Technical Report CLIP1/2015.0

Towards a Rule-Based Approach
to Generate High-Performance Scientific Code*

Guillermo Viguerasl, Salvador Tamarit2, Manuel Carro':2, and Julio Marifio?

{guillermo .vigueras, manuel. carro}@imdea .org
{salvador.tamarit, julio.marino}@upm.es

! IMDEA Software Institute, Campus de Montegancedo
28223 Pozuelo de Alarc6n, Madrid, Spain
2 Universidad Politécnica de Madrid, Campus de Montegancedo
28660 Boadilla del Monte, Madrid, Spain

Abstract. Obtaining good performance when programming heterogeneous com-
puting platforms (including multi-core computers) poses significant challenges
for the programmer. We present an approach where architecture-agnostic scien-
tific code with semantic annotations is transformed into a functionally equivalent
one better suited for a given platform. The transformation steps are formalized
(and implemented) as rules which can be fired when certain syntactic and seman-
tic conditions are met. Rule firing is guided by heuristics which aim at capturing
how behavioral run-time characteristics (e.g., resource consumption) are affected
by the transformation steps. Program properties, to be matched with rule condi-
tions, can sometimes be automatically inferred or, alternatively, stated by hand
with pragmas. A tool based on these ideas is under implementation.

Keywords: High-Performance Computing, Scientific Computing, Heterogeneous
Platforms, Rule-Based Program Transformation.

1 Introduction

There is currently a strong trend in high-performance computing towards the integra-
tion of various types of computing elements: GPUs being used for non-graphical pur-
poses, vector processors, FPGA modules, etc. As each of these components is specially
suited for some class of computations, this is proving to be a cost-effective alternative
to more traditional supercomputing architectures. However, this specialization comes
at the price of additional complexity in hardware and, notably, software. Developers
must take care of very different features to make the most of the underlying computing
infrastructure. Programming these systems is restricted to a few experts, which hin-
ders its widespread adoption and increases the likelihood of bugs. Also, portability is
greatly limited. For these reasons it is crucial to develop programming models that ease
the task of efficiently programming heterogeneous systems. In this context, we pro-
pose a framework for the sound, mechanical transformation of programs written in an
architecture-agnostic way to versions suitable for heterogeneous platforms.

* Work partially funded by EU FP7-ICT-2013.3.4 project ref. 610686 POLCA, by Comunidad
de Madrid project S2013/ICE-2731 N-Greens Software and by Spanish MINECO Projects
TIN2012-39391-C04-03 and TIN2012-39391-C04-04 (StrongSoft).

We have focused on scientific code, on one hand, because heterogeneous computing
is highly applicable in this domain. This is due to the suitability of certain components
to some classes of computations — e.g. GPUs and linear algebra — but also, to the high
energy and time consumption of key scientific applications, an aspect where hetero-
geneous computing has been found to be advantageous [9]. On the other hand, most
scientific applications rely on a large base of existing algorithms that must be ported to
the new architectures in a way that gets the most out of their computational strengths,
while avoiding pitfalls and bottlenecks, and preserving the meaning of the original code.

Our framework assumes that scientific code implements the computation of math-
ematical formulas and follows patterns rooted in that mathematical origin. This makes
it possible to state mathematical properties associated to the code and use them to de-
fine a sound transformation process which parallels the manipulation of mathematical
formulas. The underlying mathematical description is provided by the programmer as
annotations in the input code. Since the programmer should be aware of the underlying
mathematical foundation, this should be an easy task for her.

Rule-based program transformation is a large and fruitful area [17,18]. Our pro-
posal has as distinguishing features the focus on scientific code and the aim to achieve
efficiency on heterogeneous platforms using quantitative measures of non-functional,
run-time properties to guide which transformations to apply. Also, there is a crucial
distinction between systems that generate new code from the mathematical model of
an implementation into a new model and then generating new code, and those which
use mathematical properties to transform an existing code. The former (automatic code
synthesis) has long been subject of research and usually generates underperforming
code because of its generality. The latter usually requires that the initial code is in some
“canonical” form. Our approach, based on chaining mathematically sound small-step
code transformations, tries to avoid those problems. We briefly comment on related
works in the following paragraphs, pointing out similarities and differences.

