
Towards A High-Level Implementation of Flexible
Parallelism Primitives for Symbolic Languages

Amadeo Casas1

1University of New Mexico
Albuquerque, NM (USA)

{amadeo,herme}@{cs,ece}.unm.edu

Manuel Carro2 Manuel Hermenegildo1,2

2Universidad Politecnica de Madrid
Madrid (Spain)

{mcarro,herme}@fi.upm.es

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and Logic Languages; Concurrent, Dis-
tributed, and Parallel Languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent
Programming Structures

General Terms
Performance, Languages

Keywords
Parallelism, logic programming, symbolic computation

1. INTRODUCTION
The advent of multicore processors is bringing renewed in-
terest in parallelism and, accordingly, in the development
of languages and tools to simplify the task of writing paral-
lel programs. This is especially important for the complex,
non-regular algorithms often found in software which per-
forms non-trivial symbolic tasks. Such software can benefit
from being written in a high-level language whose nature
is symbolic as well, since this narrows the gap between the
conceptual definition of the task to be performed and the
code which executes it. In our case we will use for concrete-
ness a logic-based multiparadigm language, Ciao [1], which
is based on a logic-programming kernel and a flexible mecha-
nism whereby multiple extensions are built supporting Pro-
log, functional programming, constraint programming, and
other system- and user-level languages. The base language
and system features dynamic typing, higher-order capabili-
ties, polymorphism, and static type inference and checking
(also of non-trivial properties, such as computational com-
plexity). Such language capabilities are largely orthogonal
to parallelism; however, the way parallelism is expressed
combines seamlessly with the the rest of the language.

An advantage of logic-based languages (and, in general, of
declarative languages) is that their clean semantics and high-
level nature makes it possible to perform automatic paral-
lelization more easily [4, 2]. At the same time, the runtime

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASCO’07, July 27–28, 2007, London, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-741-4/07/0007 ...$5.00.

system often has more degrees of freedom to decide how par-
allel tasks are to be scheduled. A wealth of research on par-
allel execution of logic programs has been reported so far [4].
Two main forms of parallelism have been identified and
exploited: or-parallelism and and-parallelism. The former
tries to explore in parallel branches of any search performed
by the program, while the latter (on which we will focus) is
aimed at executing parts of general computations (conjunc-
tions of goals) in parallel. While or-parallelism is only useful
when there is search involved, and-parallelism arises addi-
tionally in many classes of applications, with divide-and-
conquer and map-style algorithms being classical examples.

Most implementations of and-parallelism rely on complex
low-level machinery [4]. The alternative approach we pro-
pose (in fact an evolution of [5]) is based on raising the
implementation of certain components to the level of the
source language while keeping only some selected operations
(related to thread handling, locking, etc.) at a lower level.
This approach does not eliminate altogether modifications
to the abstract machine, but it greatly simplifies them. We
expect this separation of concerns to make it possible to
easily explore variations on execution schemes, such as goal
scheduling, supporting sophisticated goal dependencies, etc.,
to better suit the application at hand. Also, it allows the
implementation language to be used as a basis for designing
and compiling domain-specific user languages (such as, e.g.,
describing strategies for theorem provers) with parallelism
in mind.

2. FLEXIBLE PARALLELISM PRIMITIVES
Some well-known and successful and-parallel systems [5]

use the parallel conjunction operator &/2, instead of the se-
quential comma “,” to express fork-join (nested) parallelism:

Example 1. The code below is a parallel program which
symbolically derives arithmetic expressions:
deriv(U+V,X,DU+DV):- !, deriv(U,X,DU) & deriv(V,X,DV).
deriv(U-V,X,DU-DV):- !, deriv(U,X,DU) & deriv(V,X,DV).
deriv(U*V,X,DU*V+U*DV):- !, deriv(U,X,DU) & deriv(V,X,DV).
deriv(U/V,X,(DU*V-U*DV)/V^2):- !, deriv(U,X,DU) & deriv(V,X,DV).
deriv(-U,X,-DU):- !, deriv(U,X,DU).
deriv(exp(U),X,exp(U)*DU):- !, deriv(U,X,DU).
deriv(log(U),X,DU/U):- !, deriv(U,X,DU).
deriv(U^N,X,DU*N*U^N1):- !, integer(N), N1 is N-1,

deriv(U,X,DU).
deriv(X,X,1):- !.
deriv(_C,_X,0).

In our approach we use however more flexible construc-
tions to represent parallelism by using two operators, &>/2
and <&/1, defined as follows [3]: G &> H schedules G for par-
allel execution and continues executing the code after G &>

Bench. 1 2 3 4 5 6 7 8
AI-AKL 0.91 1.73 1.67 1.64 1.65 1.63 1.63 1.61
Ann 0.96 1.83 2.67 3.45 4.19 4.91 5.61 6.28
Boyer 0.15 0.29 0.43 0.55 0.66 0.73 0.78 0.82
BoyerGC 0.82 1.65 2.44 3.10 3.56 4.19 4.55 5.08
Deriv 0.14 0.27 0.40 0.52 0.64 0.75 0.85 0.90
DerivGC 0.82 1.58 2.30 2.98 3.59 4.15 4.72 5.17
Fib 0.16 0.31 0.46 0.62 0.78 0.92 1.07 1.21
FibGC 0.99 1.98 2.97 3.96 4.93 5.92 6.90 7.89
Hanoi 0.46 0.88 1.22 1.56 1.80 2.10 2.32 2.47
HanoiGC 0.85 1.61 2.13 2.65 2.97 3.35 3.62 3.81
MSort 0.59 1.11 1.29 1.75 1.94 2.19 2.36 2.54
MSortGC 0.89 1.62 1.94 2.58 2.60 2.92 2.94 3.32
MMatrix 0.81 1.61 2.37 3.11 3.70 4.58 5.27 5.77
QSort 0.58 1.13 1.57 2.02 2.36 2.70 2.84 3.04
QSortGC 0.97 1.86 2.51 2.91 3.44 3.48 3.63 3.78

Table 1: Speedups (1 to 8 processors). Sequential
execution corresponds to Speedup = 1.0.

