCS pages 49-69.
Springer-Verlag, 1992.

[111] J. Komorowski. Partial evaluation as a means for inferencing data structures in an applica-
tive language: a theory and implementation in the case of Proloblini Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. Albuquerque,
New Mexicopages 255-267, 1982.

[112] J. Komorowski. An introduction to partial deduction. In A. Pettorossi, ediayceedings
Meta’'92 LNCS 649, pages 49—-69. Springer-Verlag, 1992.

[113] L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-based func-
tional logic programs. In N. Fuchs, editdggic Program Synthesis and Transformation.
Proceedings of LOPSTR'QEZNCS 1463, pages 168-188, Leuven, Belgium, July 1997.

[114] J.-L. Lassez, M. Maher, and K. Marriott. Unification revisited. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programnpages 587-625. Morgan-
Kaufmann, 1988.

[115] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic abstract
interpretation algorithm for PrologACM Transaction on Programming Langauges and
Systemsl6(1):35-101, 1994.

[116] H. Lehmann and M. Leuschel. Generating inductive verification proofs for Isabelle using
the partial evaluator Ecce. Technical Report DSSE-TR-2002-02, Department of Electron-
ics and Computer Science, University of Southampton, UK, September 2002.

[117] M. Leuschel. Ecological partial deduction: Preserving characteristic trees without con-
straints. In Logic Program Synthesis and Transformat®me-Proceedings of LOP-
STR’95 Utrecht, Netherlands, September 1995. Extended version as Technical Report
CW 216, K.U. Leuven.

[118] M. Leuschel. Ecological partial deduction: Preserving characteristic trees without con-
straints. In M. Proietti, editof?Proceedings of the 5th International Workshop on Logic
Program Synthesis and Transformati@pringer-Verlag, 1995.

[119] M. Leuschel. Theeccke partial deduction system and tinepPD library of benchmarks.
Obtainable vianhttp://www.ecs.soton.ac.uk/"mal , 1996-2002.

195

[120] M. Leuschel. Advanced Techniques for Logic Program SpecialisatiBhD thesis, K.U.
Leuven, May 1997.

[121] M. Leuschel. Theecck partial deduction system. In G. Puebla, edifrpceedings of
the ILPS’97 Workshop on Tools and Environments for (Constraint) Logic Programming
Universidad Poliécnica de Madrid, Tech. Rep. CLIP7/97.1, Port Jefferson, USA, October
1997.

[122] M. Leuschel. On the power of homeomorphic embedding for online termination. In
G. Levi, editor, Static AnalysisProceedings of SAS'98 NCS 1503, pages 230-245,
Pisa, Italy, September 1998. Springer-Verlag.

[123] M. Leuschel. Program specialisation and abstract interpretation reconcild®todnof
JICSLP’98 pages 220-234. MIT Press, June 1998.

[124] M. Leuschel. Program Specialisation and Abstract Interpretation Reconciledoirin
International Conference and Symposium on Logic Programpdinge 1998.

[125] M. Leuschel. Logic program specialisation. In J. Hatcliff, T. &£. Mogensen, and P. Thie-
mann, editorsPartial Evaluation: Practice and TheoyyNCS 1706, pages 155-188 and
271-292, Copenhagen, Denmark, 1999. Springer-Verlag.

[126] M. Leuschel. Logic Program Specialisation. In J. Hatcliff, T. ££. Mogensen, and P. Thie-
mann, editorsPartial Evaluation: Practice and Theoyrywolume 1706 ofLNCS pages
155-188. Springer-Verlag, Denmark, 1999.

[127] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction:
Control issues.Theory and Practice of Logic Programming, Special issue on program
development2(4 & 5), July 2002. To appear.

[128] M. Leuschel and D. De Schreye. Constrained partial deduction and the preservation of
characteristic trees. Technical Report CW 250, Departement Computerwetenschappen,
K.U. Leuven, Belgium, June 1997. Accepted for Publication in New Generation Comput-

ing.

[129] M. Leuschel, D. De Schreye, and A. de Waal. A conceptual embedding of folding into
partial deduction: Towards a maximal integration. In M. Maher, editayceedings of the
Joint International Conference and Symposium on Logic Programming JICSL|pAges
319-332, Bonn, Germany, September 1996. MIT Press.

196

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

M. Leuschel and S. Gruner. Abstract conjunctive partial deduction using regular types
and its application to model checking. Liogic Program Synthesis and Transformation
(LOPSTR)number 2372 in LNCS. Springer, 2001.

