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Abstract. The growing popularity of multicore architectures has re-
newed interest in language-based approaches to the exploitation of par-
allelism. Logic programming has proved an interesting framework to this
end, and there are parallel implementations which have achieved signifi-
cant speedups, but at the cost of a quite sophisticated low-level machin-
ery. This machinery has been found challenging to code and, specially,
to maintain and expand. In this paper, we follow a different approach
which adopts a higher level view by raising some of the core components
of the implementation to the level of the source language. We briefly
present an implementation model for independent and-parallelism which
fully supports non-determinism through backtracking and provides flex-
ible solutions for some of the main problems found in previous and-
parallel implementations. Our proposal is able to optimize the execution
for the case of deterministic programs and to exploit unrestricted and-
parallelism, which allows exposing more parallelism among clause literals
than fork-join-based proposals. We present performance results for an
implementation, including data for benchmarks where and-parallelism is
exploited in non-deterministic programs.

Keywords: And-Parallelism, High-level Implementation, Prolog.

1 Introduction

New multicore technology is challenging developers to create applications that
take full advantage of the power provided by these processors. The path of single-
core microprocessors following Moore’s Law has reached a point where very high
levels of power (and, as a result, heat dissipation) are required to raise clock
speeds. Multicore systems seem to be the main architectural solution path taken
by manufacturers for offering potential increases in performance without running
into these problems. However, applications that are not parallelized, will show
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little or no improvement in performance as new generations with more processors
are developed. Thus, much effort is currently being put and progress being made
towards alleviating the hard task of producing parallel programs. This includes
the design of new languages that provide better support for the exploitation
of parallelism, libraries that offer improved support for parallel execution, and
parallelizing compilers, capable of helping in the parallelization process.

In particular, declarative languages (and logic programming languages among
them), have been traditionally considered an interesting target for exploiting
parallelism. Their high-level nature allows a coding style closer to the prob-
lem which preserves more of the original parallelism. Their separation between
control and the declarative meaning, together with relatively simple semantics,
makes logic programming a formally simpler framework which, however, allows
studying and addressing most of the challenges present in the parallelization of
imperative languages [12].

There are two main forms of parallelism in logic programming [10, 9]. Or-
parallelism (Aurora [19] and MUSE [2]) refers to the execution of different
branches in parallel, while And-parallelism executes simultaneously some goals
in the resolvent. The latter can be exploited independently of whether there is
implicit search or not. Two main forms of and-parallelism have been studied.
Independent and-parallelism (IAP) arises between two goals when the execution
of one of them does not influence the execution of the other. For pure goals a
sufficient (and a-priori) condition for this is the absence of variable sharing at
run-time among these goals. “Dependent” and-parallelism (DAP) is found when
the literals executed in parallel share variables at run-time, and they compete
to bind them. In this paper we will focus on independent and-parallelism.

Systems like &-Prolog [14], DDAS [25] and others have exploited and-para-
llelism, while certain combinations of both and- and or-parallelism have been
exploited by e.g. &ACE [23], AKL [17], and Andorra-I [24]. Many of these sys-
tems adopted similar implementation ideas. This often included a parallelizing
compiler to automatically transform the original program into a semantically-
equivalent parallel version of it and a run-time system to exploit the potential
increase in performance provided by the uncovered parallelism. These systems
have been shown very effective at exploiting parallelism efficiently and obtaining
significant speedups [14, 22]. However, most of them are based on quite complex,
low-level machinery (which included an extension of the WAM instructions, and
new data structures and stack frames in the stack set of each agent), which
makes implementation and maintenance inherently hard.

In [8], we proposed a high-level implementation that raised some of the main
components of the implementation to the source level, and was able to exploit
the flexibility provided by unrestricted and-parallelism (i.e., not limited to fork-
join operations). However, [8] provided a solution which is only valid for the
parallel execution of goals which have exactly one solution each, thus avoiding
some of the hardest implementation problems. While it can be argued that a
large part of application execution is indeed single-solution, on one hand this
cannot always be determined a priori, and on the other there are also cases of



parallelism among non-deterministic goals, and thus a system must offer a com-
plete implementation, capable of coping with parallel non-deterministic goals, in
order to be realistic. Other recent related work includes [20] which proposes a set
of high-level multithreading primitives. This work (as, e.g., also [6]) focuses more
on providing a flexible multithreading interface, rather than on performance.

