
Towards High-Level Execution Primitives for
And-parallelism: Preliminary Results

Amadeo Casas1 Manuel Carro2 Manuel Hermenegildo1,2

1University of New Mexico (USA)
2Technical University of Madrid (Spain)

CICLOPS’07 - September 8th

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 1 / 1

Introduction

Introduction and motivation

Parallelism (finally!) becoming mainstream thanks to multicore
architectures – even on laptops!

Declarative languages interesting for parallelization:
I Program close to problem description.
I Notion of control provides more flexibility.
I Amenability to semantics-preserving automatic parallelization.

Significant previous work in logic and functional programming.

Two objectives in this work:
I New, efficient, and more flexible approach for exploiting (unrestricted)

(and-)parallelism in LP.
I Take advantage of new automatic parallelization for LP.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 2 / 1

Introduction

Types of parallelism in LP

Two main types:
I Or-parallelism: explores in parallel alternative computation branches.
I And-parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with &/2 operator: fork-join nested parallelism.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 3 / 1

Introduction

Types of parallelism in LP

Two main types:
I Or-parallelism: explores in parallel alternative computation branches.
I And-parallelism: executes procedure calls in parallel.

F Traditional parallelism: parbegin-parend, loop parallelization,
divide-and-conquer, etc.

F Often marked with &/2 operator: fork-join nested parallelism.

Example (QuickSort: sequential and parallel versions)

qsort([], []). qsort([], []).
qsort([X|L], R) :- qsort([X|L], R) :-

partition(L, X, SM, GT), partition(L, X, SM, GT),
qsort(GT, SrtGT), qsort(GT, SrtGT) &
qsort(SM, SrtSM), qsort(SM, SrtSM),
append(SrtSM, [X|SrtGT], R). append(SrtSM, [X|SrtGT], R).

We will focus on and-parallelism.
I Need to detect independent tasks.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 3 / 1

Introduction

Background: parallel execution and independence

Correctness: same results as sequential execution.

Efficiency: execution time ≤ than seq. program (no slowdown),
assuming parallel execution has no overhead.

s1 Y := W+2; (+ (+ W 2) Y = W+2,
s2 X := Y+Z; Z) X = Y+Z,

Imperative Functional CLP

main :- p(X) :- X = [1,2,3].
s1 p(X),
s2 q(X), q(X) :- X = [], large computation.

write(X). q(X) :- X = [1,2,3].

Fundamental issue: p affects q (prunes its choices).
I q ahead of p is speculative.

Independence: correctness + efficiency.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 4 / 1

Introduction

Related work and proposed solution

Versions of and-parallelism previously implementated:
&-Prolog, &-ACE, AKL, Andorra-I,...

They rely on complex low-level machinery:
I Each agent: new WAM instructions, goal stack, parcall frames,

markers, etc.

Current implementation for shared-memory multiprocessors:
I Each agent: sequential Prolog machine + goal list + (mostly) Prolog

code.

Approach: rise components to the source language level:
I Prolog-level: goal publishing, goal searching, goal scheduling,

“marker” creation (through choice-points),...
I C-level: low-level threading, locking, stack management, sharing of

memory, untrailing,...

→ Simpler machinery and more flexibility.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 5 / 1

Introduction

Ciao and CiaoPP

Ciao: new generation multi-paradigm language.
I Supports ISO-Prolog (as a library).
I Predicates, functions (including laziness), constraints, higher-order,

objects, tabling, etc.
I Parallel, concurrent and distributed execution primitives.

Preprocessor / environment (CiaoPP):
I Infers many properties such as types, pointer aliasing, non-failure,

determinacy, termination, data sizes, cost, etc.

I Performs automatic verification of program assertions
(and bug detection if assertions are proved false).

I Performs automatic parallelization and automatic granularity control.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 6 / 1

Automatic Parallelization

CDG-based automatic parallelization

Conditional Dependency Graph: [TOPLAS’99, JLP’99]
I Vertices: possible sequential tasks (statements, calls, etc.)
I Edges: conditions needed for independence (e.g., variable sharing).

Local or global analysis to remove checks in the edges.