M. Leuschel and S. Gruner. Abstract partial deduction using regular types and its ap-
plication to model checking. In A. Pettorossi, editBroc. of 11th Int'l Workshop on
Logic-based Program Synthesis and Transformation, LOPSTR;200CS 2372, pages
91-110, Paphos, Cyprus, 2001. Springer-Verlag.

M. Leuschel and S. Gruner. Abstract partial deduction using regular types and its ap-
plication to model checking. In A. Pettorossi, edit@Pre)Proceedings of LOPSTR-
2001 11th International Workshop on Logic-based Program Synthesis and Transformation
(LOPSTR-2001), Paphos, Cypridecember 2001.

M. Leuschel and J. Jagrgensen. Efficient specialisation in Prolog using a hand-written
compiler generator. Technical Report DSSE-TR-99-6, Department of Electronics and
Computer Science, University of Southampton, Sept. 1999.

M. Leuschel, J. Jgrgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation in Pro-
log using a hand-written compiler generatdheory and Practice of Logic Programming
4(1):139-191, 2004.

M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other well-structured
transition systems by partial deduction. In J. Lloyd, editdmceedings of the Inter-
national Conference on Computational Logic (CL'2000NAI 1861, pages 101-115,
London, UK, 2000. Springer-Verlag.

M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured
Transition Systems by Partial Deduction. In J. Lloyd, ediigceedings of the Interna-
tional Conference on Computational Logic (CL'2000plume 1861 ofLNCS London,

UK, 2000. Springer-Verlag.

M. Leuschel and H. Lehmann. Solving Coverability Problems of Petri Nets by Partial
Deduction. In M. Gabbrielli and F. Pfenning, editoBspceedings of PPDP’200@ages
268-279, Montreal, Canada, 2000. ACM Press.

M. Leuschel and B. Martens. Partial deduction of the ground representation and its appli-
cation to integrity checking. In J. Lloyd, editd?roceedings of ILPS’95, the International
Logic Programming Symposiyrmortland, USA, December 1995. MIT Press. To appear.
Extended version as Technical Report CW 210, K.U. Leuven.

197

[139] M. Leuschel and B. Martens. Global control for partial deduction through characteristic
atoms and global trees. In O. Danvy, RiiGk, and P. Thiemann, editof8roceedings of
the 1996 Dagstuhl Seminar on Partial Evaluati&tNCS 1110, pages 263-283, Schlof3
Dagstuhl, 1996.

[140] M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvari-
ance in partial deduction of normal logic progrardCM Transactions on Programming
Languages and Systen®9(1):208-258, January 1998.

[141] M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and
program specialisation. In A. Bossi, editbiggic-Based Program Synthesis and Trans-
formation pages 62—-81. Springer Verlag, LNCS 1817, 1999.

[142] M. Leuschel and T. Massart. Infinite State Model Checking by Abstract Interpretation and
Program Specialisation. In A. Bossi, editBroceedings of LOPSTR’99olume 1817 of
LNCS pages 63—-82, Venice, Italy, Sept. 1999.

[143] M. Leuschel and D. Schreye. Logic program specialisation: How to be more specific. In
H. Kuchen and S. Swierstra, editoBypceedings of the International Symposium on Pro-
gramming Languages, Implementations, Logics and Programs (PLILAI98}S 1140,
pages 137-151, Aachen, Germany, September 1996.

[144] M. Leuschel, D. D. Schreye, and D. A. de Waal. A conceptual embedding of folding into
partial deduction: towards a maximal integration. In M. Maher, edRayceedings of the
Joint Int,. Conf. and Symp. on Logic Programming (JICSLP’Q@)T Press, 1996.

[145] M. Leuschel and M. H. Sgrensen. Redundant argument filtering of logic programs. In
J. Gallagher, editot,ogic Program Synthesis and Transformation. Proceedings of LOP-
STR’96 LNCS 1207, pages 83—-103, Stockholm, Sweden, August 1996. Springer-Verlag.

[146] T. Lindgren and P. Mildner. The impact of structure analysis on prolog compilation. Tech-
nical Report 140, Computing Science Departament, Uppsala University, April 1997.

[147] J. Lloyd. Foundations of Logic Programmingpringer, second, extended edition, 1987.

[148] J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Programndmgnal of Logic
Programming 11(3—-4):217-242, 1991.

[149] J. Lloyd and J. Shepherdson. Partial Evaluation in Logic Programmdmgnal of Logic
Programming 11(3 & 4):217-242, 1991.

