
A High-Level Implementation
of Non-Deterministic, Unrestricted,

Independent And-Parallelism

Amadeo Casas1 Manuel Carro2 Manuel Hermenegildo1,2

1University of New Mexico (USA)
2Technical University of Madrid (Spain) and IMDEA-Software (Spain)

December 12th, 2008

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 1 / 18

Introduction and Motivation

Introduction

Parallelism (finally!) becoming mainstream thanks to multicore
architectures — even on laptops!

Parallelizing programs is a hard challenge.
I Necessity to exploit parallel execution capabilities as easily as possible.

Renewed research interest in development of tools to write
parallel programs:

I Design of languages that better support exploitation of parallelism.
I Improved libraries for parallel programming.
I Progress in support tools: parallelizing compilers.

(Different objectives from “multi-threading” –already supported.)

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 2 / 18

Introduction and Motivation

Why Logic Programming?

Declarative languages (and logic programming languages among
them) are a very interesting framework for parallelization:

I Program much closer to problem description.
I Notion of control provides more flexibility.
I Cleaner semantics (e.g., pointers exist, but are declarative).
I Amenability to semantics-preserving automatic parallelization.

Industry interest:
I E.g., Intel sponsorship of DAMP workshops (colocated with POPL).

Previous work by same authors:
I LOPSTR’07: annotation algorithms for unrestricted IAP.
I PADL’08: execution model for parallel execution of deterministic goals.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 3 / 18

Background

Types of parallelism in LP

Two main types:
I Or-Parallelism: explores in parallel alternative computation

branches.
I And-Parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with &/2 operator: fork-join nested parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 4 / 18

Background

Types of parallelism in LP

Two main types:
I Or-Parallelism: explores in parallel alternative computation

branches.
I And-Parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with &/2 operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

qsort([], []).
qsort([X|L], R) :-

partition(L, X, SM, GT),
qsort(GT, SrtGT),
qsort(SM, SrtSM),
append(SrtSM, [X|SrtGT], R).

qsort([], []).
qsort([X|L], R) :-

partition(L, X, SM, GT),
qsort(GT, SrtGT) &
qsort(SM, SrtSM),
append(SrtSM, [X|SrtGT], R).

We will focus herein on and-parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 4 / 18

Background

CDG-based automatic parallelization

Conditional Dependency Graph:
I Vertices: possible sequential tasks (statements, calls, etc.)
I Edges: conditions needed for independence (e.g., variable sharing).

Local or global analysis to remove checks in the edges.

Annotation converts graph back to (now parallel) source code.

foo(...) :-

g1(...),

g2(...),

g3(...).

g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

(test(1−3) −> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
Annotation

Local/Global analysis

and simplification

g1

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 5 / 18

Background

An alternative, more flexible source code annotation

Classical parallelism operator &/2: nested fork-join.
I Rigid structure of &/2.

However, more flexible constructions can be used to denote
parallelism:

I G &> HG — schedules goal G for parallel execution and continues
executing the code after G &> HG.

F HG is a handler which contains / points to the state of goal G.

I HG <& — waits for the goal associated with HG to finish.
F The goal associated to HG has produced a solution: bindings for the

output variables are available.

Operator &/2 can be written as:
A & B :- A &> H, call(B), H <&.

Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 6 / 18

Background

Expressing more parallelism

More parallelism can be exploited
with these primitives.

Consider sequential code below
(dep. graph at the right) and two
possible parallelizations:

b(X)

c(Y) d(Y,Z)

a(X,Z)

p(X,Y,Z) :- p(X,Y,Z) :- p(X,Y,Z) :-
a(X,Z), a(X,Z) & c(Y), c(Y) &> Hc,
b(X), b(X) & d(Y,Z). a(X,Z),
c(Y), b(X) &> Hb,
d(Y,Z). p(X,Y,Z) :- Hc <&,

c(Y) & (a(X,Z),b(X)), d(Y,Z),
d(Y,Z). Hb <&.

