Automatic Granularity-Aware Parallelization of Programs with Predicates, Functions, and Constraints

Manuel Hermenegildo1,2

http://www.cliplab.org/~herme

with Francisco Bueno,1 Manuel Carro,1 Amadeo Casas,2
Pedro López,1 Edison Mera,1 and Jorge Navas2

Departments of Computer Science
1Technical University of Madrid, and
2University of New Mexico

Supported by several CICYT/MCyT/MEC grants and EU FP-4/5/6 projects.
Objectives

- Parallelism (*finally!*!) becoming mainstream thanks to *multicore* – even on laptops!
- Our objective herein is *automatic parallelization* of programs with predicates, functions, and constraints.
- We concentrate on detecting *and-parallelism* (corresponds to, e.g., loop parallelization, task parallelism, divide and conquer, etc.):
Objectives

- Parallelism (*finally!*!) becoming mainstream thanks to *multicore* – even on laptops!
- Our objective herein is *automatic parallelization* of programs with predicates, functions, and constraints.
- We concentrate on detecting *and-parallelism* (corresponds to, e.g., loop parallelization, task parallelism, divide and conquer, etc.):

```
fib(0) := 0.
fib(1) := 1.
fib(N) := fib(N-1)+fib(N-2)
   :- N>1.
```

```
fib(0, 0).
fib(1, 1).
fib(N, F) :-
   N>1,
   ( N1 is N-1,
     fib(N1, F1) ) &
   ( N2 is N-2,
     fib(N2, F2) ),
   F1+F2.
```

→ Need to detect *independent* tasks.
What is Independence? (for Functions, Predicates, Constraints, ...)

Correctness: “same” solutions as sequential execution.

Efficiency: execution time $< \text{than seq. program}$ (or, at least, no-slowdown: \leq).

(We assume parallel execution has no overhead in this first stage.)

Running $s_1 // s_2$:

<table>
<thead>
<tr>
<th></th>
<th>Imperative</th>
<th>Functions</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>$Y := W+2$; $X := Y+Z$;</td>
<td>$(+W2)$; $(+Z)$</td>
<td>$Y = W+2$; $X = Y+Z$,</td>
</tr>
<tr>
<td>s_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- read-write deps
- strictness
- cost!
What is Independence? (for Functions, Predicates, Constraints, ...)

- **Correctness**: “same” solutions as sequential execution.
- **Efficiency**: execution time \(<\) than seq. program (or, at least, *no-slowdown*: \(\leq\)).
 (We assume parallel execution has no overhead in this first stage.)

<table>
<thead>
<tr>
<th></th>
<th>Imperative</th>
<th>Functions</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(Y := W+2;)</td>
<td>(+ (W) 2)</td>
<td>(Y = W+2,)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(X := Y+Z;)</td>
<td>(+ (Z))</td>
<td>(X = Y+Z,)</td>
</tr>
<tr>
<td>read-write deps</td>
<td>strictness</td>
<td>cost!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>For Predicates (multiple procedure definitions):</th>
</tr>
</thead>
<tbody>
<tr>
<td>main:-</td>
<td></td>
</tr>
<tr>
<td>(s_1) (p(X),)</td>
<td>(q(X) := X=a.)</td>
</tr>
<tr>
<td>(s_2) (q(X),)</td>
<td></td>
</tr>
<tr>
<td>(\text{write}(X).)</td>
<td>(q(X) := X=\text{b}, \text{large computation}.)</td>
</tr>
<tr>
<td></td>
<td>(q(X) := X=a.)</td>
</tr>
</tbody>
</table>

Again, cost issue: if \(p\) affects \(q\) (prunes its choices) then \(q\) ahead of \(p\) is speculative.

- **Independence**: condition that guarantees correctness *and efficiency.*
Independence

- **Strict independence** (suff. condition): no “pointers” shared at run-time:

- **Non-strict independence**: only one thread accesses each shared variable.
 - Requires global analysis.
 - Required in programs using “incomplete structures” (difference lists, etc.).
Independence

- **Strict independence** (suff. condition): no “pointers” shared at run-time:
 - Requires global analysis.
 - Required in programs using “incomplete structures” (difference lists, etc.).