198

[150] J. W. Lloyd. Foundations of Logic Programmingpringer-Verlag, 1987.
[151] J. W. Lloyd. Logic Programming Springer-Verlag, 1987.

[152] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programmmgJournal
of Logic Programming11:217-242, 1991.

[153] K. Marriot and P. Stuckey. The 3 R’s of optimizing constraint logic programs: Refinement,
Removal and Reordering. IAroceedings of the Twentieth Symposium on Principles of
Programming Languagepages 334—-344, Charleston, South Carolina, 1993. ACM Press.

[154] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programsriiceedings of
the Joint International Conference and Symposium on Logic Programmages 909—
923, Seattle, 1988. IEEE, MIT Press.

[155] K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic progradsnals of Mathe-
matics and Artificial Intelligencel:303—338, 1990.

[156] B. Martens and D. De Schreye. Automatic finite unfolding using well-founded measures.
The Journal of Logic Programmin@8(2):89—-146, August 1996.

[157] B. Martens, D. De Schreye, and T. Hath. Sound and complete partial deduction with
unfolding based on well-founded measurékeoretical Computer Scienck22(1-2):97—
117,1994.

[158] B. Martens and J. Gallagher. Ensuring global termination of partial deduction while al-
lowing flexible polyvariance. In L. Sterling, editd?roceedings ICLP’95pages 597-611,
Shonan Village Center, Japan, June 1995. MIT Press.

[159] P. Mildner. Type Domains for Abstract Interpretation: A Critical StudyhD thesis,
Computing Science Department - Uppsala University, Uppsala, 1999.

[160] P. Mishra. Towards a theory of types in prolog.Rroceedings of the IEEE International
Symposium on Logic Programmintp84.

[161] T. Mogensen and P. Sestoft. Partial evaluation. In A. Kent and J. G. Williams, editors,
Encyclopedia of Computer Science and Technglpgges 247-279. Marcel Decker, 270
Madison Avenue, New York, New YOrk 10016, 1997.

[162] T. .. Mogensen. Partially static structures in a self-applicable partial evaluator. In
D. Bjgrner, A. Ershov, and N. Jones, editdpaystial Evaluation and Mixed Computatipn
pages 325-347. North-Holland, 1988.

199

[163] S. S. Muchnick. Advanced Compiler Design ImplementatioMorgan Kaufmann Pub-
lishers, Inc., San Francisco, California, 1997.

[164] K. Muthukumar, F. Bueno, M. G. de la Banda, and M. Hermenegildo. Automatic
Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Independent
And-parallelism.Journal of Logic Programming38(2):165-218, February 1999.

[165] K. Muthukumar and M. Hermenegildo. Complete and Efficient Methods for Supporting
Side Effects in Independent/Restricted And-parallelisni989 International Conference
on Logic Programmingpages 80-101. MIT Press, June 1989.

[166] K. Muthukumar and M. Hermenegildo. Combined determination of sharing and freeness
of program variables through abstract interpretation. In K. Furukawa, eBitmceedings
of the Eighth International Conference on Logic Programmipages 49—-63, Paris, 1991.
MIT Press, Cambridge.

[167] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation.The Journal of Logic Programmindl3(2&3):315-347,
July 1992.

[168] T. Nipkow, L. C. Paulson, and M. Wenzelsabelle/HOL: A Proof Assistant for Higher-
Order Logic LNCS 2283. Springer-Verlag, 2002.

[169] L. C. Paulson.Isabelle: A Generic Theorem Proverolume 828 ofLNCS Springer-
Verlag, 1994.

[170] J. C. Peralta and J. P. Gallagher. Imperative program specialisation: An approach using
CLP. In A. Bossi, editorlLogic-Based Program Synthesis and Transformatjoeges
102-117. Springer Verlag, LNCS 1817, 1999.

[171] A. Pettorossi and M. Proietti. Program derivation via list introduction. In R. Bird and
L. Meertens, editorsProceedings of the IFIP TC2 Working Conference on Algorithmic
Languages and CalcylLe Bischenberg, France, February 1996. Chapman & Hall.

[172] A. Pettorossi and M. Proietti. A theory of logic program specialization and generalization
for dealing with input data properties. In O. Danvy, RiIGkt, and P. Thiemann, editors,
Partial Evaluation, International SeminatNCS 1110, pages 386—408, Schlol3 Dagstuhl,
1996. Springer-Verlag.

200

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

A. Pettorossi and M. Proietti. A theory of logic program specialization and generalization
for dealing with input data properties. In Springer-Verlag, ediagstuhl Seminar on
Partial Evaluation number 1110 in LNCS, 1996.