Annotation converts graph back to (now parallel) source code.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

(test(1−3) −> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
"Annotation"

Local/Global analysis
and simplification

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 7 / 1

Flexible Parallelism Primitives

An alternative, more flexible source code annotation

Classical parallelism operator &/2: nested fork-join.
However, more flexible constructions can be used to denote
parallelism:

I G &> HG — schedules goal G for parallel execution and continues
executing the code after G &> HG.

F HG is a handler which contains / points to the state of goal G.

I HG <& — waits for the goal associated with HG to finish.
F The goal HG was associated to has produced a solution; bindings for the

output variables are available.

Operator &/2 can be written as:
A & B :- A &> H, call(B), H <&.

Optimized deterministic versions: &!>/2, <&!/1.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 8 / 1

Flexible Parallelism Primitives

Expressing more parallelism

More parallelism can be exploited
with these primitives.

Take the sequential code below
(dep. graph at the right) and
three possible parallelizations:

b(X)

c(Y) d(Y,Z)

a(X,Z)

p(X,Y,Z) :- p(X,Y,Z) :- p(X,Y,Z) :-
a(X,Z), a(X,Z) & c(Y), c(Y) &> Hc,
b(X), b(X) & d(Y,Z). a(X,Z),
c(Y), b(X) &> Hb,
d(Y,Z). p(X,Y,Z) :- Hc <&,

c(Y) & (a(X,Z),b(X)), d(Y,Z),
d(Y,Z). Hb <&.

Sequential Restricted IAP Unrestricted IAP

In this case: unrestricted parallelization at least as good
(time-wise) as any restricted one, assuming no overhead.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 9 / 1

Shared-Memory Implementation

Low-level support

Low-level parallelism primitives:
apll:push goal(+Goal,+Det,-Handler).

apll:find goal(-Handler).

apll:goal available(+Handler).

apll:retrieve goal(+Handler,-Goal).

apll:goal finished(+Handler).

apll:set goal finished(+Handler).

apll:waiting(+Handler).

Synchronization primitives:
apll:suspend.

apll:release(+Handler).

apll:release some suspended thread.

apll:enter mutex(+Handler).

apll:enter mutex self.

apll:release mutex(+Handler).

apll:release mutex self.
Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 10 / 1

Shared-Memory Implementation

Prolog-level algorithms (I)

Thread creation:

create agents(0) :- !. agent :-

create agents(N) :- apll:enter mutex self,

N > 0, (

conc:start thread(agent), find goal and execute -> true

N1 is N - 1, ;

create agents(N1). apll:exit mutex self,

apll:suspend

),

agent.

High-level goal publishing:

Goal &!> Handler :-

apll:push goal(Goal,det,Handler),

apll:release some suspended thread.

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 11 / 1

Shared-Memory Implementation

Prolog-level algorithms (II)

Performing goal joins:

Handler <&! :- perform other work(Handler) :-

apll:enter mutex self, apll:enter mutex self,

((

apll:goal available(Handler) -> apll:goal finished(Handler),

apll:retrieve goal(Handler,Goal), apll:exit mutex self,

apll:exit mutex self, ;

call(Goal) (

; find goal and execute -> true

apll:exit mutex self, ;

perform other work(Handler) apll:exit mutex self,

). apll:suspend

),

perform other work(Handler)

).

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 12 / 1

Shared-Memory Implementation

Prolog-level algorithms (III)

Search for parallel goals:

find goal and execute :-

apll:find goal(Handler),

apll:exit mutex self,

apll:retrieve goal(Handler,Goal),

call(Goal),

apll:enter mutex(Handler),

apll:set goal finished(Handler),

(

apll:waiting(Handler) ->

apll:release(Handler)

;

true

),

apll:exit mutex(Handler).

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 13 / 1

(Preliminary) Performance Results

(Preliminary) performance results for restricted and-parallelism (I)

Benchmark
Number of processors

Seq. 1 2 3 4 5 6 7 8

AIAKL 1.00 0.97 1.77 1.66 1.67 1.67 1.67 1.67 1.67
Ann 1.00 0.98 1.86 2.65 3.37 4.07 4.65 5.22 5.90
Boyer 1.00 0.32 0.64 0.95 1.21 1.32 1.47 1.57 1.64

BoyerGC 1.00 0.90 1.74 2.57 3.15 3.85 4.39 4.78 5.20
Deriv 1.00 0.32 0.61 0.86 1.09 1.15 1.30 1.55 1.75