- **Non-strict independence**: only one thread accesses each shared variable.
 - Requires global analysis.
 - Required in programs using “incomplete structures” (difference lists, etc.).

- **Constraint independence** – more involved:

 \[
 \text{main} :- X \succ Y, Z \succ Y, p(X) \& q(Z), \ldots
 \]
 \[
 \text{main} :- X \succ Y, Y \succ Z, p(X) \& q(Z), \ldots
 \]
Independence

- **Strict independence** (suff. condition): no "pointers" shared at run-time:
 - Requires global analysis.
 - Required in programs using “incomplete structures” (difference lists, etc.).

- **Non-strict independence**: only one thread accesses each shared variable.
 - Requires global analysis.
 - Required in programs using “incomplete structures” (difference lists, etc.).

- **Constraint independence**: more involved:

 \[
 \text{main} :- X .> Y, Z .> Y, \ p(X) \ & q(Z), \ldots \\
 \text{main} :- X .> Y, Y .> Z, \ p(X) \ & q(Z), \ldots
 \]

 Sufficient a-priori condition: given \(g_1(x) \) and \(g_2(y) \), c state just before them:

 \[
 (x \cap y \subseteq \text{def}(c)) \text{ and } (\exists x \ c \& \exists y \ c \rightarrow \exists y \cup x \ c)
 \]

 \((\text{def}(c) = \text{set of variables constrained to a unique value in } c) \)

 - For \(c = \{x > y, z > y\} \) \quad \exists \{x\} c = \exists \{z\} c = \exists \{x, z\} c = \text{true}

 - For \(c = \{x > y, y > z\} \) \quad \exists \{x\} c = \exists \{z\} c = \text{true}, \quad \exists \{x, z\} c = x > z

 Approximation: presence of “links” through the store.
Parallelization Process

- Conditional dependency graph (of some code segment, e.g., a clause):
 - Vertices: possible tasks (statements, calls,...),
 - Edges: possible dependencies (labels: conditions needed for independence).
- Local or global analysis used to reduce/remove checks in the edges.
- Annotation process converts graph back to parallel expressions in source.

```prolog
foo(\ldots) :-
g1(\ldots),
g2(\ldots),
g3(\ldots).
```

Local/Global analysis and simplification

(test(1–3) ⊨ (g1, g2) & g3 ; g1, (g2 & g3))

Alternative: `g1, (g2 & g3)`
Concrete System Used in Examples: Ciao

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation *multi-paradigm* language/prog.env. with:
 - Predicates, constraints, functions (including lazyness), higher-order, ...
 (And Prolog impure features only present as compatibility libraries.)
Concrete System Used in Examples: **Ciao**

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation *multi-paradigm* language/prog.env. with:
 - Predicates, constraints, functions (including lazyness), higher-order, ...
 (And Prolog impure features only present as compatibility libraries.)
 - Assertion language for expressing rich program properties
 (types, shapes, pointer aliasing, non-failure, determinacy, termination, data sizes, cost, ...).
 - Static debugging, verification, program certification, PCC, ...
Concrete System Used in Examples: Ciao

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation *multi-paradigm* language/prog.env. with:
 - Predicates, constraints, functions (including lazyness), higher-order, ...
 (And Prolog impure features only present as compatibility libraries.)
 - Assertion language for expressing rich program properties
 (types, shapes, pointer aliasing, non-failure, determinacy, termination, data sizes, cost, ...).
 - Static debugging, verification, program certification, PCC, ...
- Parallel, concurrent, and distributed execution primitives.
 - Automatic parallelization.
 - Automatic granularity and resource control.
Concrete System Used in Examples: Ciao

- One of the popular Prolog/CLP systems (supports ISO-Prolog fully).
- At the same time, new-generation multi-paradigm language/prog.env. with:
 - Predicates, constraints, functions (including lazyness), higher-order, ...
 (And Prolog impure features only present as compatibility libraries.)
 - Assertion language for expressing rich program properties
 (types, shapes, pointer aliasing, non-failure, determinacy, termination, data sizes, cost, ...).
 - Static debugging, verification, program certification, PCC, ...
- Parallel, concurrent, and distributed execution primitives.
 - Automatic parallelization.
 - Automatic granularity and resource control.
- + several control rules (e.g., bf, id, Andorra), objects, syntactic/semantic extensibility, LGPL, ...
Some Speedups (for different analysis abstract domains)