A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs using un-
fold/fold proofs. The Journal of Logic Programming1(2&3):197—-230, Nov. 1999.

A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while specializing
logic programs. In N. D. Jones, edit®ltoceedings of ACM Symposium on Principles of
Programming Languages (POPL'Qf)ages 414-427, Paris, France, January 1997.

M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for avoiding
unnecessary variables in logic programs. In J. Mataiskyand M. Wirsing, editorsro-
ceedings of PLILP'91LNCS 528, pages 347-358. Springer-Verlag, 1991.

M. Proietti and A. Pettorossi. The loop absorption and the generalization strategies for the
development of logic programs and partial deductiime Journal of Logic Programming
16(1 & 2):123-162, May 1993.

G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program Vali-
dation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programmingmber 1870 in LNCS,
pages 63—-107. Springer-Verlag, September 2000.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic
Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, edioadysis and
Visualization Tools for Constraint Programmingumber 1870 in LNCS, pages 23-61.
Springer-Verlag, September 2000.

G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-
Based Debugging of Constraint Logic ProgramsLagic-based Program Synthesis and
Transformation (LOPSTR'99nhumber 1817 in LNCS, pages 273—-292. Springer-Verlag,
2000.

G. Puebla, M. G. de la Banda, K. Marriott, and P. Stuckey. Optimization of Logic Pro-
grams with Dynamic Scheduling. 097 International Conference on Logic Program-
ming, pages 93-107, Cambridge, MA, June 1997. MIT Press.

G. Puebla, J. Gallagher, and M. Hermenegildo. Towards integrating partial evaluation
in a specialization framework based on generic abstract interpretation. In M. Leuschel,

201

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

editor, Proceedings of the ILPS’97 Workshop on Specialisation of Declarative Programs
and its ApplicationK.U. Leuven, Tech. Rep. CW 255, pages 29-38, Port Jefferson, USA,
October 1997.

G. Puebla, J. Gallagher, and M. Hermenegildo. Towards Integrating Partial Evaluation
in a Specialization Framework based on Generic Abstract Interpretation. In M. Leuschel,
editor, Proceedings of the ILPS’97 Workshop on Specialization of Declarative Programs
October 1997. Post ILPS’97 Workshop.

G. Puebla and M. Hermenegildo. Implementation of multiple specialization in logic pro-
grams. InProceedings of PEPM’95, the ACM Sigplan Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulatipages 77-87, La Jolla, California, June
1995. ACM Press.

G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in Logic
Programs. InProc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics
Based Program Manipulatigrpages 77-87. ACM Press, June 1995.

G. Puebla and M. Hermenegildo. Abstract specialization and its application to program
parallelization. In J. Gallagher, editdrogic Program Synthesis and Transformation.
Proceedings of LOPSTR'9&NCS 1207, pages 169-186, Stockholm, Sweden, August
1996.

G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Analysis
of Logic Programs. Irinternational Static Analysis Symposiunumber 1145 in LNCS,
pages 270-284. Springer-Verlag, September 1996.

G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Application to
Program Parallelizationd. of Logic Programming. Special Issue on Synthesis, Transfor-
mation and Analysis of Logic Program&l(2&3):279-316, November 1999.

G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Application to
Program Parallelizationd. of Logic Programming. Special Issue on Synthesis, Transfor-
mation and Analysis of Logic Program$l(2&3):279-316, November 1999.

G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of Modular
Ciao-Prolog Programs. I8pecial Issue on Optimization and Implementation of Declar-
ative Programming Languaggesolume 30 ofElectronic Notes in Theoretical Computer
ScienceElsevier - North Holland, March 2000.

202

[191] G. Puebla and M. Hermenegildo. Abstract Specialization and its ApplicationaChh
Partial Evaluation and Semantics based Program Manipulation (PEPM0&)es 29-43.
ACM Press, June 2003. Invited talk.

[192] G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Partial Evaluation in a
Generic Abstract Interpretation Framework. In O. Danvy, edA@M SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’99)
number NS-99-1 in BRISC Series, pages 75-85. University of Aarhus, Denmark, Jan-
uary 1999.

[193] G. Puebla, M. Hermenegildo, and J. P. Gallagher. An integration of partial evaluation in
a generic abstract interpretation framework. In O. Danvy, edfmgeedings of the ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’99), Technical report BRICS-NS-99-1, University of Aarhus, pages 75-84, San
Antonio, Texas, Jan. 1999.

[194] J. C. Reynolds. Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligencgpages 135-151, 1970.