In this paper, we present a high-level implementation that is able to exploit
unrestricted IAP over non-deterministic parallel goals, while maintaining the
optimizations of previous solutions for non-failing deterministic parallel goals.
Our proposal provides solutions for the trapped-goal and garbage-slot problems,
and is able to cancel the execution of a parallel goal when needed.

2 Decomposing And-Parallelism

Independent and-parallelism has traditionally been expressed using the (re-
stricted, i.e., fork-join) &/2 operator as the lowest-level construct to express
parallelism between goals. However, our intention is to support unrestricted and-
parallelism, which has been shown capable of exploiting more of the parallelism
intrinsic in programs [7]. To this end, we will use more flexible primitives [5]:

– G &> H schedules the goal G for parallel execution and continues with the
code after G &> H. H is a handler which contains (or points to) the state of
G, and will be used for communicating the executing state between agents.

– H <& waits for the goal associated with H to finish. After H <& succeeds,
all the bindings that G could possibly generate are ready. Note also that,
assuming goal independence between G and the calls performed while G was
being executed, no binding conflicts will arise.

With the previous definitions, the &/23 operator can be expressed as:
A & B :- A &> H, call(B), H <&. (1)

The particular order of literals is for performance, since when running the com-
mon tail-recursive case p:-q&p, p should spawn parallel q’s with no delay. [13]

Also, note that &>/2 and <&/1 are not intended to replace &/2 at the language
level, due to its expressiveness and conciseness, in case no extra parallelism can
be exploited with them (i.e., we leave the door open to more optimized imple-
mentations of &/2 than what the definition above suggests). The &>/2 and <&/1
primitives are not dependent on any particular architecture, and were in fact first
implemented in a distributed-memory setting [5]. However, as the implementa-
tion we propose now addresses shared-memory multiprocessors, the bindings
made by G while executing will be immediately visible, and goal independence
makes it possible to work out a solution with the no-slowdown property.

G &> H ideally takes a negligible amount of time to execute, although the
precise moment in which G actually starts depends on the availability of resources
(primarily, free agents or processors). On the other hand, H <& suspends until
the associated goal finitely fails or returns an answer. Actual backtracking is

3 The meta-call is expanded at compile-time to avoid extra overhead in the execution.



performed at H <&, and the memory reserved by the handler is released when
G &> H is reached on backtracking. If G &> H is reached on backtracking but
H <& was not reached on forward execution, this means that some of the goals
between these two points has failed without a solution, and the execution of goal
G (whatever its state) is to be cancelled. Section 3 explains further the design
and implementation of these operators.

3 Shared-Memory Implementation

Our shared-memory implementation for unrestricted IAP is based on the multi-
sequential, marker model introduced by &-Prolog and adopted by many and-
parallel systems, both for IAP [14, 23] and DAP [25]. It has some general sim-
ilarities with that model, such as the concept of agent, which corresponds to
a thread associated to a particular stack set, mostly a Warren Abstract Ma-
chine [26, 1], and the ring of stack sets which interconnects all the agents. For
simplicity, each thread will be always associated to the same stack set.

However, there exist significant differences between our proposal and the
&-Prolog run-time model, which we will present in the following sections.

3.1 Goal Stacks vs. Goal Lists

In our model, each agent is extended with a goal list, implemented as a doubly-
linked list in C, whose functionality is similar to that of the goal stack in the
&-Prolog run-time model. The goal list entries store pointers to those goals
which have been prepared for parallel execution, and thus agents that are idle
can search for parallel goals to execute by consulting the goal lists of the rest
of the agents. A list is used instead of the traditional stack due to the greater
flexibility needed in order to deal with the unrestricted nature of the &>/2 and
<&/1 operators (instead of, or in addition to &/2): goals can be joined in any order
—not necessarily the inverse to the order in which they were published— and,
in the case of goal cancellation, arbitrary goal entries inside the list may have to
be removed. For instance, the conjunction (g1&g2&. . .&gn) can be executed as

(g1&>H1, g2&>H2, . . . , gn, . . . ,H2<&, H1<&)

as per Equation (1), but in fact any order for the joins would be equally correct.