H. H is a handler which contains (or points to) the state of
goal G. H <& waits for the goal associated to H to finish. Af-
ter that point the final bindings made by G to its variables
are available to the executing thread.

In our current implementation for shared-memory multi-
processors, each agent (processor + virtual machine) exe-
cutes a sequential Prolog virtual machine (with negligible
overhead imposed on the sequential parts) extended with a
goal stack where pointers to the generated parallel goals are
pushed. If G has finished, H <& immediately succeeds and
the bindings made by G are available. If G has not been taken
by any other agent, it is executed locally, and then H <& suc-
ceeds. If G has been taken but it has not finished yet, then
the executing agent will repeatedly try to run some other
goal available. If none is available, execution suspends until
there is some goal available, or until G finishes. With the
previous definitions, the &/2 operator can be simply written
as G1 & G2 :- G2 &> H, call(G1), H <& .

The &>/2 and <&/1 operators do not assume any partic-
ular architecture, and hence they can be also implemented
in distributed memory machines. Specialized versions are
also available, to create agents that execute goals “on de-
mand” or to adapt to the (very common) deterministic case.
Most importantly, using the &>/2 and <&/1 primitives, de-
pendency graphs other than fork-join can be expressed, and
more parallelism may be exploited.

3. EXPERIMENTAL RESULTS
We have performed a preliminary evaluation of the system

performance using a series of classic benchmarks for (in-
dependent) and-parallelism. All the results were obtained
by averaging ten runs on a Sun Fire T2000 with 8 cores,
with 4 threads each, 8 Gb of memory, and running Solaris.
Speedups with respect to the sequential execution (using
from 1 to 8 processors)1 are presented in Table 1 and (for
some selected benchmarks) in Figure 1.

The programs used for benchmarking perform mostly sym-
bolic computations. Two of them (Deriv and Boyer) can
be considered examples of symbolic mathematics. Summa-
rizing, AI-AKL is part of an analyzer for the AKL lan-
guage; Ann is the parallelized version of one of the &-Prolog
parallelizers; Boyer is a reduced version of the Boyer-Moore
theorem prover; Deriv calculates the derivative of an ex-
pression; Fib is the doubly recursive Fibonacci function;

1Memory-intensive benchmarks obtain, in our experience,
sublinear speedups if the number of agents exceeds the num-
ber of core processors, even for independent computations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fibonacci
Fibonacci with granularity control

(a) Fibonacci

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

QuickSort
QuickSort with granularity control

(b) QuickSort

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8

Derivation
Derivation with granularity control

(c) Derivation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8

Boyer-Moore
Boyer-Moore with granularity control

(d) Boyer-Moore

Figure 1: Speedups with and without gran. control.

Hanoi computes a solution to the Towers of Hanoi; MSort
and QSort sort a list using the mergesort and quicksort al-
gorithms; and MMatrix multiplies two matrices. The GC
versions perform granularity control.

We observe that reasonable speedups are achievable, but
the additional overhead in the current prototype implemen-
tation (mainly due to the lifting of parallelism-related prim-
itives to the source language level) makes it advisable to use
granularity control (Figure 1). While this complicates the
code, automatic compile-time granularity control [6] can be
applied to alleviate the burden of adding such control by
hand. This, together with automatic compile-time paral-
lelization [2], often makes it possible to write (sequential)
code which matches closely the high-level algorithm and to
obtain speedups automatically. We conclude that the results
are quite reasonable given the simplicity of our implemen-
tation approach and encourage us to work further on the
optimization of our high-level implementation.

4. REFERENCES
[1] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo,

P. López, and G. Puebla (Eds.). The Ciao System. Ref.
Manual (v1.13). http://www.ciaohome.org.

[2] F. Bueno, M. G. de la Banda, M. Hermenegildo.
Effectiveness of Abstract Interpretation in Automatic
Parallelization. ACM TOPLAS, 21(2):189–238, 1999.

[3] D. Cabeza and M. Hermenegildo. Implementing
Distributed Concurrent Constraint Execution in the
CIAO System. In AGP’96, pages 67–78, 1996.

[4] G. Gupta, E. Pontelli, K. Ali, M. Carlsson,
M. Hermenegildo. Parallel Execution of Prolog
Programs: a Survey. ACM TOPLAS, 23(4):472–602,
July 2001.

[5] M. Hermenegildo, K. Greene. The &-Prolog System:
Exploiting Independent And-Parallelism. New
Generation Computing, 9(3,4):233–257, 1991.

[6] P. López-Garćıa, M. Hermenegildo, and S. K. Debray.
A Methodology for Granularity Based Control of
Parallelism in Logic Programs. J. of Symbolic
Computation, Special Issue on Parallel Symbolic
Computation, 22:715–734, 1996.