CodeBoost[2], built on top of Stratego-XT[16], performs domain-specific optimiza-
tions to C++ code following an approach similar in spirit to our proposal. User-defined
rules specify domain-specific optimizations; code annotations are used as preconditions
and inserted as postconditions during the rewriting process. Concept-based frameworks
such as Simplicissimus[15] transform C++ based on user-provided algebraic proper-
ties. The rule application strategy can be guided by the cost of the resulting operation,
although this is done at the expression level (and not at the statement level).

The transformation of C-like programs so as to optimize parallelism in its compi-
lation into a FPGA is treated in Handel-C[&]. It is however focused on a synchronous
language, and therefore some of its assumptions are not valid in more general settings.
A completely different approach is to use linear algebra to transform the mathemati-
cal specification of concrete scientific algorithms [12,11,10]. Here, the starting point
is a mathematical formula and, once the formula is transformed, code is generated for
the resulting expression. However, the good acceleration factors over hand-tuned code
shown happens only for those algorithms, and applying the ideas to other contexts —
like the aforementioned reuse of legacy code — does not seem straightforward.

s statements s do not write into location I: [¢ writes(s)

shl statements s do not read the value in location [

S1 H4 s statements s1 do not write into any location read by sz

$1 ¢4 s2 statements s; do not read from any location written by sz

epure expression e is pure, i.e. does not have side effects nor writes any memory
locations.

g distributes_over f
Va,y,z. g(f(z,y),2) = f(9(x, 2), 9(y, 2))

[fresh [is the location of a fresh identifier, i.e. does not clash with existing identifiers
if introduced in a given program state.

Table 1. Some basic predicates used for the side conditions of transformation rules.

2 Sketch of the Approach

Our approach transforms code by means of small-step rules which come from decom-
posing higher-level mathematical transformations into simpler, self-contained, individ-
ually meaningful, provably correct code transformation steps (Table 4). These rules fea-
ture syntactical pattern matching and semantic conditions which determine when they
can be safely fired. Then, given a program P and a rewriting rule r whose conditions
are fulfilled, if 7 —— P’ then [P] = [P']: the original and the transformed program
are semantically equivalent, although they may differ in their non-functional behavior.
For example, rule JOINASSIGNMENTS in Table 4 removes the statement 1 = e_1 by
propagating its effect to a later statement 1 = e_2 after substituting 1 fore_1 ine_2.
In order to do this safely, it is required that no code s_2 in between reads from or writes
to 1 and e_1. Since the appllcatlon of individual rules is sound, chaining them gives

also a sound result: if P —> P, for arbitrary rules r; whose conditions are held when
applied, then [P] = [P’].

Therefore, a big-step transformation R mimicking a high-level transformation of
the mathematical structure such that P — P’ can be decomposed into small-step
transformations P —% Q — W ... - P’ individually sound and applicable in
isolation. This makes it possible to treat code (say Q) which syntactically differs from
the “starting point” P of a high-level transformation, either by applying r; to continue
the transformation chain or applying r, ! (if it exists) to go back to P [7,6]. Since correct
and functionally equivalent code can be written in many ways, the situation where code
implementing a mathematical computation does not conform to a “standard pattern” is
very common and should be treated.

Table 1 presents some of the semantic conditions necessary. Some of them are run-
time properties which express read / write dependencies between statements., necessary
to ensure the correctness of many transformations (see Table 4). Rules can also include
a measure of its impact on adequacy properties. This measure helps in determining how
applying a rule changes the non-functional, runtime behavior of the code. Whether this
change is an improvement depends on the pursued goal (save real estate / reduce delay
in an FPGA, increase data-parallel computation for a GPU, increase data locality in
regular CPUs, and combinations thereof for hybrid architectures). For space reasons we
cannot show detailed versions of these adequacy properties and how they are measured,
but intuitive examples are presented at the end of Section 3.

property addition external product
commutativity u+v=v+u
associativity ut(v+w)=(u+v)+w a(bw) = (ab)w

identity element 0 1
distributivity laws:

external over vector addition: a(u + v) = au + av
external over scalar addition: (a + b)v = av + bv

Table 2. Properties for vector space V' over field K withu, v,w € V and a, b € K.