3.2 Parcall Frames vs. Handlers

Parcall frames in the &-Prolog run-time model are additional (environment)
stack frames used for the coordination and synchronization of the parallel ex-
ecution. In &-Prolog a parcall frame is created as soon as a parallel call is
made, and it has a slot for each of the literals g1,g2 . . . gn in the parallel call
g1&g2&. . .&gn, in order to keep track of the execution of each of these goals.

In most WAM implementations the handling of environments is relatively
brittle and introducing different elements in the environment stack complicates
things. As an alternative to parcall stack frames, our proposal makes use of
heap structures, created by and accessible from source-level code that we call
handlers, as already mentioned in Section 2.4 Each handler is associated to a
4 A related approach (but combined with the choice-point stack) was used in ACE [23].



particular parallel goal and is used to synchronize the publishing agent and the
agent which picks up the goal. Handlers store information such as, e.g., pointers
to the parallel goal and its location in the goal list (to remove it from there in case
the goal is not taken by any other agent), a field to mark the goal as deterministic
or not, the state of the execution, and pointers to both the publishing and the
executing agents to release their execution when so needed.

3.3 Markers vs. (Prolog) Choice Points

Markers are used in the &-Prolog run-time model to set boundaries between
different sections in the stack, each of them corresponding to the segment of
execution of a parallel goal. This separation of segments in the stack is used
to provide a solution to the trapped goal problem [15]. Markers are also used
in &-Prolog to implement storage recovery mechanisms during backtracking of
parallel goals, in order to solve the garbage slot problem [15].

Our proposal to avoid the use of new stack frames to implement markers is
the creation of normal choice points, and in a simple way by creating alternatives
(through predicates with more than one clause) directly in the source-level code
of the scheduler (see Section 3.4). This is done whenever a parallel goal is to
be executed (see Figure 1(e)). In addition to that, pointers to the choice points
that mark the beginning and end of the goal execution will be stored in the
handler associated to that goal, in order to delimit the segment of execution
and make them accessible during backwards execution. This is also done in part
at the source level. Section 3.4 provides further explanation of how backwards
execution over parallel goals is performed using these choice points.

3.4 Implementation

Figure 1 presents a sketch of our high-level implementation of the scheduler
for unrestricted IAP. The implementation divides the responsibilities between
different layers. The user-level parallelism primitives &>/2 and <&/1 (and thus
&/2) are at the top of the Prolog level. The algorithms for goal publishing, goal
searching, and forward and backwards execution are implemented in Prolog,
with some support from low-level primitives designed to provide, e.g., locking,
untrailing, and management of segments of executions. Primitives related to
forward execution of parallel goals were already presented in [8].

In our implementation, agents are created with a small stack (which can grow
on demand) and they wait for some work to be available. They do not contin-
uously search for new tasks to be performed, in order to avoid active waiting.5

Several high-level primitives are provided for the creation of a particular number
of agents. When an agent is created, it executes the code shown in Figure 1(f),
and during normal execution it will start working on the execution of some goal,
or will sleep because there is no task to perform. An agent searches for parallel
goals by using a work-stealing scheduling algorithm based on those in [11, 14].

5 We took this decision because it gave slightly better speedups in our experiments
and it is in general good usage of a multiuser system.



Goal &> Handler :-
add_goal(Goal,nondet,Handler),
undo(cancellation(Handler)),
release_some_suspended_thread.

(a) Non-deterministic goal publishing.

Handler <& :-
enter_mutex_self,
(

goal_available(Handler) ->
exit_mutex_self,
retrieve_goal(Handler,Goal),
call(Goal)

;
check_if_finished_or_failed(Handler)

).
Handler <& :-

add_goal(Handler),
release_some_suspended_thread,
fail.

(b) Goal join and speculation.

check_if_finished_or_failed(Handler) :-
(

goal_finished(Handler) ->
exit_mutex_self,
sending_event(Handler)

;
(

goal_failed(Handler) ->
exit_mutex_self,
fail

;
suspend,
check_if_finished_or_failed(Handler)

)
).