Benchmark: ann

The parallelizer, self-parallelized
Granularity Control

- Replace parallel with sequential execution based on task size and overheads.
- Cannot be done completely at compile-time: cost often depends on input (hard to approximate at compile time, even w/abstract interpretation).

```prolog
main :- read(X), read(Z), inc_all(X,Y) & r(Z,M), ...```

DAMP’07 – Nice, France – January 16, 2007
Granularity Control

- Replace parallel with sequential execution based on task size and overheads.
- Cannot be done completely at compile-time: cost often depends on input (hard to approximate at compile time, even w/abstract interpretation).

```prolog
main :- read(X), read(Z), inc_all(X,Y) & r(Z,M), ...
```

Our approach:
- Derive at compile-time cost *functions* (to be evaluated at run-time) that efficiently bound task size (lower, upper *bounds*).
- Transform programs to carry out run-time granularity control.

For `inc_all`, (assuming “threshold” is 100 units):

```prolog
main :- read(X), read(Z), (2*length(X)+1 > 100 -> inc_all(X,Y) & r(Z,M) ; inc_all(X,Y), r(Z,M)), ...
```
Inference of Bounds on Argument Sizes and Procedure Cost in CiaoPP

1. Perform type/mode inference:
   $$\text{:- true inc\_all}(X,Y) : \text{list}(X,\text{int}), \text{var}(Y) \Rightarrow \text{list}(Y,\text{int}).$$

2. Infer size measures: list length.

3. Use data dependency graphs to determine the relative sizes of structures that variables point to at different program points – infer argument size relations:
   - \(\text{Size}_{\text{inc\_all}}^2(0) = 0\) (boundary condition from base case),
   - \(\text{Size}_{\text{inc\_all}}^2(n) = 1 + \text{Size}_{\text{inc\_all}}^2(n - 1)\).
   - \(\text{Sol} = \text{Size}_{\text{inc\_all}}^2(n) = n\).

4. Use this, set up recurrence equations for the computational cost of procedures:
   - \(\text{Cost}_{\text{inc\_all}}^L(0) = 1\) (boundary condition from base case),
   - \(\text{Cost}_{\text{inc\_all}}^L(n) = 2 + \text{Cost}_{\text{inc\_all}}^L(n - 1)\).
   - \(\text{Sol} = \text{Cost}_{\text{inc\_all}}^L(n) = 2n + 1\).

We obtain lower/upper bounds on task granularities.

Non-failure (absence of exceptions) analysis needed for lower bounds.
**Refinements (1): Granularity Control Optimizations**

- **Simplification of cost functions:**

  \[\ldots, (\text{length}(X) > 50 \rightarrow \text{inc\_all}(X,Y) \land r(Z,M)) \]
  \[\quad; \quad \text{inc\_all}(X,Y), r(Z,M)) , \ldots\]
Refinements (1): Granularity Control Optimizations

Simplification of cost functions:

..., ( length(X) > 50 -> inc_all(X,Y) & r(Z,M) 
  ; inc_all(X,Y), r(Z,M) ), ...

..., ( length_gt(LX,50) -> inc_all(X,Y) & r(Z,M) 
  ; inc_all(X,Y), r(Z,M) ), ...
Refinements (1): Granularity Control Optimizations

- Simplification of cost functions:
  
  ..., (length(X) > 50 → inc_all(X,Y) & r(Z,M)
  ; inc_all(X,Y), r(Z,M)), ...

  ..., (length_gt(LX,50) → inc_all(X,Y) & r(Z,M)
  ; inc_all(X,Y), r(Z,M)), ...

- Complex thresholds: use also communication cost functions, load, ...

[Example:] Assume \(\text{CommCost}(\text{inc\_all}(X)) = 0.1 \ (\text{length}(X) + \text{length}(Y))\).

We know \(\text{ub\_length}(Y)\) (actually, exact size) = \(\text{length}(X)\); thus:

\[
2 \ \text{length}(X) + 1 > 0.1 \ (\text{length}(X) + \text{length}(X)) \ \cong \\