The variation of some metric quantitatively approximates the advantages of apply-
ing a given rule, and it is used to decide which rules are candidate to be applied in a
given configuration. While other systems use either built-in or user-defined [7,16,4,5]
static strategies, they fall short to account for run-time characteristics of the resulting
code. Depending on the relative importance of these characteristics for a target archi-
tecture and a goal (e.g., is it more important to avoid data or instruction cache misses?),
different fitness functions can be used.

We expect the number of rules to be large and dependent on the application domain.
For this reason, rules can be written by final users with a C-like language (inspired by
CTT [3] and CML [8]) and dynamically loaded into our prototype.’ As an example,
Fig. 3 is the user-level rule corresponding to the JOINASSIGNMENTS transformation
mentioned before.

3 Example: Optimization of Linear Algebra Operations

We will show how some rules derived
from a linear algebra identity can be used
in the optimization of a simple code frag-
ment. The use of a linear algebra exam-
ple is motivated by its widespread usage
in many scientific applications. We will
first describe the underlying mathemati-
7 cal structure, operations, and associated
el ey e val v roperties and then we will apply then to
} transform our sample code.

generate: { . .
cstmts (body0_1) ; A vector space [] 1§ a pair (‘/’ K)
made up of a field K of scalars and

join_assignments {

pattern: {
cstmts (body0_1) ;
cexpr (vl) = cexpr(val_vl);
cstmts (body0_2) ;
cexpr (vl) = cexpr(val_v2);
cstmts (body0_3) ;

}

condition: {
no_mod_use (cexpr (vl),cstmts (body0_2)) ;

cstmts (body0_2) ;
cexpr(vl) =

subs (cexpr (val_v2),cexpr(vl),
cexpr (val_vl));
cstmts (body0_3) ;
}
metrics: {
metric_1: delta_of_metric_1;
metric_2: delta_of_metric_2;

Fig. 1. Joining two assignments

3http://goo.gl/yuOFiE

an Abelian group V' of vectors: vectors
can be added, scalars have both addition
and multiplication, and vectors can be
stretched by scalars using the so called
external product, which must be doubly
distributive. Table 2 summarizes some of
the algebraic properties of vector spaces.

Table 3 shows, on the left, the compu-
tation of ¢ = av+bv and, on the right, the

http://goo.gl/yuOFiE

c=av+bv c=(a+b)v

#pragma def is_vc_space(V, [c,Vv]) #pragma def is_vc_space(V, [c,Vv])
#pragma def vc_space (V,F,+, *) #pragma def vc_space(V,F,+,*)
#pragma def is_sc_field(F, [a,b]) #pragma def is_sc_field(F, [a,b])
#pragma def #pragma def

sc_field(F, float,+,—,*,/) sc_field(F, float,+,—,*,/)
float c[N], VvI[N], a, b; float c¢[N], VvI[N], a, b;
for (int i=0;i<N;i++) float k = atb;

cl[i] = axv[i]; for (int 1=0; i<N;i++)
c[i] = kx*v[i];

for (int i=0;i<N;i++)
cl[i] += bxv[i];

Table 3. Loop fusion transformation enabled by algebraic properties of a vector space

for (I=eini;rel(l,ecnd); mod(l)) {s1} for (I=eini;rel(l, eend); mod(l))
for (I=eini;rel(l,eend); mod(l)) {s2} {s1;52}
when s1 4 $2, €ini, €end, el pure, (s1; 52) # {l, €ins, €ena}, writes(mod(l)) = {l}
(FOrR-LOOPFUSION)
Il +=e; =1 =1 + ¢;
(SPLITADDITIONASSIGN)
s1; L = e1; s2; | = ea; s3; = s1; s2; | = eaxler/l]; ss3;
when sz A 1,52 <4 1,52 A e1,e1 pure
(JOINASSIGNMENTS)
f(g(er,es),g(ez,e3)) = g(f(e1,e2), es)
when e, ez, e3 pure, g distributes_over f
(UNDODISTRIBUTE)
for (erjez;es) {sp} =1 = emmv; for (ei;ez;es) {spll/€inv])}
when [fresh, e;,, occurs in sp, €iny pure, Sp 4 Ciny
(LOOPINVARIANTCODEMOTION)