Sequential Restricted IAP Unrestricted IAP

In this case: unrestricted parallelization guaranteed equal to or
better (time-wise) than restricted ones, assuming no overhead.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 7 / 18

High-Level Implementation of Unrestricted IAP

Objectives of the execution model for unrestricted IAP

Several previous implementations supporting and-parallelism:
I &-Prolog, &-ACE, DASWAM, AKL, Andorra-I,...

Most based on multi-sequential, marker-based (“&-Prolog”)
model.

I A set of WAM-like agents.

Implementation has relied on low-level machinery –complex.
I New WAM instructions.
I Goal stacks, parcall frames, markers, etc.

Objective of current work:
I Rise a good portion to the source language (Prolog/ImProlog) level.
I Try to keep sufficient performance.

(... in the Ciao spirit of keeping the kernel small.)

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 8 / 18

High-Level Implementation of Unrestricted IAP

High-level implementation of unrestricted IAP

What to do at what level:

I Prolog-level: goal publishing / searching etc. (goal stealing-based
scheduling), marker creation, backtracking management, ...

I C-level: low-level threading, locking, stack management, sharing of
memory, untrailing, ...

I Current implementation for shared-memory multiprocessors:
F Agent: sequential Prolog machine + goal list + (mostly) Prolog code.

→ Simpler machinery and more flexibility.

Some issues:
I A goal list for each agent (instead of a goal stack)

F Unrestricted parallelism.
F Makes goal cancellation easier.

I Implement parcall frames as heap structures.
Accessible at source level as goal handlers.

I Markers implemented through normal choice points at source level (+
some fields in handlers).

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 9 / 18

High-Level Implementation of Unrestricted IAP

Creation of (high-level) markers / canceling

Non-deterministic goal publishing
Goal &> Handler :-

add_goal(Goal,nondet,Handler),

undo(cancellation(Handler)),

release_some_suspended_thread.

Goal startup
Handler <& :-

enter_mutex_self,

(

goal_available(Handler) ->

exit_mutex_self,

retrieve_goal(Handler,Goal),

call(Goal)

;

check_if_finished_or_failed(Handler)

).

Handler <& :-

add_goal(Handler),

release_some_suspended_thread,

fail.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 10 / 18

High-Level Implementation of Unrestricted IAP

Creation of (high-level) markers / canceling

Goal startup
work :-

(read_event(Handler) ->

...

; (

find_goal(H) ->

exit_mutex_self,

call_handler(H)

; ...

Execution of parallel goal
call_handler(Handler) :-

retrieve_goal(Handler,Goal),

save_init_execution(Handler),

call(Goal),

save_end_execution(Handler),

enter_mutex(Handler),

set_goal_finished(Handler),

release(Handler),

exit_mutex(Handler).

call_handler(Handler) :-

enter_mutex(Handler),

set_goal_failed(Handler),

release(Handler),

metacut_garbage_slots(Handler),

exit_mutex(Handler),

fail.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 11 / 18

High-Level Implementation of Unrestricted IAP

Memory management problems in nondeterministic IAP execution

Lots of issues in memory management.

In particular, dealing with the trapped goals and garbage slots
problems:

Agents created with small stacks which grow on demand.

a
Ha

Hb
b b

a

Agent 1 Agent 2

Ha

Hb

Agent 1 Agent 2

cc
b

a

c

Hb <&
Ha <&

?− a(X) &> Ha, b(Y) &> Hb, c(Z), Hb <&, Ha <&, fail.

a(X) &> Ha, b(Y) &> Hb

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 12 / 18

High-Level Implementation of Unrestricted IAP

State diagram of a parallel goal

push_goal/3

release_some_suspended_agent/0

Published

Cancelled

set_goal_failed/1

release/1

Failed

Finished

set_goal_finished/1

release/1

execution finishedfail

execution failed

Remotely Executing

call_handler/1

cancellation/1

execution cancelledLocally Executing

call/1

execution failed

execution finished

read event

goal foundgoal available

speculative execution

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 13 / 18

High-Level Implementation of Unrestricted IAP

Performance results

Sun Fire T2000:
I 8 cores and 8 Gb of memory, each of them capable of running 4

threads in parallel.
F Speedups with more than 8 threads stop being linear even for

completely independent computations, since threads in the same core
compete for shared resources.