(c) Checking status of goal execution.

sending_event(_).
sending_event(Handler) :-

enter_mutex_self,
enter_mutex_remote(Handler),
set_goal_tobacktrack(Handler),
add_event(Handler),
release_remote(Handler),
exit_mutex_remote(Handler),
check_if_finished_or_failed(Handler).

(d) Sending event to executing agent.

call_handler(Handler) :-
retrieve_goal(Handler,Goal),
save_init_execution(Handler),
call(Goal),
save_end_execution(Handler),
enter_mutex(Handler),
set_goal_finished(Handler),
release(Handler),
exit_mutex(Handler).

call_handler(Handler) :-
enter_mutex(Handler),
set_goal_failed(Handler),
release(Handler),
metacut_garbage_slots(Handler),
exit_mutex(Handler),
fail.

(e) High-level markers definition.

agent :-
enter_mutex_self,
work,
agent.

agent :- agent.

work :-
(

read_event(Handler) ->
(

more_solutions(Handler) ->
move_execution_top(Handler)

;
move_pointers_down(Handler)

),
exit_mutex_self,
fail

;
(

find_goal(H) ->
exit_mutex_self,
call_handler(H)

;
suspend,
work

)
).

(f) Agent code.

Fig. 1. High-level solution for unrestricted IAP.

Figure 1(a) presents the code for &>/2, which publishes a goal for parallel ex-
ecution. A pointer to the parallel goal is added to the goal list,and a signal is sent
to one of the agents that are currently waiting for some task to do. This agent
will resume its execution, pick up the goal, and execute it. In addition, when
&>/2 is reached in backwards execution, the memory reserved by the handler is
released. Also, if the goal was taken by another agent and the goal execution was
not finished yet, cancellation/1 (which raises a per-agent flag which is peri-
odically polled by every agent) asks the executing agent to abort the execution
of the goal. This increases the overall performance of the system by avoiding



unnecessary work, as we will show in Section 4. Moreover, in order to be able
to execute this operation in the presence of cuts in the code of the clause, it is
invoked via the undo/1 predicate.

Figure 1(b) presents the implementation of <&/1. First, the publishing agent
needs to check whether the goal was picked up by some other agent or not. If
it was not taken then the publishing agent will remove it from the goal list and
execute it locally (using call/1), and then it will continue executing scheduler
code. If the goal was taken by some other agent then its status will be checked
(i.e., to know whether the goal execution has already finished or failed) as shown
in Figure 1(c). If the goal execution fails then the parallel goal will be added
to the goal list of the publishing agent, so it can be reexecuted by some other
agent. This is a form of speculative execution, since the reexecution of that literal
may not be needed for the actual computation. However, it increases the actual
parallelism in the system. It should be noted that the goal execution will be
canceled if the corresponding &>/2 is reached on backtracking.

If the goal execution succeeds and <&/1 is reached on backtracking, then
backwards execution needs to be performed. If the goal was not taken by some
other agent then backwards execution is trivially performed. If it was picked up
by some other agent then the publishing agent sends a signal to the executing
agent with a request for a new solution for that goal. The executing agent will
serve the signal as soon as it is able. In order to enable this communication, each
agent has an event queue from which the agent pops events consisting of pointers
to handlers associated to the goals to be backtracked over. The primitives which
perform this communication are add event/1, which pushes a new pointer to
a handler in the event queue of the agent which executed the associated goal,
and read event/1, which either removes the item in the event queue to perform
backwards execution over the parallel goal associated to it, or fails if the event
queue is empty. Figure 1(d) presents the source code to push the corresponding
event to the executing agent, releasing its execution if it was suspended.

When an agent pops an event (Figure 1(f)), backwards execution over a
parallel goal needs to be performed. If the segment of execution is at the top of
its stack, then the agent will invoke fail/0 and a new solution will be obtained.
However, it might be the case that the segment of execution of the parallel goal
is trapped, i.e., it is currently not at the top of the stack. In this case, there are
two possible scenarios. If the goal is known not to have additional solutions,6

then the segment where the goal lies does not need to be expanded and the
pointers to the top of the segment in the handler are simply made to point to
the beginning of the segment. The trail section corresponding to that segment
is used to undo the bindings. After this, the stack and trail pointers are restored
to their previous values —i.e., they point to the top of the corresponding stacks.