[195] A. W. Roscoe.The Theory and Practice of Concurrendyrentice-Hall, 1999.

[196] H. Saglam and J. Gallagher. Approximating logic programs using types and regular de-
scriptions. Technical Report CSTR-94-19, Department of Computer Science, University
of Bristol, Bristol BS8 1TR, 1994.

[197] H. Sajlam and J. P. Gallagher. Constrained regular approximations of logic programs. In
N. Fuchs, edito.OPSTR’97 pages 282-299. Springer-Verlag, LNCS 1463, 1997.

[198] D. Sahlin. Mixtus: An automatic partial evaluator for full Proldgew Generation Com-
puting 12(1):7-51, 1993.

[199] D. Sands. Total correctness by local improvement in the transformation of functional
programs.ACM Transactions on Programming Languages and Syst&&{g):175-234,
Mar. 1996.

[200] U. Shankar. An Introduction to Assertional Reasoning for Concurrent systé&y@a4
Computing Surveygl3(3):225-262, 1993.

[201] D. D. Shreye, R. Glck, J. Jgrgensen, M. Leuschel, B. Martens, and M. H. Sgrensen.
Conjunctive partial deduction: Foundations, control, algorithms, and experimé&hts.

203

Journal of Logic Programming41(2-3):231-277, 1999. Erratum appeared in JLP 43(3):
265(2000).

[202] M. Sgrensen and R. Gt¢k. An Algorithm of Generalization in Positive Supercompilation.
In Proc. of ILPS’95 pages 465-479. The MIT Press, 1995.

[203] M. H. Sgrensen and R. Gdk. An algorithm of generalization in positive supercompila-
tion. In J. W. Lloyd, editorProceedings of ILPS’95, the International Logic Programming
Symposiumpages 465-479, Portland, USA, December 1995. MIT Press.

[204] M. H. Sgrensen, R. @tk, and N. D. Jones. Towards unifying partial evaluation, de-
forestation, supercompilation, and GPC. In D. Sannella, editogramming Languages
and Systems — ESOP '94. Proceedjnd$CS 788, pages 485-500, Edinburgh, Scotland,
1994. Springer-Verlag.

[205] M. H. Sgrensen, R. @tk, and N. D. Jones. A positive supercompiléournal of Func-
tional Programming6(6):811-838, 1996.

[206] H. Tamaki and M. Sato. Unfold/Fold Transformations of Logic ProgramsSdoond In-
ternational Conference on Logic Programmjmmages 127-138, Uppsala, Sweden, 1984.

[207] R. Tarjan. Depth-first search and linear graph algorith®\M Journal of Computing
1(2):146-160, 1972.

[208] V. Turchin. The algorithm of generalization in the supercompiler. In D. B. rner, A. Ershov,
and N. Jones, editor®roc. of the IFIP TC2 Workshop on Partial Evaluation and Mixed
Computationpages 531-549. North-Holland, 1988.

[209] V. F. Turchin. Program transformation with metasystem transitidmscnal of Functional
Programming 3(3):283-313, 1993.

[210] V. F. Turchin. Metacomputation: Metasystem transitions plus supercompilation. In
O. Danvy, R. Glick, and P. Thiemann, editorBartial Evaluation, International Semi-
nar, LNCS 1110, pages 482-509, Schlof3 Dagstuhl, 1996. Springer-Verlag.

[211] J. Ullman. Implementation of Logical Query Languages for Datab#gell Transactions
on Database SystemB0(3), 1985.

[212] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog using type
graphs.Journal of Logic Programming22(3):179-209, 1995.

204

[213] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic pro-
grams. Ininternational Static Analysis Symposiumumber 2477 in LNCS, pages 102—
116. Springer-Verlag, September 2002.

[214] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic programs.
In Proc. of SAS’02pages 102-116. Springer LNCS 2477, 2002.

[215] P. Wadler. Deforestation: Transforming programs to eliminate intermediate ffé&es.
oretical Computer Scien¢&3:231-248, 1990. Preliminary version in ESOP’88, LNCS
300.

[216] W. Winsborough. Multiple Specialization using Minimal-Function Graph Semantics.
Journal of Logic Programmingl3(2 and 3):259-290, July 1992.

[217] E. Yardeni and E. Shapiro. A type system for logic progranitie Journal of Logic
Programming 10(2):125-154, 1990.

[218] E. Yardeni and E. Shapiro. A type system for logic progradasirnal of Logic Program-
ming, 10(2):125-154, 1990.

205