I Implemented in Ciao.
I All performance results obtained by averaging 10 runs.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 14 / 18

High-Level Implementation of Unrestricted IAP

Performance results
Deterministic vs. Non-deterministic annotation

Benchmark Op.
Number of processors

1 2 3 4 5 6 7 8

AIAKL
&! 0.97 1.82 1.82 1.82 1.83 1.83 1.83 1.82
& 0.96 1.70 1.71 1.72 1.74 1.75 1.72 1.72

Ann
&! 0.98 1.86 2.72 3.56 4.38 5.16 5.88 6.64
& 0.96 1.85 2.72 3.57 4.35 5.14 5.87 6.61

Deriv
&! 0.91 1.63 2.37 3.05 3.78 4.49 4.98 5.49
& 0.84 1.60 2.34 2.99 3.73 4.43 4.56 4.85

FFT
&! 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63
& 0.98 1.72 1.97 2.65 2.67 2.75 2.93 2.97

Hanoi
&! 0.89 1.76 2.47 3.32 3.77 4.17 4.61 5.25
& 0.89 1.77 1.91 2.84 3.13 3.54 3.96 4.47

MMatrix
&! 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28
& 0.90 1.48 2.16 2.88 3.51 4.13 4.71 5.25

QuickSort
&! 0.97 1.78 2.31 2.87 3.19 3.46 3.67 3.75
& 0.97 1.71 2.17 2.43 2.60 2.93 3.06 3.19

Takeuchi
&! 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72
& 0.88 1.45 2.02 2.85 3.41 3.80 4.23 4.66

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 15 / 18

High-Level Implementation of Unrestricted IAP

Performance results
Non-deterministic benchmarks

Performance results obtained in some representative
non-deterministic parallel benchmarks:

Benchmark
Number of processors

1 2 3 4 5 6 7 8
Chat 2.31 4.49 5.42 6.91 9.79 9.95 11.10 17.29

Numbers 1.84 1.79 1.79 1.79 1.79 1.79 1.78 1.78
Progeom 0.99 0.96 0.97 0.98 0.98 0.98 0.98 0.98
Queens 0.99 0.94 0.94 0.94 0.94 0.94 0.94 0.94

QueensT 0.99 1.90 2.41 3.18 4.71 4.61 4.58 4.57

Super-linear speedups are achievable, thanks to good failure
implementation (e.g., eager goal cancellation).

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 16 / 18

High-Level Implementation of Unrestricted IAP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(a) Boyer

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(b) FFT

 0

 5

 10

 15

 20

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(c) Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(d) QuickSort

Figure: Speedups for some selected benchmarks with stack set expansion.Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 17 / 18

Concluding Remarks and Future Work

Conclusions and future work

Improved high-level implementation of and-parallelism:

I Main implementation components raised to the source level.
I Simpler machinery and more flexibility.
I Full support for non-determinism / backtracking.

Performance results:
I Reasonable speedups are achievable.
I Super-linear speedups can be achieved, thanks to goal cancellation.
I Unrestricted and-parallelism provides better observed speedups.
I Parallel backtracking support has limited impact on deterministic

execution efficiency.

Future work involves improvements in execution model:
I Design efficient parallel garbage collection algorithms for this

implementation.
I Exploitation of other sources of parallelism.
I Combination with concurrency models.

Casas, Carro, Hermenegildo (UNM, UPM) A High-Level Implementation of... ICLP’08 - Dec. 12th , 2008 18 / 18

	Introduction and Motivation
	Background
	High-Level Implementation of Unrestricted IAP
	Concluding Remarks and Future Work