If there may be more solutions for that goal, then a mechanism is needed to
untrap its segment of execution. Several solutions have been proposed to solve
this problem. A first approach consists of avoiding it altogether by carefully

6 For example, because it did not push any choice point or because it has been marked
as deterministic during compilation, or by the user [4, 16].
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Fig. 2. Copying trapped goal onto the top of the stack.

selecting goals to be executed so that they cannot cause trapped goals (which
would dramatically reduce the amount of exploited parallelism). Another solu-
tion is to create a new, independent stack set for every goal taken, which would
probably be memory-inefficient or impose an extra overhead in memory man-
agement. Our proposal is a variant of the solution adopted by several parallel
systems (e.g., &-Prolog, ACE, DASWAM, . . . ), which essentially try to continue
the goal execution on top of the stack. However, in our case, and for simplicity,
when a trapped goal is to be backtracked over, its execution segment is copied on
top of the stack, where it can expand freely. The garbage slot created is marked
as such, and can be recovered when everything between this garbage slot and
the top of the stack turns into garbage (or on backtracking). Most implemen-
tations of garbage collectors do not recover dead choice points, and thus the
garbage collection algorithm needs to be changed to work with parallel execu-
tion and cross-agent pointers. Improved garbage collectors could use the pointers
to boundaries of every live segment stored in the handlers.

Figure 1(e) shows how the limits of the segment of execution of the paral-
lel goal are stored in the handler, so their values can be accessed in backwards
execution, via the save init execution/1 and save end execution/1 prim-
itives, which actually have similar behavior to that of the input markers and
end markers in the &-Prolog model. Note that the choice point created by the
predicate call handler/1 is in fact the input marker of the parallel execution,
but again defined in the source language. Finally, when the goal execution fails,
the metacut garbage slots/1 primitive will pop from the stack those discarded
segments of the stack that are right underneath the segment of execution.

Figure 2 shows an example of this solution for the trapped goal and garbage
slot problems. We assume that variables X, Y, and Z are independent. When the
literals a/1 and b/1 are taken and executed by the second agent, the pointers
that define the actual segment of execution of both literals are stored in the cor-
responding handler. Thus, when Ha <& is reached in backtracking, the segment
of execution of literal a/1 is trapped, and it is copied on top of the stack in order
to have enough space to expand and obtain a new solution for the goal a/1. The
handler associated to the literal b/1 will in addition mark the garbage slot left
by the literal a/1, which will be freed when the execution of the literal b/1 fails.

Figure 3 presents a diagram which shows the different states in which a
parallel goal can be according to the code in Figure 1. First, a goal is published
to be executed in parallel by adding a pointer to it in the goal list and releasing
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Fig. 3. State diagram of a parallel goal.

the execution of an agent that is currently idle. When performing the goal join,
if the goal is still available it will be executed locally. If the goal was picked up by
some other agent, it will be executed remotely. A goal execution can be cancelled
if the outcome of the execution is not needed for the actual computation. If the
goal execution is not cancelled and succeeds, it may be backtracked over with
the communication between agents performed via pushing and popping events.
If it fails, the goal will be published again for parallel execution.

4 Performance Evaluation

We will now present some performance results obtained with our implementation
for a selection of both deterministic and non-deterministic benchmarks (see Ta-
ble 1), parallelized with unrestricted independent and-parallelism. Our proposal
has been implemented on the Ciao multiparadigm system [3]. All the benchmarks
were automatically parallelized [21, 7] using CiaoPP [16] and starting from their
sequential code. The performance results were obtained by averaging ten runs
on a state-of-the-art multiprocessor, a Sun Fire T2000 with 8 cores (4 threads
each) and 8 Gb of memory running in 32-bit compatibility mode.