DerivGC 1.00 0.91 1.63 2.37 3.05 3.69 4.21 4.79 5.39
FFT 1.00 0.61 1.08 1.30 1.63 1.65 1.67 1.68 1.70

FFTGC 1.00 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37
Fibonacci 1.00 0.30 0.60 0.94 1.25 1.58 1.86 2.22 2.50

FibonacciGC 1.00 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57
Hanoi 1.00 0.67 1.31 1.82 2.32 2.75 3.20 3.70 4.07

HanoiDL 1.00 0.47 0.98 1.51 2.19 2.62 3.06 3.54 3.95
HanoiGC 1.00 0.89 1.72 2.43 3.32 3.77 4.17 4.41 4.67
MMatrix 1.00 0.91 1.74 2.55 3.32 4.18 4.83 5.55 6.28

Palindrome 1.00 0.44 0.77 1.09 1.40 1.61 1.82 2.10 2.23
PalindromeGC 1.00 0.94 1.75 2.37 2.97 3.30 3.62 4.13 4.46

QuickSort 1.00 0.75 1.42 1.98 2.44 2.84 3.07 3.37 3.55
QuickSortDL 1.00 0.71 1.36 1.95 2.26 2.76 2.96 3.18 3.32
QuickSortGC 1.00 0.94 1.78 2.31 2.87 3.19 3.46 3.67 3.75

Takeuchi 1.00 0.23 0.46 0.68 0.91 1.12 1.32 1.49 1.72
TakeuchiGC 1.00 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 14 / 1

(Preliminary) Performance Results

(Preliminary) performance results for restricted and-parallelism (II)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8

Boyer-Moore
Boyer-Moore with granularity control

(a) Boyer-Moore

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

Fast-Fourier Transform
Fast-Fourier Transform with granularity control

(b) Fast-Fourier Transform

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Fibonacci
Fibonacci with granularity control

(c) Fibonacci

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

QuickSort
QuickSort with difference lists

QuickSort with granularity control

(d) Quicksort

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 15 / 1

(Preliminary) Performance Results

Restricted vs. unrestricted and-parallelism (I)

Benchm. And-P
Number of processors

1 2 3 4 5 6 7 8

FibFunGC
Restricted 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Unrestricted 0.99 1.95 2.89 3.84 4.78 5.71 6.63 7.57

TakeuchiGC
Restricted 0.88 1.61 2.16 2.62 2.63 2.63 2.63 2.63

Unrestricted 0.88 1.62 2.39 3.33 4.04 4.47 5.19 5.72

FFTGC
Restricted 0.98 1.76 2.14 2.71 2.82 2.99 3.08 3.37

Unrestricted 0.98 1.82 2.31 3.01 3.12 3.26 3.39 3.63

Hamming
Restricted 0.93 1.13 1.52 1.52 1.52 1.52 1.52 1.52

Unrestricted 0.93 1.15 1.64 1.64 1.64 1.64 1.64 1.64

WMS2
Restricted 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Unrestricted 0.99 1.10 1.10 1.10 1.10 1.10 1.10 1.10

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 16 / 1

(Preliminary) Performance Results

Restricted vs. unrestricted and-parallelism (II)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

FFT, Restricted version
FFT, Unrestricted version

(e) FFT

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8

Hamming, Restricted version
Hamming, Unrestricted version

(f) Hamming

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

FibFun, Restricted version
FibFun, Unrestricted version

(g) FibFun

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

Takeuchi, Restricted version
Takeuchi, Unrestricted version

(h) Takeuchi

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 17 / 1

Conclusions

Conclusions and future work

New implementation approach for exploiting and-parallelism:
I Simpler machinery.
I More flexibility.

Preliminary results:
I Reasonable speedups are achievable.
I Additional overhead makes it necessary to perform granularity control.

Unrestricted and-parallelism:
I Provides better observed speedups!

Currently working on:
I Improving implementation.
I Developing compile-time (automatic) parallelizers for this approach

[LOPSTR’07].

Casas, Carro, Hermenegildo (UNM, UPM) Towards High-Level Execution Primitives. . . CICLOPS’07 - September 8th 18 / 1

	Introduction
	Automatic Parallelization
	Flexible Parallelism Primitives
	Shared-Memory Implementation
	(Preliminary) Performance Results
	Conclusions