Table 4. Some of the source code transformations used in the example.

computation of the equivalent expression
¢ = (a+ b)v. The code is annotated by the user stating that variables v and c belong to
a vector space and variables a and b belong to the field of real numbers. These annota-
tions are internally translated into properties of the program which are matched against
rule conditions. Basic mathematical structures such as vector spaces and scalar fields
are internally known to the tool. We plan to allow final users to define additional struc-
tures based on previously existing ones by giving the properties of their components.
Note that if vectors and scalars were not arrays and floats, but other objects imple-
mented through an abstract data type, annotations stating which varibles are elements
of a vector space and which are its operations would enable the same transformations.
The rules we present have been studied in the literature [1,14] or are common
knowledge. The rule FOR-LOOPFUSION performs a loop fusion, resulting in the code
in Listing 1.1. As mentioned before, we estimate the impact of a rule by means of

Listing 1.1. Loop fusion. Listing 1.2. Expansion of com- Listing 1.3. Variable substi-

pound assignment. tution.
for (i=0; 1<N; i++) { for (i=0; 1<N; i++) { for (1=0; i<N; i++)
cli] = a*v[i]; cli] = axv[i]; cli] =
cl[i] += bx*v[i]; cl[i] = c[i] + bxv[i]; a*v[i]+b*v[i];
} }
Listing 1.4. Distributive property. Listing 1.5. Loop invariant motion.
for (1=0; 1<N; i++) float k = a + b;
cl[i] = (a + b) = v[i]; for (1=0; 1<N; i++)
clil] = k = vI[i];

Fig. 2. Transformation steps.

metrics that estimate how changes of the code influence its adequacy properties. This
particular transformation allows the compiler to schedule instructions more efficiently
since the body of the fussed loop becomes larger; reduces the overhead caused by hav-
ing duplicated loop control statements; improves cache locality by making previously
accessed data (c[1] and v [1]) in the two separated loops available in a single body,
thus increasing task granularity and giving a compiler for regular CPUs more oppor-
tunities to exploit instruction-level parallelism [14].* On the negative side, it would
restrict the possibility of parallel execution and thus it may not be selected when the
target architecture is a multiprocessor.

Rule SPLITADDITIONASSIGN (producing code 1.2) does not affect non-functional
properties but enables the application of other rules. Rule JOINASSIGNMENTS (code 1.3)
eliminates dependencies among statements and reduces register pressure. Rule UN-
DODISTRIBUTE (code 1.4) reduces the number of arithmetic operations. Finally, rule
LOOPINVARIANTCODEMOTION (code 1.5) moves a common computation for each
loop iteration out of the loop, reducing the number of arithmetic operations performed.
However, if registers are scarce and the expression moved is inexpensive to compute,
code motion may actually deoptimize the code, since register spills will be introduced
in the loop.

As mentioned in Section 2, if the initial code to be transformed does not match the
initial step of an algebraic transformation but can be matched by some intermediate
step, our tool can apply the rule, but starting in the intermediate state. It can, therefore,
start with the code in Listing 1.1 and apply the sequence of rules starting in Listing 1.2
and reach the code in Table 3, right.

4 Conclusions and Future Work

We have presented a rule-based approach to transform scientific code targeting hetero-
geneous platforms. The transformation uses mathematical properties enabling transfor-
mations that could not be performed otherwise. Mathematical properties are provided
by annotations in the code and used to apply algebraic transformations rules on the code.
Metrics associated to each rule reflect non-functional properties and guide the transfor-
mation process in order to generate optimized code for heterogeneous platforms.

* Note that coarse-grained bodies are not necessarily good for FPGAs or GPUs.

We have developed a prototype tool implementing the approach described. Cur-
rently the tool can transform code implementing some algebraic operations. As a future
work we plan to develop more rules and metrics to target more complex scientific pro-
grams.