Table 2 presents the speedups obtained for some deterministic benchmarks
parallelized using unrestricted IAP. The speedups were obtained with respect
to the execution time of the sequential version of the benchmarks. Thus, the
columns tagged 1 measure the slowdown coming from executing a parallel pro-
gram in a single processor. Rows tagged with the ’&!’ symbol measure the exe-
cution of the benchmarks with some optimizations for the case of deterministic
parallel goals, on our previous, determinism-only model and implementation [8].
Rows tagged with the ’&’ symbol measure the speedups obtained with all the
mechanisms required by the implementation presented in Section 3. The differ-
ence in speedups between both parallel versions is of little significance in most
cases, and only in very few cases (for example, Boyer and Fibonacci) the dif-
ference is relevant. Note that determinism can either be annotated by hand



AIAKL Simplified AKL abstract inter-
preter.

Ann Annotator for and-parallelism.
Boyer Simplified version of Boyer-

Moore theorem prover.
Chat-80 Question parser of Chat-80.
Deriv Symbolic derivation.
FFT Fast Fourier Transform.
Fibonacci Doubly recursive Fibonacci.
Hamming Calculates Hamming num-

bers.
Hanoi Solves Hanoi puzzle.

MMatrix Matrix multip. (50×50).
Numbers Obtains a number from a

list of others.
Palindrome Generates a palindrome of

214 elements.
Progeom Constructs a perfect differ-

ence set of order n.
Queens The n-queens problem.
QueensT Solves the n-queens prob-

lem T times.
QuickSort Sorts a 10,000 element list.
Takeuchi Computes Takeuchi.

Table 1. Benchmarks executed with unrestricted IAP.
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Fig. 4. Speedups for some selected benchmarks with stack set expansion.

or, in many cases, automatically detected [4, 16]. In any case, reasonably good
speedups are obtained, despite the fact that the proposal suffers from the over-
head added by the source-level coded scheduler etc., but which, in return, offers
other advantages such as significantly reduced development (and maintenance)
time, more flexibility, simpler and faster experimentation, etc.

Table 3 presents the speedups obtained for some non-deterministic bench-
marks. Some of them do not obtain any speedup when executed in parallel due
to the very fine granularity of the parallel goals and the high-level nature of



Benchmark Op.
Number of agents

Seq. 1 2 3 4 5 6 7 8

AIAKL
&! 1.00 0.99 1.82 1.82 1.82 1.83 1.83 1.83 1.82
& 1.00 0.93 1.70 1.71 1.72 1.74 1.75 1.72 1.72

Ann
&! 1.00 0.96 1.84 2.72 3.56 4.38 5.16 5.88 6.64
& 1.00 0.96 1.85 2.72 3.57 4.35 5.14 5.87 6.61

Boyer
&! 1.00 0.92 1.76 2.58 3.16 3.39 4.01 4.31 4.55
& 1.00 0.90 1.21 1.83 2.06 2.26 2.30 2.39 2.56

Deriv
&! 1.00 0.83 1.59 2.38 3.07 3.78 4.49 4.98 5.49
& 1.00 0.84 1.60 2.34 2.99 3.73 4.43 4.56 4.85

FFT
&! 1.00 0.98 1.73 2.06 2.67 2.78 2.95 2.96 3.11
& 1.00 0.98 1.72 1.97 2.65 2.67 2.75 2.93 2.97

Fibonacci
&! 1.00 0.98 1.91 2.84 3.73 4.62 5.51 6.41 7.35
& 1.00 0.98 1.58 2.04 2.53 3.28 4.06 4.61 5.46

Hamming
&! 1.00 0.92 1.04 1.43 1.65 1.65 1.65 1.65 1.65
& 1.00 0.92 1.02 1.41 1.63 1.62 1.62 1.62 1.62

Hanoi
&! 1.00 0.95 1.76 2.47 3.09 3.39 3.65 3.87 4.10
& 1.00 0.96 1.77 1.91 2.84 3.13 3.54 3.76 4.02

HanoiDL
&! 1.00 0.73 1.44 2.08 2.77 3.37 4.04 4.58 5.19
& 1.00 0.74 1.43 1.89 1.87 2.73 3.07 3.59 3.87

MMatrix
&! 1.00 0.77 1.51 2.31 3.02 3.76 4.52 5.21 5.72
& 1.00 0.77 1.48 2.16 2.88 3.51 4.05 4.57 4.96