2 \ \text{length}(X) > 0.2 \ \text{length}(X) \ \cong \\
2 > 0.2
\]
Refinements (1): Granularity Control Optimizations

- Simplification of cost functions:
  
  ..., (length(X) > 50 -> inc_all(X,Y) & r(Z,M)
  ; inc_all(X,Y), r(Z,M)), ...

  ..., (length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)
  ; inc_all(X,Y), r(Z,M)), ...

- Complex thresholds: use also communication cost functions, load, ...

  **Example:** Assume $CommCost(inc_all(X)) = 0.1 \times (length(X) + length(Y))$. We know $ub\_length(Y)$ (actually, exact size) = $length(X)$; thus:

  \[
  2 \times length(X) + 1 > 0.1 \times (length(X) + length(X)) \iff
  2 \times length(X) > 0.2 \times length(X) \equiv
  \]

  Guaranteed speedup for any data size! \[\iff\] \(2 > 0.2\)
Simpilication of cost functions:

..., (length(X) > 50 -> inc_all(X,Y) & r(Z,M)
    ; inc_all(X,Y) , r(Z,M) ), ...

..., (length_gt(LX,50) -> inc_all(X,Y) & r(Z,M)
    ; inc_all(X,Y) , r(Z,M) ), ...

Complex thresholds: use also communication cost functions, load, ...

Example: Assume \(\text{CommCost}(\text{inc\_all}(X)) = 0.1 (\text{length}(X) + \text{length}(Y)).\)

We know \(\text{ub\_length}(Y)\) (actually, exact size) = \(\text{length}(X)\); thus:

\[
2 \text{length}(X) + 1 > 0.1 (\text{length}(X) + \text{length}(X)) \equiv \\
2 \text{length}(X) > 0.2 \text{length}(X) \equiv
\]

Guaranteed speedup for any data size! \(\leftarrow\) \(2 > 0.2\)

Checking of data sizes can be stopped once under threshold.

Data size computations can often be done on-the-fly.

Static task clustering (loop unrolling), static placement, etc.
Granularity Control System Output Example

\[
g_{\text{qsort}}([], []). \\
g_{\text{qsort}}([\text{First}|L1], L2) :- \\
\quad \text{partition3o4o(First, L1, Ls, Lg, Size_Ls, Size_Lg)}, \\
\quad \text{Size_Ls} > 20 \rightarrow (\text{Size_Lg} > 20 \rightarrow g_{\text{qsort}}(Ls, Ls2) \& g_{\text{qsort}}(Lg, Lg2) \\
\qquad ; g_{\text{qsort}}(Ls, Ls2), s_{\text{qsort}}(Lg, Lg2)) \\
\quad ; (\text{Size_Lg} > 20 \rightarrow s_{\text{qsort}}(Ls, Ls2), g_{\text{qsort}}(Lg, Lg2) \\
\qquad ; s_{\text{qsort}}(Ls, Ls2), s_{\text{qsort}}(Lg, Lg2))), \\
\quad \text{append}(Ls2, [\text{First}|Lg2], L2).
\]

\[
\text{partition3o4o}(F, [], [], [], 0, 0). \\
\text{partition3o4o}(F, [X|Y], [X|Y1], Y2, SL, SG) :- \\
\quad X =< F, \text{partition3o4o}(F, Y, Y1, Y2, SL1, SG), SL \text{ is } SL1 + 1. \\
\text{partition3o4o}(F, [X|Y], Y1, [X|Y2], SL, SG) :- \\
\quad X > F, \text{partition3o4o}(F, Y, Y1, Y2, SL, SG1), SG \text{ is } SG1 + 1.
\]
Refinements (2): Granularity-Aware Annotation

With classic annotators (MEL, UDG, CDG, ... ) we applied granularity control after parallelization:

\[ g_1 \rightarrow g_3 \]
\[ g_2 \rightarrow \text{"Annotation"} \rightarrow g_1, (g_2 \& g_3 ) \]

Granularity Control:
\[ g_1, (\text{gran\_cond} \rightarrow g_2 \& g_3 ; g_2, g_3 ) \]
Refinements (2): Granularity-Aware Annotation

With classic annotators (MEL, UDG, CDG, . . . ) we applied granularity control after parallelization:

Developed new annotation algorithm that takes task granularity into account:

- Annotation is a heuristic process (several alternatives possible).
- Taking task granularity into account during annotation can help make better choices and speed up annotation process.