References

1. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance
computing. ACM Computing Surveys (CSUR) 26(4), 345-420 (1994)

2. Bagge, O.S., Kalleberg, K.T., Visser, E., Haveraaen, M.: Design of the CodeBoost Trans-
formation System for Domain-Specific Optimisation of C++ Programs. In: Third Interna-
tional Workshop on Source Code Analysis and Manipulation (SCAM 2003. pp. 65-75. IEEE
(2003)

3. Boekhold, M., Karkowski, I., Corporaal, H.: Transforming and parallelizing ANSI C pro-
grams using pattern recognition. In: High-Performance Computing and Networking. pp.
673-682. Springer (1999)

4. Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P.E.: ELAN from a Rewriting Logic
Point of View. Theoretical Computer Science 285(2), 155-185 (2002)

5. Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P.E., Ringeissen, C.: An Overview of
ELAN. Electronic Notes in Theoretical Computer Science 15, 55-70 (1998)

6. Boyle, J.M.: Abstract Programming and Program Transformation - An Approach to Reusing
Programs. In: Biggerstaff, T.J., Perlis, A.J. (eds.) Software Reusability, vol. 1, pp. 361-413.
ACM Press (1989)

7. Boyle, J.M., Harmer, T.J., Winter, V.L.: The TAMPR Program Transformation System: Sim-
plifying the Development of Numerical Software. In: Arge, E., Bruaset, A.M., Langtan-
gen, H.P. (eds.) Modern Software Tools for Scientific Computing, pp. 353-372. Birkhauser
Boston Inc., Cambridge, MA, USA (1997)

8. Brown, A., Luk, W., Kelly, P.: Optimising Transformations for Hardware Compilation. Tech.
rep., Imperial College London (2005)

9. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tipparaju, V.,
Vetter, J.S.: The Scalable Heterogeneous Computing (SHOC) Benchmark Suite. In: Proceed-
ings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units.
pp. 63-74. ACM (2010)

10. Di Napoli, E., Fabregat-Traver, D., Quintana-Orti, G., Bientinesi, P.: Towards an efficient use
of the BLAS library for multilinear tensor contractions. Applied Mathematics and Compu-
tation 235, 454468 (May 2014)

11. Fabregat-Traver, D., Bientinesi, P.: Application-tailored linear algebra algorithms: A search-
based approach. International Journal of High Performance Computing Applications (IJH-
PCA) 27(4), 425 — 438 (Nov 2013)

12. Franchetti, F., Voronenko, Y., Piischel, M.: FFT Program Generation for Shared Memory:
SMP and Multicore. In: Supercomputing (SC) (2006)

13. Hogben, L.: Handbook of Linear Algebra. (Discrete Mathematics and Its Applications),
Chapman & Hall/CRC, 1 edn. (Nov 2006)

14. Kennedy, K., McKinley, K.S.: Maximizing loop parallelism and improving data locality via
loop fusion and distribution. In: Languages And Compilers For Parallel Computing. pp. 301-
320. Springer-Verlag (1994)

15. Schupp, S., Gregor, D., Musser, D., Liu, S.M.: Semantic and behavioral library transforma-
tions. Information and Software Technology 44(13), 797-810 (2002)

16.

17.

18.

Visser, E.: Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Sys-
tems in StrategoXT-0.9. In: Lengauer, C., Batory, D., Consel, C., Odersk, M. (eds.) Domain-
Specific Program Generation, Lecture Notes in Computer Science, vol. 3016, pp. 216-238.
Springer-Verlag (June 2004)

Visser, E.: A Survey of Strategies in Rule-Based Program Transformation Systems. Journal
of Symbolic Computation 40(1), 831-873 (2005), special issue on Reduction Strategies in
Rewriting and Programming

van Wijngaarden, J., Visser, E.: Program Transformation Mechanics. Tech. rep., Technical
Report UU-CS-2003-048, Universiteit Utrecht (2003)

	-3emTechnical Report CLIP1/2015.0[2em] Towards a Rule-Based Approach to Generate High-Performance Scientific Code*-1em