Palindrome
&! 1.00 0.95 1.77 2.36 2.95 3.33 3.62 3.94 4.15
& 1.00 0.96 1.78 2.14 2.56 3.11 3.30 3.74 3.90

QuickSort
&! 1.00 0.97 1.74 2.26 2.91 3.16 3.39 3.49 3.54
& 1.00 0.97 1.71 2.17 2.43 2.60 2.93 3.06 3.19

QuickSortDL
&! 1.00 0.95 1.69 2.30 2.81 3.10 3.25 3.47 3.60
& 1.00 0.95 1.68 2.14 2.39 2.56 2.92 2.94 3.19

Takeuchi
&! 1.00 0.86 1.17 2.24 2.97 3.29 3.75 4.28 5.69
& 1.00 0.86 0.89 1.69 2.23 3.00 3.34 3.36 4.29

Table 2. Speedups obtained for deterministic unrestricted IAP benchmarks.

Benchmark
Number of agents

Seq. 1 2 3 4 5 6 7 8

Chat-80 1.00 2.31 4.49 5.42 6.91 9.79 9.95 11.10 17.29

Numbers 1.00 1.84 1.79 1.79 1.79 1.79 1.79 1.78 1.78

Progeom 1.00 0.99 0.96 0.97 0.98 0.98 0.98 0.98 0.98

Queens 1.00 0.99 0.94 0.94 0.94 0.94 0.94 0.94 0.94

QueensT 1.00 0.99 1.90 2.41 3.18 4.71 4.61 4.58 4.57

Table 3. Speedups obtained for non-deterministic unrestricted IAP benchmarks.

our implementation. However, super-linear speedups can be achieved in other
benchmarks (e.g., Chat-80), thanks to the implementation of goal cancellation.

A fact that limits the system performance is the expansion of the agent stack
sets when running out of space. Stack sets are initially created small and they
dynamically grow as needed. This fits the behavior of a naive user who lets the



Benchmark
Queens, 2 agents Queens, 4 agents Queens, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 11,810 171,858 9 290 11,810 171,858 9 290 11,810 171,858 9 290

Taken
x 6,649 97,798 9 290 6,860 99,373 9 290 6,476 96,056 9 290
σ 9.35 45.04 0.00 0.00 16.15 65.02 0.00 0.00 13.49 59.04 0.00 0.00

LBack
x 858 14,319 0.00 0.00 618 10,905 0.00 0.00 755 12,786 0.00 0.00
σ 1.03 1.25 0.00 0.00 14.93 99.89 0.00 0.00 5.79 23.59 0.00 0.00

RBack
Top

x 1,838 29,725 2 234 2,345 38,420 2 234 2,208 36,261 2 234
σ 0.46 2.14 0.00 0.00 15.14 98.66 0.00 0.00 6.34 26.53 0.00 0.00

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Behavior of Queens(8) with different numbers of agents.

Benchmark
Progeom, 2 agents Progeom, 4 agents Progeom, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 215 154,260 1 60 215 154,260 1 60 215 154,260 1 60

Taken
x 100 72,375 0 1 91 65,643 0 1 55 75,113 0 1
σ 1.85 248.69 0.00 0.80 1.36 414.68 0.00 0.70 3.49 192.25 0.00 0.78

LBack
x 1 738 0 29 3 2,131 0 29 9 364 0 29
σ 0.46 52.03 0.00 0.80 1.10 83.78 0.00 0.70 0.80 26.82 0.00 0.78

RBack
Top

x 10 6,530 0 1 8 5,131 0 1 2 6,907 0 1
σ 0.57 52.08 0.00 0.80 1.10 84.26 0.00 0.70 0.80 27.02 0.00 0.78

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Behavior of Progeom(5) with different numbers of agents.

system run and adjust itself; a more seasoned user could create the stack sets with
a size which appropriate for a particular application. Due to the work-stealing
strategy adopted and the shared-memory nature of our implementation, there
may be cross-agent pointers. The approach we have taken to ensure a correct
stack set expansion is to suspend the execution of all the agents. The stack set
which is short on space is then expanded, the pointers pointing to that stack set
(from any agent) are updated, and the execution of the agents finally resumes.7