- Tasks with larger cost bounds given priority, small ones not parallelized.
Granularity-Aware Annotation: Concrete Example

Consider the clause: \[ p : - a, b, c, d, e. \]

Assume that the dependencies detected between the subgoals of \( p \) are given by:

\[ \begin{align*}
& a \rightarrow b \\
& c \rightarrow d \\
& d \rightarrow e
\end{align*} \]

Assume also that:

\[ T(a) < T(c) < T(e) < T(b) < T(d), \]

where \( T(i) < T(j) \) means: cost of subgoal \( i \) is smaller than the cost of \( j \).
Granularity-Aware Annotation: Concrete Example

Consider the clause: \( p :\ :- a, b, c, d, e.\)

Assume that the dependencies detected between the subgoals of \( p \) are given by:

\[
\text{MEL annotator: } (a, b & c, d & e) \\
\text{UDG annotator: } (c & (a, b, e), d) \\
\text{Granularity-aware: } (a, c, (b & d), e)
\]

Assume also that:

\[ T(a) < T(c) < T(e) < T(b) < T(d), \]

where \( T(i) < T(j) \) means: cost of subgoal \( i \) is smaller than the cost of \( j \).
Refinements (3): Using Execution Time Bounds/Estimates

- Use estimations/bounds on *execution time* for controlling granularity (instead of steps/reductions).

- Execution time generally dependent on platform characteristics ($\approx$ constants) and input data sizes (unknowns).

- Platform-dependent, one-time calibration using fixed set of programs:
  - Obtains value of the platform-dependent constants (costs of basic operations).

- Platform-independent, compile-time analysis:
  - Infers cost functions (using modification of previous method), which return count of *basic operations* given input data sizes.
  - Incorporate the constants from the calibration.

  → we obtain functions yielding *execution times* depending on size of input.

- Predicts execution times with *reasonable* accuracy (challenging!).

- Improving by taking into account lower level factors (current work).
Consider \texttt{nrev} with mode:
\[ :\text{- pred nrev/2 : list(int) } * \text{ var.} \]

Estimation of execution time for a concrete input—consider:
\[ A = [1,2,3,4,5], \quad \overline{n} = \text{length}(A) = 5 \]

<table>
<thead>
<tr>
<th>component</th>
<th>Once ( K_{\omega_i} )</th>
<th>Static Analysis ( \text{Cost}_p(I(\omega_i), \overline{n}) = C_i(\overline{n}) )</th>
<th>Application ( C_i(5) \times K_{\omega_i} \times C_i(5) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>step</td>
<td>21.27</td>
<td>( 0.5 \times n^2 + 1.5 \times n + 1 )</td>
<td>21 \times 446.7</td>
</tr>
<tr>
<td>nargs</td>
<td>9.96</td>
<td>( 1.5 \times n^2 + 3.5 \times n + 2 )</td>
<td>57 \times 567.7</td>
</tr>
<tr>
<td>giunif</td>
<td>10.30</td>
<td>( 0.5 \times n^2 + 3.5 \times n + 1 )</td>
<td>31 \times 319.3</td>
</tr>
<tr>
<td>gounif</td>
<td>8.23</td>
<td>( 0.5 \times n^2 + 0.5 \times n + 1 )</td>
<td>16 \times 131.7</td>
</tr>
<tr>
<td>viunif</td>
<td>6.46</td>
<td>( 1.5 \times n^2 + 1.5 \times n + 1 )</td>
<td>45 \times 290.7</td>
</tr>
<tr>
<td>vounif</td>
<td>5.69</td>
<td>( n^2 + n )</td>
<td>30 \times 170.7</td>
</tr>
</tbody>
</table>

Execution time \( \overline{K}_\Omega \times \text{Cost}_p(I(\Omega), \overline{n}) \): 1926.8
Visualization of And-parallelism - (small) qsort, 4 processors
Fib 15, 1 processor
Fib 15, 8 processors (same scale)
Fib 15, 8 processors (full scale)
Fib 15, 8 processors, with granularity control (same scale)