That scheme indeed affects the performance of the execution. Figure 4 presents
the speedups obtained by executing ten times some selected benchmarks with 2,
4, 8, 16 and 32 agents. By joining together the points corresponding to the n-th
execution with a given number of processors, we can construct a profile of how
the speedup evolves as the system executes several times the same program. The
first executions suffer from stack expansions but, after some runs, the stack set
of each agent reaches an appropriate size, the number of expansions diminishes,
and thus the performance results stabilize. Note also that, for the case of more
than 8 agents, the limitations in the hardware of the multiprocessor machine8

used also affect the actual performance of the execution.

7 We acknowledge that a smarter algorithm could be implemented, but this topic is
out of the scope of this paper and a subject for further work.

8 Mainly, the availability of a reduced number of integer units and a single FP unit. In
our experiments, completely independent computations do not show linear speedup
from 8 processors onwards.



Benchmark
Fibonacci, 2 agents Fibonacci, 4 agents Fibonacci, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596

Taken
x 1 1 1 1 5 5 5 5 37 37 31 31
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

LBack
x 121,391 121,391 1,595 1,595 121,387 121,387 1,591 1,591 121,355 121,355 1,565 1,565
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

RBack
Top

x 1 1 1 1 5 5 5 5 18 18 16 16
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.40 0.98 0.98

Tp
x 0 0 0 0 0 0 0 0 19 19 15 15
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 2.86 1.68 1.68

Table 6. Behavior of Fibonacci(25) with different numbers of agents.

Tables 4 to 6 present data from the execution of some of the non-deterministic,
and-parallel benchmarks. They present data from executions with 2, 4, and 8
agents, using or not granularity control [18] (resp., Gr and No), and in cases where
only one solution (1) or all solutions (N) are requested. The first row in the table
(G &> H) contains the number of parallel goals. The second row (Taken) presents
the number of parallel goals picked up by some other agent (x stands for the
average and σ for the standard deviation in ten runs). The third row (LBack)
represents the number of times that backtracking over parallel goals took place
locally because the goal was not picked up by some other agent.9 The fourth
row (RBack) shows the number of times a parallel goal was backtracked over
remotely. Top and Tp count, respectively, how many times remote backtracking
was performed at the top of the stack and on a trapped goal. A conclusion from
these results is that, while the amount of remote backtracking is quite high, the
number of trapped goals is low. Therefore the overhead of copying trapped seg-
ments to the top of the stack should not be very high in comparison with the
rest of the execution.

We expect to see a similar behavior in most non-deterministic parallel pro-
grams where parallel goals are of fine granularity or very likely to fail: these
two behaviors make the piling up of segments corresponding to the execution of
loosely related parallel goals in the same stack relatively uncommon, which in-
deed reduces the chances to suffer from trapped goal and garbage slot problems.

5 Conclusions

We have presented a high-level implementation of unrestricted, independent and-
parallelism that can execute both deterministic and non-deterministic programs
in parallel. The approach helps taming the implementation complexity of pre-
vious solutions by raising many of the main implementation components to the
source level. This makes the system easier to code, maintain, and expand. Our
evaluation of actual parallel executions shows that quite useful speedups can be

9 The backtracking measured for Fibonacci in Table 6 corresponds to the stack un-
winding performed when failing after the execution is finished.



obtained with the approach, including for benchmarks which perform backtrack-
ing over non-deterministic parallel goals In several cases, super-linear speedups
were obtained thanks to the backtracking model implemented.

We believe that the results obtainable with this approach will improve further
as the speed of the source language continues to increase. Recent compilation
technology and implementation advances provide hope that it will eventually
be possible to recover most of the efficiency lost due to expressing the parallel
machinery using the high-level language. In the meantime, performance can also
be improved by, once the components of the system are stabilized, selectively
lowering again the implementation of those flagged as bottlenecks, if the benefits
surpass the added complexity and reduced flexibility. Performance can also be
improved, e.g., by exploiting the fact that smarter schedulers are, in principle,
easier to write than with other approaches.
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